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On a Feynman-Kac approach to growth-fragmentation semigroups and their asymptotic behaviors

Introduction

Imagine a population, for instance of cells or of bacteria, where individuals grow and split as time passes, and such that the evolution of each individual only depends on its own mass, without interaction between different individuals. Assume also that when a fragmentation event happens, the sum of the masses of daughters resulting from the split equals the mass of the mother before splitting. In other words, the total mass is a preserved quantity when a fragmentation occurs, and grows between consecutive fragmentation events. The rate of growth of an individual may depend on its mass, and the rate at which a mother produces daughters may also depend both on the mass of the mother just before splitting and on the masses of its daughters right after the split.

Growth-fragmentation equations provide a mathematical model for such dynamics, by describing the evolution of concentrations u(t, y) of individuals as a function of time * Institute of Mathematics, University of Zurich, Switzerland t ≥ 0 and mass y > 0. They can be expressed in the form ∂ t u(t, y) + ∂ y (c(y)u(t, y)) + K(y)u(t, y) = ∞ y k(z, y)u(t, z)dz, [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] where c(y) describes the growth rate as a function of the mass, k(z, y) the rate at which a daughter particle with mass y appears as the result of the fragmentation of a mother particle with mass z > y. Finally, K(y) is the total fragmentation rate of individuals with mass y, and the assumption of conservation of mass at fragmentation events thus translates into xK(x) =

x 0 yk(x, y)dy for all x > 0.

(

) 2 
In this work, we rather deal with the weak form of (1) and focus on initial conditions of Dirac type. Namely, one introduces the operator

Af (x) = c(x)f (x) + x 0 f (y)k(x, y)dy -K(x)f (x), x > 0, (3) 
which is defined on some domain D A of smooth functions f : (0, ∞) → R. Under fairly simple general assumptions on the rates c and k that will be introduced later on, A is the infinitesimal generator of a unique strongly continuous positive semigroup (T t ) t≥0 , that is

dT t f (x) dt = A(T t f )(x) , f ∈ D A . (4) 
In this setting, the measure µ t (x, dy) on (0, ∞) such that

T t f (x) = (0,∞)
f (y)µ t (x, dy) := µ t (x, •), f should be interpreted informally as µ t (x, dy) = u(t, y)dy and (4) as the weak version of (1) for the initial condition µ 0 (x, dy) = u(0, y)dy = δ x (dy).

In general, there is of course no explicit expression for the growth-fragmentation semigroup (T t ) t≥0 , and many works in this area are concerned with its large time asymptotic behavior. See in particular [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF][START_REF] Banasiak | Asynchronous exponential growth of a general structured population model[END_REF][START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF][START_REF] María | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF][START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF][START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] and further references therein. Typically, one expects that under adequate assumptions on the rates of growth and of fragmentation, there exists a principal eigenvalue ρ ∈ R such that lim t→∞ e -ρt T t f (x) = h(x) ν, f , x > 0, [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF] at least for every continuous and compactly supported function f : (0, ∞) → R. Here, ν(dy) is a Radon measure on (0, ∞), which is often referred to as the asymptotic profile, and h some positive function. We stress that (5) may well fail; see for instance Doumic and Escobedo [START_REF] Doumic | Time asymptotics for a critical case in fragmentation and growth-fragmentation equations[END_REF] and Gabriel [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF].

When [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF] holds, it is further important to be able to estimate the speed of convergence. Indeed, say for ρ > 0, an indefinite exponential growth is of course unrealistic in practice, and the growth-fragmentation equation can only be pertinent for describing rather early stages of the evolution of a population when certain effects such as competition between individuals for space or resources can be neglected. As a consequence, the notions of principal eigenvalue and of asymptotic profile are only relevant for applications when the convergence in (5) occurs fast enough. Spectral theory for semigroups and generators yields a well-established and classical framework for establishing the validity of [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF], again provided that the growth and fragmentation rates are properly chosen. In short, if one can find positive eigenelements, namely a Radon measure ν and a positive function h on (0, ∞), such that for some ρ ∈ R: Ah = ρh , A * ν = ρν, and ν, h = 1, where A * denotes the dual of A, then the so-called general relative entropy method (see in particular Chapter 6 in Perthame [START_REF] Perthame | Transport equations in biology[END_REF] and Michel et al. [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF]) shows that (5) holds.

In turn, explicit criteria in terms of the rates of growth c and of fragmentation k that ensure the existence of positive eigenelements, have been obtained by Michel [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF] and by Doumic and Gabriel [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF]. These works rely crucially on the Krein-Rutman theorem, a version of the Perron-Frobenius theorem for positive compact operators. On the other hand, exponential rate of convergence in ( 5) is essentially equivalent to the existence of a spectral gap. This has been obtained under specific assumptions on the growth and fragmentation rates notably by Perthame and Ryzhik [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF], Laurençot and Perthame [START_REF] Laurençot | Exponential decay for the growthfragmentation/cell-division equations[END_REF], Cáceres et al. [START_REF] María | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF] and Mischler and Scher [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF].

Quite recently, together with A.R. Watson [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], we devised a probabilistic approach to (5), which circumvents spectral theory of semigroups and further provides probabilistic expressions for the various quantities of interest. This requires some assumptions on the growth rate c and the fragmentation k that we now introduce. First, the function x → c(x)/x is continuous, positive and bounded on (0, ∞).

In particular c(x)/x is bounded away from 0 for x in any compact subset of (0, ∞), but may tend to 0 as x goes to 0 and/or ∞. Second, writing k(x, y) := x -1 yk(x, y) for every 0 < y < x,

the map (0, ∞) → L 1 (dy) x → k(x, •) is continuous and sup x>0 k(x, •) L 1 (dy) = K ∞ < ∞. (7) 
Our probabilistic approach relies on an "instrumental" Markov process X = (X t ) t≥0 with infinitesimal generator

Gf (x) := c(x)f (x) + x 0 (f (y) -f (x)) k(x, y) dy. ( 8 
)
In words, X describes a mass that grows continuously with rate c(•) and makes negative jumps at random times which should be thought of as fragmentation events. More precisely, the rate of negative jumps is K(•), and if a jump occurs when X is about to reach x, then its value immediately after the jump has the law K(x) -1 k(x, y)dy. So the dynamics of X can be thought of as that of the mass of a distinguished individual in the population, such that at each fragmentation event, the distinguished daughter is picked from her sibling by size-biased sampling.

Assumption [START_REF] Bouguet | A probabilistic look at conservative growth-fragmentation equations[END_REF] guaranties that the total jump rate (2) remains bounded, so the jump times of X never accumulate. One says X is piecewise deterministic (see [START_REF] Cloez | Probabilistic and piecewise deterministic models in biology[END_REF] and references therein), in the sense that the trajectory t → X t is driven by the steady flow velocity c between two consecutive jumps, and jump times and locations are the sole source of randomness. We finally assume that the Markov process X is irreducible, [START_REF] Champagnat | Exponential convergence to quasistationary distribution and Q-process[END_REF] that is, for every x, y > 0, the probability that the Markov process started from x visits y > 0 is strictly positive. Roughly speaking, this means that there are no strict subintervals I of (0, ∞) that form traps for X, in the sense that once the path enters I, it cannot exit from I. It can be seen that ( 9) is equivalent to a simple non-degeneracy assumption on the fragmentation rate kernel k, namely for every x > 0, there exist α < x < β with x α k(β, y)dy > 0; [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF] see the forthcoming Lemma 3.1(i). We also recall that the absolute continuity of the fragmentation rates ensures aperiodicity of X (which might fail otherwise, as for instance in the case of equal mitosis; see e.g. [START_REF] Doumic | Explicit solution and fine asymptotics for a critical growth-fragmentation equation[END_REF]).

Lemma 2.2 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] shows that the growth-fragmentation semigroup T t can then be given by a Feynman-Kac formula (we refer to [START_REF] Del | Feynman-Kac formulae. Probability and its Applications[END_REF] for treatise on this topic in discrete time):

T t f (x) = xE x E t f (X t ) X t , with E t := exp t 0 c(X s ) X s ds , ( 11 
)
where E x stands for the expectation when X starts at X 0 = x. The first hitting time of y > 0 by X, H(y) := inf {t > 0 :

X t = y} , ( 12 
)
and the Laplace transform

1 L x,y (q) := E x e -qH(y) E H(y) , H(y) < ∞ , q ∈ R, (13) 
then play a key role for the asymptotic behavior of T t as we shall now explain. Note that L x,y is a non-increasing convex function with values in (0, ∞], with lim q→∞ L x,y (q) = 0 and lim q→-∞ L x,y (q) = ∞. In particular, it possesses a right-derivative L x,y (q) at every point q of its effective domain, i.e. with L x,y (q) < ∞. Defining the Malthus exponent by

λ := inf{q ∈ R : L x,x (q) < 1} (14) 
(actually, this definition does not depend on x > 0; see Proposition 3.1 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]), the main results of [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] can be summarized as follows; see Theorem 5.3 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]. First, if

L x,x (λ) = 1 and -L x,x (λ) < ∞ (15) 
(again, this condition does not depend on x; see Lemma 5.2 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]), then (5) holds with ρ = λ. Moreover, the asymptotic profile ν and the function h are given for some arbitrarily chosen x 0 > 0 by h(y) = yL y,x 0 (λ) and ν(dy

) = dy h(y)c(y)|L y,y (λ)| , y > 0. ( 16 
)
Second, if there exists some q < λ and x > 0 with L x,x (q) < ∞,

then the convergence (5) takes place exponentially fast. Specifically, there exists

β > 0 such that e -λt T t f (x) = h(x) ν, f + o(e -βt ) as t → ∞ (18) 
for every continuous function f with compact support and every x > 0. We stress that, by convexity of L x,x , ( 17) is of course a stronger requirement than [START_REF] Doumic | Time asymptotics for a critical case in fragmentation and growth-fragmentation equations[END_REF].

The idea of representing a non-Markovian semigroup in terms of some (possibly timeinhomogeneous) Markov process and then deriving the asymptotic behavior of the former from ergodic properties of the latter, has been used previously in the literature; see e.g. [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized doeblin's conditions[END_REF][START_REF] Champagnat | Exponential convergence to quasistationary distribution and Q-process[END_REF][START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF][START_REF] Cloez | Probabilistic and piecewise deterministic models in biology[END_REF] and references therein. In the setting of branching processes, the so-called many-to-one formulas and spine decompositions enable to express expectations of linear functionals of the system in terms of a single "typical" individual, where typical may be taken in the sense of an individual chosen uniformly at random in the system (like e.g. in [START_REF] Bansaye | Limit theorems for Markov processes indexed by continuous time Galton-Watson trees[END_REF][START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized doeblin's conditions[END_REF][START_REF] Marguet | A law of large numbers for branching markov processes by the ergodicity of ancestral lineages[END_REF]), or according to some well-chosen bias (like e.g. in [START_REF] Engländer | Strong law of large numbers for branching diffusions[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF]). These approaches are mostly efficient when some information about the non-Markovian semigroup or its eigenelements is already available. The approach via the Feynman-Kac formula in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] and further developed in the present work differs conceptually, in the sense that the "instrumental" Markov process X is not meant to describe the evolution of a "typical" individual. An important feature is that its evolution is given directly in terms of the parameters c and k of the model, without requiring a priori information about the eigenelements. The price to be paid is that the analysis of the Feynman-Kac formula is more involved; however it can be completed in a fairly great generality.

We have here two main purposes. First, we shall observe that the condition (15) is also necessary for the Malthusian behavior [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF], and in particular, whenever the latter holds, the principal eigenvalue ρ is always given by the Malthus exponent defined by [START_REF] Del | Feynman-Kac formulae. Probability and its Applications[END_REF]. We shall actually establish an even slightly stronger result. Theorem 1.1. Suppose that (6), ( 7) and (9) hold, and further that for some ρ ∈ R:

(i) there exist x 1 > 0 and a continuous function f : (0, ∞) → R + with compact support and f ≡ 0, such that lim sup t→∞ e -ρt T t f (x 1 ) < ∞, (ii) there exist x 2 > 0 and a continuous function g : (0, ∞) → R + with compact support, such that lim inf t→∞ e -ρt T t g(x 2 ) > 0.

Then ρ = λ, [START_REF] Doumic | Time asymptotics for a critical case in fragmentation and growth-fragmentation equations[END_REF] holds and thus also the Malthusian behavior [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF] with [START_REF] Doumic | Explicit solution and fine asymptotics for a critical growth-fragmentation equation[END_REF].

The assumptions in [START_REF] Doumic | Time asymptotics for a critical case in fragmentation and growth-fragmentation equations[END_REF] and [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] are given in terms of the Laplace transform L x,x rather than directly in terms of the coefficients c and k as one might have wished, and the second purpose of the present work is to remedy (at least partly) this problem by providing the following simple criterion. Theorem 1.2. Suppose that (6), ( 7) and (9) hold. If the Malthus exponent λ defined in [START_REF] Del | Feynman-Kac formulae. Probability and its Applications[END_REF] and the growth rate c fulfill lim sup

x→0+ c(x)
x < λ and lim sup

x→∞ c(x) x < λ, ( 19 
)
then the exponential convergence (18) holds.

Theorem 1.2 might seem unsatisfactory, as its requirements are not given only in terms of the rates c and k, but also involve the Malthus exponent λ. However, there are simple explicit conditions in terms of c and k only that ensure [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF]. In particular, it is easily seen that λ > inf x>0 c(x)/x when X is recurrent and c is not linear, cf. Proposition 3.4(ii) in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]. Thus [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] is then fulfilled whenever

lim x→0+ c(x) x = lim x→∞ c(x) x = inf x>0 c(x) x . ( 20 
)
In turn, explicit conditions in terms of c and k guarantying recurrence for X are easy to obtain, as we shall further discuss in Section 3.5(i-ii). This yields explicit criteria for [START_REF] Engländer | Strong law of large numbers for branching diffusions[END_REF] that enables us to treat cases than were not covered previously in the literature.

It may be interesting to discuss a bit further Criterion [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF]. Requesting an upperbound for the growth rate at infinity should not come as a surprise as similar assumptions are made in the literature to prevent the formation of too large particles. For instance, Doumic Jauffret and Gabriel [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] request (among other assumptions) that lim x→∞ xK(x)/c(x) = ∞, which forces in our setting lim x→∞ c(x)/x = 0 since we also assumed in [START_REF] Bouguet | A probabilistic look at conservative growth-fragmentation equations[END_REF] that the total rate of fragmentation K remains bounded; see Equation [START_REF] Deimling | Nonlinear functional analysis[END_REF] in [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF], and also Equation [START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] in Balagué et al. [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF]. On the other hand, imposing an upper-bound for the growth rate at 0+ may be more surprising, as on the contrary, it is often assumed in the literature that the growth for small particles should be strong enough in order to prevent shattering (see notably Equation [START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] in [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] and Equation [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF] in [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF]). One might be further puzzled by the fact that the fragmentation rate k does not appear explicitly in [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF]; however, the value of the Malthus exponent λ depends of course both on c and k.

Let us also try to offer a rather informal interpretation of [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF]. The Feynman-Kac formula provides a representation of the growth-fragmentation semigroup (T t ) t≥0 in terms of a weighted particle (X t , E t ), where X t is the location of the particle at time t and E t its weight. The weight thus increases at rate c(x)/x when the particle is located at x, and in this setting, the Malthus exponent λ can be interpreted as the long-time average rate of increase of the weight. Then [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] means that the weight of the particle increases more slowly than on average when the particle is either close to 0 or close to ∞. Informally, the particle has thus a more important contribution to the Feynman-Kac formula when it stays away from 0 and from ∞, that is essentially when it remains confined in a compact interval. And it is precisely for processes staying in compact spaces that exponential ergodicity is expected.

In this direction, we observe that Criterion [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] bears some striking similarity with Theorem 3.3 of Steinsaltz and Evans [START_REF] Steinsaltz | Quasistationary distributions for onedimensional diffusions with killing[END_REF] and Theorem 2.6 of Kolb and Steinsaltz [START_REF] Kolb | Quasilimiting behavior for one-dimensional diffusions with killing[END_REF] about Yaglom convergence for linear diffusions with killing; see also Theorem 4.3 in [START_REF] Kolb | Quasilimiting behavior for one-dimensional diffusions with killing[END_REF] which states that convergence to a quasi-stationary distribution always holds when the killing rate at infinity is larger than the principal eigenvalue. Even though these works do not specifically consider spectral gap or exponential rate of convergence, they suggest that Criterion (19) could be rather sharpe. We stress however that exponential convergence may hold even when [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] fails; for instance counter-examples can be built from Proposition 7.1 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF].

The rest of this article is organized as follows. The two theorems are established in the next two sections, where the main ideas of the proofs are sketched first. We also gather in Section 3.5 miscellaneous comments about Theorem 1.2, notably discussing further the connection with earlier results in the literature.

We conclude this introduction by recalling that the Feynman-Kac functional E defined in ( 11) is multiplicative, in the sense that for every s, t ≥ 0, there is the identity

E t+s = E t × (E s • θ t ),
where E s • θ t stands for the functional E s evaluated for the shifted path X • θ t = X t+• . In the sequel, this basic property will be often used without specific mentions, notably in combination with the Markov property.

Proof of Theorem 1.1

Throughout this section, we always assume that ( 6), ( 7) and ( 9) hold. The arguments for proving Theorem 1.1 belong to the same vein as in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], with the difference that the role of remarkable martingales there is rather played here by supermartingales. Specifically, we shall first establish some properties of the first hitting time H(y) and of its Laplace transform L x,y , which are then applied to introduce supermartingales related to the Feynman-Kac formula. Then we shall use the latter and introduce another oneparameter family of (possibly defective) Markov process Y (q) by probability tilting. This yields a more direct probabilistic representation the growth-fragmentation semigroup, and analyzing the behavior of Y (q) via the regeneration property at return times then readily yields the conclusion.

We start by considering the motion t → x(t) of a Lagrangian particle in the steady flow velocity c, viz. dx(t) = c(x(t))dt, which governs the dynamics of the piecewise deterministic process X between consecutive jump times, and introduce some notation in this setting that will be useful in several parts of this work. For 0 < x < y, denote the travel time from x to y by

s(x, y) := y x dz c(z) ,
which obviously decreases in the first variable and increases in the second one. Consider also the event Λ x,y that process X started at x reaches y before making any jump. Since K(z) is the total jump rate when the process is located at z, we have

p(x, y) := P x (Λ x,y ) = exp - s(x,y) 0 K(x(t))dt = exp - y x K(z) c(z) dz . ( 21 
)
This is a positive quantity which increases with x and decreases with y.

We proceed with the following uniform lower-bound for the cumulative distribution functions of first hitting times [START_REF] Cloez | Probabilistic and piecewise deterministic models in biology[END_REF].

Lemma 2.1. For every 0 < a < b, there exists t(a, b) ∈ R + such that inf x,y∈[a,b] P x (H(y) < t(a, b)) > 0.
Proof. Consider first the process X started from b. The irreducibility assumption [START_REF] Champagnat | Exponential convergence to quasistationary distribution and Q-process[END_REF] ensures that we can find two real numbers q(a, b) ∈ (0, 1) and h(a, b) > 0 such that

P b (H(a) < h(a, b)) > q(a, b).
Next consider the process X started from an arbitrary point x ∈ [a, b]. By focusing on trajectories which first hit b before having any jump, then need an amount of time less than h(a, b) for traveling from b to a, and finally hit y ∈ [a, b] before having any further jump, we deduce from an application of the strong Markov property that there is the lowerbound

P x (H(y) < 2s(a, b) + h(a, b)) > p(a, b) 2 q(a, b) > 0.

This proves our claim with t(a, b) = 2s(a, b) + h(a, b).

Next, recall the notation (13) for the Laplace transform L x,y , ( 14) for the Malthus exponent, and fix x 1 > 0 arbitrarily. Lemma 2.2. For every q ≥ λ, the function

q : x → L x,x 1 (q),
x > 0, is bounded away from 0 and from ∞ on every compact interval of (0, ∞).

Proof. We first consider the lower-bound and assume to start with that q > 0. We then have plainly q (x) ≥ v q (x, x 1 ) := E x e -qH(x 1 ) , H(x 1 ) < ∞ . Fix a > 0 arbitrarily small and b > 0 arbitrarily large, with a < x 1 < b. Lemma 2.1 ensures the existence of t(a, b) > 0 and p > 0 such that, for all x, y ∈ [a, b],

v q (x, y) ≥ E x e -qH(y) , H(y) < t(a, b) ≥ pe -qt(a,b) .
A fortiori, inf a≤x≤b q (x) > 0.

The case when q ≤ 0 is somewhat simpler: we can use q (x) ≥ P x (H(x 1 ) < ∞) , so Lemma 2.1 applies directly and yields inf a≤x≤b q (x) > 0.

We next turn our attention to the upper-bound; the argument does not depend on the sign of q. The assumption q ≥ λ and the very definition [START_REF] Del | Feynman-Kac formulae. Probability and its Applications[END_REF] entail that L x 1 ,x 1 (q ) < 1 for every q > q. Equation ( 16) in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] states that then L x,x 1 (q )L x 1 ,x (q ) < 1 for every x > 0. By right-continuity of the functions L x,y , we have

q (x) = L x,x 1 (q) ≤ 1/L x 1 ,x (q),
and since the first part of the proof shows that x → L x 1 ,x (q) is bounded away from 0 for x ∈ [a, b], we conclude that sup a≤x≤b q (x) < ∞.

Theorem 4.4 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], which states that if L x,x (λ) = 1, then the process e -λt λ (X t )E t t≥0 is a martingale, is a cornerstone of the probabilistic approach which is developed there.

Here is a version of the latter in terms supermartingales. Lemma 2.3. For every q ≥ λ, the process

S (q) t := e -qt q (X t )E t , t ≥ 0 is a P x -supermartingale for every x > 0. Proof. Write N t := #{0 < s ≤ t : X s = x 1 }, t ≥ 0
for the process which counts the number of visits of X to x 1 as time passes, and

R n := inf{t > 0 : N t = n}, n ≥ 1
for the instant when X returns to x 1 for the n-th time. Write also (F t ) t≥0 for the natural filtration of X and recall that the return times R n are (F t )-stopping times. Further, writing G n := F Rn , we know that for every t ≥ 0, N t + 1 is a (G n )-stopping time and the first return to x 1 after time t can be expressed as

D t := inf{s > t : X s = x 1 } = R Nt+1 .
On the one hand, we see from the Markov property at time t and the definition of the function q in Lemma 2.2 that for every x > 0,

S (q) t = E x e -qDt E Dt 1 {Dt<∞} | F t = E x e -qR N t +1 E R N t +1 1 {R N t +1 <∞} | F t . (22)
On the other hand, the strong Markov property and the fact that L x 1 ,x 1 (q) ≤ 1 (from the definition [START_REF] Del | Feynman-Kac formulae. Probability and its Applications[END_REF] and our assumption q ≥ λ) entail that for every x > 0,

e -qRn E Rn 1 {Rn<∞} , n ≥ 1 is a P x -supermartingale in the filtration (G n ) n≥1 . Since for s ≤ t, N s + 1 ≤ N t + 1 are two (G n )-
stopping times, it follows from the optional sampling theorem for nonnegative supermartingales that

E x e -qR N t +1 E R N t +1 1 {R N t +1 <∞} | G Ns+1 ≤ e -qR Ns+1 E R Ns+1 1 {R Ns+1 <∞} .
Then on both sides, take the conditional expectation given F s , which is a sub-algebra of F Ds = G Ns+1 . We get from ( 22) (applied at time s rather than t)

E x e -qR N t +1 E R N t +1 1 {R N t +1 <∞} | F s ≤ S (q) s .
We conclude the proof by using once again [START_REF] Kolb | Quasilimiting behavior for one-dimensional diffusions with killing[END_REF] and the so-called tower property of conditional expectations on the left-hand.

The supermartingale S (q) in Lemma 2.3 enables us to introduce a possibly defective (i.e. possibly with finite lifetime ζ) càdlàg Markov process Y (q) = (Y (q) t ) 0≤t<ζ with distribution denoted by P (q) as follows. For every t ≥ 0 and every nonnegative functional F defined on Skorokhod's space D [0,t] of càdlàg paths ω : [0, t] → (0, ∞), one sets

E (q) x [F ((Y (q) s ) 0≤s≤t ), ζ > t] = 1 q (x) E x [S (q) t F ((X s ) 0≤s≤t )],
x > 0.

We stress that the distribution of (Y (q) s ) 0≤s≤t under the conditional law P (q)

x (• | ζ > t) is absolutely continuous with respect to that of (X s ) 0≤s≤t under P x , and as a consequence, Y (q) inherits irreducibility from (9). Lemma 2.4. (i) Suppose that the assumption (i) of Theorem 1.1 holds. Then ρ ≥ λ.

(ii) Suppose further that the assumption (ii) of Theorem 1.1 also holds, and set Y := Y (ρ) . Then there exists b > 0 and s > 0 sufficiently large, such that

lim inf t→∞ P (ρ) b (Y r = b for some r ∈ [t, t + s]) > 0.
Proof. (i) Suppose ρ < λ and pick any q ∈ (ρ, λ). On the one hand, since q > ρ, assumption (i) of Theorem 1.1 entails that

∞ 0 e -qt T t f (x 1 )dt < ∞
for some x 1 > 0 and some continuous function f : (0, ∞) → R + with f ≡ 0. On the other hand, as q < λ, we have L x 1 ,x 1 (q) ≥ 1, and the assertion above contradicts the fact that then for every f : (0, ∞) → [0, ∞) continuous with f ≡ 0, we must have

∞ 0 e -qt T t f (x)dt = ∞, see Proposition 3.3 in [6].
(ii) Thanks to (i), we may now take q = ρ. Note from the very definition of Y that the Feynman-Kac formula [START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] can be translated as follows: for every x > 0 and every continuous and compactly supported function f : (0, ∞) → R, there is the identity

e -ρt x (x) T t f (x) = E (ρ) x f (Y t ) Y t (Y t ) , ζ > t , (23) 
with := ρ . Combining this with assumption (ii) of Theorem 1.1 and the fact that, thanks to Lemma 2.2, remains bounded away from 0 on compact intervals of (0, ∞), we deduce that lim inf t→∞

P (ρ) x 2 (Y t ∈ [a, b], ζ > t) > 0, (24) 
for any 0 < a < b such that Supp(g) ⊆ [a, b].

On the other hand, recall the notation from the first paragraph in the proof of Lemma 2.1 and notably the definition of p(x, y) in ( 21), and for every x ∈ [a, b], consider the probability p (ρ) (x) that process Y started at x reaches b at time s(x, b), before dying or making any jump. The obvious bound S (ρ) t ≥ (X t ) exp(-ρ + t) (where ρ + stands for the positive part of ρ) yields

p (ρ) (x) = 1 (x) E x S (ρ) s(x,b) , X has no jump before time s(x, b) ≥ (b) (x) exp -ρ + s(x, b) p(x, b) ≥ (b) sup [a,b] exp -ρ + s(a, b) p(a, b).
Again by Lemma 2.2 and the first paragraph in the proof of Lemma 2.1, the right-hand above is positive, hence inf

[a,b] p (ρ) > 0.
We now see from the Markov property of Y that

P (ρ) x 2 (Y r = b for some r ∈ [t, t + s(a, b)]) ≥ inf [a,b] p (ρ) × P (ρ) x 2 (Y t ∈ [a, b], ζ > t),
and then, combining with [START_REF] Marguet | A law of large numbers for branching markov processes by the ergodicity of ancestral lineages[END_REF], that lim inf t→∞

P (ρ) x 2 (Y r = b for some r ∈ [t, t + s(a, b)]) > 0.
Recalling that Y is irreducible and applying the strong Markov property at time H Y (b) completes the proof.

We readily deduce from Lemma 2.4 the following Corollary 2.5. Under the assumptions (i) and (ii) of Theorem 1.1, the Markov process Y = Y (ρ) is point-recurrent and positive, that is

E (ρ) x (H Y (y)) < ∞ for every x, y > 0,
where H Y (y) := inf{t ∈ (0, ζ) : Y t = y} stands for the first hitting time of y by the process Y , with the usual convention that inf ∅ = ∞.

Proof. We start by observing from Lemma 2.4(ii) that b must be a recurrent state for Y , i.e. b -a.s., in contradiction with Lemma 2.4(ii). By the strong Markov property at return times, the set of passage times at b, {t ≥ 0 : Y t = b} is regenerative, i.e. it can be expressed as the set of partial sums of a sequence of independent copies of the variable H Y (b). Its so-called renewal function is given by

P (ρ) b (H Y (b) < ∞) = 1. Indeed, if we had P (ρ) b (H Y (b) = ∞) > 0,
U (t) := E (ρ) b (Card{r ≤ t : Y r = b}) , t ≥ 0.
Choose s > 0 as in Lemma 2.4(ii), and observe that

U (t + s) -U (t) ≥ P (ρ) b (∃r ∈ (t, t + s] : Y r = b) . Recall from Blackwell's renewal theorem that U (t + s) -U (t) ∼ s/E (ρ) b (H Y (b))
as t → ∞, and Lemma 2.4(ii) therefore implies that

E (ρ) b (H Y (b)) < ∞.
Since Y is irreducible, the conclusion of the statement follows.

We now have all the ingredients needed to prove Theorem 1.1. Indeed, Corollary 2.5 implies that under the assumptions (i) and (ii) of Theorem 1.1, Y cannot be defective, i.e. P (ρ) x (ζ = ∞) = 1. That is, equivalently, E x (S (ρ) t ) = (x) for all t ≥ 0, and since a supermartingale with a constant expectation must be a martingale, S (ρ) is a P xmartingale for every x > 0.

Then, point-recurrence for Y gives for every x > 0

1 = lim t→∞ P (ρ) x (H Y (x) ≤ t) = lim t→∞ 1 (x) E x [S (ρ) t , H(x) ≤ t].
On the other hand, the martingale property of S (ρ) under P x and the optional sampling theorem yield

E x [S (ρ) t , H(x) ≤ t] = E x [S (ρ) H(x) , H(x) ≤ t] = (x)E x [e -ρH(x) E H(x) , H(x) ≤ t].
We deduce by monotone convergence that

L x,x (ρ) = E x [e -ρH(x) E H(x) , H(x) < ∞] = 1,
which implies both that λ = ρ and the first condition in (15) holds.

We now see that the function = ρ = λ here is the same as that in Section 4 of [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], the martingale S (ρ) coincides with the martingale M there, and finally, the Markov process Y here is the same as that in Section 5 of [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]. Recall from Corollary 2.5 that Y is positive recurrent, and we conclude from Lemma 5.2(i) in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] that the right-derivative of the Laplace transform L x,x (•) at λ is necessarily finite, which is the second condition in [START_REF] Doumic | Time asymptotics for a critical case in fragmentation and growth-fragmentation equations[END_REF]. The proof of Theorem 1.1 is now completed.

Proof of Theorem 1.2

Our goal in this section is to check that, when the assumptions of Theorem 1.2 are fulfilled, then (17) holds, as the exponential convergence then follows from Theorem 1.1 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]. This will be achieved in three main steps.

To start with, we work on a compact interval [a, b], where 0 < a < b are given, and consider the first exit-time

σ(a, b) := inf{t > 0 : X t ∈ [a, b]}.
We first discuss irreducibility for the process killed when exiting from [a, b], which is a necessary preamble for the rest of our analysis.

We then verify that the Krein-Rutman theorem can be applied in this compact setting, by analyzing the trajectories of X. This yields a principal eigenvalue ρ a,b for the system where particles are killed when exiting [a, b], and a corresponding positive eigenfunction h a,b . We then construct useful martingales from the latter, which in turn will enable us to compute certain expectations by application of optional sampling.

For the next step, we fix the upper-boundary point b large enough, and let the lowerboundary point a tend to 0+. We shall establish the existence of γ < λ and a nondegenerate function g : (0, b] → R + such that the process g(X t )E t e -γt 1 {t<H(b)} is a supermartingale.

Finally, ( 17) is established by putting the pieces together. In short, we pick a large enough interval [a, b], q < λ close enough to the Malthus exponent λ, decompose the excursion of the process away from its starting point at certain first-exit times, and estimate the various pieces using the preceding steps.

Irreducibility in compact intervals

We start by addressing the slightly technical question of irreducibility. Even when X is irreducible, it may happen that for some 0 < a < b, there exist two states x < y both in (a, b) such that no path of X started from y can reach x without exiting first from [a, b]. When this occurs, the process killed at time σ(a, b) is then no longer irreducible, and this creates an obstacle for our analysis. Recall however that the probability that X started from x follows the flow velocity without having jumps until it reaches y is always positive, so the problem can only arise when the starting point is larger than the target.

We call an interval (a, b) with 0 < a < b good, if the process killed at time σ(a, b) remains irreducible, in the sense that

P x (H(y) < σ(a, b)) > 0 for all x, y ∈ (a, b). ( 25 
)
In the next statement, we first justify the criterion for irreducibility in terms of the kernel k which has been asserted in the Introduction, and then argue that we can always find good intervals (a, b) with a > 0 as small as we wish and b as large as we wish. Note that thanks to (7), the condition above remains fulfilled when we replace α, respectively β, by any α close enough to α, respectively any β close enough to β, so the set of possible jump pairs is open in {(y, x) : 0 < x < y}.

Because the sample paths of X increase between consecutive jump times and the jump rates of X are given by k, we readily deduce from the observation above that if (β, α) is a possible jump pair, then the probability under P β that X makes a single jump straddling the interval (α, β) before hitting α, is strictly positive. Now assume that (10) holds, so that the family of intervals (α, β) associated to possible jumps pairs (β, α) form a covering of (0, ∞), and consider any 0 < x < y. By compactness, there exists a finite covering of [x, y] by intervals associated to possible jumps pairs, and it is now easy to check from the strong Markov property that P y (H x < ∞) > 0. So (9) holds.

Conversely, if [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF] fails for some x > 0, the process X can never make a jump across x. Because paths increase between two consecutive jump times, we see that the process started for any y > x will never visit x, and hence (9) also fails.

(ii) We first observe that the argument in the proof of (i) actually yields a slightly better result. Namely, if (β, α) is a possible jump pair, then for any α < x < y < β, the probability under P y that X makes a single jump straddling the interval [x, y] before hitting x and also stays in the interval (α, β) up to time H x , is strictly positive. Using again the fact that on any finite time interval, the probability that X follows the flow velocity without having jump is positive, we now readily see that [START_REF] Meyn | Markov chains and stochastic stability[END_REF] holds for a = α and b = β. In other words, if (β, α) is a possible jump pair, then the interval (α, β) is good. As intervals associated to possible jump pair form a covering of (0, ∞), there exists a finite covering of the compact interval [ε, 1/ε], say {(α i , β i ) : i = 1, . . . , n}, and it is then immediate to check from the strong Markov property that a = min α i and b = max β i fulfill the requirements of the statement.

Throughout the rest of this section, we henceforth assume that ( 6), ( 7) and ( 9) hold. σ(a,b). Specifically, a is an entrance boundary, in the sense that the process started at a then stays in [a, b] for a strictly positive amount of time P a -a.s., whereas b is an exit boundary, meaning that the process started at b leaves [a, b] instantaneously P b -a.s. We refer to [START_REF] Itô | Diffusion processes and their sample paths[END_REF] on pages 108 and 130-131 for more about these notions introduced by Feller in the setting of diffusion processes. We do not assume right now that the interval (a, b) is good, but this assumption will of course be essential in a later part of our analysis.

Applying the Krein-Rutman theorem in a compact interval

Recall our assumption ( 6) and define q c := 1 + sup x>0 c(x)/x, so that E t e -tqc ≤ e -t for all t ≥ 0.

We introduce for every bounded measurable function Proof. We first note that U a,b f (b) = 0 (since σ(a, b) = 0, P b -a.s.), and also that U a,b is a contraction, i.e. U a,b f ≤ f . Then recall that for 0 < x < y, s(x, y) denotes the travel time from x to y for a Lagrangian particle driven by the flow velocity c, and that Λ x,y stands for the event that X starts from x and reaches y before making any jump.

f : [a, b] → R U a,b f (x) := E x σ(a,b) 0 f (X t )E t e -tqc dt , x ∈ [a, b].
Observe that on that event, we have

ln E s(x,y) = s(x,y) 0 c(x(s)) x(s) ds = ln y -ln x.
Take a ≤ x < y ≤ b and any f with f ≤ 1. On the event Λ x,y , we decompose the trajectory at time s(x, y), set

X t := X s(x,y)+t , σ (a, b) := inf{t > 0 : X t ∈ [a, b]} , E t := exp t 0 c(X s ) X s ds ,
and get the bounds

σ(a,b) 0 f (X t )E t e -tqc dt - y x e -qcs(x,y) σ (a,b) 0 f (X t )E t e -tqc dt ≤ s(x, y).
On the complementary event Λ c x,y , we use the trivial bounds

σ(a,b) 0 f (X t )E t e -tqc dt ≤ 1.
The Markov property shows that conditionally on the event Λ x,y , X has the law P y ; we deduce that U a,b f (x) is bounded from below by

-s(x, y) + y x e -qcs(x,y) U a,b f (y)P x (Λ x,y ) -(1 -P x (Λ x,y ))
and from above by

s(x, y) + y x e -qcs(x,y) U a,b f (y)P x (Λ x,y ) + 1 -P x (Λ x,y ).
Recalling that |U a,b f (y)| ≤ 1, this yields the inequality

|U a,b f (x) -U a,b f (y)| ≤ s(x, y) + y x e -qcs(x,y) -1 + 2(1 -P x (Λ x,y )).
On the one hand, [START_REF] Itô | Diffusion processes and their sample paths[END_REF] shows that 1-P x (Λ x,y ) converges to 0 as y-x → 0+, uniformly for a ≤ x < y ≤ b. On the other hand, it is easily checked that the same holds for s(x, y) (because the flow velocity c is bounded away from 0 on [a, b]). This entails that sup

x,y∈[a,b],|y-x|<ε |U a,b f (x) -U a,b f (y)| → 0 as ε → 0+,
uniformly for f with f ≤ 1, and our claim is proven. 

The subspace C + 0 [a, b) of nonnegative functions in C 0 [a, b) is a reproducing cone, that is C + 0 [a, b) is a closed convex set
U * a,b m, f = m, U a,b f for all f ∈ C + 0 [a, b).
The Krein-Rutman theorem yields the first milestone for the proof of Theorem 1.2. Recall that the notion of good interval has been introduced in (25). Proof. We just need to verify the requirements of Theorem 19.5 in Deimling [START_REF] Deimling | Nonlinear functional analysis[END_REF]. First, it follows from Lemma 3.2 by the Arzelà-Ascoli theorem that the operator U a,b is compact. Second, observe from the strong Markov property that for every Proof. Recall that (F t ) t≥0 denotes the natural filtration of X. By the Markov property, we can express the uniformly integrable martingale

f ∈ C + 0 [a, b) with f ≡ 0, (25) ensures that U a,b f (x) > 0 for every x ∈ [a, b). Then, m, U a
M t := E x σ(a,b) 0 h a,b (X s )E s e -sqc ds | F t as M t = t∧σ(a,b) 0 h a,b (X s )E s e -sqc ds + 1 {t<σ(a,b)} E t e -tqc U a,b h a,b (X t ). From the identity U a,b h a,b = r(a, b)h a,b and stochastic calculus, we deduce that M a,b (t) = M a,b (0) + 1 r(a, b) t 0 e s/r(a,b) dM s .
The stochastic integral in the right-hand side is a P x -martingale since both the integrand and the martingale M are bounded on [0, t].

We now arrive at a second milestone of the proof of Theorem 1.2. Proposition 3.5. Take any good interval (a, b). Then for all x, y ∈ (a, b), there is the identity

E x E H(y) e -ρ a,b H(y) , H(y) < σ(a, b) = h a,b (x)/h a,b (y).
Proof. Perhaps, it could be tempting to try to derive the statement from Lemma 3.4 by an application of optional sampling to the martingale M a,b and the stopping time H(y). Note however that this would not be legitimate as the latter is not bounded and the martingale M a,b is not uniformly integrable (actually, M a,b (∞) = 0 P x -a.s.).

We use the martingale M a,b to introduce a new Markov process (Z t ) t≥0 on [a, b) with law P (a,b) x , by setting

E (a,b) x [F ((Z s ) 0≤s≤t )] = 1 h a,b (x) E x [M a,b (t)F ((X s ) 0≤s≤t )],
where F stands for a generic nonnegative functional defined on Skorokhod's space D [0,t] .

We also write H Z (y) = inf{t > 0 : Z t = y} for the first hitting time of y by Z.

The purpose of introducing the process Z is that there are the identities

P (a,b) x (H Z (y) ≤ t) = 1 h a,b (x) E x [M a,b (t), H(y) ≤ t] = 1 h a,b (x) E x [M a,b (H(y)), H(y) ≤ t] = h a,b (y) h a,b (x) E x [E H(y) e -ρ a,b H(y) , H(y) ≤ t ∧ σ(a, b)],
where the second line stems from Lemma 3.4 and Doob's optional sampling theorem applied at the bounded stopping time t ∧ H(y), and the third from the definition of M a,b .

Our claim now amounts to checking that the left-hand side above converges to 1 as t → ∞, that is that H Z (y) < ∞, P (a,b) x -a.s. In this direction, we shall prove that Z is point recurrent using the full strength of Proposition 3.3 (whereas for Lemma 3. 

V q f (x) := E x σ(a,b) 0 f (X t )E t e -(q+qc)t dt , x ∈ [a, b].
In particular, V 0 = U a,b and the resolvent equation reads V q = U a,b -qU a,b V q . With this notation at hand, and recalling from Lemma 3.4 that ρ a,b = q c -1/r(a, b), we have

E (a,b) m a,b ∞ 0 e -qt f (Z t )dt = E ν a,b σ(a,b) 0 e -(q+qc-1/r(a,b))t f (X t )h a,b (X t )E t dt = ν a,b , V q-1/r(a,b) (f h a,b ) = ν a,b , U a,b (f h a,b ) -(q -1/r(a, b)) ν a,b , U a,b V q-1/r(a,b) (f h a,b ) = r(a, b) ν a,b , f h a,b -(r(a, b)q -1) ν a,b , V q-1/r(a,b) (f h a,b ) ,
where we used the resolvent equation at the third line, and that U * a,b ν a,b = r(a, b)ν a,b at the fourth. This yields

E (a,b) m a,b ∞ 0 e -qt f (Z t )dt = q -1 ν a,b , f h a,b = q -1 m a,b , f ,
showing that indeed m a,b is a stationary law for Z.

The existence of a stationary law for Z now readily entails point recurrence. Take any x ∈ (a, b); plainly Z inherits irreducibility from [START_REF] Meyn | Markov chains and stochastic stability[END_REF], and in particular P (a,b) m a,b (H Z (x) < ∞) := α > 0. By stationarity, we have for every s > 0 that 

P (a,b) m a,b (∃t ≥ s : Z t = x) ≥ α,
E x E H(x) e -ρ a ,b H(x) , H(x) < σ(a, b) > 1 = E x E H(x) e -ρ a,b H(x) , H(x) < σ(a, b) .
This forces ρ a ,b < ρ a,b . Similarly,

E x (E H(x) e -λH(x) , H(x) < σ(a, b)) < E x (E H(x) e -λH(x) , H(x) < ∞) ≤ 1,
where the second inequality follows from the right-continuity of the Laplace transform L x,x and the definition [START_REF] Del | Feynman-Kac formulae. Probability and its Applications[END_REF] of the Malthus exponent. This yields ρ a,b < λ.

(ii) Set ρ := sup{ρ a,b : (a, b) is a good interval}. Then, by monotone convergence and Lemma 3.1, we have

E x E H(x) e -ρH(x) , H(x) < ∞ = sup{E x E H(x) e -ρH(x) , H(x) < σ(a, b) : (a, b) is a good interval} ≤ sup{E x E H(x) e -ρ a,b H(x) , H(x) < σ(a, b) : (a, b) is a good interval},
showing that L x,x (ρ) ≤ 1. Hence ρ ≥ λ, and the converse inequality follows from (i). Since ρ a,b < λ by Lemma 3.6, we may pick r ∈ (ρ a,b , λ). We shall check that Ψ(r) < ∞ and our claim then follows. Indeed, if actually Ψ(r) ≤ 1 then we simply take γ = r. Otherwise, since we have always Ψ(λ) < L a ,a (λ) ≤ 1, the equation Ψ(q) = 1 has a unique solution γ ∈ (r, λ). 

E a E H(a ) e -rH(a ) , H(a ) < H(b ) ≤ E a E σ(a ,b ) e -rσ(a ,b ) , H(a ) < H(b ) .
Observe that there exists an instant t ≤ σ(a , b ) with X t < a if and only if the process X stays in [a, b] during the whole time-interval [0, t) and exits from [a , b ] at time t by jumping across the level a , that is if and only if t = σ(a , b ) and H(a ) < H(b ). Combining this observation with the fact that the predictable compensator of the jump process of X is k(X t-, y)dydt, we deduce that

E a E σ(a ,b ) e -rσ(a ,b ) , H(a ) < H(b ) = E a σ(a ,b ) 0 E t e -rt a 0 k(X t-, y)dy dt ≤ K ∞ E a σ(a ,b ) 0 E t e -rt dt , where K ∞ = sup x>0 K(x) is the maximal jump rate.
We then write δ := r -ρ a,b > 0 and use the inequality The process

E a E t e -rt , t < σ(a , b ) ≤ e -δt min [a ,b ] h a,b E a E t e -ρ a,b t h a,b (X t ), t < σ(a, b) = e -δt
S(t) := g(X t )E t e -γt 1 {t<H(b )} , t ≥ 0.
is then a P x -supermartingale for every 0 < x < b .

We have now completed all the preliminary steps needed to establish Theorem 1.2.

Proof of (17)

We first pick two good intervals (a, b) and (a , b ) with 0 < a < a < b < b sufficiently large such that sup

(0,a ]∪[b ,∞) c(x)/x < ρ a,b
That this is indeed possible is seen from the same argument as in the proof of Proposition 3.7(i), thanks to Lemmas 3.1(ii) and 3.6 and the assumptions of Theorem 1. Next, in the notation introduced in Proposition 3.7, take any max{ρ a,b , γ} < q < λ. In particular, c(x)/x < q for all x ∈ (0, a ] ∪ [b , ∞).

We shall prove that (17) holds with x = b . We thus let X start from b and split the excursion interval (0, H(b )) at times σ(b , ∞) and σ(a , ∞). Recall that σ(b , ∞) is the first instant when X jumps across b , so plainly σ(b , ∞) ≤ σ(a , ∞) P b -a.s., and these two first-exit times may coincide with positive probability. Because X stays in [b , ∞) until time σ(b , ∞), we have

E σ(b ,∞) e -qσ(b ,∞) ≤ 1 P b -a.s.,
and we see from the strong Markov property that (17) will follow from

sup x<b E x E H(b ) e -qH(b ) , H(b ) < ∞ < ∞. (26) 
First consider the case x ≤ a . The process started from x stays in (0, a ] until time H(a ), thus E H(a ) e -qH(a ) ≤ 1 P x -a.s., and therefore we have, again from the strong Markov property,

E x E H(b ) e -qH(b ) , H(b ) < ∞ ≤ E a E H(b ) e -qH(b ) , H(b ) < ∞ .
Next recall Proposition 3. 

Together, ( 27), ( 28) and ( 29) establish [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF], and this completes the proof of Theorem 1.2.

Miscellaneous comments about Theorem 1.2

(i) We have argued in the Introduction that [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF] yields the more explicit criterion (20) when X is recurrent, and we now discuss simple conditions in terms of the growth and fragmentation rates that ensure recurrence. Since X is irreducible and its trajectories have no positive jumps, point-recurrence can only fail if sample paths converge either to 0 or to ∞ a.s., which can easily be impeded by Fostertype conditions (see for instance [START_REF] Meyn | Markov chains and stochastic stability[END_REF] and [START_REF] Hairer | Convergence of Markov processes[END_REF] for general references). Typically, consider the power function f (x) = x r for some r > 0, and assume that Gf (x) ≤ 0 for all large enough x. That is, for some x ∞ > 0: rc(x)x r + x 0 (y r -x r )yk(x, y)dy ≤ 0 for all x ≥ x ∞ . [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] Then the process f (X t∧σ(x∞,∞) ) is a P x -supermartingale for every x ≥ x ∞ , and it follows that P x (lim t→∞ X t = ∞) = 0. Similarly, working now with negative powers and considering g(x) = x -q for some q > 0, if for some x 0 > 0 -qc(x)x -q + x 0 (y -q -x -q )yk(x, y)dy ≤ 0 for all x ≤ x 0 , [START_REF] Steinsaltz | Quasistationary distributions for onedimensional diffusions with killing[END_REF] then the process g(X t∧H(x 0 ) ) is a P x -supermartingale for every x ≤ x 0 , and it follows that P x (lim t→∞ X t = 0) = 0. We refer further to Bouguet [START_REF] Bouguet | A probabilistic look at conservative growth-fragmentation equations[END_REF], who considered specifically positive recurrence for the family of piecewise deterministic Markov processes that arise in our setting; see notably Theorem 4 and also Remark 3 there. Putting the pieces together and excluding implicitly the case of linear growth2 , we get that exponentially fast convergence [START_REF] Engländer | Strong law of large numbers for branching diffusions[END_REF] holds provided that ( 20), ( 30) and ( 31) are satisfied.

Recall that Doumic Jauffret and Gabriel [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] obtained conditions that ensure the existence of eigenelements and thus also the Malthusian behavior ( 5) by the general relative entropy method (however their approach does not yield exponential speed of convergence ( 18)). The comparison of those conditions displays certain resemblance and but also differences. For instance, ( 12) and ( 13) in [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] can be loosely related to [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] and ( 31) here; we do not need here to make assumptions such as [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF][START_REF] Bouguet | A probabilistic look at conservative growth-fragmentation equations[END_REF][START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF] in [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF]; on the other hand [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] also covers the situation where the growth rate c does not fulfill [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF].

(ii) If we assume self-similarity of the fragmentation kernel, that is k(x, y) = x -1 K(x)p(y/x), 0 < y < x, where p ∈ L 1 + ([0, 1]) with 1 0 p(u)udu = 1, then [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] and [START_REF] Steinsaltz | Quasistationary distributions for onedimensional diffusions with killing[END_REF] translate respectively into c(x) xK(x) ≤ r -1 1 0

(1 -u r )up(u)du for all x ≥ x ∞ (32) and c(x) xK(x) ≥ q -1 1 0 (u -q -1)up(u)du for all x ≤ x 0 .

(33)

Putting pieces together, we thus see that in the self-similar case, exponentially fast convergence [START_REF] Engländer | Strong law of large numbers for branching diffusions[END_REF] holds whenever [START_REF] Hairer | Convergence of Markov processes[END_REF], (32) and (33) are fulfilled.

This should be compared with Theorem 1.11 of Balagué et al. [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] in which the existence of a spectral gap is asserted under more stringent conditions. We stress however that [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] also covers cases where the growth rate c does not fulfill [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF].

(iii) We point out that exponential speed of convergence (18) may hold without [START_REF] Gabriel | Long-time asymptotics for nonlinear growth-fragmentation equations[END_REF]. For instance, in the case of linear growth rate c(x) = ax, Section 6 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] discusses situations where λ = a and nonetheless (18) takes place.

(iv) We also recall from Corollary 4.5 and Lemma 4.6 in [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], that when (19) holds, then h is an eigenfunction for the eigenvalue λ of the growth-fragmentation operator A (in particular h belongs to the domain of A), and further the function x → h(x)/x is continuous and bounded.

  then by the strong Markov property at time H Y (b), the total number of visits to b would have a geometric distribution under P (ρ) b , and in particular would be finite P (ρ)

Lemma 3 . 1 .

 31 (i) The conditions[START_REF] Champagnat | Exponential convergence to quasistationary distribution and Q-process[END_REF] and[START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF] are equivalent. (ii) Assuming that either (9) or (10) hold, for every ε ∈ (0, 1), there exists a good interval (a, b) with a < ε and b > 1/ε. Proof. (i) We call a pair (β, α) with 0 < α < β a possible jump if α belongs to the two-sided support of k(β, •), in the sense that α+η α k(β, y)dy > 0 and α α-η k(β, y)dy > 0 for all 0 < η < α.

  We next consider the Banach space C 0 [a, b) of continuous functions f : [a, b] → R with f (b) = 0, endowed with the usual norm f = sup x∈[a,b) |f (x)|. The reason for imposing f (b) = 0 is that the two boundary points the interval [a, b] have a different status for the Markov process killed at time

Lemma 3 . 2 .

 32 The operator U a,b maps C 0 [a, b) into itself. More precisely the family of functions {U a,b f : f ≤ 1} is equicontinuous.

  which is stable by multiplication by nonnegative constants, and f = f + -f -is a decomposition of a generic function f ∈ C 0 [a, b) as the difference of two functions in C + 0 [a, b). Obviously, the operator U a,b positive, i.e. maps the cone C + 0 [a, b) into itself. Recall also from the Riesz-Markov representation theorem that any linear functional on C 0 [a, b) which is positive (in the sense that it maps C + 0 [a, b) into R + ), can be represented by a finite Borel measure on [a, b] that has no atom at b. Plainly, the dual operator U * a,b maps any such measure, say m, to another finite measure U * a,b m on [a, b] without atom at b, via the identity

Proposition 3 . 3 .

 33 Let (a, b) be a good interval. Then: (i) the spectral radius r(a, b) of U a,b is positive, (ii) there exist a function h a,b ∈ C + 0 [a, b) with h a,b (x) > 0 for every x ∈ [a, b) and a finite Borel measure ν a,b on [a, b] with ν a,b ({b}) = 0, such that ν a,b , h a,b = 1 , U a,b h a,b = r(a, b)h a,b , and U * a,b ν a,b = r(a, b)ν a,b , (iii) the spectral gap holds, i.e. any r = r(a, b) in the spectrum of U a,b has |r| < r(a, b).
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 34 ,b f > 0 for every Borel measure on [a, b] with no atom at b, which is Condition (8) on page 235 of [13]. Proposition 3.3 enables us to introduce the following useful martingale. Set ρ a,b := q c -1/r(a, b). The process M a,b (t) := 1 {t<σ(a,b)} h a,b (X t )E t e -tρ a,b , t ≥ 0 is a P x -martingale for every x ∈ [a, b].

  4, we only needed to know that U a,b h a,b = r(a, b)h a,b ). Introduce the probability measure m a,b (dx) := h a,b (x)ν a,b (dx) on [a, b). We claim that m a,b is a stationary distribution for Z. In this direction, define first for every bounded measurable function f : [a, b) → R and every q > 0
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 36 and a fortiori P (a,b) m a,b (sup{t ≥ 0 : Z t = x} = ∞) ≥ α. We conclude from the strong Markov property that H Z (x) < ∞, P (a,b) x -a.s., which is what we needed to verify. Proposition 3.5 enables us to compare the eigenvalues ρ a,b for nested good intervals, and also with the Malthus exponent λ. We have: (i) Let (a, b) and (a , b ) two good intervals with a < a < b < b. Then ρ a ,b < ρ a,b < λ. (ii) λ = sup{ρ a,b : (a, b) is a good interval}. Proof. (i) Since σ(a , b ) ≤ σ(a, b) and the inequality is strict with positive P x -probability for any x ∈ [a , b ], it follows from Proposition 3.5 that

3. 3 Proposition 3 . 7 .

 337 Letting the lower-boundary point go to 0 We now fix the upper-boundary point b and let the lower-boundary point a tend to 0. Note that due to the absence of positive jumps, the identity lim a→0 σ(a, b) = H(b) holds P x -a.s. for all x < b. Assume lim sup x→0 c(x)/x < λ. Then the following hold: (i) There exist a good interval (a, b) such that sup x≤a c(x)/x < ρ a,b . (ii) For every a ∈ (a, b) with sup x≤a c(x)/x ≤ ρ a,b and every b ∈ (a , b) sufficiently close to b, there exists then γ < λ with E a E H(a ) e -γH(a ) , H(a ) < H(b ) ∈ (0, 1]. Proof. (i) We first use Lemma 3.6 and the assumption that lim sup x→0 c(x)/x < λ to find a good interval (a , b ) with lim sup x→0 c(x)/x < ρ a ,b . Then consider a := inf{x > 0 : c(x)/x ≥ ρ a ,b } ∈ (0, ∞], and choose a good interval (a, b) with 0 < a < a ∧ a and b > b . By Lemma 3.6(i), we have then ρ a,b > ρ a ,b , and a fortiori c(x)/x < ρ a,b for all x ≤ a. (ii) The irreducibility (25) entails that P a (H(a ) < H(b )) > 0 provided that b ∈ (a , b) is chosen close enough to b. Then consider the convex and nonincreasing function Ψ : R → (0, ∞] defined by Ψ(q) := E a E H(a ) e -qH(a ) , H(a ) < H(b ) .

  On the event H(a ) < H(b ), the process started from a first stays in [a , b ] until it makes a jump across a at time σ(a , b ), and then stays in (0, a ) until it eventually hits a for the first time at the instant H(a ). Since sup x≤a c(x)/x ≤ ρ a,b < r, on the event that H(a ) < H(b ), there is the inequality E H(a ) e -rH(a ) ≤ E σ(a ,b ) e -rσ(a ,b ) , and we have therefore

Corollary 3 . 8 .

 38 h a,b (a ) min [a ,b ] h a,b , where the equality is seen from Lemma 3.4. Since min [a ,b ] h a,b > 0 by Proposition 3.3, we now get that ∞ 0 E a E t e -rt , t < σ(a , b ) dt < ∞, which entails our claim. Proposition 3.7(ii) enables us to repeat the argument for the proof of Lemma 2.3, and this yields the following: Notation and assumptions are as in Proposition 3.7. For 0 < x < b , we consider g(x) := E x E H(a ) e -γH(a ) , H(a ) < H(b ) .

  2. The irreducibility of the process killed when exiting from [a, b] shows that provided we choose b ∈ (b , b) close enough to b, then P b (H(a ) < H(b )) > 0.

7 ,

 7 and chose b ∈ (b , b) close enough to b such that P b (H(a ) < H(b )) > 0.In the notation of Corollary 3.8, Proposition 3.7(ii) ensures that g(a ) ∈ (0, 1], and we have also g(b ) > 0. We now deduce from the optional sampling theorem applied under P a to the supermartingale S in Corollary 3.8 and the stopping timeH(b ) < H(b ), that E a E H(b ) e -qH(b ) , H(b ) < ∞ ≤ 1 g(b ) E a S H(b ) ≤ g(a ) g(b ) ,and hencesup x≤a E x E H(b ) e -qH(b ) , H(b ) < ∞ ≤ g(a ) g(b ) < ∞.(27)Next, we consider the case x ∈ (a , b ), and distinguish whether the process exits from [a , b ] through the upper or the lower boundary. On the one hand, Lemma 3.4 and the optional sampling theorem readily yield for every x ∈ [a , b ]:E x E H(b ) e -qH(b ) , H(b ) < σ(a, b) ≤ h a,b (x) h a,b (b ) ,and a fortiori supa ≤x<b E x E H(b ) e -qH(b ) , H(b ) ≤ σ(a , b ) ≤ max [a ,b ] h a,b h a,b (b ) < ∞.(28)On the other hand, the same argument as in the proof of Proposition 3.7(ii) shows that for every x ∈ [a , b ):E x E σ(a ,b ) e -qσ(a ,b ) , σ(a , b ) < H(b ) ≤ K ∞ E x σ(a ,b ) 0 E t e -qt dt ≤ K ∞ h a,b (x) δ min [a ,b ] h a,b,where δ = q -ρ a ,b > 0 and K ∞ is the maximal jump rate. Combining this with[START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] and the strong Markov property, we conclude that sup a ≤x<b E x E H(b ) e -qH(b ) , σ(a , b ) < H(b ) < ∞ < ∞.

In[START_REF] Deimling | Nonlinear functional analysis[END_REF] and in many further instances in this text, we use the notation E(Z, Λ) = E(Z1 Λ ) when Z is a nonnegative random variable and Λ an event.

Linear growth rate c(x) = ax was already discussed in details in Section 6 of[START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] 
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