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3D POSITIVE LATTICE WALKS AND SPHERICAL TRIANGLES

B. BOGOSEL, V. PERROLLAZ, K. RASCHEL, AND A. TROTIGNON

Abstract. In this paper we explore the asymptotic enumeration of three-dimensional
excursions confined to the positive octant. As shown in [29], both the exponential
growth and the critical exponent admit universal formulas, respectively in terms of the
inventory of the step set and of the principal Dirichlet eigenvalue of a certain spherical
triangle, itself being characterized by the steps of the model. We focus on the critical
exponent, and our main objective is to relate combinatorial properties of the step set
(structure of the so-called group of the walk, existence of a Hadamard factorization,
existence of differential equations satisfied by the generating functions) to geometric
or analytic properties of the associated spherical triangle (remarkable angles, tiling
properties, existence of an exceptional closed-form formula for the principal eigenvalue).
As in general the eigenvalues of the Dirichlet problem on a spherical triangle are not
known in closed form, we also develop a finite-elements method to compute approximate
values, typically with ten digits of precision.
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Figure 1. Critical exponents in the asymptotics of 3D walks (and
Brownian motion) in the orthant Nd can be computed in terms of the
smallest eigenvalue for the Dirichlet problem on spherical triangles
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1. Introduction

Context. The enumeration of lattice walks is an important topic in combinatorics. In
addition to having various applications, it is connected to other mathematical fields such
as probability theory. Latterly, lots of consideration have been given to the enumeration
of walks confined to cones. We will typically be considering walks on Zd that start at the
origin and consist of steps taken from S, a finite subset of Zd. Most of the time we will
constrain the walks in the orthant Nd, with N denoting the set of non-negative integers
{0, 1, 2, . . .}.

Figure 2. Motzkin paths in N (with steps (1, 1), (1, 0) and (1,−1)) and
Gessel’s walks in N2 (with steps (1, 0), (1, 1), (−1, 0) and (−1,−1))

In dimension d = 1 (Figure 2, left) there is essentially one unique cone (the positive
axis), and positive (random) walks are very well understood, see in particular [10, 5].

Following the seminal works [35, 21], many recent papers deal with the enumeration of
2D walks with prescribed steps confined to the positive quadrant (Figure 2, right). In the
case of small steps (S included in {0,±1}2), various results have been obtained: exact and
asymptotic expressions [21, 15, 18], classification of the generating (or counting) function
according to the classes rational, algebraic, D-finite (that is, solution to a linear differential
equation with polynomial coefficients) [21], non-D-finite [50, 18], and even non-differentially
algebraic [30].

One of the most striking results in the quadrant walks world is the following: the
generating function is D-finite if and only if a certain group associated with the step set S
is finite. Remarkably this result connects an arithmetic property of the generating function
to a geometric feature (the group, related to the symmetries of the step set). Non-convex
cones (see [20] for the three quarter plane) as well as larger steps [14] have recently also
been considered.

On the other hand, much less is known on 3D lattice walks confined to the non-negative
octant N3. An intrinsic difficulty lies in the number of models to handle: more than 11
millions (see [13])! (Compare with 79 quadrant models.) The first work is an empirical
classification by Bostan and Kauers [15] of the models with at most five steps. Then in
[13], Bostan, Bousquet-Mélou, Kauers and Melczer study models of cardinality at most six.
They introduce some key concepts: the dimensionality (1D, 2D or 3D) of a model, the group
of the model, the Hadamard structure (roughly speaking, it is a generalization of Cartesian
products of lower dimensional models). These notions will be made precise in Section 2.
Furthermore, the authors of [13] classify the models with respect to these concepts and
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Figure 3. From left to right: the simple walk, Kreweras 3D model, a (1, 2)-
type Hadamard model and a (2, 1)-type Hadamard model. As obviously
these perspective drawings are sometimes difficult to read, we will prefer
the cross-section views of the step sets as on Figure 4. These pictures are
courtesy of Alin Bostan
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Figure 4. For each model, the first diagram shows steps of the form
(i, j,−1), the second the steps (i, j, 0), and the third the steps (i, j, 1). The
models are the same ones as on Figure 3. These cross-section views were
first proposed in [15, 13]

compute, in various cases (but only in presence of a finite group), the generating function

O(x, y, z; t) =
∑

i,j,k,n>0

o(i, j, k;n)xiyjzktn, (1)

where o(i, j, k;n) is the number of n-step walks in the octant starting at the origin (0, 0, 0)
and ending at position (i, j, k). In majority, the techniques used in [13] to solve finite
group models are the algebraic kernel method and computer algebra (using the guessing-
and-proving paradigm).

The classification (in particular with respect to the finiteness of the group and the
Hadamard structure) of the 3D small step models with arbitrary cardinality is pursued in
the articles [2, 31, 58, 48]. Table 2 reproduces this classification.

Asymptotics of the excursion sequence. Let us finally mention the article [29] by
Denisov and Wachtel, which is fundamental for our study. It proves in a great level of
generality the following asymptotics for the excursion sequence oA→B(n), i.e., the number
of n-step walks in the octant starting (resp. ending) at A ∈ N3 (resp. B ∈ N3): if A and B
are far enough from the boundary, as n→∞,

oA→B(pn) = κ(A,B) · ρpn · n−λ · (1 + o(1)), (2)

where κ(A,B) > 0 is some constant, ρ ∈ (0, |S|] is the exponential growth, λ > 0 is the
critical exponent and p is the period of the model, i.e.,

p = gcd{n ∈ N : oA→B(n) > 0}. (3)

The asymptotics (2) is proved in [29] in the aperiodic case (p = 1) and commented in
[33, 14] for periodic models (p > 1). For the exact hypotheses and a discussion, see
Theorem 3 in Section 2.5 and the comments following the statement.

The quantities ρ and λ in (2) are computed in [29]. First, ρ is the global minimum on
Rd+ of the inventory (or characteristic polynomial)

χS(x, y, z) = χ(x, y, z) =
∑

(i,j,k)∈S

xiyjzk (4)
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Figure 5. On the left: a particular spherical triangle with two right angles
(these triangles will eventually correspond to Hadamard models). On the
right: a generic triangle with angles α, β, γ

and is thus well understood and easily computed. On the other hand, λ is much more
mysterious and challenging: it is characterized in [29] as the smallest eigenvalue of a
certain Dirichlet problem on a spherical triangle.

Concerning the algebraic nature of the 3D generating function (1), a few results are
known: in the finite group cases solved in [13], the generating function is always D-finite.
On the other hand, the article [31] proves that for some 3D model with dimensionality 2
(in the sense of Definition 1), the excursion generating function O(0, 0, 0; t) is non-D-finite,
by looking at the asymptotic behavior of the excursion sequence and showing that λ in (2)
is non-rational, extending the work [18]. A very exciting question is (that unfortunately
we won’t solve): does there exist a 3D finite group model with a non-D-finite generating
function (1)? Typically, the 3D Kreweras model of Figure 3 is a candidate!

Contributions of the present work. In this article we focus on the asymptotics (2) of
the numbers of excursions and assume that:

(H) The step set S is not included in any half-space x+ = {y ∈ Rd : 〈x, y〉 > 0}, with
x ∈ Rd \ {0}.

Applying the results of [29] (see in particular Equation (12) there) readily shows, under
the hypothesis (H), the following expression for the critical exponent:

λ =

√
λ1 +

1

4
+ 1, (5)

where λ1 is the smallest eigenvalue of the Dirichlet problem{
∆S2m = −Λm in T,

m = 0 in ∂T, (6)

T = T (α, β, γ) being a spherical triangle (see Figure 5 for an illustration), which can be
computed algorithmically (and easily) in terms of the model S, see Theorem 3 for a precise
statement.

In Section 2 we recall all needed definitions and first properties of 3D models. Results
in that section come from [29, 13, 2, 48]. Let us now present our main contributions.

• Section 3 gives the exact value of the angles. We prove that the cosine matrix of
the angles is strongly related to the Coxeter matrix of the group, and can also be
interpreted as a Gram matrix.
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Figure 6. Left: tiling of the sphere by equilateral triangles with right
angles, corresponding to the simple walk. Right: the tetraedral partition of
the sphere, corresponding to Kreweras 3D model. See Figure 11 for further
examples of tilings

• We then show that the spherical triangle captures a lot of combinatorial information
about the model from which it is constructed, in the following sense:
– Finite group models correspond to triangular tilings of the sphere S2. The

simplest example is the simple walk with jumps

S = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

see Figure 4 (leftmost). Its triangle has three right angles, namely α = β =
γ = π

2 on Figures 5 and 6. A second example is 3D Kreweras model, with step
set

S = {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)},
see Figure 4 (left). The associated triangle is also equilateral, with angles 2π

3 ,
this corresponds to the tetrahedral tiling of the sphere. See Figure 6.

– Hadamard models have birectangular triangles (i.e., with two right angles), as
on Figure 5, left. Finite group (resp. infinite) Hadamard models correspond
to angles β such that π

β ∈ Q (resp. πβ /∈ Q).
– Although we won’t consider these issues here, let us mention that we can also

see the dimensionality on the triangle. In the case of 2D models, the triangles
degenerate into a spherical digon, see Section 7.3 (in particular Figure 18).

.
• Section 4: Our next result is the study of Hadamard models (mostly with infinite
group, as finite group Hadamard walks are solved in [13]). They are quite special for
combinatorial reasons, as explained in [13], but also for the Laplacian: to the best
of our knowledge, their birectangular triangles are the only ones (with the exception
of the tiling triangles described in Lemma 25) for which one can compute the first
eigenvalue! (See (17).)

We deduce the critical exponent λ and show that (most of the) infinite group
Hadamard models are non-D-finite. This is the first result on the non-D-finiteness
of truly 3D models.
• Section 5: We classify the models with respect to their triangle and the associated
principal eigenvalue, and compare our results with the classification in terms of
the group and the Hadamard property obtained in [13, 48]. We exhibit some
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exceptional models, which do not have the Hadamard property but for which,
remarkably, one can compute an explicit form for the eigenvalue; this typically
leads to non-D-finiteness results.
• Section 6: Our last result is about generic infinite group models. Even if no closed-
form formula exists for λ1, we may consider λ1 as a special function of the triangle
T (or equivalently of its angles α, β, γ), and with numerical analysis methods,
obtain approximations of this function when evaluated at particular values. The
techniques developed in Section 6 are completely different from the rest of the
paper.

Notice that for some cases, approximate values of the critical exponents have
been found by Bostan and Kauers [15], Bacher, Kauers and Yatchak [2], and
Guttmann [42]. In these three articles the method is to compute a certain amount
of terms of the generating function O(0, 0, 0; t) and then to estimate the exponents
via different ideas. Our technique has the advantage of being applicable to any
spherical triangle, not necessarily related to a 3D model.

Section 7 proposes various extensions and remarks. Finally, the brief Appendix A
gathers some elementary facts on spherical geometry.

Brownian motion in orthants. To conclude this introduction, let us emphasize that all
results that we obtain for discrete random walks admit continuous analogues and can be
used to estimate exit times from cones Brownian motion, see Section 7.4. In the literature,
one can also find applications to the Brownian pursuit [53, 54].

Acknowledgments. This work has benefited from discussions with many colleagues. We
in particular warmly thank M. Kauers for interesting discussions and for sharing with
us a complete and very precise classification (and many other data) about 3D walks.
Many thanks also to V. Beck, A. Bostan, M. Bousquet-Mélou, S. Cantat, M. Dauge, T.
Guttmann, L. Hillairet, A. Lejay, S. Mustapha and B. Salvy. This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under the Grant Agreement No 759702.

2. Preliminaries

In this section we introduce key concepts to study 3D walks. We are largely inspired
by the paper [13], to which we borrowed Section 2.1 (dimension of a model), Section 2.2
(group of a model) and Section 2.3 (Hadamard structure). The thorough classification
of Section 2.4 is done in the papers [2, 48] and the fundamental asymptotic result of
Section 2.5 can be found in [29]. We follow the notations of [13].

2.1. Dimension of a model. Let S be a model. A walk of length n taking its steps in
S can be viewed as a word w = w1w2 . . . wn made up of letters of S. For s ∈ S, let as be
the multiplicity (i.e., the number of occurrences) of s in w. Then w ends in the positive
octant if and only if the following three linear inequalities hold:∑

s∈S
assx > 0,

∑
s∈S

assy > 0,
∑
s∈S

assz > 0, (7)

where s = (sx, sy, sz). Of course, the walk w remains in the octant if the multiplicities
observed in each of its prefixes satisfy these inequalities.

Definition 1 ([13]). Let d ∈ {0, 1, 2, 3}. A model S is said to have dimension at most d
if there exist d inequalities in (7) such that any |S|-tuple (as)s∈S of non-negative integers
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satisfying these d inequalities satisfies in fact the three ones. We define accordingly models
of dimension (exactly) d.

In what follows we will be principally considering models of dimension 3, and in fact
only a subclass of them: most of the time we will assume the hypothesis (H).

· · ·
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· · ·
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· • ·
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· • ·
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• · ·
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· • ·
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· · ·
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· · •

Figure 7. Four-step models of respective dimension 0, 1, 2 and 3. These
examples are borrowed from [13]

2.2. Group of the model. Write the inventory (or characteristic polynomial) χ in (4) as
(we take the same notations as in [13])

χ(x, y, z) = xA−(y, z) +A0(y, z) + xA+(y, z)

= yB−(x, z) +B0(x, z) + yB+(x, z)

= zC−(x, y) + C0(x, y) + zC+(x, y),

where x = 1
x , y = 1

y and z = 1
z . If S is 3-dimensional then it has a positive step in each

direction and A+, B+ and C+ are all non-zero. The group of S is the group G = 〈φ, ψ, τ〉
of birational transformations of the variables [x, y, z] generated by the following three
involutions: 

φ([x, y, z]) =
[
xA−(y,z)
A+(y,z) , y, z

]
,

ψ([x, y, z]) =
[
x, yB−(x,z)

B+(x,z) , z
]
,

τ([x, y, z]) =
[
x, y, zC−(x,y)

C+(x,y)

]
.

(8)

The classification of the models according to the (in)finiteness of the group is known, see
Table 2. Let us also reproduce Table 1 of [48]:

Group Number of models Group Number of models
G1 = 〈a, b, c | a2, b2, c2〉 10,759,449 G7 = 〈a, b, c | a2, b2, c2, (ab)4〉 82
G2 = 〈a, b, c | a2, b2, c2, (ab)2〉 84,241 G8 = 〈a, b, c | a2, b2, c2, (ab)3, (bc)3〉 30
G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉 58,642 G9 = 〈a, b, c | a2, b2, c2, acbacbcabc〉 20
G4 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)3〉 1,483 G10 = 〈a, b, c | a2, b2, c2, (ab)3, (cbca)2〉 8
G5 = 〈a, b, c | a2, b2, c2, (ab)3〉 1,426 G11 = 〈a, b, c | a2, b2, c2, (ca)3, (ab)4, (babc)2〉 8
G6 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)4〉 440 G12 = 〈a, b, c | a2, b2, c2, (ab)4, (ac)4〉 4

Table 1. Various infinite groups associated to 3D models. Notice that the
presentations of the groups are not certified: though highly unlikely, it is
not excluded [48] that further relations exist, but then involving more than
400 generators a, b, c. Remark that with the exception of G9, G10 and G11,
all groups are Coxeter groups. Most of the time, but not systematically,
one can take a = φ, b = ψ and c = τ
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2.3. Hadamard structure. Hadamard models are introduced in [13] (see in particular
Section 5 there). These are 3-dimensional models which can be reduced to the study of a
pair of models, one in Z and one in Z2, using Hadamard product of generating functions
(more is to come in Section 4.3).

There are two types of Hadamard models: the (1, 2)-type and the (2, 1)-type. More
generally, in arbitrary dimension d there is the notion of (D, δ)-Hadamard model, with
D + δ = d, see [13, Section 5.2]. Back to the dimension 3, the (1, 2)-type corresponds to
models for which the inventory (4) can be written under the form

χ(x, y, z) = U(x) + V (x)T (y, z). (9)

The (2, 1)-type corresponds to models for which the inventory can be written as

χ(x, y, z) = U(x, y) + V (x, y)T (z). (10)

The number of Hadamard models (with the additional information on the type) can be
found on Table 2.

For each type, an example is presented on Figure 4. For the (2, 1)-type we have taken
U(x, y) = x+x+ y+ y (the 2D simple walk, see Figure 8), V (x, y) = x+xy+xy+xy+ y
(a scarecrow model, see again Figure 8) and T (z) = z + z.

For the (1, 2)-type we have χ(x, y, z) = U(z)+V (z)T (x, y) (permutation of the variables
in the definition (9)), with U(z) = z + z, V (z) = z + 1 + z and T (x, y) the generating
function of the same scarecrow model as above.

Simple walk Kreweras Gessel Scarecrow 1 Scarecrow 2 Scarecrow 3

Figure 8. Some 2D models, which can be used to construct 3D Hadamard
models. The three scarecrows are named after [18, Fig. 1]

Hadamard models generalize Cartesian products of walks: Cartesian products (or
equivalently independent random walks in the probabilistic framework) correspond to
taking U(x) = 0 in (9), or U(x, y) = 0 in (10). Notice that Hadamard models in dimension
2 are always D-finite [14], even with large steps.

2.4. Classification of models. Before stating the precise classification of the models we
need a final concept, namely, the notion of equivalent models: two models are said to be
equivalent if they only differ by a permutation of the step coordinates, or if they only differ
by unused steps, that is, steps that are never used in a walk confined to the octant.

Proposition 2.5 of [13] computes the number of models having dimension 2 or 3, no
unused step, and counted up to permutations of the coordinates, ending up with the
number 11,074,225 on Table 2.

2.5. Formula for the exponent of the excursions. We now explain that the exponent
λ in (2) is directly related to the smallest eigenvalue of a certain Dirichlet problem on a
spherical triangle. Let us start with a simple definition:

Definition 2 ([9]). A spherical triangle on S2 is a triple (x, y, z) of points of S2 that are
linearly independent as vectors in R3. We denote it by 〈x, y, z〉.



10 B. BOGOSEL, V. PERROLLAZ, K. RASCHEL, AND A. TROTIGNON

Models
(11,074,225)

|G| <∞
(165,962)

3D Hadamard
(2187)

both
(305)

(1,2)
(84)

(2,1)
(1798)

non-3D Ha.

|G| =∞
(10,908,263)

3D Hadamard
(58,642)

both
(280)

(1,2)
(672)

(2,1)
(57690)

non-3D Ha.

Table 2. Classification of 3D walks (of dimension 2 and 3) according to
the finiteness of the group and the Hadamard property [48]. The numbers
of (non-)Hadamard models refer exclusively to dimension 3 models.
Hence among the non-3D Hadamard models one can found models of
dimensionality 2 having a (degenerate) Hadamard decomposition. A model
labeled “both” is simultaneously (1, 2)-type and (2, 1)-type Hadamard. The
total number of models is computed in [13], the number of (in)finite groups
in [13, 31, 48] and the refined statistics on 3D Hadamard models in [47]

See examples on Figures 5 and 6. The points x, y, z are called the vertices of 〈x, y, z〉.
By the sides of 〈x, y, z〉 we mean the arcs of great circle determined by (x, y), (y, z) and
(z, x).

Theorem 3 ([29]). Let S be a step set satisfying to (H) and irreducible. Let χ be its
inventory (4). The system of equations

∂χ

∂x
=
∂χ

∂y
=
∂χ

∂z
= 0 (11)

admits a unique solution, denoted by (x0, y0, z0). Define

a =

∂2χ
∂x∂y√
∂2χ
∂x2
· ∂2χ
∂y2

(x0, y0, z0), b =
∂2χ
∂x∂z√
∂2χ
∂x2
· ∂2χ
∂z2

(x0, y0, z0), c =

∂2χ
∂y∂z√
∂2χ
∂y2
· ∂2χ
∂z2

(x0, y0, z0)

(12)
and introduce the covariance matrix

cov =

 1 a b
a 1 c
b c 1

 . (13)

Let S denote a square root of the covariance matrix, namely

cov = SSᵀ. (14)

Consider the spherical triangle T = (S−1R3
+)∩S2. Let λ1 be the smallest eigenvalue of the

Dirichlet problem (6). Then for A and B far enough from the boundary, the asymptotics
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(2) of the number of excursions going from A to B holds, where

ρ = min
(0,∞)3

χ (15)

and the critical exponent λ in (2) is given by (5).

Before sketching the proof of Theorem 3 we comment on its hypotheses.
• First, under (H) the characteristic polynomial is strictly convex on (0,∞)3 and
hence there is a unique global minimizing point (x0, y0, z0), which satisfies to (11).
• The covariance matrix (13) is positive definite, this is a direct consequence of (H)
(the rank of the covariance matrix describes the dimension of the subspace in which
the random walks evolves).
• The matrix S−1 has full rank and hence T = (S−1R3

+) ∩ S2 is a spherical triangle
(see our Definition 2), bounded by the three great-circle arcs (S−1ei) ∩ S2, with ei
denoting the i-th vector of the canonical basis.
• The choice of the square root in (14) is not relevant: if cov = S1S

ᵀ
1 = S2S

ᵀ
2 then

obviously S1 = MS2, where M is an orthogonal matrix, and the two associated
spherical triangles are isomorphic (and in particular they have the same angles).
• The boundary of the spherical triangle is obviously piecewise infinitely differen-
tiable. Under this assumption, the spectrum of the Laplacian for the Dirichlet
problem (6) is discrete (see [22, p. 169]), of the form 0 < λ1 < λ2 6 λ3 6 · · · .
• The irreducibility hypothesis means that for any two points in the space Z3, there
exists a path connecting these points.
• The asymptotics (2) is proved in [29] under the assumption that the walk is strongly
aperiodic (see the lattice assumption in [29, p. 999]), i.e., irreducible and aperiodic
in the sense of the Markov chains. The aperiodicity is defined by p = 1 in (3). Two
remarks should be done:
– As explained in [14], an extra-assumption (namely, a reachability condition)

has to be done. There is indeed in [14] the example of a 2D walk which is
strongly aperiodic but such that no excursion to the origin is possible, due to
the (ad hoc) particular configuration of the jumps. We could easily construct
a 3D analogue such that o(0, 0, 0;n) = 0 for all n.

– The second point is about periodic models (p > 1 in (3)), which stricto
sensu are not covered by [29]. It is briefly mentioned in [33] that the main
asymptotics (2) still holds true. A detailed discussion of the periodic case may
be found in [14].

As our point is not to state Theorem 3 at the greatest level of generality, we have
stated it under rather strong hypotheses, namely that A and B are far enough from
the boundary (this is sufficient for the reachability condition).

Sketch of the proof of Theorem 3. This proof follows a certain number of steps that we now
briefly recall. For more details we refer to the presentation of [18] (see Section 2.3 there).

• Probabilistic interpretation: Following Denisov and Wachtel [29, Sec. 1.5], the main
idea is to write the number of excursions (see (1)) as a local probability for a random walk,
namely,

o(i, j, k;n) = |S|nP

[
n∑
`=1

(X(`), Y (`), Z(`)) = (i, j, k), τ > n

]
, (16)
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where {(X(`), Y (`), Z(`))} are i.i.d copies of a random variable (X,Y, Z) having uniform
law on the step set S, i.e., for each s ∈ S, P[(X,Y, Z) = s] = 1/|S|, and where τ is the first
hitting time of the translated cone (N ∪ {−1})3. At the end we shall apply the local limit
theorem [29, Thm 6] for random walks in cones. The latter theorem gives the asymptotics
of (16) for normalized random walks, in the sense that the increments of the random walks
should have no drift and a covariance matrix equal to the identity.

• Removing the drift: It is rather standard to perform an exponential change of measure
so as to remove the drift of a random variable (this is known as the Cramér transform).
Define the triplet (X1, Y1, Z1) by (with s = (s1, s2, s3) ∈ S)

P[(X1, Y1, Z1) = s] =
xs10 y

s2
0 z

s3
0

χ(x0, y0, z0)
.

Under our hypothesis (H), the drift of (X1, Y1, Z1) is zero if and only if (x0, y0, z0) is
solution to (11), which we now assume. (See Appendix B for similar computations in 2D.)

• Covariance identity: We first normalize the variables by

(X2, Y2, Z2) =

(
X1√
E[X2

1 ]
,

Y1√
E[Y 2

1 ]
,

Z1√
E[Z2

1 ]

)
,

so that the variances of the coordinates are 1, and more generally the covariance matrix
of (X2, Y2, Z2) is given by (13). Writing cov = SSᵀ as in (14) and X3

Y3
Z3

 = S−1

 X2

Y2
Z2

 ,

we obtain that (X3, Y3, Z3) has an identity covariance matrix, since S−1cov(S−1)ᵀ is the
identity. If (X,Y, Z) is defined in the octant R3

+, then (X3, Y3, Z3) takes its values in the
cone S−1R3

+.

• Conclusion: Remarkably, the probability on the right-hand side of (16) can be
expressed in terms of the random walk with increments (X3, Y3, Z3). For instance, for
(i, j, k) equal to the origin,

P

[
n∑
`=1

(X(`), Y (`), Z(`)) = (0, 0, 0), τ > n

]
=

(
χ(x0, y0, z0)

|S|

)n
P

[
n∑
`=1

(X3(`), Y3(`), Z3(`)) = (0, 0, 0), τ3 > n

]
,

with τ3 denoting the exit time from the cone S−1R3
+. Using (16) and applying [29, Thm 6]

finally gives the result stated in (3).

2.6. Computing the principal eigenvalue of a spherical triangle. It turns out that
there are a very few spherical triangles (and more generally, a few domains on the sphere,
see Section 7.1) for which we can explicitly compute the first eigenvalue λ1 of the Dirichlet
problem (6). As a matter of comparison, let us recall that (to the best of our knowledge,
see also [8]) there does not exist in general a closed-form expression for the analogous
problem for flat triangles!

Back to the spherical triangles, there essentially exists a unique case for which an explicit
expression for λ1 is known: the case of two angles π

2 as on Figure 5 (these triangles are
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sometimes called birectangular). Then according to [57, Eq. (36)] (or [56, Sec. IV]) the
smallest eigenvalue is

λ1 =

(
π

β
+ 1

)(
π

β
+ 2

)
. (17)

Let us give three relevant cases of application in the range of formula (17):
• The 3D simple random walk (Figure 4): then β = π

2 and λ1 = 12, which with (5)
corresponds to λ = 9

2 (in accordance with the intuition 3× 3
2 , i.e., three independent

positive 1D excursions).
• More generally, finite group Hadamard models. They correspond to β ∈ πQ.
Geometrically, they represent tiling groups of the sphere. See Section 5 for more
details.
• Last but not least, all Hadamard models, even with infinite group (typically
β /∈ πQ); see Section 4.

3. Around the covariance matrix

3.1. Expression of the angles. It is noteworthy that the angles of the spherical triangle
appearing in the main Theorem 3 are totally explicit (and quite simple) in terms of the
correlation coefficients a, b and c defined in (12).

Lemma 4. Let α, β, γ be the angles of the spherical triangle T defined in Theorem 3, and
a, b, c in (12). One has

α = arccos(−a), β = arccos(−b), γ = arccos(−c). (18)

In words, Lemma 4 says that given a 3D random walk, the correlation coefficients a, b
and c should be computed as in (12), and the arccosine of their opposite value gives the
angles of the triangle. Four remarks should be done:

• It is easily seen that the correlation coefficients a, b and c of Lemma 4 are algebraic
numbers. We can use the exact same algorithmic computations as in [18, Sec. 2.4.1]
to deduce their minimal polynomial.
• The formulas given in Lemma 4 are the most natural generalization of the 2D
situation, where by [18] the spherical triangle is replaced by a wedge of opening
angle arccos(−c), see Figure 9.
• The matrix cov in (13) may be rewritten as the cosine matrix 1 − cos(γ) − cos(β)

− cos(γ) 1 − cos(α)
− cos(β) − cos(α) 1

 . (19)

• If two of the three correlation coefficients a, b and c are equal to 0, then the spherical
triangle is birectangular.

Proof of Lemma 4. Let cov be the matrix defined in (13). We easily obtain the Cholesky
decomposition cov = LLᵀ, with

L =

 1 0 0

a
√

1− a2 0

b c−ab√
1−a2

√
1−a2−b2−c2+2abc√

1−a2

 . (20)



14 B. BOGOSEL, V. PERROLLAZ, K. RASCHEL, AND A. TROTIGNON

π
2 arccos(−c)

Figure 9. After decorrelation of a 2D random walk, the quarter plane (left)
becomes a wedge of opening arccos(−c) (right), where c is the correlation
coefficient of the driftless model

One deduces that

L−1 =

 1 0 0
−a√
1−a2

1√
1−a2 0

ac−b√
1−a2

√
1−a2−b2−c2+2abc

ab−c√
1−a2

√
1−a2−b2−c2+2abc

√
1−a2√

1−a2−b2−c2+2abc

 . (21)

Denoting by (e1, e2, e3) the canonical basis of R3, the three points defining the triangle are

x =
L−1e1
‖L−1e1‖

, y =
L−1e2
‖L−1e2‖

, z =
L−1e3
‖L−1e3‖

.

Setting

xy =
y − 〈x, y〉x
‖y − 〈x, y〉x‖

and xz, yx, yz, zx, zy similarly, we have by [9, 18.6.6] (giving the formulas for the angles of
the triangle 〈x, y, z〉)

α = arccos〈xy, xz〉, β = arccos〈yz, yx〉, γ = arccos〈zx, zy〉.

To conclude the proof it is enough to do the above computations in terms of a, b and c. �

Notice that the above expression of L in terms of a, b and c is particularly simple, and
thus the proof of Lemma 4 is easily obtained. This is a little miracle in the sense that the
equation cov = SSᵀ is complicated: trying to solve it with S a symmetric matrix is less
intrinsic.

3.2. Relation with the Coxeter matrix. Assume that there exists a representation of
the group G of Section 2.2 as

G = 〈a, b, c | a2, b2, c2, (ab)mab , (ac)mac , (bc)mbc〉,

with mab =∞ if there is no relation between a and b, and similarly for mac and mbc. (It
is not always possible to represent the group G as above, see Table 1.) Following Bourbaki
[19] we introduce the two matrices

 1 mab mac

mab 1 mbc

mac mbc 1

 and


1 − cos

(
π
mab

)
− cos

(
π
mac

)
− cos

(
π
mab

)
1 − cos

(
π
mbc

)
− cos

(
π
mac

)
− cos

(
π
mbc

)
1

 . (22)
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The first one is called the Coxeter matrix, see Def. 4 in [19, Ch. IV]. The second one is used
in [19] to define a quadratic form, whose the property of being non-degenerate eventually
characterizes the finiteness of the group G, see Thm 2 in [19, Ch. V].

Our point here is to remark the strong link between the covariance matrix (19) and the
matrix on the right-hand side of (22). This interpretation of the covariance matrix as a
Coxeter matrix in particular illustrates how natural these cosine matrices are.

There are, however, two differences between the matrices (19) and (22). The first one is
that in the infinite group case, all non-diagonal coefficients of the matrix (19) are in (−1, 1),
while if there is no relation between a and b (say), then mab = ∞ and − cos( π

mab
) = −1.

See [27] for a rather general study of cosine matrices (19) (in arbitrary dimension).
The second difference is about the finite group case. Take any two step sets which are

obtained the one from the other by a reflection (see Figure 10 for an example). Then the
group has the exact same structure and thus the matrix of [19] is unchanged. On the other
hand, the matrix (19) changes after a reflection (Kreweras on the left, reflected Kreweras
on the right):  1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

 and

 1 −1
2 −1

2

−1
2 1 1

2

−1
2

1
2 1

 .

· · ·
· • ·
· · ·

· • ·
• ·
· · ·

· · ·
· · ·
· · •

· · ·
· • ·
· · ·

· • ·
· •
· · ·

· · ·
· · ·
• · ·

Figure 10. On the left, Kreweras 3D model. On the right, the reflection
of Kreweras 3D with respect to the x-axis, which can be thought of as a 3D
tandem model

3.3. Polar angles and Gram matrix. It is also possible to compute the angles between
the three segments connecting the origin to the vertices of the triangle 〈x, y, z〉. These
angles may also be interpreted as the lengths A = yz, B = xz and C = xy of the sides
of the triangle, see [9, 18.6.6]. Finally, they are strongly related to the angles of the polar
triangle (see Definition 20): by [9, 18.6.12.2] they are the complements to π of the polar
angles.

Lemma 5. Let O denote the origin (0, 0, 0). The angles between the vectors ~Ox, ~Oy and
~Oz are given by

A = arccos

(
bc− a√

1− b2
√

1− c2

)
, B = arccos

(
ac− b√

1− a2
√

1− c2

)
, C = arccos

(
ab− c√

1− a2
√

1− b2

)
.

As it should be, the quantity bc−a√
1−b2

√
1−c2 (and its circular permutations as well) in

Lemma 5 belongs to (−1, 1). Indeed if bc > a then

bc− a√
1− b2

√
1− c2

< 1 iff (bc− a)2 < (1− b2)(1− c2) iff 1− a2 − b2 − c2 + 2abc > 0.

The quantity 1−a2−b2−c2+2abc is positive because it is the determinant of the covariance
matrix (13), which is assumed positive definite. In the case bc 6 1 we would prove similarly
that bc−a√

1−b2
√
1−c2 > −1.
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Proof of Lemma 5. The angles are easily computed: if e1, e2 and e3 are the vectors of the
canonical basis and L−1 is as in (21),

〈L−1e1, L−1e2〉 = ‖L−1e1‖ · ‖L−1ej‖ · cosC, (23)

and circular permutations of the above identities hold. The formulas stated in Lemma 5
follow from (23), after having computed the norms and the dot products of the columns
of L−1.

An alternative proof is to invert the covariance matrix (13) and to use the orthogonality
relations between the angles and their polar angles, see Definition 20. �

Finally, we stress that the covariance matrix may be interpreted as the Gram matrix 〈u, u〉 〈u, v〉 〈u,w〉〈u, v〉 〈v, v〉 〈v, w〉
〈u,w〉 〈v, w〉 〈w,w〉

 ,

where u, v, w are the three vectors on the sphere which are the columns of the matrix
√
1−a2−b2−c2+2abc√

1−c2 0 0
bc−a√
1−c2 −

√
1− c2 0

b c 1

 .

3.4. The reverse construction. Our general construction consists in associating to every
model of walk the covariance matrix (13), and thereby a spherical triangle with angles
α, β, γ as in Lemma 4. It is natural to ask about the converse: is it possible to realize
any spherical triangle as a walk triangle? The answer turns out to be positive, if we allow
models of weighted walks.

More specifically, let 〈x, y, z〉 be an arbitrary spherical triangle, having angles α, β, γ ∈
(0, π). Introduce a, b, c ∈ (−1, 1) such that (18) holds. Let finally (U, V,W ) be a triplet of
independent random variables (actually, having non-correlated variables is enough) with
unit variances. Introduce the random variables Z

Y
X

 = L

 U
V
W

 ,

where L is the matrix (20) appearing in the Cholesky decomposition of the matrix cov.
Then by construction the covariance matrix of (X,Y, Z) is (13) and its spherical triangle
has angles α, β, γ.

4. Analysis of Hadamard models

This section is at the heart of the present paper. We consider Hadamard models in
the sense of Section 2.3. Let us briefly recall that these models are characterized by the
existence of a decomposition of their inventory (4) as follows:

χ(x, y, z) = U(x) + V (x)T (y, z) or χ(x, y, z) = U(x, y) + V (x, y)T (z).

As it will be shown in Lemmas 6 and 11, such models admit a quite simple covariance
matrix

cov =

 1 0 0
0 1 c
0 c 1

 ,
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allowing to perform explicitly many computations. (Notice, however, that the above
form for the covariance matrix does not characterize Hadamard models, we construct
counterexamples in Section 5.4. These examples lead to the notion of exceptional models.)

In particular, spherical triangles associated to Hadamard models are birectangular, i.e.,
two (or three) angles are equal to π

2 , see Figure 5. These triangles are remarkable because
they are the only ones (with the exception of a few sporadic cases) for which a closed-form
expression for the principal eigenvalue does exist. Finally, the exponent (5) of the excursion
sequence is computed in Propositions 7 and 12. Using similar techniques as in [18], one
can rather easily study the rationality of this exponent.

In the Hadamard (1, 2)-type (Section 4.1), the 2D model associated to T (y, z) dictates
the exponent, see Proposition 7. In particular, we prove in Corollary 8 that if the 2D
model has a non-rational exponent, then the 3D model is necessarily non-D-finite. To our
knowledge, this is the first proof ever of the non-D-finiteness of truly 3D models, making the
Hadamard case remarkable. On the other hand, (2, 1)-type Hadamard models (Section 4.2)
are more subtle. Their exponents can be computed from exponents of mixtures of two 2D
models.

Although we won’t do such considerations here, let us emphasize that most of the results
in this section hold for weighted walks with arbitrary big jumps: the only crucial point is
the existence of a Hadamard decomposition (9) or (10) for the step set.

4.1. (1,2)-Hadamard models.

Lemma 6. For any (1, 2)-type Hadamard model, the matrix cov in (13) takes the
particularly simple form

cov =

 1 0 0
0 1 c
0 c 1

 , with c =

∂2T
∂y∂z√

∂2T
∂y2
· ∂2T
∂z2

(y0, z0), (24)

where y0, z0 are defined in (11). (Notice in particular that c does not depend on the
horizontal components U and V in the Hadamard decomposition (9).)

Proof. The proof is elementary. Using the decomposition (9) in the last two equations of
the system (11) gives

V (x)
∂T

∂y
(y, z) = V (x)

∂T

∂z
(y, z) = 0. (25)

As V (x) cannot be equal to 0, we obtain the autonomous system ∂T
∂y = ∂T

∂z = 0. Let (y0, z0)

be its unique solution. Moreover, the first equation in (11) leads to

U ′(x) + V ′(x)T (y0, z0) = 0

which (as T (y0, z0) > 0) has a unique solution x0.
Using once again (9) as well as (25), we deduce that

a = V ′(x0)
∂T

∂y
(y0, z0) = 0

and similarly b = 0. The formula (24) for c is a direct consequence of (12) and (9). �

Our aim now is to compute the spherical angles in the Hadamard case. We could easily
use Lemma 4 to deduce Proposition 7 below. Instead we shall do a small detour, which
allows us to connect our techniques to the 2D computations performed in [18].

Rather than using the Cholesky decomposition cov = LLᵀ, we shall solve cov = SSᵀ,
with S positive and symmetric. So we need to find the (inverse of the) positive square root
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of the covariance matrix, as in Equation (14). According to (24), the covariance matrix
has the block structure

cov =

 1 0 0
0
0

cov′

 , with cov′ =
(

1 c
c 1

)
.

The inverse of the square root of cov′ can be found in [18, p. 52]: cov′ = S′(S′)ᵀ, with

(S′)−1 =
1

2
√

1− c2

( √
1− c+

√
1 + c

√
1− c−

√
1 + c√

1− c−
√

1 + c
√

1− c+
√

1 + c

)
.

Our conclusion is that

S−1 =

 1 0 0
0
0

(S ′)−1

 . (26)

Proposition 7. The spherical triangles associated to (1, 2)-type Hadamard models have
angles π

2 ,
π
2 , arccos(−c) (as on Figure 5, left), with c defined in (24). The smallest

eigenvalue of the Dirichlet problem λ1 and the exponent λ are respectively given by

λ1 =

(
π

arccos(−c)
+ 1

)(
π

arccos(−c)
+ 2

)
, λ =

π

arccos(−c)
+

5

2
.

Proof. The values of the three angles follow from the formula (26). The expression for λ1
is a consequence of (17) and finally λ is found in (5). �

Proposition 7 clearly suggests to compute c and λ, so as to completely characterize the
excursion exponent. This happens to be done in [18]: for the 2D unweighted models under
consideration, c is always algebraic (possibly rational), and minimal polynomials in the
infinite group case are provided in [18, Table 2].

For instance, for the first and second scarecrows on Figure 8 one has c = −1
4 , while

c = 1
4 for the last scarecrow. Moreover, by [18, Cor. 2], λ is irrational for all infinite group

models. This leads to the following corollary:

Corollary 8. For any (1, 2)-type Hadamard 3D model such that the group associated to
the step set T is infinite, the series O(0, 0, 0; t) (and thus also O(x, y, z; t)) is non-D-finite.

We list below important comments on Corollary 8.
• First of all, Corollary 8 is (to the best of our knowledge) the first non-D-finiteness
result on truly 3D models. It answers an open question raised in [13, Sec. 9]
(concerning the possibility of extending the techniques of [18] to octant models).
• In order to give a concrete application of Corollary 8, consider a model with
arbitrary U and V (provided that the model is truly 3D), and with T one scarecrow
of Figure 8. This 3D model is non-D-finite since the 2D model associated with T
has an infinite group by [21].
• Note that Corollary 8 can be easily extended to models of walks with weights and
arbitrary big jumps, provided that the hypothesis on the infiniteness of the group
be replaced by the assumption that π

arccos(−c) is non-rational. An algorithmic proof
of the irrationality of such quantities is proposed in [18, Sec. 2.4], and further used
to some weighted models in [31]. It could certainly be possible to extend it further.
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• The proof of Corollary 8 is a direct consequence of [18, Cor. 2], which states that for
the 51 unweighted non-singular step sets with infinite group in the quarter plane,
the excursion exponent is non-rational. By [18, Thm 3] this implies that the series
is non-D-finite.

Remark 9 (Combinatorial interpretation of the exponent). For (1, 2)-type models, 3D
excursions may be decomposed as products of two less-dimensional excursions: a first
excursion in the (y, z)-plane with the inventory T and a second 1D excursion in x. This
can easily be read on the formula of Proposition 7: writing

λ =

(
π

arccos(−c)
+ 1

)
+

3

2
,

the exponent has a very simple combinatorial interpretation: it is the sum of the exponent
of the 2D model (see [18, Thm 4]) and of the universal exponent 3

2 of a 1D excursion.

Remark 10 (Area of the spherical triangle). It follows from [9, 18.3.8.4] that the area of
the spherical triangle is

α+ β + γ − π = arccos(−a) + arccos(−b) + arccos(−c)− π ∈ (0, 2π).

For birectangular triangles (with say a = b = 0) the area becomes arccos(−c), and is directly
related to the smallest eigenvalue (see Proposition 7), as it was the case in 2D.

4.2. (2,1)-Hadamard models.

Lemma 11. For any (2, 1)-type Hadamard model, the matrix cov in (13) takes the
particularly simple form

cov =

 1 a 0
a 1 0
0 0 1

 , with a =

∂2 χ|z0
∂x∂y√

∂2 χ|z0
∂x2

·
∂2 χ|z0
∂y2

(x0, y0), (27)

where x0, y0, z0 are defined in (11) and χ|z0 (x, y) = χ(x, y, z0).

Proof. We solve the system (11) in the z-variable first and obtain the point z0 characterized
by T ′(z0) = 0. The first two equations of the system (11) read

∂U

∂x
(x, y) + T (z0)

∂V

∂x
(x, y) =

∂U

∂y
(x, y) + T (z0)

∂V

∂y
(x, y) = 0.

The pair (x0, y0) is the critical point associated to the mixture of models (28). �

Proposition 12. The spherical triangles associated to (2, 1)-type Hadamard models have
angles π

2 ,
π
2 , arccos(−a) (as on Figure 5, left), with a defined in (27). The smallest

eigenvalue of the Dirichlet problem λ1 and the exponent λ are respectively given by

λ1 =

(
π

arccos(−a)
+ 1

)(
π

arccos(−a)
+ 2

)
, λ =

π

arccos(−a)
+

5

2
.

(2,1)-type Hadamard walks and mixing of 2D models. From a probabilistic point of view,
the (2, 1)-type is slightly more interesting than the (1, 2)-type. Many computations are
indeed related to the concept of mixtures of two 2D probability laws.

More precisely, the polynomials U(x, y) and V (x, y) in (10) both induce a law (or a
model) in 2D, which are mixed as below:

χ|z0 (x, y) = U(x, y) + T (z0)V (x, y), (28)

the parameter z being specialized at z0, the latter being defined by T ′(z0) = 0.
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In the combinatorial case, for a 3D model we must have T (z) = z + z, hence z0 = 1
and T (z0) = 2. Equation (28) becomes U(x, y) + 2V (x, y), which is the inventory of a 2D
weighted walk (with possible weights 0, 1, 2, 3). Remark that it is not the first appearance of
weighted 2D walks in the theory of (unweighted) 3D walks: in [13, Sec. 7] (see in particular
Figure 5), 2D projections of 3D models are analyzed, and these projections are typically
weighted 2D walks.

Computing a in (27). From a technical point of view, computing a and studying the
rationality of π

arccos(−a) requires the same type of computations as above for c and π
arccos(−c)

(see Section 4.1). However, some difficulties may occur from the fact that weighted steps
are allowed:

• It is not possible to exclude that a model with infinite group has a rational exponent
λ (this does not happen in the unweighted case [18], but may happen in the weighted
case, see examples in [14]).
• Knowing the critical exponents associated to U and V does not give much
information on the exponent of the mixture (28); some evidence is given in
Appendix B. The only positive result in that direction is to take step sets with
same critical points and covariance matrices. In this case the critical point and the
covariance matrix of the mixing remain the same, and explicit computations can
be done. For an illustration see Example 14 below.

Applications and examples. We start by a result on non-D-finiteness, for a subclass of
(2, 1)-type Hadamard models.

Corollary 13. For any (2, 1)-type Hadamard 3D model such that the group associated to
the step set V is infinite, and U = V or U = 0, the series O(0, 0, 0; t) (and thus also
O(x, y, z; t)) is non-D-finite.

Corollary 13 applies for several models, but the constraint of taking either U = V or
U = 0 is quite strong. We now construct a more elaborate example.

Example 14. Let U, T be any of the first two scarecrows of Figure 8 (possibly the same
ones). These models have zero drift (and thus critical point (0, 0)) and an easy computation
shows that they have the same covariance matrices. Then for any T (x) = t1x+ t0 + t−1x,
the associated (2, 1)-type Hadamard model defined by (10) is non-D-finite.

It is the right place to emphasize a link with the article [24], in which the authors develop
a theory to (asymptotically) count lattice walks in the quarter plane with inhomogeneities.
More precisely, they divide the quadrant in subdomains, say N2 = ∪iDi, and to each
domain they attach a step set Si, which describes the possible moves of the walk when the
current position is located at a point of Di. (The standard homogeneous case is when all
Si are equal.) It is very difficult to solve such inhomogeneous models in general, but the
theory developed in [24] precisely works if the step sets Si have same critical points and
same covariance matrices (after a proper Cramér transform).

A typical example is to divide the quarter plane as N2 = E ∪ O, where E (resp. O) is
the set of all pairs (i, j) ∈ N2 whose sum is even (resp. odd). Theorem 1 in [24] gives an
example with this odd-even decomposition in the finite group case; see [24, Thm 4] for the
infinite group case (the latter example also uses scarecrow models of Figure 8).

4.3. Hadamard product of generating functions. In this section, which is essentially
borrowed from [13], we explain that for models admitting a Hadamard decomposition,
the generating function O(x, y, z; t) in (1) is a Hadamard product of two less-dimensional



3D POSITIVE LATTICE WALKS AND SPHERICAL TRIANGLES 21

(coloured) counting problems, see (29) below. Although this discussion may be extended
to an arbitrary dimension, we focus here on the dimension three.

In order to have a uniform presentation of the (1, 2)- and (2, 1)-types, we temporary
rename the variables x, y, z in x1, x2, x3. Moreover, we denote the d-tuple (0, . . . , 0) by 0d.
Assume there exist d ∈ {1, 2} and three sets U ∈ {−1, 0, 1}d \ {0d}, V ∈ {−1, 0, 1}d and
T ∈ {−1, 0, 1}3−d \ {03−d}. Then the model is said to be (d, 3− d)-Hadamard if the step
set S admits the decomposition (or factorization)

S = (U × {03−d}) ∪ (V × T ).

Let C1 be the set of walks with steps in U ∪ V confined to Nd, in which the steps are
coloured black and white, with the condition that all steps of U \V are white and all steps
of V ∪ U are black. Let C1(x1, . . . , xd, v; t) be the associated generating function, where
t keeps track of the length, x1, . . . , xd of the coordinates of the endpoint, and v of the
number of black steps. Let C2(xd+1, x3; v) be the generating function of T -walks confined
to N3−d, counted by the length v and the coordinates of the endpoint (xd+1, x3). Then
Proposition 5.1 of [13] says that

O(x1, x2, x3; t) = C1(x1, xd, v; t)�v C2(xd+1, x3; v)|v=1 , (29)

where �v denotes the Hadamard product with respect to v:∑
i

aiv
i �v

∑
j

bjv
j =

∑
i

aibiv
i,

the resulting series in (29) being specialized to v = 1.
In the (1, 2)-type, U and V are of dimension one, and thus C1 is algebraic, hence D-finite,

as it corresponds to a 1D (coloured) counting problem. So if the generating function C2

associated to T is D-finite, then O(x1, x2, x3; t) will remain D-finite, since the Hadamard
product preserves D-finiteness [52]. A similar remark applies to the (2, 1)-type.

On the other hand, there is no systematic result saying that taking the Hadamard
product of a D-finite function by a non-D-finite function leads to a non-D-finite function.
However we do think that such a result should hold in our case: this would mean to
prove Corollaries 8 and 13 directly, at the level of generating functions, using for instance
singularity analysis.

5. Classification of the models and eigenvalues

5.1. Motivations and presentation of the results. In this section we would like to
classify the 11, 074, 225 models with respect to their triangle and the associated principal
eigenvalue. The central idea is that there is a strong link between the group (as defined in
Section 2.2) and the triangle. To understand this connection, we propose a novel geometric
interpretation of the group, as a reflection group on the sphere; this interpretation is very
natural and manipulable. More precisely we will interpret the three generators of the group
as the three reflections with respect to the sides of the spherical triangle. We shall present
three main features:

• Finite group case (Section 5.2): we interpret the group G as a tiling group of the
sphere, see Table 3, as well as Figures 6 and 11. We also explain a few remarkable
facts observed in the tables of [2], on the number of different asymptotic behaviors
observed.
• Infinite group case (Section 5.3): typically the existence of a relation between the
generators of the group can be read off on the angles. The simplest example is
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Figure 11. Tilings associated to the triangles with angles π
3 ,

π
2 ,

2π
3 (left)

and π
4 ,

π
3 ,

π
2 (right). These triangles correspond to the lines 9 and 17 on

Table 3

the relation (ab)m = 1, which on the triangle will correspond to an angle equal to
kπ/m for some integer k. In particular, all triangles from the group

G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉

of Table 1 (the Hadamard models) will have two right angles.
• Exceptional models (Section 5.4): for some infinite group models (a few hundreds
of thousands), some unexpected further identities on the angles hold—unexpected
means not implied by a relation between the generators, as explained above.

The most interesting case is given by 28 893 models in G1 and 1 552 in G2, which
have a triangle with exactly 2 right angles. Although these models do not have
a Hadamard structure, their triangle has the same type as classical Hadamard
models, and the principal eigenvalue (and hence the critical exponent) can be
computed in a closed form.

There are also some models with infinite group but three right angles (in this
case, the exponent is 9

2 , and cannot be used to detect non-D-finiteness). Let us
finally mention two models with infinite group and having the same triangle as
Kreweras 3D. See Theorem 17 for a more precise and complete statement.

To summarize, classifying the triangles is close, but different, to classifying the groups.
The latter task has already been achieved in [2] (finite group case; we have reproduced
their results in Table 4) and [48] (infinite groups; see our Table 1), using a heavy computer
machinery. However, the group classification is more precise, in the sense that the spherical
triangle does not determine everything: infinite group models can have a tiling triangle,
and the Hadamard models are not the only ones to have birectangular triangles.

5.2. Finite group case.

Some aspects of the group. Let us recall from Section 2.2 that it is possible to attach to
any small step octant model a group G = 〈φ, ψ, τ〉 of involutions (i.e., φ2 = ψ2 = τ2 = 1).
The analytic expression of the generators φ, ψ and τ is given in (8), it uses the coefficients
of the inventory χ.

This group was first introduced in the context of 2D walks [35, 21] and turns out to be
very useful; let us recall a few applications of this concept:
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• When the group is finite and if in addition the orbit-sum of the monomial
x1 × · · · × xd under the group G, namely

OS(x1, . . . , xd) =
∑
g∈G

sign (g) · g(x1 × · · · × xd), (30)

is non-zero, one may obtain closed-form expressions for the generating function.
See [21] for the initial application of this technique, called the orbit-sum method;
it was further used in [49, 14].
• When the group is finite but the orbit-sum (30) is zero, it is still possible, in a
restricted number of cases, to derive an expression for the generating function, see
[21, 49, 14] for examples. The applicability of this technique is not completely
clear.
• Last but not least, in dimension 2 there is equivalence between the finiteness of the
group and the D-finiteness of the generating functions (this is a consequence of the
papers [21, 16, 50] altogether).

Let us now examine each of the above applications in dimension 3. The first item is
still valid, as shown in [13, 58]. As in the 2D case, the second item only works for a few
cases. For instance, Figure 4 in [13] gives a list of 19 non-Hadamard 3D models with finite
group and zero orbit-sum, which are not solved at the moment. Finally, the third item is
an open question (in our opinion very exciting!). As an illustration, all 19 previous models
(including Kreweras 3D model) have a finite group, but as explained in [13, Sec. 6.2], these
models do not seem D-finite. In this case, the equivalence in the third item would not be
satisfied.

Connection between combinatorial and geometric aspects. We have numerically computed
the critical exponents for each one of the models corresponding to a finite group, using the
fundamental eigenvalue of the associated spherical triangles. The computation procedure
is described in Section 6. Our results are summarized in Table 3.

It is remarkable that among all possible 17 exponents, each one is uniquely assigned
to a particular spherical triangle. Moreover, each group can be realized as a reflection
group for the associated triangles, giving a nice connection between combinatorial and
geometric aspects. More precisely, we notice that all triangles associated to models with
finite groups are Schwarz triangles, which means that they can be used to tile the sphere,
possibly overlapping, through reflection in their edges. They were classified in [55] and a
nice theoretical and graphical description can be seen on the associated Wikipedia page
(see the url). The classification of Schwarz triangles also includes information about their
symmetry groups, which are seen to coincide with the combinatorial groups.

We recall that when the associated spherical triangle has two right angles, then explicit
formulas exist for the first eigenvalue. Therefore values of the eigenvalue and exponent
given in Table 3 which are written as rational numbers are exact. For the other values,
numerical approximation was used in the computation of the eigenvalue and the exponent
(see Section 6 for the details). We believe that all digits shown are accurate.

Some remarks on the tables of [2]. In this paragraph we recall a few conjectural comments
which appear in the captions of Tables 2, 3 and 4 of [2], that we can explain using the
spherical triangles.

First, Table 2 of [2] gives the guessed asymptotic behavior of the 12 models with group
Z2 × S4 and zero orbit-sum (see our Table 4). The first remark of [2] is that the critical

https://en.wikipedia.org/wiki/Schwarz_triangle
url
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Eigenvalue Exponent Nb tri. Angles Hadamard Gr. Size Group

1 4.261735 3.124084 2

[
2π

3
,

3π

4
,

3π

4

]
no 48 Z2 × S4

2 5.159146 3.325757 7

[
2π

3
,

2π

3
,

2π

3

]
no 24 S4

3 6.241748 3.547890 2

[
π

2
,

2π

3
,

3π

4

]
no 48 Z2 × S4

4 6.777108 3.650869 5

[
π

2
,

2π

3
,

2π

3

]
no 24 S4

5 70/9 23/6 41

[
π

2
,
π

2
,

3π

4

]
yes 16 Z2 ×D8

6 35/4 4 279

[
π

2
,
π

2
,

2π

3

]
yes/no 12 D12

7 12 9/2 1852
[π

2
,
π

2
,
π

2

]
yes 8 Z2 × Z2 × Z2

8 12.400051 4.556691 2
[
π

3
,
π

2
,

3π

4

]
no 48 Z2 × S4

9 13.74435 4.740902 7
[
π

3
,
π

2
,

2π

3

]
no 24 S4

10 20 11/2 172
[π

3
,
π

2
,
π

2

]
yes/no 12 D12

11 20.571964 5.563109 2

[
π

4
,
π

2
,

2π

3

]
no 48 Z2 × S4

12 21.309407 5.643211 7

[
π

3
,
π

3
,

2π

3

]
no 24 S4

13 24.456910 5.970604 2

[
π

4
,
π

3
,

3π

4

]
no 48 Z2 × S4

14 30 13/2 41
[π

4
,
π

2
,
π

2

]
yes 16 Z2 ×D8

15 42 15/2 5
[π

3
,
π

3
,
π

2

]
no 24 S4

16 49.109942 8.025663 2

[
π

4
,
π

4
,

2π

3

]
no 48 Z2 × S4

17 90 21/2 2
[π

4
,
π

3
,
π

2

]
no 48 Z2 × S4

Table 3. Characterization of triangles and exponents associated to models
with finite groups. One can see some eigenvalues appearing in Lemma 25

Group Hadamard Non-Hadamard OS 6= 0 Non-Hadamard OS = 0
Z2 × Z2 × Z2 1852 0 0

D12 253 66 132
Z2 ×D8 82 0 0
S4 0 5 26

Z2 × S4 0 2 12
Table 4. Number of models with finite group. Note that OS refers to the
orbit-sum defined in (30). The original version of this table may be found
in [2, Table 1]
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exponent β of the generating function O(1, 1, 1; t) seems to be related to the excursion
exponent λ by the formula

β =
λ

2
− 3

4
. (31)

(Notice that the remark in [2] is stated with +3
4 and not −3

4 ; the reason is that our critical
exponents are the opposite of the ones in [2].) Let us briefly mention that (31) is indeed
true and is a consequence of Denisov and Wachtel results [29]: by (5) (resp. [29, Thm 1])
one has

λ =

√
λ1 +

1

4
+ 1 and β =

1

2

(√
λ1 +

1

4
− 1

2

)
, (32)

for zero-drift models (which is the case of these models under consideration). This remark
also applies to [2, Table 3], giving the excursion asymptotics for the 26 models whose group
is S4 and orbit-sum zero (see again our Table 4).

The second comment of [2] that we can easily explain is about the number of different
critical exponents. It is remarked in [2] that each exponent λ seems to appear for exactly
two models in their Table 2, and that in their Table 3 there are only four different exponents
(namely, −5.64321, −4.74090, −3.65086 and −3.32575). This simply follows from the fact
that in [2, Table 2] (resp. [2, Table 3]) there are only six (resp. four) types of spherical
triangles, which appear twice for the second table.

Remark 15 (Second Kreweras eigenvalue). The triangle on the ninth line of Table 3 is
exactly the half of Kreweras triangle. Accordingly (and this was confirmed by our numerical
approximations) the principal eigenvalue of the models with half Kreweras triangle equals
the second smallest eigenvalue of Kreweras model.

5.3. Infinite group case. We have numerically computed for each model corresponding
to an infinite group its associated spherical triangle, the eigenvalue and thus, the exponent.
Details about numerical computations can be found in Section 6.

As expected, the behavior is irregular (much more than in the finite group case) and the
number of distinct eigenvalues, leading to distinct exponents, is more important. Therefore,
we do not attempt to classify the models by the associated eigenvalues. In order too
illustrate their repartition, we show in Figure 12 the distribution of the eigenvalues for
triangles in associated to the models in G1, G2 and G3 found in Table 1. The points
having the y-coordinate zero represent the cases where the steps of the model belong to
the same half-space.

As in the finite group case, we wonder if there is a connection between the triangles
associated to the models and their associated combinatorial group. We believe that the
analogue proposition holds also for the infinite groups: the combinatorial groups can be
realized as groups of symmetries for the associated triangle, taking as generators the three
elementary reflections or combinations of them as indicated in the analysis in [48]. In some
cases, like for example when the triangle has two angles equal to π/2, the realization of
the infinite group as a symmetry group for the triangle is more evident.

Analyzing our computations we find that the following result holds.

Theorem 16. All triangles associated to non-degenerate models with infinite groups satisfy
the following property: the combinatorial group can be realized as a symmetry group of the
triangle. We have two possibilities:

• The generators a, b, c are the reflections with respect to the three sides of the
triangle.
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Figure 12. Distribution of eigenvalues for triangles associated to the
infinite groups G1, G2 and G3 from Table 1

• In cases where the first possibility does not hold, it suffices to replace one of the
reflections by its conjugate with respect to one of the other two (for example replace
a by bab). Note that this corresponds nicely with arguments shown in [48].

Our proof of Theorem 16 relies on the numerical computations made using the tools
from Section 6. We note that only information on the angles of the triangles is needed
here, which can be obtained using elementary functions and algebraic numbers. Therefore
the arguments below can be justified using symbolic computations.

Proof. For G1 there is nothing to prove: we may choose a, b, c to be the three reflections
with respect to the sides of the triangle, and no additional relation is required.

Among the 82 453 triangles associated to non-degenerate models of type G2, exactly
79 219 have (at least) one right angle. Therefore, if a, b are reflections with respect to the
sides adjacent to the right angle, then (ab)2 = 1. The remaining 3 234 triangles have the
property that for one particular labeling a, b, c of the symmetries associated to the sides
of the triangles, the composition cacb is a rotation of angle π and therefore (cacb)2 = 1.
Therefore, after the transformation of the type a← cac described in [48], G2 is represented
as a group of symmetries of the associated triangles.

All triangles associated to non-degenerate models in G3 have at least two angles equal
to π/2, and 40 among these have (surprisingly) three right angles. Therefore, there is a
labeling a, b, c of the reflections with respect to the sides of the triangles for which (ab)2 = 1
and (ac)2 = 1.

For triangles associated to groups among G4, . . . , G11 (all models in G12 are included in
a half-space) the relations are not always immediately identifiable with geometric aspects
related to angles. One may find triangles with angles π/k for groups having relations of
the type (ab)k = 1, but this is not always the case. In order to validate these cases we
used the following procedure:

(i) For a triangle T associated to a group Gn, n = 4, . . . , 11, for every one of the six
permutations of the reflections a, b, c, we construct the result of the transformations
R(a, b, c)(T ), where R varies among the relations of the group Gn. We test if the
resulting triangle after the above transformations coincides with the initial triangle.
If this is the case for every relation R of Gn then we have found a representation
of Gn as a group of reflections.

(ii) If the above step fails, then we consider transformations of the type R(cac, b, c)
where, as before, a, b, c are reflections along the sides of the triangles and R varies
among the relations of Gn.
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For G5, G7, G8, G9, G10, G11 the step (i) of the above procedure finds a permutations of
basic symmetries which satisfies the group relations. This also works partially for G4 and
G6. For all the remaining cases, the step (ii) finds a combination of reflections with one
modification of the type a← cac such that Gn is represented again as a symmetry group
of the triangle. �

5.4. Exceptional models. Let us start by recalling that the typical situation is that
relations between generators of the group have strong consequences on the angles of the
triangle. For example, a relation of the type (ab)2 = 1 gives, in most cases, that the
triangle has one right angle.

In this section we are interested in a family of models, which is remarkable in the sense
that the triangle has additional symmetries than those implied by the relations between the
generators. We identify models which are non-Hadamard and which have two right angles,
providing additional examples where we may compute exponents explicitly. Moreover, we
identify triangles associated to infinite groups with three right angles or three angles equal
to 2π/3.

Theorem 17. Among all infinite group 3D models,
• 200 models in G6, 837 in G4, 77 667 in G2 and 31 005 in G1 have exactly one right
angle;
• 57 935 models in G3, 1 552 in G2 and 28 893 in G1 have exactly two right angles;
• 40 models in G3 and 563 models in G1 have three right angles (see Figure 13 for
two examples);
• 2 models in G4 and 3 models in G1 have three 2π/3 angles (see Figure 13).

Lists with steps corresponding to each one of the cases presented in the above result can
be accessed at the following link: https://bit.ly/2J4Vf3X.

Remark 18 (On the statement and the proof of Theorem 17). The part of Theorem 17
which is really a theorem is the existence of models having remarkable angles as described
in the statement. On the other hand, we have used numerical tools to find the numbers of
models in each category (e.g., 200 models in G6 having exactly one right angle): we inspect
the triangles by using methods described in Section 6 and use a tolerance of 10−8 in order
to classify the angles of the triangle.
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Figure 13. Left: two models with a group G3 and three right angles.
Right: two friends of Kreweras 3D, i.e., models from G4 with three angles
of measure 2π/3

The first consequence of Theorem 17 is to illustrate that the spherical triangle does not
determine everything:

• infinite group models can have triangles which tile the sphere,
• Hadamard models are not the only ones to admit birectangular triangles.

Note that the first phenomenon already appears in 2D: it is indeed possible to construct
two-dimensional models with infinite group and rational exponent, see, e.g., [14]. All
known examples have either small steps and weights (not only 0 and 1), or admit at least
one big jump. However, restricted to the unweighted case there is equivalence between the

https://bit.ly/2J4Vf3X 
https://bit.ly/2J4Vf3X
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infiniteness of the group and the irrationality of the exponent [18]. This miracle in 2D is
due to the fact that there are only 51 (non-singular) infinite group models—and more than
11 millions 3D models.

The second consequence of Theorem 17 is the following:

Corollary 19. For any of the 57 935 models in G3, 1 552 in G2 and 28 893 in G1 which
have exactly two right angles (say a = b = 0), the exponent is given by

λ =
π

arccos(−c)
+

5

2
.

In particular if π
arccos(−c) /∈ Q then the model is non-D-finite.

As an example of Corollary 19, we prove that the two models of Figure 14 admit non-
rational exponents. We present an alternative approach to the irrationally proof given in
[18, Sec. 2.4], which goes much further to the two examples of 14.

Proof. Assume that arccos(−c) = p
qπ. Then obviously cos(q arccos(−c))− (−1)p = 0, and

thus c is a root of
f(x) = cos(q arccos(−x))− (−1)p, (33)

which is (up to an additive constant) a Chebychev polynomial. For the first (resp.
second) model on Figure 14, one has c =

√
7/3 (resp.

√
7/10), having respective minimal

polynomials
P (X) = 9X2 − 7 and P (X) = 10X2 − 7. (34)

Since Chebychev polynomials have leading coefficient one or a power of 2, this is the same
for f(x).

We recall that a polynomial in Z[X] is called primitive if its coefficients have no common
factor. Gauss’ lemma is a well known result in number theory which states that the product
of two primitive polynomials is again primitive.

Suppose that P is a primitive polynomial and that P divides, in Q[X], the polynomial
f defined in (33). Then there exists another polynomial Q ∈ Q[X] such that f = PQ.
Suppose that Q does not have integer coefficients. Then, let cQ be the least common
multiple of the denominators of the coefficients of Q. In this way, the polynomial cQQ has
integer coefficients and is primitive. Therefore

P · (cQQ) = cQf,

and since P and cQQ are both primitive, it follows by Gauss’ lemma above that cQf is
also primitive. This leads to a contradiction if cQ > 1. Therefore Q ∈ Z[X].

We can now finish the proof and give the following general result: if P ∈ Z[X] is a
primitive polynomial and the leading coefficient of P is greater than 2 and is not a power
of 2, then P cannot divide f . Using the argument given in the previous paragraph we can
conclude that f admits a decomposition of the type f = PQ with Q ∈ Z[X]. Therefore
the leading coefficient of f is a product of the leading coefficients of P and Q. Since the
leading coefficient of P is greater than 2 and is not a power of 2, it cannot divide the
leading coefficient of f , which is a power of 2.

In particular, both polynomials in (34) are primitive and have leading coefficient greater
than 2, but not a power of 2. Therefore they cannot divide f , and as a consequence the
exponent cannot be rational in these cases. �
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Figure 14. Two models having a groupG2 (Table 1). Despite these models
do not have the Hadamard structure, they admit birectangular triangles and
thus explicit eigenvalues, providing examples of application to Corollary 19

5.5. Equilateral triangles. Contrary to the usual planar geometry, there exists in
spherical geometry a one-parameter family of equilateral triangles: for any α ∈ (π/3, π)
there exists an equilateral triangle with angles equal to α. The limit case α = π/3 (resp.
α = π) is the empty triangle (resp. the half-sphere).

Among the 11 millions of models, we have found 279 different equilateral triangles. The
most remarkable ones admit the angles π/2 (the simple walk), 2π/3 (Kreweras), arccos(1/3)
(polar triangle for Kreweras), arccos(

√
2−1) (the smallest equilateral triangle), 2π/5, 3π/5.

It seems that only the first one admits an eigenvalue in closed-form.
Except for the equilateral triangles with angles π/2 and 2π/3, which exist in G3 and

G4, all other equilateral triangles come from G1. The list of equilateral triangles in G1

and the list of all possible angles observed can be consulted on the webpage of the article:
https://bit.ly/2J4Vf3X.

6. Numerical approximation of the critical exponent

6.1. Literature. In lattice walk problems (and more generally in various enumerative
combinatorics problems), it is rather standard to generate many terms of a series (as many
as possible), and to try to predict the behavior of the model, as the algebraicity or D-
finiteness of the generating function, or the asymptotic behavior of the sequence. Having
a large number of terms allows further to derive estimates of the exponential growth or
of the critical exponent. More specifically, in the context of walks confined to cones, it
is possible to make use of a functional equation to generate typically a few thousands of
terms (the functional equation corresponds to a step-by-step construction of a walk, see
[13, Eq. (4.1)] for a precise statement).

In particular, one can find in [15, 2, 42] various estimates of critical exponents (note
that contrary to the results presented here, the estimates of [15, 2, 42] also concern the
total numbers of walks—and not only the numbers of excursions). In [15], Bostan and
Kauers consider 3D step sets of up to five elements, and guess various asymptotic behaviors
using convergence acceleration techniques. Bacher, Kauers and Yatchak go further in [2],
computing more terms and considering all 3D models (with no restriction on the cardinality
of the step set). In [42], Guttmann analyses the coefficients of a few models by either
the method of differential approximants or the ratio method. The methods of [42] for
generating the coefficients and for analyzing the resulting series are given in Chapters 7
and 8 of the book [41].

Our techniques are completely different here: we develop a finite element method
and compute precise approximations of the eigenvalue (typically, 10 digits of precision).
This method can be applied to any spherical triangle, independently of the fact that it
corresponds, or not, to a random walk model. We make available our codes at the following
link: https://bit.ly/2J4Vf3X.

https://bit.ly/2J4Vf3X 
https://bit.ly/2J4Vf3X
https://bit.ly/2J4Vf3X 
https://bit.ly/2J4Vf3X
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Figure 15. Triangulation of a spherical triangle using successive refinements

6.2. Finite element method. As already stated before in the paper, the results of
[28, 6, 29] allow to compute the exponent with the aid of the first eigenvalue of the Laplace-
Beltrami operator for a region of the unit sphere. In the cases studied here, this amounts
to finding the first eigenvalue of a spherical triangle. Various methods were employed in
the literature, especially for finding the first eigenvalue of the triangle corresponding to
the tetrahedral partition. We mention [53, 54, 11]. A method for computing eigenvalues
of spherical regions using fundamental solutions was recently proposed in [1] for smooth
domains on the sphere. The singular behavior generated by the corners of the triangles
makes that this method is not directly adapted to our needs. In the following we use
the finite element method to compute the eigenvalues of spherical triangles. The finite
element computation consists in a few standard steps. For general aspects regarding finite
element spaces defined on surfaces, we refer to [34]. We underline the fact that the method
described below can be applied to general subsets of the sphere, not only for triangles.

(a) Triangulation of the domain. In order to discretize the spherical triangle, we
consider triangulations. For simplicity, we work with triangulations with flat triangles,
which approximate the curved surface of the sphere better and better as the number of
triangles increases. In order to construct such triangulations, we use the classical midpoint
refinement procedure. Starting from a triangle, we construct the midpoints projected on
the sphere, and we replace the initial triangle with four smaller triangles. We iterate this
procedure a few times until we reach the desired precision. The triangulation procedure is
described in Algorithm 1. Details concerning the number of refinements and the precision
will be discussed below. An illustration of the triangulation procedure can be seen in
Figure 15.

Algorithm 1 Constructing a triangulation of a spherical triangle
Require: • L: Three distinct points A,B,C on the sphere.

• k: number of refinements
1: Initialize the set of vertices P
2: Initialize the set of triangles T
3: for iter = 1 : k do
4: for Ti = XY Z ∈ T do
5: Construct M1,M2,M3 the projections on the sphere of the midpoints of Ti;
6: Add M1,M2,M3 to P
7: Remove Ti from T
8: Add the four triangles determined by X,Y, Z,M1,M2,M3 to T
9: end for

10: end for
return P, T
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(b) Assembly. Given a triangulation of the spherical triangle T we denote by (nj)
N
j=1

an enumeration of the nodes and by (Ti)
M
i=1 an enumeration of the triangles. Each Ti

contains the associated nodes to its three vertices. On the triangulation T we consider
the P1-Lagrange finite element space. This consists of associating to each node nj in the
discretization a finite element function ϕj which is piecewise affine on each of the triangles
Ti such that ϕj(nk) = δik. A function u ∈ H1(T ) is approximated by a linear combination
of the finite element functions

u ≈
N∑
j=1

ajϕj .

A standard approach in numerical computations is to use the weak formulation of the
Laplace-Beltrami eigenvalue problem∫

T
∇τu∇τv = λ

∫
T
uv, ∀v ∈ H1(T ),

where ∇τ represents the tangential gradient to the surface of the sphere. When replacing
u and v by their finite element approximations u ≈

∑N
j=1 ajϕj and v ≈

∑N
j=1 bjϕj , we

obtain the discrete version

vtKu = λvtMu, ∀v ∈ RN , (35)

where u = (a1, ..., aN ) and v = (b1, ..., bN ). Here we have denoted with K the rigidity
matrix and with M the mass matrix:

K =

(∫
T
∇τϕi · ∇τϕj

)
16i,j6n

M =

(∫
T
ϕiϕj

)
16i,j6n

The matrices K and M are computed explicit for every triangulation.

(c) Solving the discretized problem. We notice that the problem (35) is equivalent
to the generalized eigenvalue problem

Ku = λMu.

We are interested in the smallest eigenvalue associated to this problem. We solve this
problem using the eigs function in Matlab.

6.3. Improving the precision using extrapolation. We start by testing our algorithm
for the spherical triangle having three right angles, for which the first eigenvalue is known
and is equal to 12. After 11 refinements we arrive at the value 12.000 001 608 by using
12 589 057 discretization points. This is at the limit of what we can do using the finite
element method without parallelization. The computation took 12 minutes and used over
80GB of RAM memory.

It is possible to improve the precision by using some extrapolation procedures. Various
techniques for improving the convergence of a sequence based on a finite number of terms
can be found in [12]. We choose to use Wynn’s epsilon algorithm, which starting from 2n+1
terms can deliver the exact limit of a sequence, whenever this sequence can be written as
a sum of n geometric sequences. For any discretization parameter h small enough the
discrete eigenvalue approximation λh has a Taylor-like expansion

λh = λ+ C1h
k1 + C2h

k2 + . . .
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Figure 16. Improvement of the convergence rate when applying the
extrapolation procedure using Wynn’s epsilon algorithm

where ki is an increasing sequence of positive real numbers. Applying Wynn’s epsilon
algorithm to a sequence of approximation corresponding to h, h/2, . . . , h/2k will cancel
the first terms in the above expansion, giving a better convergence rate. Applying the
extrapolation procedure for the triple right angle triangle recalled above with 11 refinement
steps gives us the value 11.999 999 999 999 46 which is close to machine precision.

Wynn’s epsilon algorithm is described in [12, p. 247]. An illustration of the improvement
of the convergence rate in the case of the triple right angle triangle is given in Figure 16.
One may note that the initial finite element approximation has convergence of order 2,
which is to be expected (see [38, 45]) On the other hand, the extrapolation procedure
seems to have order of convergence at least 6, quickly reaching close to machine precision.
Examples of applications of Wynn’s algorithm and other extrapolation procedures can be
found in [12], together with Matlab codes.

6.4. Computing exponents. When given a sequence of steps corresponding to a 3D
walk, the first step is to test if all points belong to the same half-space, determined by a
plane passing through the origin (see our assumption (H)). We choose to loop over all pairs
of steps and test if all the remaining points are on the same side of the plane determined
by the current pair and the origin.

Once we confirm that the current sequence of steps is not contained in a half-space,
we know that the inventory χ has a unique minimum point (which is obviously a critical
point) in the positive octant. We use a numerical optimization procedure in order to
find this minimizer. It is straightforward to compute the gradient and the Hessian of
the inventory χ, therefore a Newton algorithm is applicable. We use the function fmincon
from the Matlab Optimization Toolbox to find the minimizers. In all our computations the
numerical solution satisfies the critical equations (11) with a numerical precision between
10−16 and 10−12. We mention that for cases of interest, exact solutions can be found (using
Maple, for example; see [18, Sec. 2.4]). We choose to work with numerical approximations
in view of the large number of computations involved in our study.

Once the critical point is found, we may compute the coefficients a, b, c of the covariance
matrix and find the associated spherical triangle like described in Theorem 2. Next we
apply the procedure described in Sections 6.2 and 6.3 in order to compute the eigenvalue
of the triangle. The exponent is then computed using the formula (5).

We make available our codes for constructing the triangulation, matrix assembly,
eigenvalue computation and extrapolation procedure. You can access them at the following
link: https://bit.ly/2J4Vf3X.

https://bit.ly/2J4Vf3X 
https://bit.ly/2J4Vf3X
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6.5. Discussion of the computations. We underline that the computation of the critical
points of the inventory function can be computed using symbolic computations. This means
that the angles of the triangles can be computed exactly in terms of algebraic numbers
and elementary functions. We have a Matlab code which can do this for the majority of
the cases we tested and it can be consulted on the webpage associated to this article.

Since the number of models involved in this study is very large (over 11 millions),
we choose to perform our computations in Matlab using floating point arithmetic (16
significant digits of precision). This leads to a significant acceleration of the computations.
The computation of the eigenvalues is done using 7 refinement steps for finite groups
(typically 8 digits of precision) and 5 refinement steps for the infinite groups (6 digits of
precision).

Computations for the models associated to finite groups took a few hours on a laptop
with an i7 processor and 16GB of RAM memory. Computations for the infinite groups
G2, G3, . . . , G12 were performed in a few hours on an 12 cores machine clocked at 3.5Ghz
and 256GB of RAM. The computations for G1 took 52 hours on the same machine.

We underline that the precision for the computation of the elements of the triangle
(points and angles) is always close to machine precision (between 10−12 and 10−16), while
for the eigenvalues we have 8 digits of precision for the finite groups case and 6 digits
of precision for the infinite group case. Even though we have limited precision, this
study allows us to make a clear classification of models with respect to eigenvalues for
the finite groups. For the infinite groups we manage to observe connections between the
combinatorial group and the symmetry group of the associated triangle.

We manage to identify surprising non-Hadamard cases where the associated triangle has
two right angles and therefore, its fundamental eigenvalue and exponent can be computed
explicitly. Moreover, if we want to have more precision for a particular model, it is possible
to compute explicitly the components of the triangle and find the fundamental eigenvalue
and the exponent close to machine precision. For example, we found that the eigenvalue
of the triangle associated to the Kreweras model is

λ1 = 5.159 145 642 470,

where we believe that all digits present are correct. This is very close to the result of
Guttmann [42].

7. Miscellaneous

7.1. Other cones. As we have seen throughout the article, computing critical exponents
for walks in the cone N3 (or in any cone formed by an intersection of three half-spaces,
by a linear transform) requires the computation of the principal eigenvalue of a spherical
triangle.

More generally, we could consider walks confined to an arbitrary cone K in dimension
3 or more (even so the natural and fruitful combinatorial interpretation of positive walks
is lost), and ask whether there exists a closed-form expression for the principal eigenvalue.
However, only very few domains seem to admit such closed-form eigenvalues. Besides
spherical digons and birectangle triangles, there are for instance the revolution cones, see
Figure 17. The first eigenvalue (and in fact the whole spectrum) is described in Lemma 24
of Section A.2 in the appendix.

From an analytic viewpoint, the domains leading to explicit eigenvalues have typically
the property of separation of the variables, see [53, 54] for more details.
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ζ

Figure 17. The revolution cone (or spherical cap) K(ζ) of apex angle ζ

7.2. Total number of walks. Throughout the article we have considered the asymptotics
of the number of excursions (essentially, the coefficients of O(0, 0, 0; t), see (1) and (2)),
but other questions are relevant from an enumerative combinatorics viewpoint, as the
asymptotics of the total number of walks (regardless of the ending position), or equivalently
the coefficients of the series O(1, 1, 1; t).

Let us recall that it is still an open problem to determine, in general, the asymptotics
as n→∞ of the coefficients of O(1, 1, 1; t). Assume that it has the form

[tn]O(1, 1, 1; t) = κ · ρn · n−β · (1 + o(1)). (36)

Recall from [40] that under the hypothesis (H), there exists (x∗, y∗, z∗) ∈ [1,∞)3 such that

min
[1,∞)3

χ = χ(x∗, y∗, z∗),

and then the exponential growth ρ in (36) is given by ρ = χ(x∗, y∗, z∗); compare with (15).
There are essentially three cases for which the critical exponent β in (36) is known:

• Case of a drift in the interior of N3 (β = 0);
• Zero drift (then β = λ

2 −
3
4 , λ being the critical exponent of the excursions (2));

• Case when the point (x∗, y∗, z∗) is in the interior of the domain [1,∞)3, i.e., x∗ > 1,
y∗ > 1 and z∗ > 1 (in that case β = λ).

In the first case (drift with positive entries), the exponent is obviously 0 by the law of
large numbers.

In the second case the exponent β is given by the formula (32) proved in [29]. As recalled
in (31), β is a simple affine combination of λ, namely β = λ

2 −
3
4 .

The last case is proved by Duraj in [32]. The original statement of Duraj is in terms of
the minimum of the Laplace transform of the step set on the dual cone, but it is equivalent
to the one presented above, after an exponential change of variables and using that the
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octant N3 is self-dual. The hypothesis that the point (x∗, y∗, z∗) is an interior point cannot
be easily translated in terms of the drift; note, however, that it contains the case of a drift
with three negative coordinates. The intuition of the formula β = λ is that the drift being
directed towards the vertex of the cone, a typical walk will end at a point close to the
vertex, and thus asymptotically the total number of walks is comparable to the number of
excursions.

Among the more than 11 millions of models, there are of course many examples
corresponding to each of the above cases.

7.3. Walks in the quarter plane and spherical digons. In this paragraph we would
like to briefly explain how the more classical model of walks in the quarter plane enters
into the framework of spherical geometry. In one sentence, spherical triangles become
degenerate and should be replaced by spherical digons, see Figure 18, for which the principal
eigenvalue is known.

Indeed, given a 2D positive random walk {(X(n), Y (n))}, we can choose an arbitrary
1D random walk {Z(n)} and embed the 2D model as a 3D walk {(X(n), Y (n), Z(n))},
with no positivity constraint on the last coordinate. The natural cone is therefore N2×Z,
or after the decorrelation of the coordinates, the cartesian product of a wedge of opening
α and Z. On the sphere S2, the section of the latter domain is precisely a spherical digon
of angle α.

Moreover, the smallest eigenvalue λ1 of a spherical digon is easily computed, see, e.g.,
[56, Sec. 5]:

λ1 =
π

α

(π
α

+ 1
)
.

The formula (5) relating the smallest eigenvalue to the critical exponent gives an exponent
equal to π

α + 3
2 . To find the exponent of the initial planar random walk we have to subtract

1
2 (exponent of an unconstrained excursion in the z-coordinate), which by [29, 18] is the
correct result.

Figure 18. A spherical digon is the domain bounded by two great arcs of circles

7.4. Exit time from cones for Brownian motion. As shown in [28, 6] (see in particular
[6, Cor. 1]), the exit time of a standard d-dimensional Brownian motion from a cone K
behaves when t→∞ as

Px[τ > t] = B1 ·m1

(
x

|x|

)
·
(
|x|2

2

)λ1(K)/2

· t−λ1(K)/2, (37)
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where λ1(K) is equal to

λ1(K) =

√
λ1(C) +

(
1− d

2

)2

+

(
1− d

2

)
and λ1(C) is the principal eigenvalue of the Dirichlet problem on the section C = K∩Sd−1:{

∆Sd−1m = −Λm in C,
m = 0 in ∂C. (38)

In the asymptotics (37), m1 is the (suitably normalized) eigenfunction associated to λ1.
In the particular case of 3D Brownian motion, if the cone K is an intersection of three

half-spaces, the section C becomes a spherical triangle and the exponent in (37) is directly
related to the principal eigenvalue of a spherical triangle, which is the main object of
investigation studied in this paper.

Let us finally comment on the case of non-standard Brownian motion (in arbitrary
dimension d > 2). First, the case of non-identity covariance matrices is easily reduced to
the standard case, by applying a simple linear transform (notice, however, that this implies
changing the initial cone, and therefore the domain of the Dirichlet problem). The situation
is more subtle in the case of drifted Brownian motion: various asymptotic regimes exist,
depending on the position of the drift with respect to the cone and the polar cone [39].
In some regimes the exponent in (37) involves the principal eigenvalue λ1; in some other
cases (e.g., a drift which belongs to the interior of the cone) the exponent is independent
of the geometry of the cone.

7.5. Other methods to approximate the first eigenvalue. We have developed in
Section 6 a finite element method to compute precise approximations of the first eigenvalue.
We would like to briefly mention here two alternative approaches.

First, using the stereographic projection, the 3D eigenvalue problem (6) can be rewritten
as a 2D eigenvalue problem for a different operator. Since the stereographic projection maps
circles onto circles, the new domain is bounded by three arcs of circles and is thus rather
simple. Moreover, this technique has the obvious advantage to work with two variables
instead of three. However, as expected, the eigenvalue problem becomes more complicated
and is not exactly solvable. See [37, 36] for more details (in particular [36, Eq. (2.12) and
Fig. 3]).

Finally, the authors of [51] describe a Monte Carlo method for the numerical computation
of the first eigenvalue of the Laplace operator in a bounded domain with Dirichlet
conditions. It is based on the estimation of the speed of absorption of the Brownian
motion by the boundary of the domain. Theoretically this could certainly be used in our
situation, but as many probabilistic methods, it is hard to expect a precision such as ours
(typically, ten digits).

7.6. Open problems. Besides the open problems listed in Section 9 of [13], let us mention
the following:

Singularity analysis. Is this possible to obtain similar results on non-D-finiteness of
Hadamard models using the Hadamard product of generating functions? See Corollaries 8
and 13 as well as Section 4.3.
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3D Kreweras model. This is clearly the case for which we can find the greatest number
of estimations in the literature. Let us quickly give a chronological list (probably non-
exhaustive):

• [5.15, 5.16] by Costabel (2008, [26])
• 5.159 by Ratzkin and Treibergs (2009, [53, 54])
• 5.1589 by Bostan, Raschel and Salvy (2012, [17])
• 5.162 by Balakrishna (2013, [3])
• 5.1606 by Balakrishna (2013, [4])
• 5.1591452 by Bacher, Kauers and Yatchak (2016, [2])
• 5.159145642466 Guttmann (2017, [42])
• 5.159145642470 by our result

What is the exact value? Is it a rational number?
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Appendix A. Some useful definitions from spherical geometry

A.1. Elementary spherical geometry. Our main source is the book [9] by Berger.
Spherical triangles have been introduced in Definition 2. A spherical digon as on Figure 18
is a domain bounded by two great arcs of circles, see [9, 18.3.8.2].

A natural operation in spherical geometry is to take the polar spherical triangle; see [9,
18.3.8.2] and [9, 18.6.12] for more details.

Definition 20 (polar triangle). Let 〈x, y, z〉 be a spherical triangle in the sense of
Definition 2. Define the triplet (x′, y′, z′) by the conditions 〈x

′, y〉 = 〈x′, z〉 = 0, 〈x′, x〉 > 0,
〈y′, z〉 = 〈y′, x〉 = 0, 〈y′, y〉 > 0,
〈z′, x〉 = 〈z′, y〉 = 0, 〈z′, z〉 > 0.

Then 〈x′, y′, z′〉 is a spherical triangle, called the polar triangle of 〈x, y, z〉.

This transformation is involutive, and the equilateral right triangle is invariant. There
is no simple formula relating the eigenvalues of a spherical triangle to that of its polar
triangle. See Figure 19 for examples.

Interestingly, polar cones already appear in [40] (resp. [39]) to compute the exponential
decay of the survival probability of random walks (resp. the exponential decay and the
critical exponent of the Brownian survival probability) in cones.

A.2. Some properties of the principal eigenvalue. Our main reference here is the
book [25] of Dauge.

Monotonicity and regularity of the eigenvalues.

Lemma 21 (Lemma 18.5 in [25]). Let T1 and T2 be two simply connected domains on S2.
If T1 ⊂ T2 then

λ1(T1) > λ1(T2).
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In particular, as any spherical triangle is included in a half-sphere (whose principal
eigenvalue equals 2), one has the natural and universal lower bound

λ1(T ) > 2

for any spherical triangle T . (By (5), this implies that the critical exponent λ should be
bigger than 5

2 .)
Classical arguments in perturbation theory for operators [46] state that analytic

perturbations of the operator induce analytic perturbations of the eigenvalues, see in
particular [44, Lem. 2.1] in our context. It is possible to find an explicit expression of
the first derivative of the eigenvalue using results from [43].

Lemma 22. The function λ1(T ) = λ1(α, β, γ) is analytic in the angles α, β, γ.

A consequence of Lemma 22 is that a generic triangle has a non-rational principal
eigenvalue λ1.

Lemma 23. As one of the angles goes to 0, λ1 goes to infinity.

Proof. Lemma 23 is a simple consequence of Lemma 21 and the fact that each spherical
triangle can be included in any of the digons determined by its angles. Indeed, suppose
the triangle T has an angle equal to α. Then T is included in the digon Dα with angle α
and

λ1(T ) > λ1(Dα) =
π

α

(π
α

+ 1
)
.

We can notice immediately that if α→ 0 then the first eigenvalue of T goes to infinity. �

Revolution cones. We now compute the spectrum of a revolution cone (or solid angle) in
arbitrary dimension d > 2. Introduce some notation. We fix a half-axis A in Rd and for
any x 6= 0 denote by θ(x) ∈ [0, π] the angle between the axes A and ~x. By definition, the
revolution cone with apex angle ζ is (see Figure 17)

K(ζ) = {x ∈ Rd \ {0} : θ(x) ∈ (0, ζ)}. (39)

Its section on the sphere is the circle C(ζ) = K(ζ) ∩ S2.

Lemma 24 (Proposition 18.10 in [25]). The spectrum of C(ζ) is the set of positive
ν(ν + d − 2) for which there is m ∈ N such that Pmν (cos ζ) = 0, where Pmν denotes the
mth Legendre function of the first kind.

Notice that [25, Proposition 18.10] computes the spectrum of the cone K(ζ), not of
its section C(ζ). However the eigenvalues λi(K) of a cone K are strongly related to the
eigenvalues of its section C = K ∩ S2, namely (see, e.g., [25, 18.3])

λi(K) =

√
λi(C) +

(
1− d

2

)2

+

(
1− d

2

)
. (40)

A few remarkable spherical triangles. Consider triangles with angles(
π

p
,
π

q
,
π

r

)
, with p, q, r ∈ N \ {0, 1}.

As recalled in [7, 25], the only possible triplets are
• (2, 3, 3) tetrahedral group
• (2, 3, 4) octahedral group
• (2, 3, 5) icosahedral group
• (2, 2, r) dihedral group or order 2r > 4
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Each triplet above corresponds to a tiling of the sphere. See Figures 6 and 11 for a few
examples. Denote by T(p,q,r) the associated triangle when it exists.

Lemma 25 (Theorem 6 in [7]). The eigenvalues of T(p,q,r) have the form ν(p,q,r)(ν(p,q,r)+1),
with (`1, `2 ∈ N)

• ν(2,3,3) = 6 + 3`1 + 4`2
• ν(2,3,4) = 9 + 6`1 + 6`2
• ν(2,3,5) = 15 + 6`1 + 10`2
• ν(2,2,r) = r + 1 + 2`1 + r`2

Appendix B. Remarks on the exponent of mixings of two laws

Take a random walk in 2D with jumps (pi,j). Introduce the (weighted) inventory

χp(x, y) =
∑

pi,jx
iyj .

Define (x0, y0) as the unique solution to ∂χ
∂x = ∂χ

∂y = 0. Then, introduce the new jumps

p0i,j = pi,j
xi0y

j
0

χ(x0, y0)
.

By construction the new jumps have zero drift. Define the correlation factor

corp =

∂2χ
∂x∂y√
∂2χ
∂x2

∂2χ
∂y2

(x0, y0) =

∑
ijp0i,j√∑

i2p0i,j ·
∑
j2p0i,j

.

The exponent of the excursion sequence is

λp =
π

arccos(−corp)
+ 1.

Consider now two step sets (pi,j) and (qi,j). Their mixing, with t ∈ [0, 1], is (mi,j) given
by

mi,j = tpi,j + (1− t)qi,j .
Assume that the critical point (x0, y0) is the same for (pi,j) and (qi,j). Then it is also

that of m, which has the correlation factor

corm =
t
∑
ijp0i,j + (1− t)

∑
ijq0i,j√

(t
∑
i2p0i,j + (1− t)

∑
i2q0i,j) · (t

∑
j2p0i,j + (1− t)

∑
j2q0i,j)

. (41)

If the models (pi,j) and (qi,j) have the same variances

u =
∑

i2p0i,j =
∑

i2q0i,j , v =
∑

j2p0i,j =
∑

j2q0i,j

then the formula (41) reduces to

corm = tcorp + (1− t)corq.
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