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Abstract

We consider a mean field game (MFG) of optimal portfolio liquidation under asymmetric informa-
tion. We prove that the solution to the MFG can be characterized in terms of a FBSDE with possibly
singular terminal condition on the backward component or, equivalently, in terms of a FBSDE with
finite terminal value, yet singular driver. Extending the method of continuation to linear-quadratic
FBSDE with singular driver we prove that the MFG has a unique solution. Our existence and
uniqueness result allows to prove that the MFG with possibly singular terminal condition can be
approximated by a sequence of MFGs with finite terminal values.

AMS Subject Classification: 93E20, 91B70, 60H30

Keywords: mean field game, portfolio liquidation, continuation method, singular FBSDE

1 Introduction and overview

Mean field games (MFGs) are a powerful tool to analyse strategic interactions in large populations when
each individual player has only a small impact on the behavior of other players. In the economics
literature, mean-field-type (or anonymous) games were first considered by Jovanovic and Rosenthal [31]
and later analyzed by many authors including [7, I8, 27]. In the mathematical literature MFGs were
independently introduced by Huang, Malhamé and Caines [29] and Lasry and Lions [35]. MFGs have
been successfully applied to various economic problems, ranging from systemic risk management [14]
to principal agent problems [20, B6] and from portfolio optimization [34] to optimal exploitation of
exhaustible resources [17].

In a standard MFG, each player i € {1, ..., N} chooses an action u’ from a given set of admissible controls
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that minimizes a cost functional of the form
T@ =B [ i)+ g )| ¥ = o (1.1)
0
subject to the state dynamics

{ dX; = b(t, X7, @Y ud) de + ot X} i ud) V7, 12)

Xi=axt
Here, W', ..., W are independent Brownian motions, and X', ..., XN are independent and identically
distributed random variables with law v that are independent of the Brownian motions. All stochastic
processes and random variables are defined on an underlying filtered probability Spaceﬂ The vector
@ = (u',---,u’) denotes the action profile, and fi}’ := + Zjvzl 5)({ denotes the empirical distribution
of the individual players’ states at time ¢ € [0,7]. It is usually assumed that the players observe their
own initial state and know the common distribution v of the other player’s initial states.

The existence of approzimate Nash equilibria for large populations can be established using a represen-
tative agent approach. The idea is to approximate the dynamics of the empirical distribution of the
states by a deterministic measure-valued process, and then to consider the optimization problem of a
representative player subject to the equilibrium constraint that the distribution of the representative
player’s state process under her optimal strategy coincides with the pre-specified measure-valued pro-
cess. More precisely, denoting by P(R?) the space of probability measures on R%, by Law(X) the law of
a stochastic process X and by X a random initial state with distribution v the resulting MFG can be
formally described as follows:

1. fix a deterministic function t € [0,T] + p; € P(R?);
solve the corresponding stochastic control problem :

. T
lnqu |:f0 f(t7XtXa,utaut) dt + g(XZ)“C‘vlj‘T) X:| )
subject to the state dynamics . (1.3)
dX{Y = b(t7 Xixa i, U/t) dt + U(t7 XiX7 Mt U’t) th7

X=X
3. solve Law(X¥) = u where X is the optimal state process from 2.

Let p* be a solution to the above fix point problem and let £* be the representative player’s optimal
response to p* given X. Then &* = ¢(X, W) for some measurable function ¢ from R x C[0,7T] into a
suitable function space, and each individual player’s optimal response to ;* given her initial state X? = z*
is £%% = (2, W?). Under suitable assumptions the homogeneous action profile (¢(-,-), ..., ¢(,-)) forms
an e-equilibrium in the original game if N is large enough.

There are basically four approaches to solve mean field games. In their original paper [35], Lasry
and Lions followed an analytic approach. They analyzed a coupled forward-backward PDE system,
where the backward component is the Hamiltion-Jacobi-Bellman equation arising from the representative
agent’s optimization problem, and the forward component is a Kolmogorov-Fokker-Planck equation that
characterizes the dynamics of the state process; see also [23]. Merging the forward backward system into
a single master equation, the dynamics of the MFG can alternatively be described in terms of some form
of second order PDE on the space of probability measures; see [8, [I0} [19] for details. A more probabilistic
approach was introduced by Carmona and Delarue in [I1]. Using a maximum principle of Pontryagin
type, they showed that the fixed point problem reduces to solving a McKean-Vlasov FBSDEs; see also
Bl 16]. A relazed solution concept to MFGs was introduced by Lacker in [33] and later extended by
various authors including [13} 21]. In this paper we apply a probabilistic approach to analyze a novel

1We assume throughout that all filtrations are augmented by the null sets.



class of MFGs arising in models of optimal portfolio liquidation under market impact. Our existence
and uniqueness of equilibrium result is based on a new existence of solutions result for FBSDE systems
with singular drivers.

1.1 Single player models of optimal portfolio liquidation

Single-player portfolio liquidation models have been extensively analyzed in recent years. Their main
characteristic is a singularity at the terminal time of the Hamilton-Jacobi-Bellmann equation. In such
models the controlled state sequence typically follows a dynamic of the form

t
Xt:x—/ &g ds,
0

where x > 0 is the initial portfolio that a trader needs to unwind, and ¢ is the trading rate. The set of
admissible controls is confined to those processes ¢ that satisfy almost surely the liquidation constraint

X7 = 0.

It is typically assumed that the unaffected benchmark price process follows a Brownian motion W (or
some Brownian martingale) and that the trader’s transaction price is given by

t
S, = oW, — / kol ds — it
0

The integral term accounts for permanent price impact, i.e. the impact of past trades on current prices,
while the term 7:£; accounts for the instantaneous impact that does not affect future transactions. The
expected cost functional is typically of the linear-quadratic form

T
E l | (reX b mle? + AL xP) ds]
0

where x,n and X\ are bounded adapted and non-negative processes. The process A describes the trader’s
degree of risk aversion; it penalizes slow liquidation. The process 1 describes the degree of market
illiquidity; it penalizes fast liquidation. The process k describes the impact of past trades on current
transaction prices.

There are basically two approaches to overcome the challenges resulting from the singular terminal state
constraint. The majority of the literature, including Ankirchner et al. [3], Graewe et al. [25], Kruse and
Popier [32] and Popier [39 40] considers finite approximations of the singular terminal value, and then
shows that the minimal solution to the value function with singular terminal condition can be obtained
by a monotone convergence argument. A second approach, originally introduced in Graewe et al. [20]
and further generalised in Graewe and Horst [24] is to determine the precise asymptotic behaviour of
a potential solution to the HJB equation at the terminal time, and to characterize the value function
in terms of a PDE or BSDE with finite terminal value yet singular driver, for which the existence of a
solution in a suitable space can be proved using standard fixed point arguments.

1.2 A MFG of optimal portfolio liquidation

We consider a MFG of optimal portfolio liquidation among asymmetrically informed players. In order
to introduce the game, we fix a probability space (£2,G,P) that carries independent standard Brownian
motions WO, W', ..., W and independent and identically distributed random variables X, ...., XV with
law v that are independent of the Brownian motions. The Brownian motion W° describes a commonly



observed random factor that drives the unaffected benchmark price process; the Brownian motion W?
is private information to player 7 and determines that player’s cost function. We may think of W' as
measuring a player’s individual degree of market impact or as capturing hedging effects when computing
the risk of the portfolio that the player intends to liquidate. The random variables X7, ...., X specify
the respective players’ initial portfolios. We assume that each player observes the realization of her initial
portfolio and knows the distribution of all the other initial portfolios.

Following [9] we assume that the transaction price for each player ¢ = 1,..., N is given by

t 4 N
i Kg j Qe
St:UWtO*/O ﬁZfédS*nt@-
j=1

In particular, the permanent price impact depends on the players’ average trading rate. Given her initial
portfolio X* = z° the optimization problem of player i = 1, ..., N is to minimize the cost functional

;N
JNi (5) —E / % X7+ ni(E)2 + N (XD)? | dt|xt = 2 (1.4)
O -:
subject to the state dynamics
dX} = —¢ldt,
o =—bidh (1.5)
Xg=4&", Xp=0.
Here, E = (&Y, .-+, &N) is the vector of strategies of all the players. We assume that the cost coefficients
(k%,m%, \") have the same distribution across players and are adapted to the filtration
= (F,0<t<T), with F/:=o(X W, W.,0<s<t). (1.6)

Our game is different from the majority of the MFG literature in at least three respects. First, as
in [I5] 23] the players interact through the impact of their strategies rather than states on the other
players’ payoff functions. Second, all players observe the common Brownian motion W9 that drives the
benchmark price process. Hence, ours is a MFGs with common noise. While MFGs with common noise
have been investigated before (see, e.g. [13]) the nature of both the common and the idiosyncratic noise
in our model is very different from the existing literature. Third, the individual state dynamics are
subject to a terminal state constraint arising from the liquidation requirement. MFGs with terminal
state constraint have been considered before in the literature by means of so-called mean field (game)
planning problems (MFGP) introduced by Lions in his lectures at College de France (2009-2010). In
these problems the terminal state constraint is given by a target density of the state at the terminal time.
While our problem formally belongs to the literature on MFGP, see e.g. [Il 22] [41] and the references
therein, ours seems to be the first paper that considers a MFG with strict terminal state constraint.

1.2.1 The MFG

In order to specify the resulting MFG, let W% and W be independent Brownian motions of dimension 1
and m—1, respectively, and X be an independent random variable with law v defined on some probability
space, again denoted (Q,G,P). Let F := (FP,0 <t < T) with 7Y = a¢(W?2,0 < s < t) be the filtration
generated by W0 and let F := (F;,0 <t < T) with F; := o(X, WY, W;,0 < s < t). The MFG associated



with the N-player game (1.4) and (1.5) is then given by:

1. fix a FO progressively measurable process p (in some suitable space);
2. solve the corresponding constrained stochastic control problem :
infe B [ [y (koo X + 1,2 + A, X2) ds| ]
subsect to
dXy = =& dt, Xg =X and Xp = 0;
3. search for the fixed point 1y = E[€"|F?], for a.e. t € [0,T]

(1.7)

where €% is the optimal strategy from 2 and the processes (,7, \) is adapted to the filtration F.

We apply the probabilistic method to solve the MFG with terminal constraint . In a first step
we show how the analysis of our MFG can be reduced to the analysis of a conditional mean-field type
FBSDE. The forward component describes the optimal portfolio process; hence both its initial and
terminal condition are known. The backward component describes the optimal trading rate; its terminal
value is unknown. Making an affine ansatz, we show that the mean-field type FBSDE with unkown
terminal condition can be replaced by a coupled FBSDE with known initial and terminal condition, yet
singular driver. Proving the existence of a small time solution to this FBSDE by a fixed point argument
is not hard. The challenge is to prove the existence of a global solution on the whole time interval. Under
a weak interaction condition that has been used in the game theory literature before (see, e.g. [27]) we
prove the existence and uniqueness of a global solution by a generalization of the method of continuation
established in [28] B8] to linear-quadratic FBSDE systems with singular driver. Under the additional
assumption that all players share the same cost structure, i.e. that

k= k(XL WO WY, gt =X WO WY, A= N, WO, W)

for bounded measurable functions k,n, A\ we prove that each player’s best response to the mean-field
equilibrium g* is of the form

6*’i _ Qs(Xi, WO, Wz)
for some function ¢ and that the resulting homogeneous action profile forms an e-equilibrium in the
original N-player game.

The common information case where all the cost coefficients are measurable with respect to the common
factor can be analysed in greater detail. When different players hold different initial portfolios, then
the optimal portfolio processes are given as weighted averages of the players’ initial portfolios and the
differences of their own and the average initial portfolio. In this case, we show that if the average initial
portfolio is positive and a player holds an above average initial portfolio, then her optimal portfolio
process is always positive. If, however, a player holds a positive yet well below average initial portfolio,
then it is optimal to quickly unwind the position, to then take a negative position and to buy the stock
back by the end of the trading period. This is intuitive as players with negative portfolios benefit from
the negative price trends generated by other players while the cost of unwinding a small portfolio is low.
As such, our result suggests that traders with small portfolios act as liquidity providers in equilibrium
even if their initial holds are positive.

The benchmark case of deterministic coefficients can be solved in closed form. For this case we show
that when the strength of interaction is large and all players share the same initial portfolio, the players
initially trade very fast in equilibrium to avoid the negative drift generated by the mean field interaction.
Our model thus provides a possible explanation for large price drops in markets with many strategically
interacting homogenous investors. We also show that the deterministic case is equivalent to a single
player model with suitably adjusted cost terms.

Under mild additional assumptions on the market impact parameters we further prove that the solution
to the MFG can be approximated by the solutions to a sequence of MFGs where the liquidation constraint



is replaced by an increasing penalization of open positions at the terminal time. The convergence result
can be viewed as a consistency result for both, the unconstrained and the constrained problem.

The three papers closest to our model are Cardaliaguet and Lehalle [9], Carmona and Lacker [I5],
and Huang, Jaimungal and Nourin [30]. In [I5], the authors propose a specific portfolio liquidation
model where each players portfolio is subject to exogenous fluctuations (customer flow) described by
independent Brownian motions. As such, their model is much closer to a standard MFG than ours, but
no liquidation constraint is possible in their framework. The papers [9] and [30] consider mean field
models parameterized by different preferences and with major-minor players, respectively. Again, no
liquidation constraint is allowed.

The remainder of the paper is organized as follows. In Section [2] we state and prove our existence and
uniqueness of solutions result for the MFG and establish additional results on the equilibrium
trading strategies and portfolio processes if all the players share the same information. In Section 3 we
prove that the solution to the MFG yields an e-Nash equilibrium in the N-player game. In Section [4] we
prove that the MFG with singular terminal condition can be approximated by MFGs that penalize open
positions at the terminal time under additional assumptions on the market impact term.

1.2.2 Notation and notational conventions

Throughout, we adopt the convention that C denotes a constant which may vary from line to line.
Moreover, for a filtration G, Prog(G) denotes the sigma-field of progressive subsets of [0,7] x © and we
consider the set of progressively measurable processes w.r.t. G:

Pe([0,T] x 4I) ={u:[0,T] x @ =1 | uis Prog(G) — measurable } .
We define the following subspaces of Pg ([0, 7] x Q;1):

LE([0,T] x 1) = {u € Pe([0,T] x Q;1); |lu|| := esssup |u(t,w)| < oo} ;
t

W

T p/2
LE([0,T] x ;I) = u e Pg([0,T] x Q;I); E </ |u(t,w)2dt> <00
0

SE([0,T] x ;1) = {u € Ps([0,T] x Q;I); E (0;‘1:£T|u(t,w)|p) < oo} .

Whenever the notation T— appears in the definition of a function space we mean the set of all functions
whose restriction satisfy the respective property on [0, 7] for any 7 < T, e.g., by v € L?([0,T—] x ;R),
we mean ¢ € L([0,7] x ;R) for any 7 < T. For notational convenience, we put

DZ([0,T] x @;R) := LA([0,T] x Q;R) N SZ([0,T—] x O;R).

For a positive stochastic process u € L ([0, T] x €©; [0, 00)) we denote its upper and lower bound by ||u||
and u,, respectively.

2 The mean-field game

In this section, we state and prove an existence and uniqueness of solutions result for the MFG ([1.7).
The set of admissible controls for the representative player’s liquidation problem is given by

T
Ap(X) := {f € L2([0,T] x O;R), / Esds =X as. }
0



For a given process p € L% ([0,T] x ©;R), the corresponding cost and value functions are given by
X] ,

respectively. We denote by Y the adjoint process to the controlled state process X. The Hamiltonian is

T
J(X, &) = E / (ko Xty + o2 + A X2) ds
0

and
VI(X;p) = inf J(X,&p),

EEAR(X)
H(t,f, Xa Y?N’) = 7£Y + Ht/u'X + 772552 + Athv

and the stochastic maximum principle suggests that the solution to the optimization problem can be
characterised in terms of the FBSDE

dXy =—¢& dt,
—dYy = (Keps + 20\ Xy) dt — Zy AW, (2.1)
Xy =X
Xr =0,

where W = (WO, W) is a m-dimensional Brownian motion. The liquidation constraint Xr = 0 results
in a singularity of the value function at liquidation time; see [3, [26]. As a result, the terminal condition
for Y cannot be determined a priori. In particular, the first equation holds on [0,7] while the second
equation holds on [0,7). A standard approach yields the candidate optimal control

_ Y

= 2.2
6 =5 (22)
Taking the equilibrium condition into account suggests that the analysis of the MFG reduces to the

analysis of the following conditional mean-field type FBSDE:

Y,
dX, = — =L dt,
2T]t
Y o~
—dY, = (/{tE {t ]_-to} + 2)\tXt> dt — Z; dWr, (2.3)
2n .
Xo =X
X =0.

We establish the existence and uniqueness of a solution to the preceding FBSDE in the following space
of weighted stochastic processes.

Definition 2.1. For | € R, we introduce the space

Hy = {Y € Pe([0,T] x URU{oc}): (T — )Y € S2([0,T] x QR U {oo})},

1
> 2
)

M ={Y € Pp([0,T] x Q;RU {o0}) : (T —.)7'YV. € Lg°([0, T] x R U {o0})},

which we endowed with the norm

Y, 2

T — 1)

0<t<T

Yl = 1Y = (IE [ sup

and the space

which we endowed with the norm

V2|
Y|m, ;= esssup .
1Yl (twe,mxa (T =)




Fact 2.2. The following facts are readily verified:

o Hy CHorgpq with ||~ [la_yy, ST 2
o I[f K € Hy, withl >0, then Kp =0 a.s.
o I[f Ky € M_y and Ko € H;, then K1 K5 € H_14-

The first two properties also hold for the space M.

We assume throughout that the cost coefficients are bounded and that the dependence of an individual
player’s cost function on the average action is weak enough. The weak interaction condition is consistent
with the game theory literature on mean-field type games where some form of moderate dependence
condition is usually required to prove the existence and uniqueness of Nash equilibria; see [27] and
references therein. The condition is also consistent with the monotonicity condition for FBSDE systems
originally proposed by [28| 8] and slightly weaker than the generalizations to mean-field type FBSDEs
established in [6l [TT]. Specifically, we assume that the following condition is satisfied.

Assumption 2.3. i) The processes x, A, 1/A, n and 1/n belong to Lg°([0,T] x ©;[0,00)) and X €
L?(Q) is independent of W and W°.

ii) There exists a constant § > 0 such that

Isll _,_ 4\ o
Ay [l
The following quantity will be important in our subsequent analysis:
a:=n./|ln] € (0,1]. (2.5)

We are now ready to state our first major result. Its proof is given in Section
Theorem 2.4. Under Assumption[2.3, there exists a unique solution

(X,Y,Z) € Ho x LE([0,T] x Q;R) x LE([0,T—] x Q;R™)
to the FBSDE . Moreover, the MFG (L.7)) admits a unique equilibrium p* given by

Y;
Mf:E[;
Mt

J—",?] , teo,T).

2.1 Common information environments

The benchmark case where all players share the same information, except for their initial value can be
analyzed in greater detail. In this section we therefore assume that all randomness is generated by the
common Brownian motion W9 and the initial value X.

Assumption 2.5. The processes , A, 7 and 1/ belong to L5 ([0,77] x €;[0,00)).

The weak interaction condition (2.4) is not required in this section. Under the common information
assumption the conditional mean-field FBSDE (2.3)) reduces to the following FBSDE:

Y,
dX, = — = dt,
2ny
—dY, = (;;E [V 0] + 2)\tXt> dt — Zy dW?, (2.6)
t
Xo = X,
Xp = 0.




2.1.1 Common initial portfolio

In this subsection we further assume that the initial portfolio is common to all players, i.e. X =z € R.
In this case all processes are F°-adapted, the consistency condition reads

g (2.7)
and the mean-field FBSDE ({2.6) simplifies to the regular FBSDE
Y
dX, = ——L dt,
277t
_av = (Y onx, ) dt — zpaw?
2,'7 to (28)
XO =,
Xr =0
The linear ansatz Y = A*X yields
Af Ar)? “
— dAF = <2>\t 4 o (t>> dt — Z"aw?, A% = cc. (2.9)
2n¢ 2me

This singular terminal condition on A" is necessary to satisfy the constraint Xp = 0. This equation has
a unique solution, due to Corollary By (2.8),

% —ftA—?dr
X; =xe Jomr T,

Lemma 2.6. Under Assumption the processes A", X*, Y* = A*X™ and £ = p* = 32/—77 have the
same sign as x. Moreover

A" e Moy, X e Mo, Y € Mqa1, £ € Mot

Proof. Let Ar = Afefot 7: % Due to Lemma the following estimate holds for any 0 <t < T"
1

B} e B 5 as] 72
Hence the process A is bounded from below by:
tEr gy
e Jo 2np 1 1
Ap > ; = s > 21, : 2.10
E { el ds‘]—',?] E [ftT e S A ds‘fg] (T —1) (2.10)

Hence (2.16]) holds:

t o
—Ji = L dr < _9 / ¥d < r—t
n exp ( Uy ) 27]T(T — ’I“) TS T

The conclusion on X* can be deduced immediately. Again from Lemma A" is bounded from above:

T
[ ks a0y ]
t

Thus we get an upper bound on A":

— 1
A< — _F
(T -t)?

ff ;777;‘ dr T s mr g s Kr g
A’; S WE /t (277$€f0 a7 +2(T— 3)2)\Se‘fo 20 T) dS ./—"to
2 oy 1 .
<@ [nnneff (T 1) + I (T 1)
2
< gy B I+ I



Collecting all inequalities we get that A" € M _; and

L ARX —J¢ 22 dr
|§t| = t2 ! = |$| 2
Nt Nt
el IMIT?] v a1
< e (T —t .
< o i+ A= |5 -
A similar inequality holds for Y. O

It follows from the preceding lemma that Y is a non-negative or non-positive supermartingale so the
limit of ¥ at the terminal time T exists and is finite. Since X* € M, we deduce that lim; ~r ¥; X; = 0.
Moreover, the process Z belongs to Lg, ([0, 7—] x Q;[0,+00)) for any p.

The following result shows that £* is optimal. The proof is similar to that of Theorem

Theorem 2.7. Under Assumption and the initial value is deterministic, £*(= p*) is an admissible
optimal control as well as the equilibrium to MFG (1.7). Moreover the value function is given by:

1 1 T
V(z;p*) = §A8m2 + iE /0 Kspha X ds] , (2.11)

and is non-negative.

2.1.2 Private initial portfolio

Let us now return to the problem (2.6)). From the solution to (2.8]), we deduce that

E[X] t AR
E Y, 7_—0 At dr
t 277 t’ 2n t€ oo

where A" solves the BSDE (2.9). Making the affine ansatz that Y = AX + B, we obtain (see equation

(2.15) below) that

A2
—dAt = (2At — 2) dt — ZA th y AT = +00

Nt
A By

Tt

(2.12)

—dB; = (MM;‘ - ) dt — zPaw?, Br=o.

Note that A and B are F'-adapted and that A = A°. Thereby we have an explicit solution: for ¢ € [0, T]]

]:t‘|a

t
X, = Xe Jo@n) A dr 7/ (27]5)71356*f:(2777-)_1A7'dT ds,
0

T
B:=E / Hsﬂze_ ftS(QnT‘)ilAr dr ds
t

Y—t* :AtXt* + Bt.

It follows from the general analysis of Section that the system (2.12)) has a unique solution from
which we deduce that the optimal state process for a given initial position X = z € R is given by:

X" = (z— E[X))e” o Gm) 7 Ardr y [ y]em Jo (2nr) 7 AT dr, (2.13)

Thus, if different players hold different initial portfolios, then a trader’s optimal position consists of a
weighted sum of the competitors’ average portfolio size E[X] and the deviation of the own initial position
from that average.

10



Remark 2.8. By [37, Theorem 2.4] the unique solution A®" to the BSDE

K,n KtAf’n (Af’n)Q) AR 0 K,
—dA>" = 2M + - dt — 7 dwy, A7 =2n
t ( t 2771& QT]t t t T

is increasing in k. By Lemma this result carries over to the process A®. In particular, A" > A.
Moreover Af > Ag if £ > 0 on some set of positive measure.

The preceding remark shows that the dependence of the optimal portfolio process decreases if E[X] > 0.
It also suggests that - contrary to the previous case - the sign of the optimal portfolio process X* may
change on the interval [0,T]. In fact, if E[X] > 0 and z > E[X], then X™** remains non-negative on
[0,T]. However, if 0 < x < (E[X] where ¢ := 1 —exp (AD*AS

2[[nll
after the initial time; see also Figure [2] below.

t) > 0, then X™** becomes negative shortly

2.1.3 Constant cost coefficients

In this section, we consider a deterministic benchmark example that can be solved explicitly.

Assumption 2.9. The processes A, kK, 17 are positive constants.

Under the preceding assumption, the Riccati equation (2.9)) reduces to

KAF  (A7)?

2n 2n

—dAY = <2)\ + ) dt, A% = co.

Its explicit solution is given by .
A¥ = 2nycoth (v(T —t)) + 5

where
L
TN T e
If all players share the same initial portfolio (see Subsection [2.1.1]), then
k \ sinh(y(T —t))
X, = -t ———— 2.14
t =P < 4n > sinh(yT) . (2.14)

and the optimal liquidation rate is given by

* _ i *
& = (vootno(T - ) + ) X;

- < K t> <'ycosh(fy(T 1)), msinh(y(T - t))> i

Sy sinh(yT) 4n sinh(yT)

When x — 0, then & — %&;mw with ¥ = % This corresponds to the benchmark model in [2].
This convergence can also be seen from Figure 1. Furthermore, we see that—as in the corresponding
single player models—the optimal liquidation rate is always positive, i.e., round trips are not beneficial.
Moreover, we notice that the portfolio process correspor;ds to the optimal portfolio process in an
Almgren—Chriss model with adjusted risk aversion A = A + 1’%—” and with additional exponential decay

of rate -.
n

When x — oo, then {§ — oo while § — 0 for ¢ > 0. That is, when the impact of interaction is very
strong, then the players trade very fast initially and very slowly afterwards. The intuitive reason is that
in this case an individual player would benefit from trading fast slightly before his competitors start

11



1.0

T
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-~ x=1000 I == k=1000
[N

0.8

0.6

Optimal rate

Optimal state process
04

0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time Time

Figure 1: Current state X* (left) and optimal liquidation rate £* (right) corresponding to parameters
T=1,z=1,A=5and n = 5. The solid line corresponds to x = 0, that is the Almgren-Chriss model
with temporary impact.

trading in order to avoid the negative drift generated by the mean-field interaction. As all the players
are statistically identical, they “coordinate” on an equilibrium trading strategy as depicted in Figure 2.
Thus, our model provides a possible explanation for large price increases or decreases in markets with
strategically interacting players with similar preferences.

If the players hold different initial portfolios (Subsection , then (2.13) shows that the optimal
portfolio process is given by

XM = (z— B[ sinh(F(T —t)) < K ) sinh(~(T — t))]E[X]

sinh(47) sinh(~T)
Figure |2| confirms that the sign of X* is indeed changing when x is small.
2.2 General existence and uniqueness of solutions

In this section we prove our existence and uniqueness of equilibrium result for the MFG Decoupling
the FBSDE (2.3) by Y = AX + B yields the following system of Riccati type equations:

A7 A T
—dAc= (23 - ) dt - Z{ AW,

Ug
1 A:B —
—dB, = [ kE | — (A X, + B,)| FO| - === —zB
dB; (Ht [Qm( + Xt + Bi) ]:t:| 2 dt — Z;7 dWr, (2.15)
AT:OO
Br =0.

The existence of a unique solution A € M_; to the first equation is established in Lemma Namely,

there exists a unique process (A4, Z4) such that A € M_;, Z4 € L%([0,7—];R™), the dynamics is given

on any interval [0, 7], 7 < T by the first equation of (2.15]) and 2Slirr% Ay = 400 = Ap. Moreover A satisfies
—

the a priori estimate (A.1). From that lemma, especially (A.1)), it also follows that
S Ay, T—-5s\°
_ Udu ) < 2.16
o (- [ ) < (7=7) 210

12




1.0 1.5 20
|

Initial value
0.5

0.0

-0.5

-1.0

time

Figure 2: Current state X** corresponding to parameters T = 1, E[X] =1, A =5, n =5 and x = 100
for different values of the initial portfolio x.

for any 0 <r < s < T, where « is given by (2.5)). Hence we need to solve the following FBSDE:

1
dXt == - Tm(AtXt + Bt) dt,
1 A, B —~
—dB; = (KE | — (A, X, + By)| FO| — =122 - zP
dB; (ﬁt [27%( X1+ By) ]:t:| 2 dt — Zy dWs, (2.17)
Xo =X
Br =0.

Our approach is based on an extension of the method of continuation that accounts for the singularity of
the process A at the terminal time and hence for the singularity in the driver of the FBSDE. We apply
to the method of continuation to the triple (X, B,Y = AX + B) rather than the pair (X, B), and search

for solutions
(X,B,Y = AX + B) € Ho x H x LE([0,T] x O R),

where o was defined in (2.5) and -y is any constant
O<vy<anl/2

Specifically, the method of continuation will be applied to the FBSDE

1
dX; = — — (A X, + By) dt,
277t

1 A,B —
—dB; = (fstp]E {277 (A X, + By) }',?] +fi— 2t t) dt — ZF dw,
t t
AX 4B s (2.18)
dy, = (_QAtXt — kpE [t;:t ]—‘f} - ft> dt + z) dw,,
t
Xo =X
BT :Oa

where p € [0,1], f € L2([0,T] x Q;R). We emphasise that the first two equations hold on [0, T, while
the third equation holds on [0, T).

In a first step, we provide an a priori estimate for the processes Z2 and ZY .

13



Lemma 2.10. Assume that f € L2([0,T] x Q;R) and that there exists a solution (X, B,Y,Z8,Z¥) to
(2.18) such that
(X,B,Y) € Ho x H, x SE([0,T—] x O, R).

Then
(ZB,ZY) € L([0,T] x & R™) x LE([0,T—] x Q;R™)

T
/ £l dt] )
0
and such that for each T <T

/OT|Z§2ds /OT|ft|2dtD.

In particular, [, ZE dW, is a true martingale on 0,7 and [, ZY dW, is a true martingale on [0,7], for
each T < T.

and there exists a constant C > 0 such that

T
| 1zepa
0

E

<C (llBli +[IX[2+E

2
E

<C (IE [ sup |Yt|2:| + I X2+ IBI} + E
0<t<r

Proof. Since A € M_; and 7, > 0 there exists a constant C' > 0 that is independent of s € [0,7] such

that
ASBS ASXS + BS 0 |BS| |XS| 0
- SE - 5 — Js < E Bs s .
G | B m )l <o Pl vr (Pl s ) 4 in
Let us notice that
T T
N A,B, A X, + By
/ ZdeS:BtJr/ { HSE{+ ]{?}fs} ds.
t t 25 2ns
Since (X, B) € Hq X H., this implies
T
= By | X
ZBaw,| < C su ‘7t+0 su IE[ sup o —— | F?
/t B Oéth (T —t) ogng ogth (T —t)~
+C sup E[ sup B ]:?} +/Tft|dt.
o<s<T Lo<t<T (T — )| " 0

Thus, by Doob’s maximal inequality,

T 2
/ ZBaw,

t

E | sup
0<t<T

<C (IIB?Y + XI5 +E

Aﬁm%ﬂ>

Similarly, for each 0 < 7 < T,

/ zY dw,

t

2

E | sup

0<t<r

<C (E [ sup |}/t2:| + X% + HBHEY +E
0<t<r

T
/ |ft|2dt]> < oo.
0

In a second step, we now prove an existence of solutions result for the FBSDE ([2.18]) with p = 0.

Lemma 2.11. For p = 0 there exists for every given data f € LZ([0,7] x & R) a unique solution
(X,B,Y,ZB,ZY) € Hq x M, x D2([0,T] x R)xL2([0,T] x Q;R™) x L2([0,T—] x & R™) to ([@.15).

14



It is given by

B, =E F|, telo,T]

)

T S
/ foe™ i @) A g
t

t

X, = Xe Jo@n) Ardr —/ (2n) " Bye Ji @) Avdr g 4 [0, T
0

Y, =A X, + By, tel0,T),

and ZP € L2([0,T] x Q;R™) and ZY € LZ([0,T—] x Q;R™) are given by the martingale representation
theorem.

Proof. For p = 0 the process X solves a linear ODE and the pair (B, ZP) solves a linear BSDE. Hence,
the explicit representations follow from the respective solution formulas. It remains to establish the
desired integration properties. To this end, let us recall that A has positive values. Thus we first apply

Hoélder’s inequality in order to obtain,
T . 1=y
Fi| < |E / | fs| =7 ds| Fy < o0.
t

/tTlfsldS

Using Doob’s maximal inequality, Jensen’s inequality and the fact that v < % we conclude that,

T 2(1=v) T
<E/| sup (El/ |fs|1—1~dsftD < CE / |fs|2d31.
0<t<T 0 0

From ([2.16) and the solution formula for X and using that v < a we obtain that X € H, because

T —t) t T—t\“
|Xt|§w+0/ |Bg|(> ds
0

| By | 1
Tty =T

2

T T—s
xKT_t)Q+C< sup |&|)V> (/Ot(T—S)’Y_a dS) (T —1)*

T 0<s<T (T—S
z|  COTMe < | Bs| )}
T—t)—+—--—| s —_— .
( ) {TO‘ 1+9—a OSSET (T — s)7

The previously established properties of A, X and B yield Y € S2([0,7—] x Q;R) with

IN

C
<7 SIXIZ + (T = 7)* (B3 (2.19)

T — 7)2(-a

E | sup Y2
t€[0,7]

For any € > 0, integration by part implies that

T—e€ T—e¢
Xr-Yro-XoYo= [ X.dYi+ / Y, dX,
0 0
T—e¢ T—e Y2 T—e¢ .
= — Xt(2>\tXt+ft)dt—/ —Lodt + X, ZY aw;.
0 0 2n; 0

The positivity of the process A along with the definition of the process Y yields Xr_ Yr_ > X7 Br_..
Thus, taking expectations on both sides of the above equation, letting ¢ — 0 and using X7 = By =0

T T YQ
/ X, fpdt| —E / Lt
0 0o 2m

yields

T
~E[XoYy] < —-E l / 20 X7 dt] -E
0

15



Together with the inequality (2.19) for 7 = 0 this shows that

T T T
/ Y2 dt / X2dt / fEdt
0 0 0

E <CE +CE + C| X% + C|IB|I3 < oo.

O

In a third step we now establish the continuation result for the FBSDE (2.18]) from which we shall then
deduce the existence of a unique global solution to our original MFG.

Lemma 2.12. If for some p € [0,1] the FBSDE [2.18)) is for every data f € L2([0,T] x Q;R) uniquely
solvable in He x Ho x DE([0,T] x Q;R) x LZ([0,T] x Q; R™) x L&([0,T—] x ;R™), then this holds also
for p 40 with 0 > 0 small enough (independent of p and f).

Proof. Let us fix 0 > 0, Y € L([0,T] x &;R) and f € L2([0,T] x ;R) and consider the following
system:

~ 1 ~ ~
dXt = — 7(AtXt + Bt) dt,
ui
~ 1 -~ Y, AB 5~
—dB, = | rypE [ (AtXt + Bt) ff} + K,OF [t ff] + - 220 dt - ZB aw,
27]t 2T]t 277t

- 2.20)
- - AX,+B Y, -~ (
AV, = | —2n X, — rpE | 22T Bl ol o [t }‘f} — fi | dt+ ZY aw,,
2 2
Xo=X
Br =0.

Then
f(Y) := xdE [;7

]-'0] + f e LA([0,T] x & R).
Thus, by assumption there exists a unique solution
(X,B,Y,Z8,2Y) € Ho x 1, x D2([0,T] x % R) x L2([0,T] x % R™) x L2([0, T—] x Q;R™)

to (2.20), and Y = AX + B. This defines a mapping Y ()Z',E,XN/) from L2([0,7] x O;R) to
Heo xHyx L2([0, T]x€2; R) and hence also a mapping (X, B,Y) — (X, B, 57) on Ho x Hyx LE([0, T]x % R).
In what follows we prove that this second mapping is a contraction for some 9 > 0. For the unique fixed
point the system reduces to the system with p replaced by p + 0. This then yields the
desired result.

In order to establish the contraction property, we denote for two processes Y, Y’ € LZ([0,T] x ;R) by
(X,B,Y) and (X', B',Y”’) the corresponding processes defined by (2.20) and put

SR (P ¥

=t = _t ”:E{N
&t 277157 t 27]157 Kt &t

7|, wm=Elg

7).

For any € > 0 integration by part yields that

~, _ _ T—e ~, _ _ T—e _ -,
Ky~ Kp_ )V = / (X, — X))V, + / V,d(X, - X.)
0 0

T—¢ T—e¢
- / (X; - XS)(pK/Sﬁs + 2>‘SXS) ds — / YS(fg - 55) ds
0 0
T—e ~, _ T—¢ -, _ -
- ® - Rgsadss [(X - Xzl dim,
0 0
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and
ad ] =~ T—e =~ =~ ’ =~ T—e ~ ~ ~
(Froe=Xp Vo= - [ (K- R, + 20X ds— [ TIE-Eds
0 0
T—e i =~ ’ T—e ~ ~ >/ —~
- @R ds s [ (R RzT di
0 0
Taking the sum of these two equations and using that

(Xr—e = Xp )Yy .= Yr_) = = Ar_o(Xp—e = Xp_)* = (Xp—c = Xp_)(Br—- — By_.)
< - ()ZT—E - X;‘—a)(ET—E - E;"—s)
yields
T—e . - T—e¢ _ _
2/0 ne(& — E)2ds + 2/ AKX — X,)2ds

0

s[RI - s ds+ [ (K- X)@Y - Z)ai,
0 0

T—e
<~ Froe=Kp I =B+ [ o - EE - X)] ds,
0

Taking expectations on both sides drops the martingale part. Then we can pass to the limit as ¢ — 0
because X, X’ € H, and B, B’ € H, in order to obtain for any § > 0

<2n* - ”;”) E /OT(E; —&)%ds| + (2)\* - |’;”9) E VOT()?; - )?S)st]

H”H r v/ v \2 r / 2
< 20K / (X! — X,)?ds / (Y —Y,)%ds| .
41, 0 0

[
+ —0E
AN,

In view of Assumption [2.3] we can choose a 6 > 0 such that

K
2n*f%>o, 2\, —

%16

>0,

which implies that there exists a constant C' depending only on the coefficients x, A and A, such that

E[/OT@;—ES)%

T ~ ~
/ (X! — X,)%ds
0

T
+E / (X, — X,)%ds
0

< COE + CoR

T
/ (Y! —Y,)?ds
0

Thus, when 0 is small enough,

T T
E / |Y; — Y/|?dt| <aR / |Y; — Y/|*dt
0 0

for some a < 1. We notice that the bound on 0 only depends on T, x,  and .

Now using the definition of E and E’ the solution formula for linear BSDEs yields

o~ ~ T ~ ~
1B — Bl < ||E l / {pE [|«ss g f?}}ds

f?] +OE [IYS -Y/|

ft] |
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Thus

B, — Bl < C(T —t)'E

1—y
|

ff} ds

[ E &

T
+CT —t)E [/ E {|}g_y;|ﬁ
t

]-'SO] ds

1—y

Fi

Since 2y < 1, Doob’s maximal inequality along with the previously established L? bounds yields

§_§/2 T _ _ T
1B — By | &-gpas |- vipas|.
0 0

sup

E —_— Co’E
tefo,r) (T —1)*7 *

< CE

Now using the dynamics of X we obtain

t
_ T
[ X = Xi| = /—{p(%s) Y(B, — B))}e Jo @) Avdr g
0

t «@
~ ~ Tt
C B, — B’ — d
[ B (7=1) @
T1+’y—a ‘E _ §/|
< C—(T—-1t)% sup ———==1,
- 1+7—Oé( )ogng (T —s)7

IA

Hence this leads to _ _
X, — X!|2 ~ ~
Bl sp XN <o fyB - By
teo,r) (T —1t)%

To summarize, we obtain a constant d such that (X, B,Y) — (X, B,Y) is a contraction in H x H, x
L2([0,T] x ;R). Since Y = AX + B, Y € D2([0,T] x ©;R) and using Lemma m, we see that the
following system admits a unique solution (X, B,Y, 7B, Z?) € Hao X Ho x DE([0,T] x Q;R) x LZ([0, T] x
QR™) x L2([0,T—] x Q;R™):

~ 1 ~ ~
dX, = — — (A X, + By) dt,
2n
~ 1 -~ AB =
—dB, = /ithE{(AtXtJrBt) f?} + rOE | 2| FO| + fi — 222 ) dt — zP aw,
2n 2ny 2m
~ - AX, + B Y, G o
4V, = [ =20\ X, — repE | 22D w0l om | 2L F0| — p ) dt+ 27 aw,
2m 2n
Xo=4X
Br = 0.

Using again the relation Y = AX+B , the above system is equivalent to (2.18]) with p replaced by p + 0.
This proves the assertion. O

Using Lemmata [2.10] [2.11) and [2.12] and by induction on p, we obtain the following result.

Proposition 2.13. There exists a unique solution (X*, B*,Y*, ZP" Z¥") € Ho x H, x D2([0,T] x
O R) x LE([0,T] x 4 R™) x LE([0, T—] x ©;R™) to the FBSDEs (2.3)) and (2.17)). Moreover, there exists
a constant C' > 0 depending on n, A\, k, T and ||X|| 2, such that

T
| e a
0

X o0 + 1B, +E <C.
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From the equation (2.2) we obtain the following candidates of the optimal portfolio process and the
optimal trading strategy for the representative player:

t
t Ar B t Ar
Xt* — Xe_ f(] 20, dr _ / S 6_ fs 21 dr ds7
0 2ms

t
t Ap t A
& =Xe o I dr—At B A B e~ Je s dr gs

(2.21)

2 2me 2m Jo 27

By construction, X7 = 0 and hence £* is an admissible liquidation strategy. The following proposition
shows that it is indeed the optimal liquidation strategy and that its conditional expectation defines the
desired equilibrium for our MFG. In particular, it proofs Theorem

Proposition 2.14. The process £* is an optimal control for the representative player and the aggregation

effect given by p* := E[E*|FV] is the solution to the MFG (1.7). Moreover, the value function is given by

1 1 1 T
V(X5 u*) = §A0X2 +5BoX + SR /0 ke Xt ds

X] . (2.22)

Proof. For any ¢ € Ap(z), let X¢ be the corresponding state process. Then it holds that,

- fy |yl —
S}%E [XSYF|x] =o. (2.23)

Indeed, since A € M_q, for any 0 < s < T

|E [XSY7|X]| = |E [X$(XFAs + BI)|X]|

C
<7 —E [(X2)? + (X2)?|X] + E [|XEBZ||X]
2
c T T
-~ —E (/ §udu> +</ &jdu) ‘X +E[|X5B:|X]
T T AT
< CE ggdu+/ (&) du|X | +E[|XEB:||X] 2= 0.

With this, we can now show that £* = £*7 is a best response against p*. In fact, for each € > 0, the
X]

T—e
> E / (OcH (5,65, X3, Y510 (& — &) + 0o H (5,65, X5, Y55 ) (X5 = X7) + (6 — €)Y) ds
0

convexity of the Hamiltonian yields

T—¢
E / (Kspi XS +ns&2 + X(X5)?) ds|X
0

T—¢
~E V (Rop 2 X3 +my(€)% + Ns(X2)?) ds
0

[ T—¢
=E / (H(s, &, X8, Y5 0") — H(s, €, X5 Y5 10) + (& — €)YS) ds X}
0

"

Xl

T—¢
—E / (mapt? + 20 X2) (XS — X2) + (0 — €)Y7) ds
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Furthermore, integration by part implies that for any € > 0,
YT*fe(X’;“fe - X:?LE)
T—e¢ T—¢
—Wi e - X+ [ XDy [ vrden - x9)
0 0
T-e (2.24)

T—e
= —/ (fs:s,u:+2)\sX:)(X:—X§)ds+/ Z(X: — X5)dWw,
0 0

T—¢
- /0 YA€ — £,) ds.

Therefore,

T—e T—¢
E / (%suﬁXs + 775552 + )‘sst) ds / (”s/‘zx: + 7 (62)2 + )‘S(X:)2) ds
0 0

x|.

The equation (2.23]) does indeed yield

X]_E

"

>E [Y;_Ax;_e CXrl)

lim E [Y7_(Xr . — Xj_)|X] =0.

Using the Lebesgue convergence theorem and taking ¢ — 0, we obtain

E X

T
/ (ks Xt +1,€2 + A\, X2) ds
0

T
—E V (R X 31t + 1365 + X(X2)?) ds X] > 0.
0

In other words J(X,&; p*) — J(X, €% u*) > 0,. Finally, (2.23) and (2.24]) again yield
x] .

Remark 2.15. If we suppose that X = x is a deterministic initial value of the state process at time 7 > 0,
then we can define the space of admissible controls as

1 1 1 T
V(X ¥ = iAOXQ + 5302( + 5E / ke Xt ds
0

O

T
Ag(7,z) == {§ € Lé(T, T): / £ ds = Jj}

where Q = (Q¢)o<t<r is the filtration generated by W and WO, Assuming that the cost coefficients
satisfy Assumption with F replaced by Q, the same arguments as before show that the FBSDE

S Y,
stxf/ —Ldt, Xr=0,
T 277t

s
Y,
Y, =YT+/ (mE [t
s 27]t

has a unique solution (X*,Y* = AX* + B*, Z*) with (X*, B*) € Hq X H, and p* = E(Y*/(2n)|F°) is
the solution of the MFG starting at time 7. Moreover the value function is given by:

T
/ ks X e ds .7-}1 .

f?] +2)\tXt> dt+/ ZydWy, r < T

S

1 1 1
V(r,z;p*) = iATxQ + §BT$ + §]E
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Since (X*, B*) € Hq X H and £* € Ag(t, z),

T
Bz +E / ks X2 ds|Qr
T
B X T T
< z(T—-71)" su 7t+I<LT77'aE/ *lds su — || 9, | =—— 0.
< a( ) S T ll%I( ) ) |1 i e

Since A, — +o0 as 7 tends to T', we get the following terminal condition for the value function:

0, x=0;

i Virai={ % C 0

3 Approximate Nash Equilibrium

In this section we show that an e-Nash equilibrium for the N player portfolio liquidation game can be
constructed from the solution to the MFG (1.7)) when the number of players is large if all players share
the same cost structure.

Assumption 3.1. Assume for any i = 1,--- , N, x%, n and A\’ admit the following expression
Hi = H(thivWi/\ng\t)? 772' = n(t7Xi7W~i/\tan\t)’ Ai = A(t7Xi7Wi/\t7W9\t)

for some non-negative deterministic bounded and measurable functions x, nn and A.

The next result is an adaptation to the Yamada-Watanabe result for FBSDE. The proof follows from
the same arguments given in, e.g. [12] and [4].

Lemma 3.2. There exists a measurable function ® : R x (C[0,T])?> — Ha x (C[0,T—])? such that for
anyi=1,--- N

t
(XLYA / Zids> = o(X, W, W),
0 0<t<T

where (Xi, Y?, Zi) is the solution to FBSDE ([2.3)) associated with (W°, X, W', k% ni, \). In particular,
there exists a function ¢ independent of (X, W, W?9) such that

£ = p(X, W, w9,

where £ 1s given by Proposition |2.14)

In view of the preceding lemma, under Assumption each player’s unique best response £** to the
mean-field equilibrium p* can be represented in terms of the function ¢ as

&= (X, WO, W), (3.1)
In particular, each individual action has the same distribution as the mean-field equilibrium:
pt =E[EFY, as. ae. (3.2)

Proposition 2.13] guarantees the existence of a constant C' such that

T B
/ €072 dt
0

21
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and Lemma yields a real-valued function 1, which is independent of 4, such that

T B . B .
5| [ I£Z"Z|2dt‘?€l=xl]=w(:v’), (3.4)
0

Before we prove the main result of this section, we recall the cost functional JV (5) from (|1.4).

Theorem 3.3. Assume that Assumption[3-1] is satisfied and that the admissible control space for each

player i =1,..., N is given by
/ |§t|2dt‘/’\,”:xl < M(z)
0

for some fized positive function M such that v < M. Then, for each 1 <i < N and each & € A,

).

where (£8,6571) = (&1, ... o7 gh enitl o eoNY and O (%) is to be interpreted a

some real-valued function g independent of i.

= {f S A]Fz(a:l) ' E

gV (5_*") < JN,i(fi,g*,—i) +O(

%\H

Proof. By the symmetry of the IV player game, it is sufficient to show the result for Player 1. We first
estimate the following term:

:le

/ S (wi — &) (it — &) at at =gt

1757

Xt =g +—E / Z u —gﬂ) dt

2(M (x! 2N - 1)C
Using (3.3) and (3.4), the second term is bounded by (M(z )+N(2 )C)

if 4,5 # 1, then the conditional expectation reduces to the expectation and since £** and £*7 are
conditionally independent given W9 for i # j,

[ - ) (s )

If i = 1 # j, then we see from Lemma [3.2] that

/ s —) (- ) a / St W), (- ) dt]

for some real-valued function ¥. Using again conditional independence and (3.2)) we see that this term
vanishes as well. As a result,

For the first term,

E

Xlza:l] =0, i#j, ij#L

E

X1:x1] =K

2(M(z') + (2N — 1)C)
N? '

>1
I

&b—‘
IN

(3.5)

We are now ready to the prove the e-equilibrium property of f_;‘. By (3.4), we have that ¢! € Al. For
a given strategy ¢ € A!, let X be the corresponding state process and let J'(-, u*) be Player 1’s cost
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function when the average trading rate is replaced by the mean-field equilibrium. By Proposition [2.14]
JHE pr) > JHE p), which implies:

JN71(£7£*’27--- ’5*71\7) _ JN,l(g*,l’”_ 7é—*,]\")

T N
1 ) 1
ZIE/ At ﬁZEZ‘”+N£t Xe + € + N XE | dt|xt =2t
0 =2
[T
—E / (Kips Xe + i (&) + A\ X7) dt ;\(1:361]
0
T
1 *,1\2 1 1
+E / (mtutX (602 + A (X] ))dt;( :x]
0
i T 1 N
B | [ sy el N | e =
O :

=11 + 5.
For the first difference I, using (3.5) we have that

sup |11
ceAl

T
K
LN” up E l/ | X ||&e| dt| Xt =
fe Al 0

INA
0

T 1 N )
+ |5 sup E / X | Y& — pp| di| Xt =
geAl 0 sz:; ! !

r : r :
< L] sup | E / | X2 dt|xt =2t sup | E / &2 dt| Xt = o
N ¢ea 0 geAl 0
1 2 3
T Y T i j L 1_ .1
+ ||k|| sup IE/ | X |?dt| X = E / — Y & -y — =0 dt|l X =
e Al 0 ! 0 Nj:l t ¢ Nt
T 2 T\/
For the second difference I, again using (3.5)), we have that
1 2 2
’ *,112 1 1 ’ r * 1 z * 1
L <|&||E /O X2 d| et = E / t—N;gﬁ dt| Xt =2
2 20T M) y/(M(2h) + (2N - 1)C)
- N
This proves the assertion. O

4 Approximation by unconstrained MFGs

In this section, we prove that the solution to our singular MFG can be approximated by the solutions
to non-singular MFGs under additional assumptions on the market impact parameter. Specifically, we
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consider the following unconstrained MFGs:

1. fix a process u;

2. solve the standard optimization problem: minimize

T
J" (&) =E / (KepeXe +mif + M X7) dt +nX7
0

X]
such that dX; = =& dt, Xo=4X;
3. search for the fixed point p; = E[¢]"|FP], for a.e. t € 0,7

We will need the following assumption on the solution A € M_; to the first equation in (2.15)) with the

terminal condition 4+oco. It implies in particular that X* € H;.

Assumption 4.1. There exists a constant C such that for any 0 <r < s < T
s A T—s
— | —Fdu)<C :
eXp( /7" 21 u)_ (T—T>

The following result is proven in the appendix.

Lemma 4.2. Assumption [[.1] holds under each of the following conditions:

e 1 is deterministic;
e 1/n is a positive martingale;
e 1/n has uncorrelated multiplicative increments, namely for any 0 < s <t

i) -of2]

Tt

Using the same arguments as in Section [2] the unconstrained control problem leads to the following

conditional mean field FBSDE:

APXP + BP
dXI = (_t Snj t)dt,

Aan Aan Bn n o~
—dB!' = (— Lt 4R [m }',?D dt — zZB" aw;,
M 2,
ATlX’I’L B’ﬂ n —
Xp=2x,
B =0,
Yi = 2nX7p,
where g2
—dA} =<2), — (Gl ZA" dwy,
2n,

A} = 2n.

(4.2)

(4.3)

The existence of a solution (A", Z4") to the BSDE (#.3)) can be deduced from Lemma By the same
lemma the sequence {A™} is a non-decreasing sequence converging pointwise to A and there exists a

constant € > 0 such for any n,
A" my < 1A% [ pmen, <€,
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where the space My, ; is defined as
-1
M = {U € Pe([0,T] x %R U {oo}) : (T— 4 %) U. € L2([0,T] x 4R U {oo})} :

and endowed with the norm

U
|Ullmp = esssup %
(tw)x[0,7)xQ (T — t 4 1)

We shall also need the following analogs to the space H,:
—1
H = {U € Pr([0,T] x Q;RU {o0}) : (T— .+ %) U. € S3([0,T] x Q;RU{OO})} ,

endowed with the norm .
2 3

U
(T t+ %)

E | sup

0<t<T

The next result can be obtained using similar arguments as in the proof of Theorem In fact, we
have a slightly stronger result.

Theorem 4.3. Assume that Assumption holds and that X is a square integrable random variable.
Then, for any fived p € [0,1] and f € LE([0,T] x Q;R), there exists a unique solution

(X", B"Y", 2B 27"y € HE x HD x SE([0,T] x 4 R) x LE([0,T] x & R™) x LE([0,T] x Q;R™)

to the following FBSDE system:

dX] = (A”X” + By dt,
_ n __ nyn n 0 A?B;ﬁn _ 7B"™ g1/
dBP = (rmpE | — (APX] + B | FO| + fi — dt — ZB" aw,
AT XD + Bl n o~
dy;r = < 2N XD — kypE [ténﬂ ]-}f’} - ft) dt + zY" dwy, (4.4)
t

X§ =

Bl =0,

Y7 = 2nX7.

Proof. The proof is similar to that of Theorem We only need to note that by Lemma

n * [e3
i (Tt
T\T -5+

O

In order to establish the convergence of the value functions of the unconstrained problems to the value
function of the constrained problem we need a uniform norm estimate for the sequence (X™, B™,Y™).

Lemma 4.4. Let Assumption hold. If f € L2([0,T] x ;R), there exists a constant € > 0 such that

T
/0 m"zdt] <7, (4.5)

for any n where (X™, B*,Y™) is the unique solution to (4.2).

X 0+ 1B™ [y +E

Proof. The proof is split into three steps.
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Step 1. When p =0 in (4.4)), there exists R € R independent of n such that

T 3
/ |Yt"|2dtD <R.
0

This bound follows from modifications of arguments given in the proof of Lemma [2.11] In fact,

X"

na T 1B [lny + (E

1B

ny SB[y < Cllflle2 < B

Moreover,

| X3

‘X|( _t_’_n* n t_’_n*
‘— (T+n* +C/ |B 54—77* dS

This implies || X™||n,o < Ra. Finally, by analogy to the proof of Lemma [2.12] . doing integration by part
for X"Y™, we have
T T T
JRCERE | era | s
0 0 0

Step 2. Suppose that for some p € [0, 1], the solution to (4.4) satisfies

T 3
| e a ) < kR,
0

for some k£ > 1 independent of n. Then there exists o > 0 independent of p such that the solution
(X", B™, Y"™) to (4.4) with p replaced by p + 0 satisfies the same estimate for some K > k:

~ TN
hor + (E / V2 dt
0

To prove this assertion, we introduce for any given Y, f € L2([0,T] x €;R) the FBSDE system

E < CE + CE < Rs.

[ X . + 1B [ln + (E

X"

> 2 < KR. (4.6)

~ 1 ~ ~
dXy = — — (AP X[ + BY) dt,
2,
~ 1 =~ Yo ArBn En o~
—dB = <,@th[«: [Qm (A;LX{L +B,?) f?} + 1R [2:7t f?] + fi — ;mt ) dt — zZP" aw,
—~ ~ ATL)?H En Y’IL Sn —
dy;n _ _2)\th1 _ K/tpE L‘i_t -7:150 _ HtaE |: t ]:t0:| _ ft dt + ZtY th7 (47)
2n, 20
Xp=x
Bf =0,
Vo — on X,

Arguing as in the proof of Theorem there exists a unique solution to (4.7]). This defines a mapping
L:y" Y™

on L2([0,T] x Q;R). We now show the I' has a unique fixed point and that this fixed point belongs to
BQL,:R(O), the subset of L([0,T] x €;R) such that the L?-norm is bounded by 2kR.

By the same arguments as in the proof as Lemma we have
r 1
/ Y Y, 2dt| <-E
0 4
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E < COE

T . T .
/ ID(Y™)() — D7) () dt / Yy VPt
0 0




where C' does not depend on n and 0 is small enough but independent of p and of n. Taking y" = 0, we

T _ % 1 T b % %
E / |Y;"|2 dt <-|E / Y, |? dt + |E .
0 2 0 ]

Note that T'(0) corresponds to the solution to (4.4) with p. By assumption,

(E /T I0(0) (1) 2 dt ) < kR,
(E /T Y2 dt ) < 2kR.

This implies that T is a mapping from B%;R(O) to itself. Since BQL]:R(O) is a Banach space the unique

fixed point belongs to Bé:,:R(O). This yields the desired L? estimate for Y.

have

/0 T(0) ()2 dt

3 g n L?
Thus, if we assume Y € By p,

Let ()~( " E") be the solution corresponding to Y™ and p + 0. Then, by Hélder’s inequality,

‘B? . /T (p +0)E V2 po| s 7
Ks — | S| ds
@ =@ | S " 2, | t
T 1=y
< sl (E / E[1V77| 2] ds ftD :
214 t
Doob’s maximal inequality yields that
B |
E | su ——t
osrer | (T — b))
9 T 2(1-7)
< e | s (E E|[y"|=|F°| d
> 2 p | s ‘ v fs s| Fi
ang  |o<e<r ¢

IN

CE

T ~
JRGRE
0

1B |lny < C (E

Hence,

r 1
/ |Yt"2dtD <CR
0

IX" .0 < CIB"|lny < CR.

[N

and
Step 3. Since 0 is independent of p, by iteration for only finitely many times, we have the solution for
(4.2) with p =1 and f = 0 with the uniform estimate (4.5]). O

Under Assumption the value « appearing in the estimate of Theorem is equal to one. That is
1 X "1 < oo. (4.8)

This allows us to prove the convergence of the optimal position and control.
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Lemma 4.5. Under Assumption[2.3 and Assumption

T T T
lim {E / | X" — X7 2dt| + E / |B — Bf|*dt| +E / Y - Y|P dt
n—-+oo 0 0 0

} “o
Proof. Using the same arguments as in the proof of Lemma [2.12] we have for each ¢ > 0

T—e¢ T—e
Y — Y2 dt / X' — X2 dt
/0 |Y; + ) | X} 7l (4.9)

< CE [|(B§kfe - B:Zk“fe)<X¥fe - X%*E)H + CE [|(A§L“76 - AT*ﬁ)X’}k“fe(Xin“fe - X’;fe)u .

E +E

The two terms in the above summation admit the following estimates

E[l(Bf—c = Br_o)(X7—e = X7_/)]]
< CE[|By_[’] + CE[|B}_ "] + CE[| X7 "] + CE[| X7 |*]

1 27y 1 2
<(erz) 1B, 40 (cr 1) IX R0t OB + COIXR

respectively,

]EH(A’?"—E - AT—E)X;—e(X%—E - X’;—e)”

X g A <€+1>“+6 sup XE
T —t] \o<i<T (T—t—i—%*)a n o<t<T T —1t

1\NY ]
go[(e+n) el (X2 + 1X7)2)

< CE | sup

0<t<T

(by Lemma and Lemma |

1\“ ]
<C KeJr ) +¢€| (by Lemma[d.4and (£.8)).
n

Letting € go to zero in (4.9)), by Theorem and Lemma [4.4| we get

T 2y 2
/ |Xt"—X§‘|2dt] <C<1) +C<1> +%.
0 n n n

Hence we obtain the desired limit for (Y™ —Y™*) and (X" — X*). By the expression for B, we have

E +E

T
[ we-vipa
0

T _sap Y - Y
|B — Bf| <E / e T | [' ]—'Q] ds|Fy
t 2773
T AT *
+ E / ]‘ - 67 fts (Arz"tAT) dr KS]E |:|;/S| ‘FSO:| ds‘Ft‘| '
t s

Let us recall that {A™} is a non-decreasing sequence converging to A. This leads to

E — 0.

T
/ |B" — B;|? dt
0

O

Let us denote by V™(X;u™) the value function associated with the penalized problem (4.1]). The next
theorem shows the convergence of V™ (X; u™) := V(X)) to the value function V(X'; u) := V(X) associated
with the constrained MFG.

Theorem 4.6. Under Assumption and Assumption the value function V™ (X) converges to
V(X) in LY(9).
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Proof. Recall that }2/—; is the optimal strategy for the penalized problem with degree n. Thus, with

(]E {% .FED fixed, the optimal strategy £* for the constraint optimization is an admissible control
0<t<T

X].

fﬁ] X7 4 ()2 + MX:)Z) s

"

X

for the penalized optimization. Let us define

T
Y*-Y"
A, =E / ,%E<ss
0 215

From Lemma liIJIrl E(JA,|) = 0. Recalling that
n—-+0o0

T Yn
J.Em ) — VO (@E {27]

fE) Xds

X],

we have

f?] X2+ ma(€0)” + As(X7)? ds

[T
Y*
V(X)=E / KkslE [2;
0 s

[T
YTL
=E / kslE {S
/0 2ns

T n
A (el
0 2ns

=V"X)+ A, > JX, &% u") + A,

f?] X2+ m(€0) + A(X2)2ds| ¥ | + A,

X+ A,

fs} X7 (€02 + AS<X:>2) ds + n(Xp)?

Hence we deduce that
V(&) = J(X, "% u") > V(X) = Vo (X) > Ay,
thus
[V(X) = Va(X)] < [An| + [V(X) = J(X, €5 1)

Again by Lemma [4.5]
lim E[V(X) - J(X,£"p")| = 0.

n—-+oo

Remark 4.7. As a by-product of the proof, we get that lirf E [n(X%)Q] = 0. Moreover
n—-+0o0

C | B} |
X2l <=(1x+ sup ————1—— | =50 as.
ped n<| | oggm—tw)”)

The proof of convergence of the value function simplifies substantially under the common information
assumption (Subsection [2.1.1)). In particular, Assumption is not necessary here. In this case, Y" =
A" X™ where

Kt AY (A?V) A™ 0
—dA} = (20 + —F — —— | dt — Z* AW, A} =2n
t ( t 2, 2 t t T
and AD XD
dX' = — tnt dt, Xo=z R
t

The optimal strategy and the resulting portfolio process are given by, respectively,

% % A?th
& ===

an
L XM =gehom e 0,7,
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Since the sequence A™ is non-decreasing and converges to A, we deduce that X™* converges to X*
a.s. and that £™* converges to £* a.e. a.s.. Moreover, for fixed p'*, £* is suboptimal to the penalized
optimization. This implies that

T
E / (52X +14(€3) + Aa(X2)2) ds]
0

T
B | [ (€2 X (€ 4 A(XD?) ds
0

+E

/ LRI :**)ds]

0

T
=B / (€ X 4 (€070 4 Au(X2)2) ds + n(Xp")?
0

+E

T
/0 R X(E 6?"*)64

+E

T
>E / (Ro€1" X" 4+ me(€07)7 + A(X[)?) ds
0

T
/0 kX2 (EF — 52’*)d81 -

For any € > 0, it holds

T—e¢
lim E l/ (Ko€EXE + s (€)% 4+ A (X7)?) ds]
0

T—e¢
=E [/ (Rs€E X7 +ns(€5) + As(X7)?) ds] .
0
Hence, the monotone convergence theorem implies

lim E

n—oo

T
/ (P X g (€7)2 + Ao (X7%)2) ds + n(X%*f]
0

(4.10)
>E

T
| meexz e + 20007 ds] .
0

Moreover,
ks X3(85 — &8 < llsll|l€S — €271,
which is L2 bounded uniformly in n, due to Lemma Vitali convergence implies

lim E

n— oo

The convergence (4.10) and (4.11]) yields the desired result.

T
/ Fs X5 (€5 5?’*)6181 =0. (4.11)
0

A Appendix

In this appendix we recall an existence of solutions result for a stochastic Riccati equation with singular
terminal condition and prove Lemma We assume throughout that A,  and 1/7 are bounded.

A.1 Stochastic Riccati equations with singular terminal value

Lemma A.l. [3, Theorem 2.2][26, Theorem 6.1, Theorem 6.3] In L(;C[0,T—]) x L2([0,T—];R™)
there exists a unique solution to

A7 A
—dAt = 2)\t - dt - Zt th,
277t

AT:OO.
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Moreover, there holds the following estimate

1 1 r
<A <——F / 25 + 2(T — 5)?\s ds ft] : (A1)
E[ftTids‘ft} (T —1)? t
Corollary A.2. The BSDE (2.9)
A A2
—dA, = (2)\t TG t) dt — ZAdWY,
200 2my
AT = OQ.
has a unique solution.
Proof. Let A, = Ateff;5 s 05 Then,
T JE e ds Z% ~ 0
—dAt = 2)\156 0 2ns — T rg dt — Zt th s
27715@ 0 2ns 49 (AQ)
AVT =0Q.
Hence, the assertion follows from the preceding lemma. O
Lemma A.3. For each n, there exists a unique solution A™ to the BSDE
An)? n
—dA" = (2/\t - (t)> dt — Zz" awy,
2my (A.3)
A} = 2n.
1
A} > ’ T .
B[] 5 ds| 7

Moreover, the sequence A™ is non-decreasing and converges to A. There exists a constant € such that
for any n:
A" [ poy + A e, < €.

Proof. The first and second assertions are results of [3, Proposition 3.1,Theorem 3.2], respectively. For
any t, n and a, we have
2 2 2
2)\t—a7§2)\t— 7 a+ e 3
21 (T—t+%) (T —t+1)
Let us denote by U™ the solution of the BSDE with generator ¢ and terminal condition 2n. By the
comparison principle for BSDEs, we have A7 < W} and by the solution formula for linear BSDEs,

T+ \? Lo \? T(T—s42\? 2n,
W= (—="_ ) E n 2n + S," 1 +2X || Fe
T—t+1 T+ 1= ¢ T+ 1 (T_S+m)2

= g(tva)'

2n? 1 1 T N\ 2
= T S+ _E / <2n8+2(T—s+n) )\S) 7
no(T—t+12) (T—-t+1) t n
Hence
7% n
(T—t+—)\pt
n
2n? 1 /T< )2 )
< + E 23+2(T— +—) A )| F
e +n(T—t)  (T—t+1) [t K T !
1 T M\ 2
T—t ‘ n
Thus (T —t+ =) A} < €, that is A" ||y, < €. O
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A.2 On Assumption 4.1

Assumption states that there exists a constant C such that a.s. forany 0 <r <s<T

(-] g <o(7=)

The left-hand side is equal to the optimal state process x of the control problem studied in [3, 26] with
initial value equal to 1 at time r. In particular from the proof of [3, Theorem 4.2], the process M defined
on [r,T) by

1 S
M, = < [AsXs + 2/ )\uxudu]

is a non-negative local martingale with M, = 1. Hence for any s € [r,T)

oo (= [ ) = < Arar, < ML (T20) 0y o (22,

21y Mx T—r T-—r

Since M is also a non-negative supermartingale M; converges almost surely as ¢t goes to T and the limit
My satisfies E(Mr) < 1. Therefore Assumption does not strike us as overly restrictive.

ProOF OoF LEMMA [4.2] From (A.1)

,ﬂ<, 1 — 1
2w B[ mas|R] TR

fu} ds.

By the very definition of uncorrelated multiplicative increments for 1/n and from [3, Lemma 5.1]

Aw 1 _ 1 _EQmd 1y
= - T E[1 B - T - u
2 [TE[m)ds f) Eradds JSEQ/m)ds N

with N, := fuTIE[l/ns] ds. Hence

T
S A, 5 N, E[1/n,] dv T —
exp (—/ du) = exp (/ dNu) :—:—fsT [1/m.] gln(3>
r 20 r Nu Neo [TE[/n)dv ~ e \T =7
If 1/n is a positive martingale, then again from [3| Lemma 5.1], we get that 1/n has uncorrelated
multiplicative increments. If 1 is deterministic, we have directly that

,ﬂ < ,; — LdN“
277u N nufuT,,TlédS N, du -’
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