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The Sustainable Black-Scholes Equations

Yannick Armenti1 Stéphane Crépey1 Chao Zhou2

Abstract

In incomplete markets, a basic Black-Scholes perspective has to be complemented
by the valuation of market imperfections. Otherwise this results in Black-Scholes Ponzi
schemes, such as the ones at the core of the last global financial crisis, where always
more derivatives need to be issued for remunerating the capital attracted by the already
opened positions. In this paper we consider the sustainable Black-Scholes equations that
arise for a portfolio of options if one adds to their trade additive Black-Scholes price, on
top of a nonlinear funding cost, the cost of remunerating at a hurdle rate the residual
risk left by imperfect hedging. We assess the impact of model uncertainty in this setup.

Keywords: Market incompleteness, cost of capital (KVA), cost of funding (FVA), model
risk, volatility uncertainty, optimal martingale transport.

1 Introduction

In incomplete markets, a basic Black-Scholes perspective has to be complemented by the
valuation of market imperfections. Otherwise this results in Black-Scholes Ponzi schemes,
such as the ones at the core of the last global financial crisis, where always more derivatives
need to be issued for remunerating the capital attracted by the already opened positions. In
this paper we consider the sustainable Black-Scholes equations that arise for a portfolio of
options if one adds to their trade additive Black-Scholes price, on top of a nonlinear funding
cost, the cost of remunerating at a hurdle rate the residual risk left by imperfect hedging.
We assess the impact of model uncertainty in this setup.

Section 2 revisits the pricing of a book of options accounting for cost of capital and
cost of funding, which are material in incomplete markets. Section 3 specializes the pricing
equations to a Markovian Black–Scholes setup. Section 4 assesses the impact of model risk
in an UVM (uncertain volatility model) setup. Section 5 refines the model risk add-ons by
accounting for calibrability constraints.

We consider a portfolio of options made of ωi vanilla call options of maturity Ti and
strike Ki on a stock S, with 0 < T1 < . . . < Tn = T. Note that, if a corporate holds a bank
payable, it typically has an appetite to close it, receive cash, and restructure the hedge
otherwise with a par contract (the bank would agree to close the deal as a market maker,
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its participation to the ICASQF 2016 conference were funded by l’Institut Français de Colombie, Carrera
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charging fees for the new trade). Because of this natural selection, a bank is mostly in the
receivables (i.e. “ωi ≥ 0”) in its derivative business with corporates.

We write x± = max(±x, 0).

2 Cost of Capital and Cost of Funding

2.1 Cost of Capital

In presence of hedging imperfections resulting in a nonvanishing loss (and profit) process %
of the bank, a conditional risk measure EC = ECt(%) must be dynamically computed and
reserved by the bank as economic capital.

It is established in Albanese, Caenazzo, and Crépey (2016, Section 5) that the capital
valuation adjustment (KVA) needed by the bank in order to remunerate its shareholders
for their capital at risk at some average hurdle rate h (e.g. 10%) at any point in time in
the future is:

KVA = KVAt(%) = hEt
∫ T

t
e−(r+h)(s−t)ECs(%)ds, (1)

where Et stands for the conditional expectation with respect to some probability measure
Q and model filtration.

In principle, the probability measure used in capital and cost of capital calculations
should be the historical probability measure. But, in the present context of optimization
of a portfolio of derivatives, the historical probability measure is hard to estimate in a
relevant way, especially for long maturities. As a consequence, we do all our price and
risk computations under a risk-neutral measure Q calibrated to the market (or a family of
pricing measures, in the context of model uncertainty later below), assuming no arbitrage.

2.2 Cost of Funding

Let rt denote a risk-free OIS short term interest rate and βt = e−
∫ t
0 rsds be the corresponding

risk-neutral discount factor. We assume that the bank can invest at the risk-free rate r but
can only obtain unsecured funding at a shifted rate r + λ > r. This entails funding costs
over OIS and a related funding valuation adjustment (FVA) for the bank. Given our focus
on capital and funding in this paper, we ignore counterparty risk for simplicity, so that λ is
interpreted as a pure funding liquidity basis. In order to exclude arbitrages in the primary
market of hedging instruments, we assume that the vector gain processM of unit positions
held in the hedging assets is a risk-neutral martingale. The bank “marks to the model”
its derivative portfolio, assumed bought from the client at time 0, by means of an FVA-
deducted value process Θ. The bank may also set up a (possibly imperfect) hedge (−η)
in the hedging assets, for some predictable row-vector process η of the same dimension as
M. We assume that the depreciation of Θ, the funding expenditures and the loss ηdM
on the hedge, minus the option payoffs as they mature, are instantaneously realized into
the loss(-and-profit) process % of the bank. In particular, at any time t, the amount on
the funding account of the bank is Θt. Moreover, we assume that the economic capital can
be used by the trader for her funding purposes provided she pays to the shareholders the
OIS rate on EC that they would make otherwise by depositing it (assuming it all cash for
simplicity).
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Note that the value process Θ of the trade already includes the FVA as a deduction,
but ignores the KVA, which is considered as a risk adjustment computed in a second step (in
other words, we assume that the trader’s account and the KVA account are kept separate
from each other). Rephrasing in mathematical terms the above description, the loss equation
of the trader is written, for t ∈ (0, T ], as (starting from %0 = y, the accrued loss of the
portfolio):

d%t = −
∑
i

ωi(STi −Ki)
+δTi(dt)︸ ︷︷ ︸

call payoffs

+ rtECt(%)dt︸ ︷︷ ︸
Payment of internal lending of the EC funding source at OIS rate

+
(

(rt + λt)
(
Θt − ECt(%)

)+ − rt(Θt − ECt(%)
)−)

dt︸ ︷︷ ︸
portfolio funding costs/benefits

+ (−dΘt)︸ ︷︷ ︸
depreciation of Θ

+ ηtdMt︸ ︷︷ ︸
loss on the hedge

= −dΘt −
∑
i

ωi(STi −Ki)
+δTi(dt) +

(
λt
(
Θt − ECt(%)

)+
+ rtΘt

)
dt+ ηtdMt.

(2)

Hence, a no-arbitrage condition that the loss process % of the bank should follow a
risk-neutral martingale (assuming integrability) and the terminal condition ΘT = 0 lead to
the following FVA-deducted risk-neutral valuation BSDE:

Θt = Et
[∑
t<Ti

β−1
t βTiωi(STi −Ki)

+
]

︸ ︷︷ ︸
Θ0

t

−Et
[ ∫ T

t
β−1
t βsλs

(
Θs − ECs(%)

)+
ds
]

︸ ︷︷ ︸
FVAt

, t ∈ [0, T ]
(3)

(since we consider a portfolio of options with several maturities, we treat option pay-offs
as cash-flows at their maturity times rather than a terminal condition in the equations, in
particular ΘT = 0).

The funding source provided by economic capital creates a feedback loop from EC into
FVA, which makes the FVA smaller.

Note that, in the usual case of a risk measure EC only affected by the time fluctuations
of %, the equations (3) and in turn (1) are independent of the accrued loss y, which eventually
does not affect Θ nor the KVA.

If λ = 0, then, whatever the hedge η, Θ reduces to Θ0, which corresponds to the usual
trade additive (linear) no-arbitrage pricing formula for a portfolio of options, with zero
FVA, but with a KVA given by (1), depending on the hedge η.

If λ 6= 0, we introduce the following backward SDE:

Θ?
t = Et

[∑
t<Ti

β−1
t βTiωi(STi −Ki)

+ −
∫ T

t
β−1
t βsλs(Θ

?
s)

+ds
]
, t ∈ [0, T ] . (4)

This is a monotone driver backward SDE, admitting as such a unique square integrable
solution Θ? (see e.g. Kruse and Popier (2016, Sect. 4)), provided λ is bounded from below
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and Θ0 is square integrable. If there exists a replicating hedge η, i.e. η = η? such that the
corresponding % is constant in (2), i.e. η?t dMt coincides with the martingale part of Θ?,
then the resulting %, EC and KVA vanish (since we assumed EC(0) = 0) and the ensuing
FVA-deducted value process is given by Θ?.

Example 2.1 (Single option positions) If n = 1 and ω1 = 1 (one long call position),
then, by application of the comparison theorem for BSDEs with a monotonic generator (see
Kruse and Popier (2016, Sect. 4)), we have Θ? ≥ 0, hence

Θ?
t = Et

[
β̃−1
t β̃T1(ST1 −K1)+

]
, (5)

where β̃t = e−
∫ t
0 (r+λs)ds. With respect to Θ(0), the value Θ? corresponds to an FVA rebate

on the buying price by the bank (since we assumed a positive liquidity basis λ).
If n = ω1 = −1 (one short call position), then we deduce likewise that Θ? ≤ 0, hence

Θ? = Θ(0).

But, apart from the above special cases where λ = 0 or η = η?, the BSDE (3) for Θ is
nonstandard due to the term EC = ECt(%) in the FVA.

3 Markovian Black-Scholes Setup

In this section we assume a constant risk-free rate r and a Black-Scholes stock S with
volatility σ and constant dividend yield q. The risk-neutral martingale M is then taken
as the gain process of a continuously rolled unit position on the stock S, assumed funded
at the risk-free rate via a repo market, i.e. dMt = dSt − (r − q)Stdt. We denote by
AbsS = (r − q)S∂S + 1

2σ
2S2∂2

S2 the corresponding risk-neutral Black-Scholes generator.
Doing our modeling exercise in the context of the Black-Scholes model, where perfect

replication, hence no KVA, is possible, may seem rather artificial. However, doing all the
computations in a stylized Black-Scholes setup with a single risk factor S yields useful prac-
tical insights. In addition, this conveys the message that, in real-life incomplete markets,
a basic Black-Scholes perspective has to be complemented by the valuation of market im-
perfections, otherwise this unavoidably results in Black-Scholes Ponzi schemes, such as the
ones that have been involved in the global financial crisis, where always more derivatives
are issued to remunerate the capital required by the already opened positions (if priced and
risk-managed in a basic Black-Scholes way ignoring the cost of capital).

In the Black-Scholes setup and assuming a stylized Markovian specification

ECt(%) = f

√
d〈%〉
dt

(6)

(the stylized VaR which is proportional to the instantaneous volatility of the loss process %
modulo a suitable “quantile level” f) as well as λ = λ(t, St), ηt = η(t, St), then the above
FVA and KVA equations can be reduced to the “sustainable Black-Scholes PDEs” (12), as
follows (resulting in an FVA- and KVA-deducted price that would be sustainable for the
bank even in the limit case of a portfolio held on a run-off basis, with no new trades ever
entered in the future).

First, observe that given a tentative FVA-deducted price process of the form Θt =
u(t, St) for some to-be-determined function u = u(t, S), we have, assuming (6):√

d〈%〉
dt

= σSt
∣∣∂Su(t, St)− η(t, St)

∣∣. (7)
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Accordingly, let the function u be defined by ui(t, S) on each strip (Ti−1, Ti]× (0,∞),
where (ui)1≤i≤n is the unique sequence of viscosity solutions, which can then shown to be
classical solutions, to the following PDE cascade, for i decreasing from n to 1 (closing the
system by setting un+1 = 0 and T0 = 0):{

ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)
+ on (0,∞)

∂tui +AbsS ui − λ
(
ui − fσS|∂Sui − η|

)+ − rui = 0 on [Ti−1, Ti)× (0,∞).
(8)

Itô calculus shows that the process Θ = (u(t, St))t solves the Markovian, monotonic
driver (assuming λ bounded from below) BSDE

u(t, St) = Et
[∑
t<Ti

β−1
t βTiωi(STi −Ki)

+

−
∫ T

t
β−1
t βsλs

(
u(s, Ss)− fσSs

∣∣∂Su(s, Ss)− η(s, Ss)
∣∣)+

ds
]
, t ∈ [0, T ] ,

(9)

which in view of (6)-(7) is precisely (3).
The ensuing FVA= Θ(0) −Θ and KVA processes are given as (cf. (3) and (1)):

FVAt(%) = Et
[ ∫ T

t
e−r(s−t)λs

(
u(s, Ss)− f

√
d〈%〉
ds

)+
ds
]

KVAt(%) = hEt
[ ∫ T

t
e−(r+h)(s−t)f

√
d〈%〉
ds

ds
]
,

(10)

where

√
d〈%〉
dt is given by (7). We set η = (1− α)∂Su, where α in [0, 100%] is the mis-hedge

parameter (noting that, for α = 0, the BSDE (9) reduces to the replication BSDE (4)),
then the latter reduces to ασSt

∣∣∂Su(t, St)
∣∣ and we have

FVAt(%) = Et
[ ∫ T

t
e−r(s−t)λs

(
u(s, Ss)− αfσSs

∣∣∂Su(s, Ss)
∣∣)+ds]

= v(t, St) = ubs(t, St)− u(t, St),

KVAt(%) = hEt
[ ∫ T

t
e−(r+h)(s−t)αfσSs

∣∣∂Su(s, Ss)
∣∣ds] = w(t, St),

(11)

where ubs is the trade additive Black-Scholes portfolio value and where the FVA and KVA
pricing functions v and w satisfy

v(T, S) = w(T, S) = 0 on (0,∞)

∂tv +AbsS v + λ
(
ubs − v − αfσS|∆bs − ∂Sv|

)+ − rv = 0 on [0, T )× (0,∞)
∂tw +AbsS w + αhfσS|∆bs − ∂Sv| − (r + h)w = 0 on [0, T )× (0,∞),

(12)

in which ∆bs = ∂Subs.
These “sustainable Black-Scholes PDEs” (12) allow computing an FVA and KVA de-

ducted price

u− w = ubs − v − w

that would be sustainable for the bank even in the limit case of a portfolio held on a run-off
basis, with no new trades ever entered in the future.
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4 With Volatility Uncertainty

An important and topical issue, referred to by the regulation as AVA (additional valuation
adjustment), is the magnifying impact of model risk on the different XVA metrics.

In this section, we assess model risk from the angle of Avellaneda, Levy, and Paras
(1995)’s uncertain volatility model (UVM). Namely, we only assume positive bounds σ and
σ but we do not assume any specific dynamic on the stock volatility process σ. Therefore,
there is a model uncertainty about it. That is, we only consider dMt := σtStdWt =
dSt − (r − q)Stdt, where σt ∈ [σ, σ] for every t.

We call C the space of continuous paths on R+, C the canonical process on the space C,
F = (Ft)0≤t≤T the canonical filtration generated by C and Q the set of F local martingale
probability measures for C. We recall from Soner, Touzi, and Zhang (2012) that, for any

probability measure Q ∈ Q, the process C satisfies dCt = a
1/2
t dWQ

t , for some Q Brownian
motion WQ, where at is the Lebesgue density of the aggregated quadratic variation of C.

In the following we restrict attention to the probability measures Q such that a
1/2
t ∈ [σ, σ]

holds dt × Q almost surely, still denoting by Q the (restricted) set of measures, and we
model dMt = dSt − (r − q)Stdt as StdCt.

Under each Q, similarly to (2), the loss equation of the trader is written, for t ∈ (0, T ],
as:

d%Qt = −dΘQ
t −

∑
i

ωi(STi −Ki)
+δTi(dt) +

(
λt
(
ΘQ
t − ECQ

t (%Q)
)+

+ rtΘ
Q
t

)
dt+ ηtdMt (13)

where ECQ is some conditional risk measure under Q. The ensuing equation for the Q
FVA-deducted value ΘQ appears as

ΘQ
t = EQ

t

[∑
t<Ti

β−1
t βTiωi(STi −Ki)

+ −
∫ T

t
β−1
t βsλs

(
ΘQ
s − ECQ

s (%Q)
)+
ds
]
, t ∈ [0, T ] . (14)

Under each Q, the trader should value the derivative portfolio ΘQ
0 at time 0 (or ΘQ

t

at time t). However, due to the model uncertainty, the trader values it Θ0 = inf
Q∈Q

ΘQ
0 (or

at time t, Θt = ess inf
Q∈Q

ΘQ
t ), which is a robust non-arbitrage price in the sense of (Biagini,

Bouchard, Kardaras, and Nutz 2015).
At time t, ECQ

t (%Q) may depend on the whole future of the process (%Qs ), s ≥ t. This
makes (14) a so-called anticipated BSDE under Q (ABSDE in the sense of Peng and Yang

(2009)), with generator λt
(
ΘQ
t −ECQ

t (%Q)
)+

, where ΘQ corresponds to the “Y -component”
and (d%Qs −ηsSsdCs) to the “Z-component” of the solution. However, in the Markovian
setting of Sect. 3, ECQ

t (%Q) only depends on (%Qt ) at time t, so that the ABSDE (14)
reduces to a BSDE.

For taking model risk (i.e. the impact of several Q) into consideration, we need the
notion of second order BSDE. Wellposedness results regarding second order anticipated
BSDEs are not yet available in the literature. Hence, we only give heuristic formulations
in this regard. Namely, by analogy with the second order BSDEs theory introduced by
Soner, Touzi, and Zhang (2012), we should have the following representation, where F+ =
(F+

t )0≤t≤T the right limit of F, i.e. F+
t = ∩s>tFs for all t ∈ [0, T ) and F+

T = FT :

There exists a process % such that, for each Q ∈ Q, % is a Q-local martingale
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and it Q− a.s. holds that

d%t = −dΘt −
∑
i

ωi(STi −Ki)
+δTi(dt)

+
(
λt
(
Θt − ECQ

t (%)
)+

+ rtΘt

)
dt+ ηtdMt + dAQ

t ,

(15)

where ECQ is some conditional risk measure and the family {AQ} of non-
decreasing processes satisfies the minimality condition

AQ
t = ess infQ

Q′∈Q(t,Q,F+)
EQ′

[
AQ′

T

∣∣∣∣FQ+
t

]
, 0 ≤ t ≤ T, Q− a.s., ∀Q ∈ Q, (16)

where Q(t,Q,F+) :=
{
Q′ ∈ Q, Q′

= Q on F+
t

}
.

The corresponding equation for the FVA-deducted value Θ would appear as

Θt = ess inf
Q′∈Q(t,Q,F+)

EQ′

t

[∑
t<Ti

β−1
t βTiωi(STi −Ki)

+

−
∫ T

t
β−1
t βsλs

(
Θs − ECQ′

s (%)
)+
ds
]
, t ∈ [0, T ] , Q− a.s..

(17)

4.1 Equations in the Markovian Setting

By contrast, in the Markovian setting of Sect. 3 with VaR-like specification of Economic
Capital, we can make rigorous statements. According to the second order BSDE theory
introduced in Soner, Touzi, and Zhang (2012), the PDE (8) becomes: ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)

+ on (0,∞)

∂tui + inf
σ∈[σ,σ]

[
AbsS ui − λ

(
ui − fσS|∂Sui − η|

)+]− rui = 0 on [Ti−1, Ti)× (0,∞).

(18)
Let u be defined by ui(t, S) on each strip (Ti−1, Ti] × (0,∞). The FVA can be defined as
Θλ=0 −Θ and the ensuing KVA process is given as (cf. (3) and (1)):

KVAt(%) = h esssup
Q′∈Q(t,Q,F+)

EQ′

t

[ ∫ T

t
e−(r+h)(s−t)f

√
d〈%〉
ds

ds
]
, Q a.s., (19)

where

√
d〈%〉
dt = a

1/2
t St

∣∣∂Su(t, St)− η(t, St)
∣∣. In the case where η = (1− α)∂Su, we obtain

KVAt(%) = w(t, St),

where {
w(T, S) = 0 on (0,∞)
∂tw + sup

σ∈[σ,σ]

[
AbsS w + αhfσS|∂Su|

]
− (r + h)w = 0 on [0, T )× (0,∞), (20)

in which (cf. (18)) ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)
+ on (0,∞)

∂tui + inf
σ∈[σ,σ]

[
AbsS ui − λ

(
ui − αfσS|∂Sui|

)+]− rui = 0 on [Ti−1, Ti)× (0,∞).



8

5 Optimal Transportation Approach

Since vanilla call options are liquidly traded, their time 0 price components

EQ[βTi(STi −Ki)
+
]

should not be seen as subject to model risk, but calibrated to the market. Hence, we
need to refine our preliminary UVM assessment of model risk in order to account for these
calibration constraints. For simplicity we consider a single call option (T,K) and we set
λ = 0, focusing on KVA in this section. Hence, the system (18) reduces to a single PDE
with λ = 0, with solution denoted by u.

(Tan and Touzi (2013)) consider the optimal transportation problem consisting of min-
imizing a cost among all continuous semimartingales with given initial and terminal distri-
butions. They show an extension of the Kantorovitch duality to this context and suggest
a finite-difference scheme combined with the gradient projection algorithm to approximate
the dual value. Their results can be applied to our setup as follows.

Let µ0 = δS0 denote the Dirac measure on the initial value of S0 and let µT denote the
marginal distribution of ST , inferred by calibration to the market prices of all European
call options with maturity T (assuming quotations available for all strikes). Let

Q(µ0) = {Q ∈ Q : Q ◦ S−1
0 = µ0}, Q(µ0, µT ) = {Q ∈ Q(µ0) : Q ◦ S−1

T = µT }.

From the remark 2.3 in Tan and Touzi (2013), Q(µ0, µT ) is not empty in our setting.
The KVA with model uncertainty and terminal marginal constraint is defined as fol-

lows:

KVA0(%) = h sup
Q∈Q(µ0,µT )

EQ
[ ∫ T

0
e−(r+h)(s)f

√
d〈%〉
ds

ds
]
, (21)

where % represents the portfolio loss in this setting, that is, the loss and profit of the bank
in a world with uncertain volatility subject to the law of ST . However, it is not clear how to
extrapolate the theory of Tan and Touzi (2013) to valuation at future time points when only
the unconditional law of ST is known. Hence for the sake of tractability we conservatively
assume that % in (21) is the UVM one and we only apply the constraint to the outer
expectation in (21) (as opposed to the conditional expectations that are hidden in %).

With this understanding of (21), given any measure ν, we define

ν(φ) =

∫
Rd

φ(x)ν(dx)

on the set Cb(Rd) of all bounded continuous functions φ on Rd. We can readily check that
Assumptions 3.1-3.3 in Tan and Touzi (2013) are satisfied. Hence, by an application of their
main duality result, we can rewrite the KVA as

KVA0(%) = inf
φ∈Cb(Rd)

{
µ0(Φ0)− e−(r+h)TµT (φ)

}
, (22)

where the “pseudo-payoff function” φ corresponds to a Lagrangian for the constrained
optimization problem (21) and where

Φ0(x) = sup
Q∈Q(δx)

EQ
[
e−(r+h)Tφ(ST ) +

∫ T

0
e−(r+h)shf

√
d〈%〉
ds

ds
]
. (23)

Hence, the KVA in an optimal transportation (OT) setting can be represented as an infimum
of KVAs in modified UVM setting.
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5.1 Equations in the Markovian Setting

In the Markovian setting of Sect. 3, we consider the probability measures Q on the canonical
space (Ω,FT ), under which the canonical process C is a local martingale on [t, T ]. Define

Qt as the collection of all such martingale probability measures Q such that a
1/2
s ∈ [σ, σ]

dQ × ds-a.e. on Ω × [t, T ]. Denote Qt,x := {Q ∈ Qt : Q[Ss = x, 0 ≤ s ≤ t] = 1}. For any
φ ∈ Cb(Rd), let

Φ(t, x) = sup
Q∈Qt,x

EQ
[
e−(r+h)(T−t)φ(ST ) +

∫ T

t
e−(r+h)(s−t)hf

√
d〈%〉
ds

ds
]
, (24)

where

√
d〈%〉
dt = a

1/2
t St

∣∣∂Su(t, St)− η(t, St)
∣∣, in which u is the solution to (18) with λ = 0.

Then, in the case where η = (1 − α)∂Su, Φ is a viscosity solution to the dynamic
programming equation Φ(T, S) = φ(S) on (0,∞)

∂tΦ + sup
σ∈[σ,σ]

[
AbsS Φ + αhfσS|∂Su|

]
− (r + h)Φ = 0 on [0, T )× (0,∞). (25)

In view of (22), in the present OT setup, KVA0 is obtained as the minimum of

Φ(0, S0)− e−(r+h)T

∫
R
φ(x)µT (dx) (26)

over φ ∈ Cb(Rd). This minimization is achieved numerically by the Nelder-Mead simplex
algorithm.

As a sanity check, observe that, if µT is Black-Scholes σ and σ = σ = σ, then (26) is
exatly the time 0 KVA of Sect. 3, independent of φ.

6 Numerical Results

Figure 1 shows the results obtained by solving the related PDEs (and minimizing (26) in
the OT setup) without model uncertainty as of Sect. 3 (left panel), with UVM uncertainty
as of Sect. 4.1 (middle panel) and with OT uncertainty as of Sect. 5.1 (right panel), for
a level of the mis-hedge parameter α increasing from 0 to 100%. We used the following
parameters:

S0 = 100, r = 2%, q = 0, σ = 30%,

λ = 200 bps, f = 1.2, h = 10%

and considered a single call option of maturity T = 5 years and strike K = 107.
The main observation from the left panel is that, unless the hedge is very good (of the

order of 25% of mis-hedge or less), the KVA dominates the FVA, and becomes about ten
times greater than the FVA in the absence of hedge (α = 1). This is logical given that EC
has only an indirect reduction effect on the FVA, whereas it directly sizes the KVA.

Going to the middle panel, the FVA changes little, but both u and the KVA (unless
the hedge is almost perfect) are tremendously impacted by the uncertainty on the volatility.
Regarding the KVA this is in line with the fact that it is the cost of a risk measure, which
nonlinearly amplifies the impact of perturbations to its input data.



10

In reality the time 0 price of a vanilla option such as the one considered in our numerics
is given by the market, so there is no model risk on it, but only on the KVA. This is what
is reflected by the OT right panel. The model risk on the KVA component however is
essentially the same as in the UVM case, because it is conservatively assessed by using
the UVM u in (25), fault of a developed theory of valuation at future time points under
uncertain volatility subject to the unconditional law of ST .

Figure 1: XVAs and FTP as a function of the mis-hedge parameter α. Left: Without
model uncertainty. Middle: With UVM uncertainty (σ = 15%, σ = 60%). Right: With OT
uncertainty (σ = 15%, σ = 60%, σ = 30%).

XVA desks, KVA in particular, are the first consulted desks in all major trades today.
Our results in a toy model where all the quantities of interest can be computed exactly
(modulo the numerical error on the PDE solutions) emphasize that, accounting for model
risk, the relative importance of the KVA should become even larger. Moreover one can
easily imagine how to transpose these results to the setup of Albanese et al. (2016) where
each option payoff (STi −Ki)

+ is replaced by the CVA exposure of the bank to the default
at time of its counterparty i, at the (random) time Ti, with corresponding position of the
bank ωiSTi and margins received by the bank ωiKi. However in this case a relevant risk
measure really needs to be computed at a one-year horizon (as opposed to instantaneous in
(6)), in order to leave time to credit events to develop. This points out to developments of
a slightly different nature, which would be interesting to develop.
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