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A Mean Field Game of Optimal Portfolio Liquidation ∗

Guanxing Fu† Paulwin Graewe‡ Ulrich Horst§ Alexandre Popier¶

April 11, 2018

Abstract

We consider a mean field game (MFG) of optimal portfolio liquidation under asymmetric informa-

tion. We prove that the solution to the MFG can be characterized in terms of a FBSDE with possibly

singular terminal condition on the backward component or, equivalently, in terms of a FBSDE with

finite terminal value, yet singular driver. Extending the method of continuation to linear-quadratic

FBSDE with singular driver we prove that the MFG has a unique solution. Our existence and

uniqueness result allows to prove that the MFG with possibly singular terminal condition can be

approximated by a sequence of MFGs with finite terminal values.

AMS Subject Classification: 93E20, 91B70, 60H30

Keywords: mean field game, portfolio liquidation, continuation method, singular FBSDE

1 Introduction and overview

Mean field games (MFGs) are a powerful tool to analyse strategic interactions in large populations when

each individual player has only a small impact on the behavior of other players. In the economics

literature, mean field games (or anonymous games) were first considered by Jovanovic and Rosenthal

[19].1 In the mathematical literature they were independently introduced by Huang, Malhamé and Caines

[17] and Lasry and Lions [22].

In a standard MFG, each player i ∈ {1, ..., N} chooses an action from a given set of admissible controls

that minimizes a cost functional of the form

J i(u) = E

[∫ T

0

f(t,Xi
t , µ̄

N
t , u

i
t)dt+ g(Xi

T , µ̄
N
T )

]
(1.1)
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subject to the state dynamics{
dXi

t = b(t,Xi
t , µ̄

N
t , u

i
t) dt+ σ(t,Xi

t , µ̄
N
t , u

i
t) dW

i
t ,

Xi
0 = x0

. (1.2)

Here W 1, · · · ,WN are independent Brownian motions defined on some underlying filtered probability

space, Xi ∈ Rd is the state of player i, u = (u1, · · · , uN ), ui = (uit)t∈[0,T ] is an adapted stochastic process,

the action of player i, and µ̄Nt := 1
N

∑N
j=1 δXjt

denotes the empirical distribution of the individual players’

states at time t ∈ [0, T ].

The existence of approximate Nash equilibria in the above game for large populations has been established

in [7, 17] using a representative agent approach; a corresponding result for anonymous games can be

found in [10]. The idea is to approximate the dynamics of the empirical distribution of the states by a

deterministic measure-valued process, and then to consider the optimization problem of a representative

player subject to the equilibrium constraint that the distribution of the representative player’s state

process X under her optimal strategy coincides with the pre-specified measure-valued process. The

resulting MFG can then be formally described as follows:

1. fix a deterministic function t ∈ [0, T ] 7→ µt ∈ P(Rd);
2. solve the corresponding stochastic control problem :

infu E
[∫ T

0
f(t,Xt, µt, ut) dt+ g(XT , µT )

]
,

subject to

dXt = b(t,Xt, µt, ut) dt+ σ(t,Xt, µt, ut) dWt

X0 = x0,

3. solve Law(X) = µ where X is the optimal state process from 2,

(1.3)

where P(Rd) is the space of probability measures on Rd and Law(X) denotes the law of the process X.

In this paper we analyze a novel class of MFGs arising in models of optimal portfolio liquidation under

market impact. Our MFGs can be characterized, equivalently, in terms of a forward-backward stochastic

differential equation (FBSDE) with a possibly singular terminal condition on the backward component,

or in terms of a FBSDE with finite terminal condition yet singular driver. We prove an existence

and uniqueness of solutions result for such games by establishing a generalization of the method of

continuation introduced in [16, 23] to linear-quadratic FBSDE systems with singular driver. Our existence

result allows us to prove that the representative agent’s value functions resulting from from a sequence of

unconstrained optimization problems with increasing penalization of open positions at the terminal time

converge to the value function of the constrained problem under additional assumptions on the market

impact term.

1.1 Single player models of optimal portfolio liquidation

Single-player portfolio liquidation models have been extensively analyzed in recent years. Their main

characteristic is a singularity at the terminal time of the Hamilton-Jacobi-Bellmann equation. In such

models the controlled state sequence typically follows a dynamic of the form

xt = x−
∫ t

0

ξs ds,

where x ∈ R is the initial portfolio, and ξ is the trading rate. The set of admissible controls is confined

to those processes ξ that satisfy almost surely the liquidation constraint

xT = 0.
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Furthermore, it is often assumed that the unaffected benchmark price process follows a Brownian motion

W (or some Brownian martingale) and that the trader’s transaction price is given by

St = σWt −
∫ t

0

κsξs ds− ηtξt.

The integral term accounts for permanent price impact, i.e. the impact of past trades on current prices,

while the term ηtξt accounts for the instantaneous impact that does not affect future transactions. The

resulting expected cost functional is then of the linear-quadratic form

E

[∫ T

0

(
κsξsXs + ηs|ξs|2 + λs|xs|2

)
ds

]

where κ, η and λ are bounded adapted processes. The process λ describes the trader’s degree of risk

aversion; it penalizes slow liquidation. The process η describes the degree of market illiquidity; it penalizes

fast liquidation. The process κ describes the impact of past trades on current transaction prices.

There are basically two approaches to overcome the challenges resulting from the singular terminal state

constraint. The majority of the literature, including Ankirchner et al. [2], Graewe et al. [13], Kruse and

Popier [20] and Popier [24, 25] considers finite approximations of the singular terminal value, and then

shows that the minimal solution to the value function with singular terminal condition can be obtained

by a monotone convergence argument. A second approach, originally introduced in Graewe et al. [14]

and further generalised in Graewe and Horst [12] is to determine the precise asymptotic behaviour of

a potential solution to the HJB equation at the terminal time, and to characterize the value function

in terms of a PDE or BSDE with finite terminal value yet singular driver, for which the existence of a

solution in a suitable space can be proved using standard fixed point arguments.

1.2 MFGs of optimal portfolio liquidation

Let (Ω,G, {Gt, t ≥ 0},P) be a probability space that carries independent standard Brownian motions

W 0,W 1, ...,WN . We consider a game of optimal portfolio liquidation with asymmetric information

between a large number N of players. Following [6] we assume that the transaction price for each player

i = 1, ..., N is

Sit = σW 0
t −

∫ t

0

κis
N

N∑
j=1

ξjs ds− ηitξit.

In particular, the permanent price impact depends on the players’ average trading rate. The optimization

problem of player i = 1, ..., N is thus to minimize the cost functional

JN,i
(
~ξ
)

= E
∫ T

0

κit
N

N∑
j=1

ξjtX
i
t + ηit(ξ

i
t)

2 + λit(X
i
t)

2

 dt (1.4)

subject to the state dynamics

dXi
t = −ξit dt, Xi

0 = xi and Xi
T = 0. (1.5)

Here, ~ξ = (ξ1, · · · , ξN ) is the vector of strategies of each player. Let

Fi := (F it , 0 ≤ t ≤ T ), with F it := σ(W 0
s ,W

i
s , 0 ≤ s ≤ t). (1.6)

We assume that the processes (κi, ηi, λi) are progressively measurable with respect to the augmented

σ-field which we still denote by Fi and conditionally independent and identically distributed, given W 0.

Our MFG is different from standard MFGs in at least three important respects. First, the players
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interact through the impact of their strategies rather than states on the other players’ payoff functions

(see also [9]). Second, the players have private information about their instantaneous market impact,

risk aversion and impact of the other players’ actions on their own payoff functions. In fact, while

each player’s transaction price is driven by a common Brownian motion W 0, their cost coefficients are

measurable functions of both the common factor W 0 and an independent idiosynchratic factor W i. As

a result, ours is a MFGs with common noise (see [8]). Third, and most importantly, the individual state

dynamics are subject to the terminal state constraint arising from the liquidation requirement. Hence,

the MFG associated with the N player game (1.4) and (1.5) is given by:

1. fix a F0 progressively measurable process µ (in some suitable space);

2. solve the corresponding parameterized constrained optimization problem :

infξ E
[∫ T

0

(
κsµsXs + ηsξ

2
s + λsX

2
s

)
ds
]

s.t. dXt = −ξt dt, X0 = x and XT = 0;

3. search for the fixed point µt = E[ξ∗t |F0
t ], for a.e. t ∈ [0, T ],

where ξ∗ is the optimal strategy from 2.

(1.7)

Here, F0 := (F0
t , 0 ≤ t ≤ T ) with F0

t = σ(W 0
s , 0 ≤ s ≤ t), and κ, η and λ are F := (Ft, 0 ≤ t ≤ T )

progressively measurable with respect to Ft := σ(W 0
s ,Ws, 0 ≤ s ≤ t), where W 0 and W are independent

Brownian motions of dimension 1 and m − 1, respectively, defined on some filtered probability space

(Ω,G,P). All filtrations are assumed to be augmented by the null sets.

The three papers closest to ours are Cardaliague and Lehalle [6], Carmona and Lacker [9], and Huang,

Jaimungal and Nourin [18]. In [9], the authors propose a benchmark model as a motivation to their

general result. They apply a weak formulation approach to solve the problem and assume the action

space to be compact. Furthermore, each player’s portfolio process is subject to random fluctuations,

described by independent Brownian motions. As a result, their model is much closer to a standard

MFG, but no liquidation constraint is possible in their framework. The papers [6] and [18] consider

mean field models parameterized by different preferences and with major-minor players, respectively.

Again, no liquidation constraint is allowed. To the best of our knowledge, ours is the first paper to

consider MFGs with terminal state constraint.

There are three approaches to solve mean field games. In their original paper [22], Lasry and Lions

followed an analytic approach. They analyzed a coupled forward-backward PDE system, where the

backward component is the Hamiltion-Jacobi-Bellman equation arising from the representative agent’s

optimization problem, and the forward component is a Kolmogorov-Fokker-Planck equation that charac-

terizes the dynamics of the state process. A more probabilistic approach was introduced by Carmona and

Delarue in [7]. Using a maximum principle of Pontryagin type, they showed that the fixed point problem

reduces to solving a McKean-Vlasov FBSDEs. A relaxed solution concept to MFGs was introduced by

Lacker in [21] for MFGs with regular controls and later in Fu and Horst [11] for MFGs with singular

controls.

We apply the probabilistic method to solve the MFG with terminal constraint (1.7). In a first step

we show how the analysis of our MFG can be reduced to the analysis of a conditional mean-field type

FBSDE. The forward component describes the optimal portfolio process; hence both its initial and

terminal condition are known. The backward component describes the optimal trading rate; its terminal

value is unknown. Making an affine ansatz, the mean-field type FBSDE with unkown terminal condition

can be replaced by a coupled FBSDE with known initial and terminal condition, yet singular driver.

Proving the existence of a small time solution to this FBSDE by a fixed point argument is not hard. The

challenge is to prove the existence of a global solution on the whole time interval. This is achieved by a

generalization of the method of continuation established in [16, 23] to linear-quadratic FBSDE systems

with singular driver.

The benchmark case of constant cost coefficients can be solved in closed form. For this case we show
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that when the strength of interaction is large, the players initially trade very fast in equilibrium to

avoid the negative drift generated by the mean field interaction. As such, our model provides a possible

explanation for large price drops in markets with many strategically interacting investors.

Under additional assumptions on the market impact parameter we further prove that the solution to the

MFG can be approximated by the solutions to a sequence of MFGs where the liquidation constraint is

replaced by an increasing penalization of open positions at the terminal time. The convergence result

can be viewed as a consistency result for both, the unconstrained and the constrained problem.

The remainder of the paper is organized as follows. In Section 2 we state and prove our existence and

uniqueness of solutions result for the MFG (1.7). In a first step we prove that the adjoint equation

associated with the MFG (1.7) has a unique solution. Then, we verify that the adjoint equation does

indeed yield the optimal solution. Subsequently we establish additional results on the equilibrium trading

strategies and portfolio processes if all the players share the same information and provide an explicit

solution to a deterministic benchmark model. In Section 3 we prove that the solution to the MFG yields

an ε-Nash equilibrium in a game with finitely many players. In Section 4 we prove that the MFG with

singular terminal condition can be approximated by MFGs that penalize open positions at the terminal

time under additional assumptions on the market impact term.

Notation. Throughout, we adopt the convention that C denotes a constant which may vary from line

to line. Moreover, for a filtration G, Prog(G) denotes the sigma-field of progressive subsets of [0, T ]×Ω

and we consider the set of progressively measurable processes w.r.t. G:

PG([0, T ]× Ω; I) = {u : [0, T ]× Ω→ I | u is Prog(G)−measurable} .

We define the following subspaces of PG([0, T ]× Ω; I):

L∞G ([0, T ]× Ω; I) =

{
u ∈ PG([0, T ]× Ω; I); ‖u‖ := ess sup

t,ω
|u(t, ω)| <∞

}
;

LpG([0, T ]× Ω; I) =

u ∈ PG([0, T ]× Ω; I); E

(∫ T

0

|u(t, ω)|2dt

)p/2
<∞

 ;

SpG([0, T ]× Ω; I) =

{
u ∈ PG([0, T ]× Ω; I); E

(
sup

0≤t≤T
|u(t, ω)|p

)
<∞

}
.

Whenever the notation T− appears in the definition of a function space we mean the set of all functions

whose restriction satisfy the respective property on [0, τ ] for any τ < T , e.g., by ψ ∈ L2([0, T−]×Ω;R),

we mean ψ ∈ L2([0, τ ]× Ω;R) for any τ < T . For notational convenience, we put

D2
F([0, T ]× Ω;R) := L2

F([0, T ]× Ω;R) ∩ S2
F([0, T−]× Ω;R).

2 Probabilistic approach to MFGs with state constraint

In this section, we state and prove an existence and uniqueness of solutions result for the MFG (1.7). A

control ξ is admissible in that game if ξ ∈ AF(t, x) with

AF(t, x) :=

{
ξ ∈ L2

F([t, T ]× Ω),

∫ T

t

ξs ds = x

}
.

For a given µ ∈ L2
F0([0, T ]×Ω;R) we denote the value function of the corresponding optimization problem

by

V (t, x;µ) := inf
ξ∈AF(t,x)

E

[∫ T

t

(
κsXsµs + ηsξ

2
s + λsX

2
s

)
ds

∣∣∣∣Ft
]
.
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By Y we denote the adjoint process to X. The Hamiltonian corresponding to the above optimization

problem in (1.7) is

H(t, ξ,X, Y ;µ) = −ξY + κtµX + ηtξ
2 + λtX

2.

Thus, the stochastic maximum principle suggests that the solution to the optimization problem can be

characterised in terms of the FBSDE
dXt =− ξt dt,

−dYt = (κtµt + 2λtXt) dt− Zt dW̃t,

X0 =x

XT =0,

(2.1)

where W̃ = (W 0,W ) is a m-dimensional Brownian motion. The liquidation constraint XT = 0 results

in a singularity of the value function at liquidation time; see [14]. As a result, the terminal condition for

Y cannot be determined a priori. It is implicitly encoded in the FBSDE (2.1). In particular, the first

equation holds on [0, T ] while the second equation holds on [0, T ).

A standard approach yields the candidate optimal control

ξ∗t =
Yt
2ηt

. (2.2)

The analysis of the MFG hence reduces to that of the following conditional mean-field type FBSDE

dXt =− Yt
2ηt

dt,

−dYt =

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2λtXt

)
dt− Zt dW̃t,

X0 =x

XT =0.

(2.3)

In order to construct a solution to the problem (2.3), we define the following spaces of weighted stochastic

processes.

Definition 2.1. For ν ∈ R, the space

Hν := {Y ∈ PF([0, T ]× Ω;R ∪ {∞}) : (T − .)−νY· ∈ S2
F([0, T ]× Ω;R ∪ {∞})}

is endowed with the norm

‖Y ‖Hν := ‖Y ‖ν :=

(
E

[
sup

0≤t≤T

∣∣∣∣ Yt
(T − t)ν

∣∣∣∣2
]) 1

2

,

and the space

Mν := {Y ∈ PF([0, T ]× Ω;R ∪ {∞}) : (T − .)−νY· ∈ L∞F ([0, T ]× Ω;R ∪ {∞})}

is endowed with the norm

‖Y ‖Mν
:= ess sup

(t,ω)∈[0,T ]×Ω

|Yt|
(T − t)ν

.

Fact 2.2. The following facts are readily verified:

• Hν ⊂ H−1+ν with ‖ · ‖H−1+ν ≤ T‖ · ‖Hν .
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• If K1 ∈M−1 and K2 ∈ Hν , then K1K2 ∈ H−1+ν .

• If K ∈ Hν , with ν > 0, then KT = 0 a.s.

The same properties hold for the space Mν .

We assume throughout that the cost coefficients are bounded and that the dependence of an individual

player’s cost function on the average action is weak enough. The weak interaction condition is consistent

with the game theory literature on mean-field type games where some form of moderate dependence

condition is usually required to prove the existence of Nash equilibria; see, e.g., [15] and references

therein. It is also consistent with the monotonicity condition for FBSDE systems originally proposed

by [16, 23] and slightly weaker than the generalizations to mean-field type FBSDEs established in [3, 7].

Specifically, we assume that the following condition is satisfied.

Assumption 2.3. The processes κ, λ, 1/λ, η and 1/η belong to L∞F ([0, T ] × Ω; [0,∞)). We denote by

‖λ‖, ‖κ‖, ‖η‖ the bounds of the respective cost coefficients, and by λ? and η? the lower bounds of λ and

η, respectively and assume that there exists a θ > 0 such that

2η? −
‖κ‖
2θ

> 0, 2λ? −
‖κ‖θ

2
> 0. (2.4)

The following quantity will be important in our subsequent analysis:

α := η?/‖η‖ ∈ (0, 1]. (2.5)

We are now ready to sate our first major result. Its proof is given in the next subsection.

Theorem 2.4. Under Assumption 2.3 there exists a unique solution

(X,Y, Z) ∈ Hα × L2
F([0, T ]× Ω;R)× L2

F([0, T−]× Ω;Rm)

to the FBSDE (2.3). Moreover, the MFG (1.7) admits a unique equilibrium µ∗. The equilibrium is given

by

µ∗t = E
[
Yt
2ηt

∣∣∣∣F0
t

]
, t ∈ [0, T ).

2.1 Proof of existence

In this section we prove our existence and uniqueness of equilibrium result. Decoupling the FBSDE (2.3)

by Y = AX +B yields the following system of Riccati type equations:

−dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dW̃t,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt− ZBt dW̃t,

AT =∞
BT =0.

(2.6)

The existence of a unique solution A ∈ M−1 to the first equation is established in Lemma A.1. From

that lemma it also follows that

exp

(
−
∫ s

r

Au
2ηu

du

)
≤
(
T − s
T − r

)α
(2.7)
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for any 0 ≤ r ≤ s < T . Hence we need to solve the following FBSDE:

dXt =− 1

2ηt
(AtXt +Bt) dt,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt− ZBt dW̃t,

X0 =x

BT =0.

(2.8)

Our approach is based on an extension of the method of continuation that accounts for the singularity of

the process A at the terminal time and hence for the singularity in the driver of the FBSDE. We apply

to the method of continuation to the triple (X,B, Y ) rather than the pair (X,B), where Y = AX + B

is treated as a bridge, and search for solutions

(X,B, Y = AX +B) ∈ Hα ×Hγ × L2
F([0, T ]× Ω;R),

where α was defined in (2.5) and γ is any constant

0 < γ < α ∧ 1/2.

Specifically, the method of continuation will be applied to the FBSDE

dXt =− 1

2ηt
(AtXt +Bt) dt,

−dBt =

(
κtpE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
+ ft −

AtBt
2ηt

)
dt− ZBt dW̃t,

dYt =

(
−2λtXt − κtpE

[
AtXt +Bt

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ ZYt dW̃t,

X0 =x,

BT =0,

(2.9)

where p ∈ [0, 1] and f ∈ L2
F([0, T ] × Ω;R). We emphasise that the first two equations hold on [0, T ],

while the third equation holds on [0, T ).

In a first step, we provide an a priori estimate for the processes ZB and ZY .

Lemma 2.5. Assume that f ∈ L2
F([0, T ] × Ω;R) and that there exists a solution (X,B, Y, ZB , ZY ) to

(2.9) such that

(X,B, Y ) ∈ Hα ×Hγ × S2
F([0, T−]× Ω,R).

Then

(ZB , ZY ) ∈ L2
F([0, T ]× Ω;Rm)× L2

F([0, T−]× Ω;Rm)

and there exists a constant C > 0 such that

E

[∫ T

0

|ZBt |2 dt

]
≤ C

(
‖B‖2γ + ‖X‖2α + E

[∫ T

0

|ft|2 dt

])

and such that for each τ < T

E

[∣∣∣∣∫ τ

0

|ZYs |2 ds
∣∣∣∣2
]
≤ C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2α + ‖B‖2γ + E

[∫ T

0

|ft|2 dt

])
.

In particular,
∫ ·

0
ZBs dW̃s is a true martingale on [0, T ] and

∫ ·
0
ZYs dW̃s is a true martingale on [0, τ ], for

each τ < T .
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Proof. Since A ∈ M−1 and η? > 0 there exists a constant C > 0 that is independent of s ∈ [0, T ] such

that ∣∣∣∣AsBs2ηs
− κsE

[
AsXs +Bs

2ηs

∣∣∣∣F0
s

]
− fs

∣∣∣∣ ≤ C [ |Bs|T − s
+ E

(
|Xs|
T − s

+ |Bs|
∣∣∣∣F0

s

)
+ |fs|

]
.

Since (X,B) ∈ Hα ×Hγ this implies,∫ T

t

ZBs dW̃s = Bt +

∫ T

t

{
AsBs
2ηs

− κsE
[
AsXs +Bs

2ηs

∣∣∣∣F0
s

]
− fs

}
ds

≤ C sup
0≤t≤T

|Bt|
(T − t)γ

+ C sup
0≤s≤T

E
[

sup
0≤t≤T

|Xt|
(T − t)α

∣∣∣∣F0
s

]
+ C sup

0≤s≤T
E
[

sup
0≤t≤T

|Bt|
(T − t)γ

∣∣∣∣F0
s

]
+

∫ T

0

|ft| dt.

Thus, by Doob’s maximal inequality,

E

 sup
0≤t≤T

∣∣∣∣∣
∫ T

t

ZBs dW̃s

∣∣∣∣∣
2
 ≤ C (‖B‖2γ + ‖X‖2α + E

[∫ T

0

|ft|2 dt

])
.

Similarly, for each 0 < τ < T ,

E

[
sup

0≤t≤τ

∣∣∣∣∫ τ

t

ZYs dW̃s

∣∣∣∣2
]
≤ C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2α + ‖B‖2γ + E

[∫ T

0

|ft|2 dt

])
<∞.

In a second step, we now prove an existence of solutions result for the FBSDE (2.9) with p = 0.

Lemma 2.6. For p = 0 there exists for every given data f ∈ L2
F([0, T ] × Ω;R) a unique solution

(X,B, Y, ZB , ZY ) ∈ Hα×Hγ ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]× Ω;Rm)× L2
F([0, T−]× Ω;Rm) to (2.9). It

is given by 

Bt = E

[∫ T

t

fse
−

∫ s
t

(2ηr)−1Ar dr ds

∣∣∣∣∣Ft
]
, t ∈ [0, T ]

Xt = xe−
∫ t
0

(2ηr)−1Ar dr −
∫ t

0

(2ηs)
−1Bse

−
∫ t
s

(2ηr)−1Ar dr ds, t ∈ [0, T ]

Yt =AtXt +Bt, t ∈ [0, T ),

and ZB ∈ L2
F([0, T ]× Ω;Rm) and ZY ∈ L2

F([0, T−]× Ω;Rm) are given by the martingale representation

theorem.

Proof. For p = 0 the process X solves a linear ODE and the pair (B,ZB) solves a linear BSDE. Hence,

the explicit representations follow from the respective solution formulas. It remains to establish the

desired integration properties. To this end, we first apply Hölder’s inequality in order to obtain,

|Bt|
(T − t)γ

≤ 1

(T − t)γ
E

[∫ T

t

|fs| ds

∣∣∣∣∣Ft
]
≤

(
E

[∫ T

t

|fs|
1

1−γ ds

∣∣∣∣∣Ft
])1−γ

<∞.

Using Doob’s maximal inequality, Jensen’s inequality and the fact that γ < 1
2 we conclude that,

E

[
sup

0≤t≤T

∣∣∣∣ Bt
(T − t)γ

∣∣∣∣2
]
≤ E

 sup
0≤t≤T

(
E

[∫ T

0

|fs|
1

1−γ ds

∣∣∣∣Ft
])2(1−γ)

 ≤ CE[∫ T

0

|fs|2 ds

]
.
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From (2.7) and the solution formula for X and using that γ < α we obtain that X ∈ Hα because,

|Xt| ≤
x(T − t)α

Tα
+ C

∫ t

0

|Bs|
(
T − t
T − s

)α
ds

≤ x(T − t)α

Tα
+ C

(
sup

0≤s≤T

|Bs|
(T − s)γ

)(∫ t

0

(T − s)γ−α ds
)

(T − t)α

≤ (T − t)α
{
x

Tα
+
CT 1+γ−α

1 + γ − α

(
sup

0≤s≤T

|Bs|
(T − s)γ

)}
.

The previously established properties of A, X and B yield Y ∈ S2
F([0, T−]× Ω;R) with

E

[
sup
t∈[0,τ ]

Y 2
t

]
≤ C

(T − τ)2(1−α)
‖X‖2α + (T − τ)2γ‖B‖2γ . (2.10)

For any ε > 0, integration by part implies that

XT−εYT−ε−X0Y0 =

∫ T−ε

0

Xt dYt +

∫ T−ε

0

Yt dXt

= −
∫ T−ε

0

Xt(2λtXt + ft) dt−
∫ T−ε

0

Y 2
t

2ηt
dt+

∫ T−ε

0

XtZ
Y
t dW̃t.

The positivity of the process A along with the definition of the process Y yields XT−εYT−ε ≥ XT−εBT−ε.

Thus, taking expectations on both sides of the above equation, letting ε → 0 and using XT = BT = 0

yields,

−E [X0Y0] ≤ −E

[∫ T

0

2λtX
2
t dt

]
− E

[∫ T

0

Xtft dt

]
− E

[∫ T

0

Y 2
t

2ηt
dt

]
.

Together with the inequality (2.10) for τ = 0 this shows that

E

[∫ T

0

Y 2
t dt

]
≤ CE

[∫ T

0

X2
t dt

]
+ CE

[∫ T

0

f2
t dt

]
+ C‖X‖2α + C‖B‖2γ <∞.

In a third step we now establish the continuation result for the FBSDE (2.9) from which we shall then

deduce the existence of a unique global solution to our original MFG.

Lemma 2.7. If for some p ∈ [0, 1] the FBSDE (2.9) is for every data f ∈ L2
F([0, T ] × Ω;R) uniquely

solvable in Hα×Hγ ×D2
F([0, T ]× Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm), then this holds also

for p + d with d > 0 small enough (independent of p and f).

Proof. Let us fix d > 0, Y ∈ L2
F([0, T ] × Ω;R) and f ∈ L2

F([0, T ] × Ω;R) and consider the following

system:

dX̃t = − 1

2ηt
(AtX̃t + B̃t) dt,

−dB̃t =

(
κtpE

[
1

2ηt

(
AtX̃t + B̃t

)∣∣∣∣F0
t

]
+ κtdE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ ft −

AtB̃t
2ηt

)
dt− ZB̃t dW̃t,

dỸt =

(
−2λtX̃t − κtpE

[
AtX̃t + B̃t

2ηt

∣∣∣∣∣F0
t

]
− κtdE

[
Yt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ Z Ỹt dW̃t,

X0 = x

BT = 0.

(2.11)
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Then

f(Y ) := κdE
[
Y

2η

∣∣∣∣F0

]
+ f ∈ L2

F([0, T ]× Ω;R).

Thus, by assumption there exists a unique solution

(X̃, B̃, Ỹ , ZB̃ , Z Ỹ ) ∈ Hα ×Hγ ×D2
F([0, T ]× Ω;R)× L2

F([0, T ]× Ω;Rm)× L2
F([0, T−]× Ω;Rm)

to (2.11), and Ỹ = AX̃ + B̃. This defines a mapping Y 7→ (X̃, B̃, Ỹ ) from L2
F([0, T ] × Ω;R) to

Hα×Hγ×L2
F([0, T ]×Ω;R) and hence also a mapping (X,B, Y ) 7→ (X̃, B̃, Ỹ ) onHα×Hγ×L2

F([0, T ]×Ω;R).

In what follows we prove that this second mapping is a contraction for some d > 0. For the unique fixed

point the system (2.11) reduces to the system (2.9) with p replaced by p+d. This then yields the desired

result.

In order to establish the contraction property, we denote for two processes Y, Y ′ ∈ L2
F([0, T ] × Ω;R) by

(X̃, B̃, Ỹ ) and (X̃ ′, B̃′, Ỹ ′) the corresponding processes defined by (2.11) and put

ξ̃t =
Ỹt
2ηt

, ξ̃′t =
Ỹ ′t
2ηt

, µ̃t = E
[
ξ̃t

∣∣∣F0
t

]
, µ̃′t = E

[
ξ̃′t

∣∣∣F0
t

]
.

For any ε > 0 integration by part yields that

(X̃
′

T−ε − X̃T−ε)ỸT−ε =

∫ T−ε

0

(X̃
′

s − X̃s) dỸs +

∫ T−ε

0

Ỹs d(X̃
′

s − X̃s)

= −
∫ T−ε

0

(X̃
′

s − X̃s)(pκsµ̃s + 2λsX̃s) ds−
∫ T−ε

0

Ỹs(ξ̃
′
s − ξ̃s) ds

−
∫ T−ε

0

(X̃
′

s − X̃s)f(Ys) ds+

∫ T−ε

0

(X̃
′

s − X̃s)Z
Ỹ
s dW̃s

and

(X̃T−ε − X̃
′

T−ε)Ỹ
′

T−ε = −
∫ T−ε

0

(X̃s − X̃
′

s)(pκsµ̃
′

s + 2λsX̃
′

s) ds−
∫ T−ε

0

Ỹ
′

s (ξ̃s − ξ̃′s) ds

−
∫ T−ε

0

(X̃s − X̃
′

s)f(Y
′

s ) ds+

∫ T−ε

0

(X̃s − X̃
′

s)Z
Ỹ
′

s dW̃s.

Taking the sum of these two equations and using that

(X̃T−ε − X̃
′

T−ε)(Ỹ
′

T−ε − ỸT−ε) = −AT−ε(X̃T−ε − X̃
′

T−ε)
2 − (X̃T−ε − X̃

′

T−ε)(B̃T−ε − B̃
′

T−ε)

≤ − (X̃T−ε − X̃
′

T−ε)(B̃T−ε − B̃
′

T−ε)

yields

2

∫ T−ε

0

ηs(ξ̃
′
s − ξ̃s)2 ds+ 2

∫ T−ε

0

λs(X̃
′

s − X̃s)
2 ds

+

∫ T−ε

0

(X̃
′

s − X̃s)(f(Y ′s )− f(Ys)) ds+

∫ T−ε

0

(X̃s − X̃
′

s)(Z̃
Y
′

s − Z̃Ys ) dW̃s

≤ − (X̃T−ε − X̃
′

T−ε)(B̃T−ε − B̃
′

T−ε) +

∫ T−ε

0

[
pκs(µ̃s − µ̃′s)(X̃ ′s − X̃s)

]
ds.

Taking expectations on both sides drops the martingale part. Then we can pass to the limit as ε → 0

because X̃, X̃ ′ ∈ Hα and B̃, B̃′ ∈ Hγ in order to obtain a constant C such that for any θ > 0(
2η? −

‖κ‖
2θ

)
E

[∫ T

0

(ξ̃′s − ξ̃s)2 ds

]
+

(
2λ? −

‖κ‖
2
θ

)
E

[∫ T

0

(X̃
′

s − X̃s)
2 ds

]

≤ CdE

[∫ T

0

(X̃ ′s − X̃s)
2 ds

]
+ CdE

[∫ T

0

(Y ′s − Ys)2 ds

]
.
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In view of Assumption 2.3 we can choose a θ > 0 such that

2η? −
‖κ‖
2θ

> 0, 2λ? −
‖κ‖θ

2
> 0,

which implies that

E

[∫ T

0

(ξ̃′s − ξ̃s)2 ds

]
+ E

[∫ T

0

(X̃
′

s − X̃s)
2 ds

]

≤ CdE

[∫ T

0

(X̃ ′s − X̃s)
2 ds

]
+ CdE

[∫ T

0

(Y ′s − Ys)2 ds

]
.

Thus, when d is small enough,

E

[∫ T

0

|Ỹt − Ỹ ′t |2 dt

]
≤ aE

[∫ T

0

|Yt − Y ′t |2 dt

]

for some a < 1. We notice that the bound on d only depends on T , κ, η and λ.

Now using the definition of ξ̃ and ξ̃′ the solution formula for linear BSDEs yields

|B̃t − B̃′t| ≤ ‖κ‖E

[∫ T

t

{
pE
[
|ξ̃s − ξ̃′s|

∣∣∣∣F0
s

]
+ dE

[
|Ys − Y ′s |

∣∣∣∣F0
s

]}
ds

∣∣∣∣Ft
]
.

Thus

|B̃t − B̃′t| ≤ C(T − t)γE

[∫ T

t

E
[
|ξ̃s − ξ̃′s|

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]1−γ

+ cd(T − t)γE

[∫ T

t

E
[
|Ys − Y ′s |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]1−γ

.

Since 2γ < 1, Doob’s maximal inequality along with the previously established L2 bounds yields

E

[
sup
t∈[0,T ]

|B̃t − B̃′t|2

(T − t)2γ

]
≤ CE

[∫ T

0

|ξ̃s − ξ̃′s|2ds

]
+ Cd2E

[∫ T

0

|Ys − Y ′s |2ds

]
.

Now using the dynamics of X̃ we obtain

|X̃t − X̃ ′t| =
∣∣∣∣∫ t

0

−{p(2ηs)
−1(B̃s − B̃′s)}e−

∫ t
s

(2ηr)−1Ar dr ds

∣∣∣∣
≤ C

∫ t

0

{|B̃s − B̃′s|}
(
T − t
T − s

)α
ds

≤ C
T 1+γ−α

1 + γ − α
(T − t)α sup

0≤s≤T

|B̃s − B̃′s|
(T − s)γ

.

Hence this leads to

E

[
sup
t∈[0,T ]

|X̃t − X̃ ′t|2

(T − t)2α

]
≤ C

[
‖B̃s − B̃′s‖2γ

]
.

To summarize, we obtain a constant d such that (X,B, Y ) → (X̃, B̃, Ỹ ) is a contraction in Hα ×Hγ ×
L2
F([0, T ] × Ω;R). Since Ỹ = AX̃ + B̃, Ỹ ∈ D2

F([0, T ] × Ω;R) and using Lemma 2.5, we see that the
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following system admits a unique solution (X̃, B̃, Ỹ , ZB̃ , Z Ỹ ) ∈ Hα×Hγ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]×
Ω;Rm)× L2

F([0, T−]× Ω;Rm):

dX̃t = − 1

2ηt
(AtX̃t + B̃t) dt,

−dB̃t =

(
κtpE

[
1

2ηt

(
AtX̃t + B̃t

)∣∣∣∣F0
t

]
+ κtdE

[
Ỹt
2ηt

∣∣∣∣∣F0
t

]
+ ft −

AtB̃t
2ηt

)
dt− ZB̃t dW̃t,

dỸt =

(
−2λtX̃t − κtpE

[
AtX̃t + B̃t

2ηt

∣∣∣∣∣F0
t

]
− κtdE

[
Ỹt
2ηt

∣∣∣∣∣F0
t

]
− ft

)
dt+ Z Ỹt dW̃t,

X0 = x

BT = 0.

Using again the relation Ỹ = AX̃ + B̃, the above system is equivalent to (2.9) with p replaced by p + d.

This proves the assertion.

Using Lemmata 2.5, 2.6 and 2.7 and by induction on p, we obtain the following result.

Theorem 2.8. There exists a unique solution (X∗, B∗, Y ∗, ZB
∗
, ZY

∗
) ∈ Hα ×Hγ ×D2

F([0, T ]×Ω;R)×
L2
F([0, T ]×Ω;Rm)×L2

F([0, T−]×Ω;Rm) to the FBSDEs (2.3) and (2.8). Moreover, there exists a constant

C > 0 depending on η, λ, κ, T and x, such that

‖X∗‖α + ‖B∗‖γ + E

[∫ T

0

|Y ∗t |2 dt

]
≤ C.

From the equation (2.2) we obtain the following candidates for the optimal portfolio process and the

optimal trading strategy:

X∗t = xe−
∫ t
0
Ar
2ηr

dr −
∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds,

ξ∗t = xe−
∫ t
0
Ar
2ηr

dr At
2ηt

+
Bt
2ηt
− At

2ηt

∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds.

(2.12)

By construction, X∗T = 0 and hence ξ∗ is an admissible liquidation strategy. The following theorem

shows that it is indeed the optimal liquidation strategy and that its conditional expectation defines the

desired equilibrium for our MFG.

Theorem 2.9. The process ξ∗ is an optimal control. Hence µ∗ = E[ξ∗|F0] is the solution to the MFG.

Moreover, the value function is given by

V (t, x;µ∗) =
1

2
Atx

2 +
1

2
Btx+

1

2
E

[∫ T

t

κsX
∗
s ξ
∗
s ds

∣∣∣∣Ft
]

(2.13)

Proof. For any ξ ∈ AF(t, x), let Xξ be the corresponding state process. Then it holds that,

lim
s↗T

E
[
Xξ
sYs
∣∣Ft] = 0. (2.14)
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Indeed, since A ∈M−1, for any 0 ≤ t ≤ s < T∣∣E [Xξ
sY
∗
s

∣∣Ft]∣∣ =
∣∣E [Xξ

s (X∗sAs +B∗s )
∣∣Ft]∣∣

≤ C

T − s
E
[
(Xξ

s )2 + (X∗s )2
∣∣Ft]+ E

[
|Xξ

sB
∗
s |
∣∣Ft]

=
C

T − s
E

(∫ T

s

ξu du

)2

+

(∫ T

s

ξ∗u du

)2
∣∣∣∣∣∣Ft
+ E

[
|Xξ

sB
∗
s |
∣∣Ft]

≤ CE

[∫ T

s

ξ2
u du+

∫ T

s

(ξ∗u)2 du

∣∣∣∣∣Ft
]

+ E
[
|Xξ

sB
∗
s |
∣∣Ft] s↗T−−−→ 0.

With this, we can now show that ξ∗ is a best response against µ∗. In fact, for each ε > 0 and each

t ∈ [0, T − ε] the convexity of the Hamiltonian yields,

E

[∫ T−ε

t

(
κsµ

∗
sX

ξ
s + ηsξ

2
s + λs(X

ξ
s )2
)
ds

∣∣∣∣∣Ft
]
− E

[∫ T−ε

t

(
κsµ

∗
sX
∗
s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

∣∣∣∣∣Ft
]

= E

[∫ T−ε

t

(
H(s, ξs, X

ξ
s , Y

∗
s ;µ∗)−H(s, ξ∗s , X

∗
s , Y

∗
s ;µ∗) + (ξs − ξ∗s )Ys

)
ds

∣∣∣∣Ft
]

≥ E

[∫ T−ε

t

(
∂ξH(s, ξ∗s , X

∗
s , Y

∗
s ;µ∗)(ξs − ξ∗s ) + ∂xH(s, ξ∗s , X

∗
s , Y

∗
s ;µ∗)(Xξ

s −X∗s ) + (ξs − ξ∗s )Y ∗s
)
ds

∣∣∣∣Ft
]

= E

[∫ T−ε

t

(
(κsµ

∗
s + 2λsX

∗
s )(Xξ

s −X∗s ) + (ξs − ξ∗s )Y ∗s
)
ds

∣∣∣∣Ft
]
.

Furthermore, integration by part implies that for any ε > 0,

Y ∗T−ε(X
∗
T−ε −X

ξ
T−ε)

= Y ∗t (X∗t −X
ξ
t ) +

∫ T−ε

t

(X∗s −Xξ
s ) dY ∗s +

∫ T−ε

t

Y ∗s d(X∗s −Xξ
s )

= −
∫ T−ε

t

(κsµ
∗
s + 2λsX

∗
s )(X∗s −Xξ

s ) ds+

∫ T−ε

t

Zs(X
∗
s −Xξ

s ) dW̃s

−
∫ T−ε

t

Y ∗s (ξ∗s − ξs) ds.

(2.15)

Therefore,

E

[∫ T−ε

t

(
κsµ

∗
sXs + ηsξ

2
s + λsX

2
s

)
ds

∣∣∣∣∣Ft
]
− E

[∫ T−ε

t

(
κsµ

∗
sX
∗
s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

∣∣∣∣∣Ft
]

≥ E
[
Y ∗T−ε(X

∗
T−ε −XT−ε)

∣∣∣∣Ft] .
Taking ε→ 0, the equation (2.14) does indeed yield,

J(t, x, ξ;µ∗)− J(t, x, ξ∗;µ∗) ≥ 0.

In view of (2.15) and using (2.14) again yields (2.13) as,

E

[∫ T

t

(κsξ
∗
sX
∗
s + λs(X

∗
s )2 + ηs(ξ

∗
s )2) ds

∣∣∣∣Ft
]

=
1

2
At(X

∗
t )2 +

1

2
BtX

∗
t +

1

2
E

[∫ T

t

κsX
∗
s ξ
∗
s ds

∣∣∣∣Ft
]
.
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Remark 2.10. Since (X∗, B∗) ∈ Hα ×Hγ and ξ∗ ∈ AF (t, x),

B∗t x+ E

[∫ T

t

κsξ
∗
sX
∗
s ds

∣∣∣∣Ft
]

≤ x(T − t)γ sup
0≤t≤T

∣∣∣∣ B∗t
(T − t)γ

∣∣∣∣+ ‖κ‖(T − t)αE

[∫ T

0

|ξ∗s | ds sup
0≤t≤T

∣∣∣∣ Xt

(T − t)α

∣∣∣∣
∣∣∣∣∣Ft
]

t↗T−−−→ 0.

As a result, we get the following terminal condition for the value function:

lim
t↑T

V (t, x;µ) =

{
0, x = 0;

∞, x 6= 0.

2.2 Common information environment

In this section, we consider the benchmark case where all the randomness is generated by the Brownian

motion W 0 that drives the benchmark price process. In particular, all players share the same information.

In this case it turns out that both the optimal strategy and the optimal position are non-negative

throughout the liquidation interval. We can not prove (and do not expect) a similar result under

asymmetric information.

Assumption 2.11. The processes κ, λ, η and 1/η belong to L∞F0([0, T ]× Ω; [0,∞)).

Under the above assumption the consistency condition reduces to

µ = ξ∗ (2.16)

and the conditional mean-field FBSDE reduces to the following FBSDE

dXt = − Yt
2ηt

dt,

−dYt =

(
κtYt
2ηt

+ 2λtXt

)
dt− Zt dW 0

t ,

X0 = x,

XT = 0.

(2.17)

In particular, the optimization problem is now a time consistent one. The linear ansatz Y = AX yields,

−dAt =

(
2λt +

κtAt
2ηt

− A2
t

2ηt

)
dt− ZAt dW 0

t , AT =∞. (2.18)

This singular terminal condition on A is necessary to satisfy the constraint XT = 0. This equation has

a unique solution, due to Corollary A.2. By (2.17),

X∗t = xe−
∫ t
0
Ar
2ηr

dr.

Lemma 2.12. Under Assumption 2.11, the processes A, X∗, Y = AX∗ and ξ∗ = µ = Y
2η are all non

negative and

A ∈M−1, X
∗ ∈Mα, Y ∈Mα−1, ξ

∗ ∈Mα−1.

Proof. Due to Lemma A.1, the following estimate holds for any 0 ≤ t < T :

1

E
[∫ T

t
1

2ηs
e−

∫ s
0

κr
2ηr

dr ds
∣∣∣F0

t

] ≤ Ãt
15



Hence the process At is bounded from below by:

At ≥
e−

∫ t
0
κr
2ηr

dr

E
[∫ T

t
1

2ηs
e−

∫ s
0

κr
2ηr

dr ds
∣∣∣F0

t

] =
1

E
[∫ T

t
1

2ηs
e−

∫ s
t

κr
2ηr

dr ds
∣∣∣F0

t

]
≥ 1

E
[∫ T

t
1

2ηs
ds
∣∣∣F0

t

] ≥ 2η?
1

(T − t)
.

Hence,

e−
∫ t
0
Ar
2ηr

dr ≤ exp

(
−2η?

∫ t

0

1

2ηr(T − r)
dr

)
≤
(
T − t
T

)α
. (2.19)

The conclusion on X∗ can be deduced immediately. Again from Lemma A.1, Ã is bounded from above:

Ãt ≤
1

(T − t)2
E

[∫ T

t

(
2ηse

∫ s
0

κr
2ηr

dr + 2(T − s)2λse
∫ s
0

κr
2ηr

dr
)
ds

∣∣∣∣∣F0
t

]
.

Thus we get an upper bound on A:

At ≤
e−

∫ t
0
κr
2ηr

dr

(T − t)2
E

[∫ T

t

(
2ηse

∫ s
0

κr
2ηr

dr + 2(T − s)2λse
∫ s
0

κr
2ηr

dr
)
ds

∣∣∣∣∣F0
t

]

≤ 2

(T − t)2

[
‖η‖e

∫ T
0

κr
2ηr

dr(T − t) +
1

3
‖λ‖e

∫ T
0

κr
2ηr

dr(T − t)3

]
≤ 2

(T − t)
e
‖κ‖T
2η?

[
‖η‖+

‖λ‖T 2

3

]
.

Collecting all inequalities we get that A ∈M−1 and

|ξ∗t | =
At|X∗t |

2ηt
= |x|Ate

−
∫ t
0
Ar
2ηr

dr

2ηt

≤ |x|
η?Tα

[
‖η‖+

‖λ‖T 2

3

]
e
‖κ‖T
2η? (T − t)α−1

.

A similar inequality holds for Y .

From the representation (2.17), we deduce that Y is a non negative supermartingale. In particular, the

limit at the terminal time T of Y exists and is finite. Since X∗ ∈Mα, we deduce that limt↗T YtX
∗
t = 0.

Moreover the process Z belongs to LpF0([0, T−]× Ω; [0,+∞)) for any p.

The following verification theorem shows that ξ∗ is optimal. The proof is similar to that of Theorem 2.9.

Theorem 2.13. Under Assumption 2.11, ξ∗(= µ∗) is an admissible optimal control as well as the

equilibrium to MFG. Moreover the value function is given by:

V (t, x;µ∗) =
1

2
Atx

2 +
1

2
E

[∫ T

t

κsµ
∗
sX
∗
s ds

∣∣∣∣∣F0
t

]
. (2.20)

2.3 An example

In this section, we consider a deterministic benchmark example that can be solved explicitly. We assume

that the following assumption holds.

Assumption 2.14. The processes σ, λ, κ, η are positive constants.
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Figure 1: Optimal liquidation rate ξ∗ corresponding to parameters T = 1, X = 1, λ = 5 and η = 5. The

dashed line corresponds to κ = 0, that is the Almgren-Chriss model with temporary impact.

Under the preceding assumption, the Riccati equation (A.2) reduces to

−dAt =

(
2λ+

κAt
2η
− A2

t

2η

)
dt, AT =∞,

whose explicit solution is

At =
2η
(
α+e

α+T eα−t − α−eα−T eα+t
)

eα+T eα−t − eα−T eα+t
,

where

α+ =
κ+

√
κ2 + 16ηλ

4η
, α− =

κ−
√
κ2 + 16ηλ

4η
.

For the forward component of (2.17), we have

X∗t =
eα+(T−t) − eα−(T−t)

eα+T − eα−T
X.

Finally, we have the optimal liquidation rate as follows,

ξ∗t =
α+e

α+(T−t) − α−eα−(T−t)

eα+T − eα−T
X. (2.21)

When κ → 0, ξ∗t →
γ cosh(γ(T−t))

sinh(γT ) X with γ =
√

λ
η . This corresponds to the benchmark model in [1].

This convergence can also be seen from Figure 1 and Figure 2. Furthermore, we see that - as in the

corresponding single player models - the optimal liquidation rate is always positive, i.e. round trips are

no beneficial.

We also see that when the impact of interaction is strong, then the players trade very fast initially and

slowly afterwards. The intuitive reason is that, when the interaction is strong, an individual player would

benefit from trading fast slightly before his competitors start trading in order to avoid the negative drift

generated by the mean-field interaction. As all the players are statistically identical, they “coordinate”

on an equilibrium trading strategy as depicted in Figure 1. Thus, our model provides a possible expla-

nation for large price increases or decreases in markets with strategically interacting players with similar

preferences.

17



Figure 2: Current state X∗ corresponding to parameters T = 1, X = 1, λ = 5 and η = 5. The dashed

line corresponds to κ = 0, that is the Almgren-Chriss model with temporary impact.

3 Approximate Nash Equilibrium

In this section we show that a particular ε-Nash equilibrium for the N player game can be constructed

using the solution to the MFG (1.7) when the number of players is large. As it is often the case in

the MFG literature (see, e.g. [9]), the construction of approximate Nash equilibria requires additional

assumptions. We shall assume that the market depth and the risk aversion parameter depend only on

the common noise.

Assumption 3.1. The processes κi satisfy

κi ∈ L∞Fi ([0, T ]× Ω; [0,∞)), i = 1, .., N and {κi} admit a common upper bound ‖κ‖

while

ηi, λi ∈ L∞F0([0, T ]× Ω; [0,∞)).

In order to prove that under the preceding assumption the individual best responses against the mean-

field equilibrium form an ε-Nash equilibrium in the original N player game when N is large enough, we

introduce the benchmark cost functionals

J i(ξ;µ) := E

[∫ T

0

κitµtX
i
t + ηit(ξ

i
t)

2 + λit(X
i
t)

2 dt

]
.

The result of last section yields that

J i(ξ;µ∗,i) ≥ J i(ξ∗,i;µ∗,i), (3.1)

for any ξ ∈ L2
Fi([0, T ]× Ω;R), where

ξ∗,i :=
AiX∗,i +B∗,i

2ηi
∈ D2

Fi([0, T ]× Ω;R)

µ∗,it := E
[
ξ∗,it

∣∣∣F0
t

]
, t ∈ [0, T )

and (X∗,i, B∗,i, Ai) are the solutions to the system (2.6) and (2.8), with κ, η, λ and W replaced by κi,

ηi, λi and W i, respectively. The following lemma shows that all the conditional expected actions µ∗,i

coincide with the MFG equilibrium constructed in the previous sections.
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Lemma 3.2. Under Assumption 3.1 it holds for each i = 1, ..., N that

µ∗,it = µ∗t , a.s. a.e.

where µ∗ is given by Theorem 2.4. Moreover,

µ∗,it =
AtX̃t

2ηt
+
B̃t
2ηt

,

where X̃ and B̃ are given by (3.5) and (3.6), respectively.

Proof. Under Assumption 3.1 the FBSDE system reduces to,

−dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dW 0

t ,

dXi
t = − AtX

i
t +Bit
2ηt

dt

−dBit =

(
κitAt
2ηt

E
[
Xi
t

∣∣F0
t

]
+

κit
2ηt

E
[
Bit
∣∣F0
t

]
− AtB

i
t

2ηt

)
dt− ZB

i

t dW̃ i
t ,

AT = ∞,
Xi

0 = x,

BiT = 0,

(3.2)

where W̃ i
t = (W 0,W i). Let

X̃i
t := E

[
Xi
t |F0

t

]
, B̃it := E

[
Bit|F0

t

]
.

Then,

Bit = E

[∫ T

t

(
κisAs
2ηs

X̃i
s +

κis
2ηs

B̃is −
AsB

i
s

2ηs

)
ds

∣∣∣∣∣Ft
]
.

Taking the conditional expectation E[·|F0
t ],

B̃it = E

[∫ T

t

(
κisAs
2ηs

X̃i
s +

κis
2ηs

B̃is −
AsB

i
s

2ηs

)
ds

∣∣∣∣∣F0
t

]

= E

[∫ T

0

(
κisAs
2ηs

X̃i
s +

κis
2ηs

B̃is −
AsB

i
s

2ηs

)
ds

∣∣∣∣∣F0
t

]
− E

[∫ t

0

(
κisAs
2ηs

X̃i
s +

κis
2ηs

B̃is −
AsB

i
s

2ηs

)
ds

∣∣∣∣F0
t

]

= E

[∫ T

0

(
κisAs
2ηs

X̃i
s +

κis
2ηs

B̃is −
AsB

i
s

2ηs

)
ds

∣∣∣∣∣F0
t

]
−
∫ t

0

(
κ̃sAs
2ηs

X̃i
s +

κ̃s
2ηs

B̃is −
AsB̃

i
s

2ηs

)
ds,

where

κ̃t = E[κit|F0
t ] = E[κjt |F0

t ].

Hence, B̃it +
∫ t

0

(
κ̃sAs
2ηs

X̃i
s + κ̃s

2ηs
B̃is −

AsB̃
i
s

2ηs

)
ds is an F0-martingale. The martingale representation theo-

rem yields the existence of some ζi such that

B̃it +

∫ t

0

(
κ̃sAs
2ηs

X̃i
s +

κ̃s
2ηs

B̃is −
AsB̃

i
s

2ηs

)
ds =

∫ t

0

ζis dW
0
s . (3.3)

Moreover, taking conditional expectation on both sides of the expression for Xi, we have

X̃i
t = x− E

[∫ t

0

AsX
i
s +Bis

2ηs
ds

∣∣∣∣F0
t

]
= x−

∫ t

0

AsX̃
i
s + B̃is

2ηs
ds. (3.4)
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Thus (X̃i, B̃i, ζi) is the solution of the system

−dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dW 0

t ,

dX̃i
t = − AtX̃

i
t + B̃it
2ηt

dt

−dB̃it =

(
κ̃tAt
2ηt

X̃i
t +

κ̃t
2ηt

B̃it −
AtB̃

i
t

2ηt

)
dt− ζit dW 0

t ,

AT = ∞,

X̃i
T = x,

B̃iT = 0.

Let us now prove that the solution does not depend on i. By making the ansatz B̃i = C̃iX̃i, we have

−dC̃i =

(
κ̃t(At + C̃it)

2ηt
− AtC̃

i
t

ηt
− (C̃i)2

t

2ηt

)
dt− ZC̃

i

t dW 0
t , t ∈ [0, T ).

Let Di := A+ C̃i. Then dX̃i
t = −Dit

2ηt
X̃i
t dt, and Di satisfies

−dDi
t =

(
2λt +

κ̃tD
i
t

2ηt
− (Di

t)
2

2ηt

)
dt− Zt dW 0

t , DT =∞.

The singular terminal condition is necessary to satisfy the liquidation constraint. By Corollary A.2 this

equation has a unique solution. In particular, Di and hence X̃i are independent of i:

X̃i
t = X̃t = xe−

∫ t
0
Ds
2ηs

ds. (3.5)

From (3.3) we have

B̃it = B̃t = E

[∫ T

t

κ̃sAsX̃s

2ηs
exp

(
−
∫ s

t

Ar − κ̃r
2ηr

dr

)
ds

∣∣∣∣∣F0
t

]
. (3.6)

Hence B̃i is independent of i as well. Hence,

µ∗,it = E
[
AtX

i
t +Bit
2ηt

∣∣∣∣F0
t

]
=
AtX̃

i
t

2ηt
+
B̃it
2ηt

,

is independent of i, too.

We are now ready to state and prove the main result of this section.

Theorem 3.3. Assume that Assumption 3.1 is satisfied and that the admissible control space for each

player i = 1, ..., N is given by

Ai :=

{
ξ ∈ AFi(0, x) : E

[∫ T

0

|ξt|2 dt

]
≤M

}

for some fixed positive constant M large enough. Then it holds for each 1 ≤ i ≤ N and each ξi ∈ Ai that

JN,i
(
~ξ∗
)
≤ JN,i(ξ∗,−i, ξi) +O

(
1√
N

)
,

where (ξ∗,−i, ξi) = (ξ∗,1, · · · , ξ∗,i−1, ξi, ξ∗,i+1, · · · , ξ∗,N ). In particular, the strategy profile ~ξ∗ forms an

ε-Nash equilibrium.
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Proof. Let us compute

E

∫ T

0

µ∗t − 1

N

N∑
j=1

ξ∗,jt

2

dt

 =
1

N2
E

∫ T

0

 N∑
j=1

(
µ∗t − ξ

∗,j
t

)2

dt


=

1

N2
E

∫ T

0

∑
i 6=j

(
µ∗t − ξ

∗,i
t

)(
µ∗t − ξ

∗,j
t

)
dt

+
1

N2
E

∫ T

0

N∑
j=1

(
µ∗t − ξ

∗,j
t

)2

dt


≤ 1

N2
E

∫ T

0

∑
i 6=j

E
[(
µ∗t − ξ

∗,i
t

)(
µ∗t − ξ

∗,j
t

)∣∣∣F0
t

]
dt

+
2M

N
.

Since ξ∗,i and ξ∗,j are conditionally independent given W 0 for i 6= j, the first term is equal to zero.

Hence we obtain

E

∫ T

0

µ∗t − 1

N

N∑
j=1

ξ∗,jt

2

dt

 ≤ 2M

N
.

By the symmetry of the N player game, it is sufficient to show the result for Player 1. First, notice that

ξ∗,1 ∈ A1 if M is large enough. For each admissible strategy ξ ∈ A1, let X be the corresponding state

process. By (3.1) we have that

JN,1(ξ, ξ∗,2, · · · , ξ∗,N )− JN,1(ξ∗,1, · · · , ξ∗,N )

= JN,1(ξ, ξ∗,2, · · · , ξ∗,N )− J1(ξ;µ∗) + J1(ξ;µ∗)− J1(ξ∗,1;µ∗) + J1(ξ∗,1;µ∗)− JN,1(ξ∗,1, · · · , ξ∗,N )

≥ E
∫ T

0

κ1
t

 1

N

N∑
j=2

ξ∗,jt +
1

N
ξt

Xt + η1
t ξ

2
t + λ1

tX
2
t

 dt
− E

[∫ T

0

(
κ1
tµ
∗
tXt + η1

t ξ
2
t + λ1

tX
2
t

)
dt

]

+ E

[∫ T

0

(
κ1
tµ
∗
tX
∗,1
t + η1

t (ξ∗,1t )2 + λ1
t (X

∗,1
t )2

)
dt

]

− E

∫ T

0

κ1
t

1

N

N∑
j=1

ξ∗,jt X∗,1t + η1
t (ξ∗,1t )2 + λ1

t (X
∗,1
t )2

 dt


:= I1 + I2.

For the first difference I1 in the above inequality, we have that

sup
ξ∈A1

|I1| ≤
‖κ‖
N

sup
ξ∈A1

E

[∫ T

0

|Xt||ξt| dt

]
+ ‖κ‖ sup

ξ∈A1

E

∫ T

0

|Xt|

∣∣∣∣∣∣ 1

N

N∑
j=2

ξ∗,jt − µ∗t

∣∣∣∣∣∣ dt


≤ ‖κ‖
N

sup
ξ∈A1

(
E

[∫ T

0

|Xt|2 dt

]) 1
2

sup
ξ∈A1

(
E

[∫ T

0

|ξt|2 dt

]) 1
2

+ ‖κ‖ sup
ξ∈A1

(
E

[∫ T

0

|Xt|2 dt

]) 1
2

E

∫ T

0

∣∣∣∣∣∣ 1

N

N∑
j=1

ξ∗,jt − µ∗t −
1

N
ξ∗,1t

∣∣∣∣∣∣ dt
 1

2

≤ M‖κ‖T
N

+
3‖κ‖TM√

N
.
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For the second difference I2, we have that

I2 ≤ ‖κ‖

(
E

[∫ T

0

|X∗,1t |2 dt

]) 1
2

E

∫ T

0

∣∣∣∣∣∣µ∗t − 1

N

N∑
j=1

ξ∗,jt

∣∣∣∣∣∣ dt
 1

2

≤
√

2‖κ‖TM√
N

This proves the assertion.

Remark 3.4. When searching for the approximate Nash equilibria, we may as well assume that the

individual players have full information. That is to say, we may assume that the admissible control space

for each player is

A :=

{
ξ ∈ AFN (0, x) : E

[∫ T

0

|ξt|2 dt

]
≤M

}
,

where FN = (FNt , 0 ≤ t ≤ T ) with FNt := σ(W 0
t ,W

1
t , · · · ,WN

t ). By the same argument as in Section

2.1, we have

J i(ξ;µ∗) ≥ J i(ξ∗,i;µ∗),

for all ξ ∈ AFN (0, x). Thus, the same analysis as in Theorem 3.3 implies that for all ξi ∈ AFN (0, x)

JN,i
(
~ξ∗
)
≤ JN,i(ξ∗,−i, ξi) +O

(
1√
N

)
.

4 Approximation by unconstrained MFGs

In this section, we prove that the solution to our singular MFG can be approximated by the solutions

to non-singular MFGs under additional assumptions on the market impact parameter. Specifically, we

consider the following unconstrained MFGs:

1. fix a process µ;

2. solve the standard optimization problem: minimize

Jn(ξ;µ) = E

[∫ T

0

(
κtµtXt + ηtξ

2
t + λtX

2
t

)
dt+ nX2

T

]
such that dXt = −ξt dt X0 = x;

3. solve the fixed point equation µ∗t = E[ξ∗t |F0
t ] a.e. t ∈ [0, T ],

where ξ∗ is the optimal strategy from 2.

(4.1)

We will need the following assumption. It implies in particular that X∗ ∈ H1.

Assumption 4.1. There exists a constant C such that for any 0 ≤ r ≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤ C

(
T − s
T − r

)
.

The following result is proven in the appendix.

Lemma 4.2. Assumption 4.1 holds under each of the following conditions:

• η is deterministic ;

22



• 1/η is a positive martingale ;

• 1/η has uncorrelated multiplicative increments, namely for any 0 ≤ s ≤ t

E
[
ηs
ηt

∣∣∣∣Fs] = E
[
ηs
ηt

]
.

Using the same arguments as in Section 2, the unconstrained control problem leads to the following

conditional mean field FBSDE

:



dXn
t =

(
−A

n
tX

n
t +Bnt
2ηt

)
dt,

−dBnt =

(
−A

n
t B

n
t

2ηt
+ κtE

[
AntX

n
t +Bnt
2ηt

∣∣∣∣F0
t

])
dt− ZB

n

t dW̃t,

dY nt =

(
−2λtX

n
t − κtE

[
AntX

n
t +Bnt
2ηt

∣∣∣∣F0
t

])
dt+ ZY

n

t dW̃t,

Xn
0 = x,

BnT = 0,

Y nT = 2nXn
T ,

(4.2)

where −dA
n
t =

{
2λt −

(Ant )2

2ηt

}
dt− ZA

n

t dW̃t,

AnT = 2n.

(4.3)

The existence of a solution (An, ZA
n

) to the BSDE (4.3) can be deduced from Lemma A.3. By the same

lemma the sequence {An} is a non decreasing sequence converging pointwise to A and there exists a

constant C > 0 such for any n,

‖An‖M−1
+ ‖An‖Mn

−1
≤ C,

where the space Mn,ν is defined as

Mn
ν :=

{
U ∈ PF([0, T ]× Ω;R ∪ {∞}) :

(
T − .+ η?

n

)−ν
U· ∈ L∞F ([0, T ]× Ω;R ∪ {∞})

}
,

and endowed with the norm

‖U‖Mn
ν

:= ess sup
(t,ω)×[0,T ]×Ω

|Ut|(
T − t+ η?

n

)ν .
We shall also need the following analogs to the space Hν :

Hnν :=

{
U ∈ PF([0, T ]× Ω;R ∪ {∞}) :

(
T − .+ η?

n

)−ν
U· ∈ S2

F([0, T ]× Ω;R ∪ {∞})
}
,

endowed with the norm

‖U‖n,ν :=

E

 sup
0≤t≤T

∣∣∣∣∣ Ut(
T − t+ η?

n

)ν
∣∣∣∣∣
2
 1

2

.

The next result can be obtained using similar arguments as in the proof of Theorem 2.8. In fact, we

have a slightly stronger result.

Theorem 4.3. Assume Assumption 2.3 holds. For any fixed p ∈ [0, 1] and f ∈ L2
F([0, T ]× Ω;R), there

exists a unique solution (Xn, Bn, Y n, ZB
n

, ZY
n

) ∈ Hnα ×Hnγ × S2
F([0, T ]× Ω;R)× L2

F([0, T ]× Ω;Rm)×
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L2
F([0, T ]× Ω;Rm) to the following system

dXn
t = − 1

2ηt
(AntX

n
t +Bnt ) dt,

−dBnt =

(
κtpE

[
1

2ηt
(AntX

n
t +Bnt )

∣∣∣∣F0
t

]
+ ft −

Ant B
n
t

2ηt

)
dt− ZB

n

t dW̃t,

dY nt =

(
−2λtX

n
t − κtpE

[
AntX

n
t +Bnt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ ZY

n

t dW̃t,

Xn
0 = x

BnT = 0,

Y nT = 2nXn
T .

(4.4)

Proof. The proof is similar to that of Theorem 2.8. We only need to note that by Lemma A.3,

e−
∫ t
s

Anr
2ηr

dr ≤
(
T − t+ η?

n

T − s+ η?
n

)α
.

In order to establish the convergence of the value functions of the unconstrained problems to the value

function of the constrained problem we need a uniform norm estimate for the sequence (Xn, Bn, Y n).

Lemma 4.4. Let Assumption 2.3 hold. If f ∈ L2
F([0, T ]×Ω;R), there exists a constant C > 0 such that

‖Xn‖n,α + ‖Bn‖n,γ + E

[∫ T

0

|Y nt |2 dt

]
≤ C, (4.5)

for any n where (Xn, Bn, Y n) is the unique solution to (4.2).

Proof. The proof is split into three steps.

Step 1. When p = 0 in (4.4), there exists R ∈ R independent of n such that

‖Xn‖n,α + ‖Bn‖n,γ +

(
E

[∫ T

0

|Y nt |2 dt

]) 1
2

≤ R.

This bound follows from modifications of arguments given in the proof of Lemma 2.6. In fact,

‖Bn‖n,γ ≤ ‖Bn‖γ ≤ C‖f‖L2 ≤ R1.

Moreover,

|Xn
t | ≤

x(T − t+ η?
n )α

(T + η?
n )α

+ C

∫ t

0

|Bns |
(
T − t+ η?

n

T − s+ η?
n

)α
ds.

This implies ‖Xn‖n,α ≤ R2. Finally, by analogy to the proof of Lemma 2.7, doing integration by part

for XnY n, we have

E

[∫ T

0

(Y nt )2 dt

]
≤ CE

[∫ T

0

(Xn
t )2 dt

]
+ CE

[∫ T

0

f2
t dt

]
≤ R3.
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Step 2. Suppose that for some p ∈ [0, 1], the solution to (4.4) satisfies

‖Xn‖n,α + ‖Bn‖n,γ +

(
E

[∫ T

0

|Y nt |2 dt

]) 1
2

≤ kR,

for some k ≥ 1 independent of n. Then there exists d > 0 independent of p such that the solution

(X̃n, B̃n, Ỹ n) to (4.4) with p replaced by p + d satisfies the same estimate for some K > k:

‖X̃n‖n,α + ‖B̃n‖n,γ +

(
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ KR. (4.6)

To prove this assertion, we introduce for any given Y n, f ∈ L2
F([0, T ]× Ω;R) the FBSDE system

dX̃n
t = − 1

2ηt
(Ant X̃

n
t + B̃nt ) dt,

−dB̃nt =

(
κtpE

[
1

2ηt

(
Ant X̃

n
t + B̃nt

)∣∣∣∣F0
t

]
+ κtdE

[
Y nt
2ηt

∣∣∣∣F0
t

]
+ ft −

Ant B̃
n
t

2ηt

)
dt− ZB̃

n

t dW̃t,

dỸ nt =

(
−2λtX̃

n
t − κtpE

[
Ant X̃

n
t + B̃nt
2ηt

∣∣∣∣∣F0
t

]
− κtdE

[
Y nt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ Z Ỹ

n

t dW̃t,

X̃n
0 = x

B̃nT = 0,

Ỹ nT = 2nX̃n
T .

(4.7)

By Theorem 4.3, there exists a unique solution to (4.7). This defines a mapping

Γ : Y n → Ỹ n.

on L2
F([0, T ] × Ω;R). We now show the Γ has a unique fixed point and that this fixed point belongs to

BL
2

2kR(0), the subset of L2
F([0, T ]× Ω;R) such that the L2-norm is bounded by 2kR.

By the same arguments as in the proof as Lemma 2.7 we have,

E

[∫ T

0

|Γ(Y n)(t)− Γ((Y
n
))(t)|2 dt

]
≤ CdE

[∫ T

0

|Y nt − Y
n

t |2 dt

]
≤ 1

4
E

[∫ T

0

|Y nt − Y
n

t |2 dt

]
,

where d is small enough but independent of p. Taking Y
n

= 0, we have(
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ 1

2

(
E

[∫ T

0

|Y nt |2 dt

]) 1
2

+

(
E

[∫ T

0

|Γ(0)(t)|2 dt

]) 1
2

.

Note that Γ(0) corresponds to the solution to (4.4) with p. By assumption,(
E

[∫ T

0

|Γ(0)(t)|2 dt

]) 1
2

≤ kR.

Thus, if we assume Y n ∈ BL2

2kR, (
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ 2kR.

This implies that Γ is a mapping from BL
2

2kR(0) to itself. Since BL
2

2kR(0) is a Banach space the unique

fixed point belongs to BL
2

2kR(0). This yields the desired L2 estimate fro Ỹ .
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Let (X̃n, B̃n) be the solution corresponding to Ỹ n and p + d. Then, by Hölder’s inequality,∣∣∣B̃nt ∣∣∣
(T − t)γ

≤ 1

(T − t)γ
E

[∫ T

t

κs(p + d)E

[
|Ỹ ns |
2ηs

∣∣∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]

≤ ‖κ‖
2η?

(
E

[∫ T

t

E
[
|Ỹ ns |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
])1−γ

.

Doob’s maximal inequality yields that

E

 sup
0≤t≤T

∣∣∣∣∣ B̃nt
(T − t)γ

∣∣∣∣∣
2


≤ d‖κ‖2

4η2
?

E

 sup
0≤t≤T

(
E

[∫ T

t

E
[
|Ỹ ns |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
])2(1−γ)


≤ CE

[∫ T

0

|Ỹ nt |2 dt

]
.

Hence,

‖B̃n‖n,γ ≤ C

(
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ CR

and

‖X̃n‖n,α ≤ C‖B̃n‖n,γ ≤ CR.

Step 3. Since d is independent of p, by iteration for only finitely many times, we have the solution for

(4.2) with p = 1 and f = 0 with the uniform estimate (4.5).

We see that under Assumption 4.1, we may take α = 1 in the estimate of Theorem 2.8. That is

‖X∗‖1 <∞. (4.8)

This allows us to prove the convergence of the optimal position and control.

Lemma 4.5. Under Assumption 2.3 and Assumption 4.1,

lim
n→+∞

{
E

[∫ T

0

|Xn
t −X∗t |2 dt

]
+ E

[∫ T

0

|Bnt −B∗t |2 dt

]
+ E

[∫ T

0

|Y nt − Y ∗t |2 dt

]}
= 0.

Proof. Using the same arguments as in the proof of Lemma 2.7, we get for each ε > 0

E

[∫ T−ε

0

|Y nt − Y ∗t |2 dt

]
+ E

[∫ T−ε

0

|Xn
t −X∗t |2 dt

]
≤ CE

[
|(BnT−ε −B∗T−ε)(Xn

T−ε −X∗T−ε)|
]

+ CE
[
|(AnT−ε −AT−ε)X∗T−ε(Xn

T−ε −X∗T−ε)|
]
.

(4.9)

The two terms in the above summation admit the following estimates

E[|(BnT−ε −B∗T−ε)(Xn
T−ε −X∗T−ε)|]

≤ CE[|BnT−ε|2] + CE[|B∗T−ε|2] + CE[|Xn
T−ε|2] + CE[|X∗T−ε|2]

≤ C

(
ε+

1

n

)2γ

‖Bn‖2n,γ + C

(
ε+

1

n

)2α

‖Xn‖2n,α + Cε2γ‖B∗‖2γ + Cε2‖X∗‖21,
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respectively,

E[|(AnT−ε −AT−ε)X∗T−ε(Xn
T−ε −X∗T−ε)|]

≤ CE

[
sup

0≤t≤T

∣∣∣∣ X∗tT − t

∣∣∣∣
(

sup
0≤t≤T

|Xn
t |(

T − t+ η?
n

)α
)(

ε+
1

n

)α
+ ε sup

0≤t≤T

|X∗t |
T − t

]
(by Lemma A.1 and Lemma A.3)

≤ C

[(
ε+

1

n

)α
+ ε

]
(‖Xn‖2n,α + ‖X∗‖21)

≤ C

[(
ε+

1

n

)α
+ ε

]
(by Lemma 4.4 and (4.8)).

Letting ε go to zero in (4.9), by Theorem 2.8 and Lemma 4.4 we get

E

[∫ T

0

|Y nt − Y ∗t |2 dt

]
+ E

[∫ T

0

|Xn
t −X∗t |2 dt

]
≤ C

(
1

n

)2γ

+ C

(
1

n

)2

+
C

nα
.

Hence we obtain the desired limit for (Y n − Y ∗) and (Xn −X∗). By the expression for B, we have

|Bnt −B∗t | ≤ E

[∫ T

t

e−
∫ s
t

Anr
2ηt

drκsE
[
|Y ns − Y ∗s |

2ηs

∣∣∣∣F0
s

]
ds

∣∣∣∣Ft
]

+ E

[∫ T

t

∣∣∣∣1− e− ∫ s
t

(Ar−Anr )

2ηt
dr

∣∣∣∣κsE [ |Y ∗s |2ηs

∣∣∣∣F0
s

]
ds

∣∣∣∣Ft
]
.

Let us recall that {An} is a non decreasing sequence converging to A. This leads to

E

[∫ T

0

|Bnt −B∗t |2 dt

]
→ 0.

Let us denote by V n(t, x;µn) the value function associated with the penalized problem (4.1). The

next theorem shows the convergence of V n(0, x;µn) := V n(x) to the value function V (0, x;µ) := V (x)

associated with the constrained MFG.

Theorem 4.6. Under Assumption 2.3 and Assumption 4.1, the value function V n(x) converges to V (x).

Proof. Any admissible control ξ of the original problem is admissible for this penalized setting. Hence

we have immediately that V n ≤ V . By Lemma 4.5, we have

V (x) = E

[∫ T

0

κsE
[
Y ∗s
2ηs

∣∣∣∣F0
s

]
X∗s + ηs(ξ

∗
s )2 + λs(X

∗
s )2 ds

]

≥ E

[∫ T

0

(
κsE

[
Y ns
2ηs

∣∣∣∣F0
s

]
Xn
s + ηs(ξ

n
s )2 + λs(X

n
s )2

)
ds+ n(Xn

T )2

]
= V n(x)

≥ E

[∫ T

0

(
κsE

[
Y ns
2ηs

∣∣∣∣F0
s

]
Xn
s + ηs(ξ

n
s )2 + λs(X

n
s )2

)
ds

]

→ E

[∫ T

0

(
κsE

[
Y ∗s
2ηs

∣∣∣∣F0
s

]
X∗s + ηs(ξ

∗
s )2 + λs(X

∗
s )2

)
ds

]
.

(4.10)
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Remark 4.7. As a by-product of the proof, we get that lim
n→+∞

E
[
n(Xn

T )2
]

= 0. Moreover,

|Xn
T | ≤

C

n

(
x+ sup

0≤t≤T

|Bnt |(
T − t+ η?

n

)γ
)
→ 0 a.s..

The proof of convergence of the value function simplifies substantially under the common information

assumption (Section 2.2). In this case, Y n = AnXn where

−dAnt =

(
2λt +

κtA
n
t

2ηt
− (Ant )2

2ηt

)
dt− ZA

n

t dW 0
t , AnT = 2n

and

dXn
t = −A

n
tX

n
t

2ηt
dt, X0 = x.

The optimal strategy and the resulting portfolio process are given by, respectively,

ξn,∗t = µn,∗t =
AntX

n
t

2ηt
, Xn,∗

t = xe−
∫ t
0

Anr
2ηr

dr t ∈ [0, T ].

Since the sequence An is non decreasing and converges to A, we deduce that Xn,∗ converges to X∗ a.s.

and that ξn,∗ converges to ξ∗ a.e. a.s.. For any admissible strategy ξ ∈ AF0(t, x) with associated portfolio

process X,

E

[∫ T

t

(
κsξsXs + ηsξ

2
s + λsX

2
s

)
ds

∣∣∣∣∣F0
t

]

≥ E

[∫ T

t

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds+ n(Xn,∗

T )2

∣∣∣∣∣F0
t

]

≥ E

[∫ T

t

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds

∣∣∣∣∣F0
t

]
.

For any ε > 0,

lim
n→+∞

E

[∫ T−ε

t

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds

∣∣∣∣∣F0
t

]

= E

[∫ T−ε

t

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

∣∣∣∣∣F0
t

]
.

Hence, the monotone convergence theorem gives the desired convergence.

A Appendix

In this appendix we recall an existence of solutions result for a stochastic Riccati equation with singular

terminal condition and prove Lemma 4.2. We assume throughout that λ, η and 1/η are bounded.

A.1 Stochastic Riccati equations with singular terminal value

Lemma A.1. [2, Theorem 2.2][14, Theorem 6.1, Theorem 6.3] In L2
F(Ω;C[0, T−]) × L2

F([0, T−];Rm)

there exists a unique solution to −dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dWt,

AT = ∞.
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Moreover, there holds the following estimate

1

E
[∫ T

t
1

2ηs
ds
∣∣∣Ft] ≤ At ≤

1

(T − t)2
E

[∫ T

t

2ηs + 2(T − s)2λs ds

∣∣∣∣∣Ft
]
. (A.1)

Corollary A.2. The BSDE−dAt =

(
2λt +

κtAt
2ηt

− A2
t

2ηt

)
dt− ZAt dW 0

t ,

AT = ∞.
(A.2)

has a unique solution.

Proof. Let Ãt = Ate
∫ t
0
κs
2ηs

ds. Then,
−dÃt =

[
2λte

∫ t
0
κs
2ηs

ds − Ã2
t

2ηte
∫ t
0
κs
2ηs

ds

]
dt− Z̃t dW 0

t ,

ÃT =∞.

(A.3)

Hence, the assertion follows from the preceding lemma.

Lemma A.3. For each n, there exists a unique solution An to the BSDE−dA
n
t =

(
2λt −

(Ant )2

2ηt

)
dt− ZA

n

t dWt,

AnT = 2n.

(A.4)

The solution admits the following estimate:

Ant ≥
1

1
2n + E

[∫ T
t

1
2ηs

ds
∣∣∣Ft] .

Moreover, the sequence An is non decreasing and converges to A. There exists a constant C such that

for any n:

‖An‖M−1 + ‖An‖Mn
−1
≤ C.

Proof. The first and second assertions are results of [2, Proposition 3.1,Theorem 3.2], respectively. For

any t, n and a, we have

2λt −
a2

2ηt
≤ 2λt −

2(
T − t+ η?

n

)a+
2ηt(

T − t+ η?
n

)2 = g(t, a).

Let us denote by Ψn the solution of the BSDE with generator g and terminal condition 2n. By the

comparison principle for BSDEs, we have Ant ≤ Ψn
t and by the solution formula for linear BSDEs,

Ψn
t =

(
T + η?

n

T − t+ η?
n

)2

E

[( η?
n

T + η?
n

)2

2n+

∫ T

t

(
T − s+ η?

n

T + η?
n

)2
(

2ηs(
T − s+ η?

n

)2 + 2λs

)∣∣∣∣∣Ft
]

=
2η2
?

n

1(
T − t+ η?

n

)2 +
1(

T − t+ η?
n

)2E
[∫ T

t

(
2ηs + 2

(
T − s+

η?
n

)2

λs

)∣∣∣∣∣Ft
]
.
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Hence (
T − t+

η?
n

)
Ψn
t

≤ 2η2
?

η? + n(T − t)
+

1(
T − t+ η?

n

)E[∫ T

t

(
2ηs + 2

(
T − s+

η?
n

)2

λs

)∣∣∣∣∣Ft
]

≤ 2η? +
1

T − t
E

[∫ T

t

(
2ηs + 2

(
T − s+

η?
n

)2

λs

)∣∣∣∣∣Ft
]

= C.

Thus
(
T − t+ η?

n

)
Ant ≤ C, that is ‖An‖Mn

−1
≤ C.

A.2 On Assumption 4.1

Assumption 4.1 states that there exists a constant C such that a.s. for any 0 ≤ r ≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤ C

(
T − s
T − r

)
.

The left-hand side is equal to the optimal state process χ of the optimal control problem studied in [2, 14]

with initial value equal to 1 at time r. In particular from the proof of [2, Theorem 4.2], the process M

defined on [r, T ) by

Ms =
1

Ar

[
Asχs + 2

∫ s

r

λuχudu

]
is a non-negative local martingale with Mr = 1. Hence for any s ∈ [r, T )

exp

(
−
∫ s

r

Au
2ηu

du

)
= χs ≤

Ar
As

Ms ≤
‖η‖+ T‖λ‖

η?

(
T − s
T − r

)
Ms = C

(
T − s
T − r

)
Ms.

Since M is also a non-negative supermartingale Mt converges almost surely as t goes to T and the limit

MT satisfies E(MT ) ≤ 1. Therefore Assumption 4.1 does not strike us as overly restrictive.

Proof of Lemma 4.2. From (A.1)

− Au
2ηu
≤ − 1

E
[∫ T

u
ηu
ηs
ds
∣∣∣Fu] = − 1∫ T

u
E
[
ηu
ηs

∣∣∣Fu] ds .
By the very definition of uncorrelated multiplicative increments for 1/η and from [2, Lemma 5.1]

− Au
2ηu
≤ − 1∫ T

u
E
[
ηu
ηs

]
ds

= − 1∫ T
u

E[1/ηs]
E[1/ηu] ds

= − E [1/ηu]∫ T
u
E [1/ηs] ds

=
1

Nu
dNu

with Nu :=
∫ T
u
E [1/ηs] ds. Hence

exp

(
−
∫ s

r

Au
2ηu

du

)
= exp

(∫ s

r

1

Nu
dNu

)
=
Ns
Nr

=

∫ T
s
E [1/ηv] dv∫ T

r
E [1/ηv] dv

≤ ‖η‖
η?

(
T − s
T − r

)
.

If 1/η is a positive martingale, then again from [2, Lemma 5.1], we get that 1/η has uncorrelated

multiplicative increments. If η is deterministic, we have directly that

− Au
2ηu
≤ − 1

ηu
∫ T
u

1
ηs
ds

=
1

Nu

dNu
du

with again Nu =
∫ T
u

1/ηs ds.
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[17] M. Huang, R. Malhamé, and Caines. P. Large population stochastic dynamic games: closed-loop

mckean-vlasov systems and the nash certainty equivalence principle. Communications in Informa-

tion and Sytems, 6(3):221–252, 2006.

[18] X. Huang, S. Jaimungal, and M. Nourian. Mean-field game strategies for optimal execution.

ssrn.2578733, 2015.

31



[19] B. Jovanovic and R. Rosenthal. Anonymous sequential games. Journal of Mathematical Economics,

17(1):77–87, 1988.

[20] T. Kruse and A. Popier. Minimal supersolutions for BSDEs with singular terminal condition and

application to optimal position targeting. Stochastic Processes and their Applications, 126(9):2554–

2592, 2016.

[21] D. Lacker. Mean field games via controlled martingale problems: Existence of markovian equilibria.

Stochastic Processes and their Applications, 125(7):2856–2894, 2015.

[22] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260,

2007.

[23] S. Peng and Z. Wu. Fully coupled forward-backward stochastic differential equations and applica-

tions to optimal control. SIAM Journal on Control and Optimization, 37(3):825–843, 1999.

[24] A. Popier. Backward stochastic differential equations with singular terminal condition. Stochastic

Processes and their Applications, 116(12):2014–2056, 2006.

[25] A. Popier. Backward stochastic differential equations with stopping time and singular terminal

condition. Annals of Probability, 35(3):1071–1117, 2007.

[26] K. Rath. Existence and upper hemicontinuity of equilibrium distribution of anonymous games with

discontinuous payoffs. Journal of Mathematical Economics, 26(3):305–324, 1996.

32


