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On a Feynman-Kac approach
to growth-fragmentation semigroups

and their asymptotic behaviors
Jean Bertoin∗

This work develops further a probabilist approach to the asymptotic behavior
of growth-fragmentation semigroups via the Feynman-Kac formula, which
was introduced in a joint article with A.R. Watson [6]. Here, it is first
shown that the sufficient condition for a Malthusian behavior which was
established in [6], is also necessary. We then provide a simple criterion to
ensure exponential speed of convergence, which enables us to treat cases than
were not covered previously in the literature.
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1 Introduction

Imagine a population, for instance of cells or of bacteria, where individuals grow and
split as time passes, and such that the evolution of each individual only depends on its
own mass, without interaction between different individuals. Assume also that when
a fragmentation event happens, the sum of the masses of daughters resulting from the
split equals the mass of the mother before splitting. In other words, the total mass
is a preserved quantity when a fragmentation occurs, and grows between consecutive
fragmentation events. The rate of growth of an individual may depend on its mass, and
the rate at which a mother produces daughters may also depend both on the mass of
the mother just before splitting and on the masses of its daughters right after the split.

Growth-fragmentation equations provide a mathematical model for such dynamics,
by describing the evolution of concentrations u(t, y) of individuals as a function of time
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t ≥ 0 and mass y > 0. They can be expressed in the form

∂tu(t, y) + ∂y(c(y)u(t, y)) +K(y)u(t, y) =
∫ ∞
y

k(z, y)u(t, z)dz, (1)

where c(y) describes the growth rate as a function of the mass, k(z, y) the rate at which
a daughter particle with mass y appears as the result of the fragmentation of a mother
particle with mass z > y. Finally, K(y) is the total fragmentation rate of individuals
with mass y, and the assumption of conservation of mass at fragmentation events thus
translates into

xK(x) =
∫ x

0
yk(x, y)dy for all x > 0. (2)

In this work, we rather deal with the weak form of (1) and focus on initial conditions
of Dirac type. Namely, one introduces the operator

Af(x) = c(x)f ′(x) +
∫ x

0
f(y)k(x, y)dy −K(x)f(x), x > 0, (3)

which is defined on some domain DA of smooth functions f : (0,∞)→ R. Under fairly
simple general assumptions on the rates c and k that will be introduced later on, A is
the infinitesimal generator of a unique strongly continuous positive semigroup (Tt)t≥0,
that is

dTtf(x)
dt = A(Ttf)(x) , f ∈ DA. (4)

In this setting, the measure µt(x, dy) on (0,∞) such that

Ttf(x) =
∫

(0,∞)
f(y)µt(x, dy) := 〈µt(x, ·), f〉

should be interpreted informally as µt(x, dy) = u(t, y)dy and (4) as the weak version of
(1) for the initial condition µ0(x, dy) = u(0, y)dy = δx(dy).

In general, there is of course no explicit expression for the growth-fragmentation
semigroup (Tt)t≥0, and many works in this area are concerned with its large time asymp-
totic behavior. See in particular [1, 2, 5, 8, 17, 19, 26, 27, 28, 30] and further references
therein. Typically, one expects that under adequate assumptions on the rates of growth
and of fragmentation, there exists a principal eigenvalue ρ ∈ R such that

lim
t→∞

e−ρtTtf(x) = h(x)〈ν, f〉, x > 0, (5)

at least for every continuous and compactly supported function f : (0,∞) → R. Here,
ν(dy) is a Radon measure on (0,∞), which is often referred to as the asymptotic profile,
and h some positive function. We stress that (5) may well fail; see for instance Doumic
and Escobedo [15] and Gabriel [19].

When (5) holds, it is further important to be able to estimate the speed of convergence.
Indeed, say for ρ > 0, an indefinite exponential growth is of course unrealistic in practice,
and the growth-fragmentation equation can only be pertinent for describing rather early
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stages of the evolution of a population when certain effects such as competition between
individuals for space or resources can be neglected. As a consequence, the notions of
principal eigenvalue and of asymptotic profile are only relevant for applications when
the convergence in (5) occurs fast enough.

Spectral theory for semigroups and generators yields a well-established and classical
framework for establishing the validity of (5), again provided that the growth and frag-
mentation rates are properly chosen. In short, if one can find positive eigenelements,
namely a Radon measure ν and a positive function h on (0,∞), such that for some
ρ ∈ R:

Ah = ρh , A∗ν = ρν, and 〈ν, h〉 = 1,

where A∗ denotes the dual of A, then the so-called general relative entropy method (see
in particular Chapter 6 in Perthame [29] and Michel et al. [27]) shows that (5) holds.
In turn, explicit criteria in terms of the rates of growth c and of fragmentation k that
ensure the existence of positive eigenelements, have been obtained by Michel [26] and
by Doumic and Gabriel [17]. These works rely crucially on the Krein-Rutman theorem,
a version of the Perron-Frobenius theorem for positive compact operators. On the other
hand, exponential rate of convergence in (5) is essentially equivalent to the existence of
a spectral gap. This has been obtained under specific assumptions on the growth and
fragmentation rates notably by Perthame and Ryzhik [30], Laurençot and Perthame [23],
Cáceres et al. [8] and Mischler and Scher [28].

Quite recently, together with A.R. Watson [6], we devised a probabilistic approach to
(5), which circumvents spectral theory of semigroups and further provides probabilistic
expressions for the various quantities of interest. This requires some assumptions on the
growth rate c and the fragmentation k that we now introduce. First,

the function x 7→ c(x)/x is continuous, positive and bounded on (0,∞). (6)

In particular c(x)/x is bounded away from 0 for x in any compact subset of (0,∞), but
may tend to 0 as x goes to 0 and/or∞. Second, writing k̄(x, y) := x−1yk(x, y) for every
0 < y < x,

the map
{

(0,∞) → L1(dy)
x 7→ k̄(x, ·) is continuous and sup

x>0
‖k̄(x, ·)‖L1(dy) = ‖K‖∞ <∞.

(7)
Our probabilistic approach relies on an “instrumental” Markov process X = (Xt)t≥0

with infinitesimal generator

Gf(x) := c(x)f ′(x) +
∫ x

0
(f(y)− f(x))k̄(x, y) dy. (8)

In words, X describes a mass that grows continuously with rate c(·) and makes negative
jumps at random times which should be thought of as fragmentation events. More
precisely, the rate of negative jumps is K(·), and if a jump occurs when X is about to
reach x, then its value immediately after the jump has the law K(x)−1k̄(x, y)dy. So the
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dynamics of X can be thought of as that of the mass of a distinguished individual in the
population, such that at each fragmentation event, the distinguished daughter is picked
from her sibling by size-biased sampling.

Assumption (7) guaranties that the total jump rate (2) remains bounded, so the
jump times of X never accumulate. One says X is piecewise deterministic (see [12] and
references therein), in the sense that the trajectory t 7→ Xt is driven by the steady flow
velocity c between two consecutive jumps, and jump times and locations are the sole
source of randomness. We finally assume that

the Markov process X is irreducible, (9)

that is, for every x, y > 0, the probability that the Markov process started from x
visits y > 0 is strictly positive. Roughly speaking, this means that there are no strict
subintervals I of (0,∞) that form traps for X, in the sense that once the path enters I,
it cannot exit from I. It can be seen that (9) is equivalent to a simple non-degeneracy
assumption on the fragmentation rate kernel k, namely

for every x > 0, there exist α < x < β with
∫ x

α
k̄(β, y)dy > 0; (10)

see the forthcoming Lemma 3.1(i). We also recall that the absolute continuity of the
fragmentation rates ensures aperiodicity of X (which might fail otherwise, as for instance
in the case of equal mitosis; see e.g. [16]).

Lemma 2.2 in [6] shows that the growth-fragmentation semigroup Tt can then be
given by a Feynman-Kac formula (we refer to [14] for treatise on this topic in discrete
time):

Ttf(x) = xEx
(
Et
f(Xt)
Xt

)
, with Et := exp

(∫ t

0

c(Xs)
Xs

ds
)
, (11)

where Ex stands for the expectation when X starts at X0 = x. The first hitting time of
y > 0 by X,

H(y) := inf {t > 0 : Xt = y} , (12)

and the Laplace transform1

Lx,y(q) := Ex
(
e−qH(y)EH(y), H(y) <∞

)
, q ∈ R, (13)

then play a key role for the asymptotic behavior of Tt as we shall now explain. Note that
Lx,y is a non-increasing convex function with values in (0,∞], with limq→∞ Lx,y(q) = 0
and limq→−∞ Lx,y(q) =∞. In particular, it possesses a right-derivative L′x,y(q) at every
point q of its effective domain, i.e. with Lx,y(q) < ∞. Defining the Malthus exponent
by

λ := inf{q ∈ R : Lx,x(q) < 1} (14)

1In (13) and in many further instances in this text, we use the notation E(Z, Λ) = E(Z1Λ) when Z is
a nonnegative random variable and Λ an event.
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(actually, this definition does not depend on x > 0; see Proposition 3.1 in [6]), the main
results of [6] can be summarized as follows; see Theorem 5.3 in [6]. First, if

Lx,x(λ) = 1 and − L′x,x(λ) <∞ (15)

(again, this condition does not depend on x; see Lemma 5.2 in [6]), then (5) holds
with ρ = λ. Moreover, the asymptotic profile ν and the function h are given for some
arbitrarily chosen x0 > 0 by

h(y) = yLy,x0(λ) and ν(dy) = dy
h(y)c(y)|L′y,y(λ)| , y > 0. (16)

Second, if
there exists some q < λ and x > 0 with Lx,x(q) <∞, (17)

then the convergence (5) takes place exponentially fast. Specifically, there exists β > 0
such that

e−λtTtf(x) = h(x)〈ν, f〉+ o(e−βt) as t→∞ (18)
for every continuous function f with compact support and every x > 0. We stress that,
by convexity of Lx,x, (17) is of course a stronger requirement than (15).

The idea of representing a non-Markovian semigroup in terms of some (possibly time-
inhomogeneous) Markov process and then deriving the asymptotic behavior of the former
from ergodic properties of the latter, has been used previously in the literature; see e.g.
[4, 9, 10, 12] and references therein. In the setting of branching processes, the so-called
many-to-one formulas and spine decompositions enable to express expectations of linear
functionals of the system in terms of a single “typical” individual, where typical may be
taken in the sense of an individual chosen uniformly at random in the system (like e.g. in
[3, 4, 24]), or according to some well-chosen bias (like e.g. in [18, 11]). These approaches
are mostly efficient when some information about the non-Markovian semigroup or its
eigenelements is already available. The approach via the Feynman-Kac formula in [6]
and further developed in the present work differs conceptually, in the sense that the
“instrumental” Markov process X is not meant to describe the evolution of a “typical”
individual. An important feature is that its evolution is given directly in terms of the
parameters c and k of the model, without requiring a priori information about the
eigenelements. The price to be paid is that the analysis of the Feynman-Kac formula is
more involved; however it can be completed in a fairly great generality.

We have here two main purposes. First, we shall observe that the condition (15) is
also necessary for the Malthusian behavior (5), and in particular, whenever the latter
holds, the principal eigenvalue ρ is always given by the Malthus exponent defined by
(14). We shall actually establish an even slightly stronger result.

Theorem 1.1. Suppose that (6), (7) and (9) hold, and further that for some ρ ∈ R:
(i) there exist x1 > 0 and a continuous function f : (0,∞)→ R+ with compact support

and f 6≡ 0, such that
lim sup
t→∞

e−ρtTtf(x1) <∞,
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(ii) there exist x2 > 0 and a continuous function g : (0,∞) → R+ with compact
support, such that

lim inf
t→∞

e−ρtTtg(x2) > 0.

Then ρ = λ, (15) holds and thus also the Malthusian behavior (5) with (16).

The assumptions in (15) and (17) are given in terms of the Laplace transform Lx,x
rather than directly in terms of the coefficients c and k as one might have wished, and
the second purpose of the present work is to remedy (at least partly) this problem by
providing the following simple criterion.

Theorem 1.2. Suppose that (6), (7) and (9) hold. If the Malthus exponent λ defined
in (14) and the growth rate c fulfill

lim sup
x→0+

c(x)
x

< λ and lim sup
x→∞

c(x)
x

< λ, (19)

then the exponential convergence (18) holds.

Theorem 1.2 might seem unsatisfactory, as its requirements are not given only in
terms of the rates c and k, but also involve the Malthus exponent λ. However, there are
simple explicit conditions in terms of c and k only that ensure (19). In particular, it is
easily seen that λ > infx>0 c(x)/x when X is recurrent and c is not linear, cf. Proposition
3.4(ii) in [6]. Thus (19) is then fulfilled whenever

lim
x→0+

c(x)
x

= lim
x→∞

c(x)
x

= inf
x>0

c(x)
x
. (20)

In turn, explicit conditions in terms of c and k guarantying recurrence for X are easy
to obtain, as we shall further discuss in Section 3.5(i-ii). This yields explicit criteria for
(18) that enables us to treat cases than were not covered previously in the literature.

It may be interesting to discuss a bit further Criterion (19). Requesting an upper-
bound for the growth rate at infinity should not come as a surprise as similar assump-
tions are made in the literature to prevent the formation of too large particles. For
instance, Doumic Jauffret and Gabriel [17] request (among other assumptions) that
limx→∞ xK(x)/c(x) = ∞, which forces in our setting limx→∞ c(x)/x = 0 since we also
assumed in (7) that the total rate of fragmentation K remains bounded; see Equation
(13) in [17], and also Equation (11) in Balagué et al. [1]. On the other hand, imposing
an upper-bound for the growth rate at 0+ may be more surprising, as on the contrary,
it is often assumed in the literature that the growth for small particles should be strong
enough in order to prevent shattering (see notably Equation (11) in [17] and Equation
(10) in [1]). One might be further puzzled by the fact that the fragmentation rate k does
not appear explicitly in (19); however, the value of the Malthus exponent λ depends of
course both on c and k.

Let us also try to offer a rather informal interpretation of (19). The Feynman-
Kac formula provides a representation of the growth-fragmentation semigroup (Tt)t≥0 in
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terms of a weighted particle (Xt, Et), where Xt is the location of the particle at time t
and Et its weight. The weight thus increases at rate c(x)/x when the particle is located
at x, and in this setting, the Malthus exponent λ can be interpreted as the long-time
average rate of increase of the weight. Then (19) means that the weight of the particle
increases more slowly than on average when the particle is either close to 0 or close to
∞. Informally, the particle has thus a more important contribution to the Feynman-
Kac formula when it stays away from 0 and from ∞, that is essentially when it remains
confined in a compact interval. And it is precisely for processes staying in compact
spaces that exponential ergodicity is expected.

In this direction, we observe that Criterion (19) bears some striking similarity with
Theorem 3.3 of Steinsaltz and Evans [31] and Theorem 2.6 of Kolb and Steinsaltz [22]
about Yaglom convergence for linear diffusions with killing; see also Theorem 4.3 in
[22] which states that convergence to a quasi-stationary distribution always holds when
the killing rate at infinity is larger than the principal eigenvalue. Even though these
works do not specifically consider spectral gap or exponential rate of convergence, they
suggest that Criterion (19) could be rather sharpe. We stress however that exponential
convergence may hold even when (19) fails; for instance counter-examples can be built
from Proposition 7.1 in [6].

The rest of this article is organized as follows. The two theorems are established in
the next two sections, where the main ideas of the proofs are sketched first. We also
gather in Section 3.5 miscellaneous comments about Theorem 1.2, notably discussing
further the connection with earlier results in the literature.

We conclude this introduction by recalling that the Feynman-Kac functional E defined
in (11) is multiplicative, in the sense that for every s, t ≥ 0, there is the identity

Et+s = Et × (Es ◦ θt),

where Es ◦ θt stands for the functional Es evaluated for the shifted path X ◦ θt = Xt+·.
In the sequel, this basic property will be often used without specific mentions, notably
in combination with the Markov property.

2 Proof of Theorem 1.1

Throughout this section, we always assume that (6), (7) and (9) hold. The arguments
for proving Theorem 1.1 belong to the same vein as in [6], with the difference that
the role of remarkable martingales there is rather played here by supermartingales.
Specifically, we shall first establish some properties of the first hitting time H(y) and of
its Laplace transform Lx,y, which are then applied to introduce supermartingales related
to the Feynman-Kac formula. Then we shall use the latter and introduce another one-
parameter family of (possibly defective) Markov process Y (q) by probability tilting. This
yields a more direct probabilistic representation the growth-fragmentation semigroup,
and analyzing the behavior of Y (q) via the regeneration property at return times then
readily yields the conclusion.
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We start by considering the motion t 7→ x(t) of a Lagrangian particle in the steady
flow velocity c, viz.

dx(t) = c(x(t))dt,
which governs the dynamics of the piecewise deterministic processX between consecutive
jump times, and introduce some notation in this setting that will be useful in several
parts of this work. For 0 < x < y, denote the travel time from x to y by

s(x, y) :=
∫ y

x

dz
c(z) ,

which obviously decreases in the first variable and increases in the second one. Consider
also the event Λx,y that process X started at x reaches y before making any jump. Since
K(z) is the total jump rate when the process is located at z, we have

p(x, y) := Px(Λx,y) = exp
(
−
∫ s(x,y)

0
K(x(t))dt

)
= exp

(
−
∫ y

x

K(z)
c(z) dz

)
. (21)

This is a positive quantity which increases with x and decreases with y.
We proceed with the following uniform lower-bound for the cumulative distribution

functions of first hitting times (12).

Lemma 2.1. For every 0 < a < b, there exists t(a, b) ∈ R+ such that

inf
x,y∈[a,b]

Px(H(y) < t(a, b)) > 0.

Proof. Consider first the process X started from b. The irreducibility assumption (9)
ensures that we can find two real numbers q(a, b) ∈ (0, 1) and h(a, b) > 0 such that

Pb(H(a) < h(a, b)) > q(a, b).

Next consider the process X started from an arbitrary point x ∈ [a, b]. By focusing
on trajectories which first hit b before having any jump, then need an amount of time
less than h(a, b) for traveling from b to a, and finally hit y ∈ [a, b] before having any
further jump, we deduce from an application of the strong Markov property that there
is the lowerbound

Px(H(y) < 2s(a, b) + h(a, b)) > p(a, b)2q(a, b) > 0.

This proves our claim with t(a, b) = 2s(a, b) + h(a, b).

Next, recall the notation (13) for the Laplace transform Lx,y, (14) for the Malthus
exponent, and fix x1 > 0 arbitrarily.

Lemma 2.2. For every q ≥ λ, the function

`q : x 7→ Lx,x1(q), x > 0,

is bounded away from 0 and from ∞ on every compact interval of (0,∞).
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Proof. We first consider the lower-bound and assume to start with that q > 0. We then
have plainly

`q(x) ≥ vq(x, x1) := Ex
(
e−qH(x1), H(x1) <∞

)
.

Fix a > 0 arbitrarily small and b > 0 arbitrarily large, with a < x1 < b. Lemma 2.1
ensures the existence of t(a, b) > 0 and p > 0 such that, for all x, y ∈ [a, b],

vq(x, y) ≥ Ex
(
e−qH(y), H(y) < t(a, b)

)
≥ pe−qt(a,b).

A fortiori, infa≤x≤b `q(x) > 0.
The case when q ≤ 0 is somewhat simpler: we can use

`q(x) ≥ Px (H(x1) <∞) ,

so Lemma 2.1 applies directly and yields infa≤x≤b `q(x) > 0.
We next turn our attention to the upper-bound; the argument does not depend on the

sign of q. The assumption q ≥ λ and the very definition (14) entail that Lx1,x1(q′) < 1
for every q′ > q. Equation (16) in [6] states that then Lx,x1(q′)Lx1,x(q′) < 1 for every
x > 0. By right-continuity of the functions Lx,y, we have

`q(x) = Lx,x1(q) ≤ 1/Lx1,x(q),

and since the first part of the proof shows that x 7→ Lx1,x(q) is bounded away from 0 for
x ∈ [a, b], we conclude that supa≤x≤b `q(x) <∞.

Theorem 4.4 in [6], which states that if Lx,x(λ) = 1, then the process
(
e−λt`λ(Xt)Et

)
t≥0

is a martingale, is a cornerstone of the probabilistic approach which is developed there.
Here is a version of the latter in terms supermartingales.

Lemma 2.3. For every q ≥ λ, the process

S(q)
t := e−qt`q(Xt)Et, t ≥ 0

is a Px-supermartingale for every x > 0.

Proof. Write
Nt := #{0 < s ≤ t : Xs = x1}, t ≥ 0

for the process which counts the number of visits of X to x1 as time passes, and

Rn := inf{t > 0 : Nt = n}, n ≥ 1

for the instant when X returns to x1 for the n-th time. Write also (Ft)t≥0 for the
natural filtration of X and recall that the return times Rn are (Ft)-stopping times.
Further, writing Gn := FRn , we know that for every t ≥ 0, Nt+ 1 is a (Gn)-stopping time
and the first return to x1 after time t can be expressed as

Dt := inf{s > t : Xs = x1} = RNt+1.

9



On the one hand, we see from the Markov property at time t and the definition of
the function `q in Lemma 2.2 that for every x > 0,

S(q)
t = Ex

(
e−qDtEDt1{Dt<∞} | Ft

)
= Ex

(
e−qRNt+1ERNt+11{RNt+1<∞} | Ft

)
. (22)

On the other hand, the strong Markov property and the fact that Lx1,x1(q) ≤ 1 (from
the definition (14) and our assumption q ≥ λ) entail that for every x > 0,

e−qRnERn1{Rn<∞} , n ≥ 1

is a Px-supermartingale in the filtration (Gn)n≥1. Since for s ≤ t, Ns + 1 ≤ Nt + 1 are
two (Gn)-stopping times, it follows from the optional sampling theorem for nonnegative
supermartingales that

Ex
(
e−qRNt+1ERNt+11{RNt+1<∞} | GNs+1

)
≤ e−qRNs+1ERNs+11{RNs+1<∞}.

Then on both sides, take the conditional expectation given Fs, which is a sub-algebra
of FDs = GNs+1. We get from (22) (applied at time s rather than t)

Ex
(
e−qRNt+1ERNt+11{RNt+1<∞} | Fs

)
≤ S(q)

s .

We conclude the proof by using once again (22) and the so-called tower property of
conditional expectations on the left-hand.

The supermartingale S(q) in Lemma 2.3 enables us to introduce a possibly defective
(i.e. possibly with finite lifetime ζ) càdlàg Markov process Y (q) = (Y (q)

t )0≤t<ζ with
distribution denoted by P(q) as follows. For every t ≥ 0 and every nonnegative functional
F defined on Skorokhod’s space D[0,t] of càdlàg paths ω : [0, t]→ (0,∞), one sets

E(q)
x [F ((Y (q)

s )0≤s≤t), ζ > t] = 1
`q(x)Ex[S

(q)
t F ((Xs)0≤s≤t)], x > 0.

We stress that the distribution of (Y (q)
s )0≤s≤t under the conditional law P(q)

x (· | ζ > t) is
absolutely continuous with respect to that of (Xs)0≤s≤t under Px, and as a consequence,
Y (q) inherits irreducibility from (9).

Lemma 2.4. (i) Suppose that the assumption (i) of Theorem 1.1 holds. Then ρ ≥ λ.
(ii) Suppose further that the assumption (ii) of Theorem 1.1 also holds, and set Y :=

Y (ρ). Then there exists b > 0 and s > 0 sufficiently large, such that

lim inf
t→∞

P(ρ)
b (Yr = b for some r ∈ [t, t+ s]) > 0.

Proof. (i) Suppose ρ < λ and pick any q ∈ (ρ, λ). On the one hand, since q > ρ,
assumption (i) of Theorem 1.1 entails that∫ ∞

0
e−qtTtf(x1)dt <∞
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for some x1 > 0 and some continuous function f : (0,∞) → R+ with f 6≡ 0. On the
other hand, as q < λ, we have Lx1,x1(q) ≥ 1, and the assertion above contradicts the
fact that then for every f : (0,∞)→ [0,∞) continuous with f 6≡ 0, we must have∫ ∞

0
e−qtTtf(x)dt =∞,

see Proposition 3.3 in [6].
(ii) Thanks to (i), we may now take q = ρ. Note from the very definition of Y that

the Feynman-Kac formula (11) can be translated as follows: for every x > 0 and every
continuous and compactly supported function f : (0,∞)→ R, there is the identity

e−ρt
x`(x)Ttf(x) = E(ρ)

x

(
f(Yt)
Yt`(Yt)

, ζ > t

)
, (23)

with ` := `ρ. Combining this with assumption (ii) of Theorem 1.1 and the fact that,
thanks to Lemma 2.2, ` remains bounded away from 0 on compact intervals of (0,∞),
we deduce that

lim inf
t→∞

P(ρ)
x2 (Yt ∈ [a, b], ζ > t) > 0, (24)

for any 0 < a < b such that Supp(g) ⊆ [a, b].
On the other hand, recall the notation from the first paragraph in the proof of Lemma

2.1 and notably the definition of p(x, y) in (21), and for every x ∈ [a, b], consider the
probability p(ρ)(x) that process Y started at x reaches b at time s(x, b), before dying or
making any jump. The obvious bound S(ρ)

t ≥ `(Xt) exp(−ρ+t) (where ρ+ stands for the
positive part of ρ) yields

p(ρ)(x) = 1
`(x)Ex

(
S(ρ)
s(x,b), X has no jump before time s(x, b)

)
≥ `(b)

`(x) exp
(
−ρ+s(x, b)

)
p(x, b)

≥ `(b)
sup[a,b] `

exp
(
−ρ+s(a, b)

)
p(a, b).

Again by Lemma 2.2 and the first paragraph in the proof of Lemma 2.1, the right-hand
above is positive, hence

inf
[a,b]

p(ρ) > 0.

We now see from the Markov property of Y that

P(ρ)
x2 (Yr = b for some r ∈ [t, t+ s(a, b)]) ≥ inf

[a,b]
p(ρ) × P(ρ)

x2 (Yt ∈ [a, b], ζ > t),

and then, combining with (24), that

lim inf
t→∞

P(ρ)
x2 (Yr = b for some r ∈ [t, t+ s(a, b)]) > 0.

Recalling that Y is irreducible and applying the strong Markov property at time HY (b)
completes the proof.
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We readily deduce from Lemma 2.4 the following

Corollary 2.5. Under the assumptions (i) and (ii) of Theorem 1.1, the Markov process
Y = Y (ρ) is point-recurrent and positive, that is

E(ρ)
x (HY (y)) <∞ for every x, y > 0,

where HY (y) := inf{t ∈ (0, ζ) : Yt = y} stands for the first hitting time of y by the
process Y , with the usual convention that inf ∅ =∞.

Proof. We start by observing from Lemma 2.4(ii) that b must be a recurrent state for
Y , i.e.

P(ρ)
b (HY (b) <∞) = 1.

Indeed, if we had P(ρ)
b (HY (b) = ∞) > 0, then by the strong Markov property at time

HY (b), the total number of visits to b would have a geometric distribution under P(ρ)
b ,

and in particular would be finite P(ρ)
b -a.s., in contradiction with Lemma 2.4(ii).

By the strong Markov property at return times, the set of passage times at b, {t ≥ 0 :
Yt = b} is regenerative, i.e. it can be expressed as the set of partial sums of a sequence
of independent copies of the variable HY (b). Its so-called renewal function is given by

U(t) := E(ρ)
b (Card{r ≤ t : Yr = b}) , t ≥ 0.

Choose s > 0 as in Lemma 2.4(ii), and observe that

U(t+ s)− U(t) ≥ P(ρ)
b (∃r ∈ (t, t+ s] : Yr = b) .

Recall from Blackwell’s renewal theorem that

U(t+ s)− U(t) ∼ s/E(ρ)
b (HY (b)) as t→∞,

and Lemma 2.4(ii) therefore implies that E(ρ)
b (HY (b)) < ∞. Since Y is irreducible, the

conclusion of the statement follows.

We now have all the ingredients needed to prove Theorem 1.1. Indeed, Corollary 2.5
implies that under the assumptions (i) and (ii) of Theorem 1.1, Y cannot be defective,
i.e. P(ρ)

x (ζ = ∞) = 1. That is, equivalently, Ex(S(ρ)
t ) = `(x) for all t ≥ 0, and since

a supermartingale with a constant expectation must be a martingale, S(ρ) is a Px-
martingale for every x > 0.

Then, point-recurrence for Y gives for every x > 0

1 = lim
t→∞

P(ρ)
x (HY (x) ≤ t) = lim

t→∞

1
`(x)Ex[S

(ρ)
t , H(x) ≤ t].

On the other hand, the martingale property of S(ρ) under Px and the optional sampling
theorem yield

Ex[S(ρ)
t , H(x) ≤ t] = Ex[S(ρ)

H(x), H(x) ≤ t] = `(x)Ex[e−ρH(x)EH(x), H(x) ≤ t].

12



We deduce by monotone convergence that

Lx,x(ρ) = Ex[e−ρH(x)EH(x), H(x) <∞] = 1,

which implies both that λ = ρ and the first condition in (15) holds.
We now see that the function ` = `ρ = `λ here is the same as that in Section 4 of

[6], the martingale S(ρ) coincides with the martingaleM there, and finally, the Markov
process Y here is the same as that in Section 5 of [6]. Recall from Corollary 2.5 that Y
is positive recurrent, and we conclude from Lemma 5.2(i) in [6] that the right-derivative
of the Laplace transform Lx,x(·) at λ is necessarily finite, which is the second condition
in (15). The proof of Theorem 1.1 is now completed.

3 Proof of Theorem 1.2

Our goal in this section is to check that, when the assumptions of Theorem 1.2 are
fulfilled, then (17) holds, as the exponential convergence then follows from Theorem 1.1
in [6]. This will be achieved in three main steps.

To start with, we work on a compact interval [a, b], where 0 < a < b are given, and
consider the first exit-time

σ(a, b) := inf{t > 0 : Xt 6∈ [a, b]}.

We first discuss irreducibility for the process killed when exiting from [a, b], which is a
necessary preamble for the rest of our analysis.

We then verify that the Krein-Rutman theorem can be applied in this compact setting,
by analyzing the trajectories of X. This yields a principal eigenvalue ρa,b for the system
where particles are killed when exiting [a, b], and a corresponding positive eigenfunction
ha,b. We then construct useful martingales from the latter, which in turn will enable us
to compute certain expectations by application of optional sampling.

For the next step, we fix the upper-boundary point b large enough, and let the lower-
boundary point a tend to 0+. We shall establish the existence of γ < λ and a non-
degenerate function g : (0, b] → R+ such that the process g(Xt)Ete−γt1{t<H(b)} is a
supermartingale.

Finally, (17) is established by putting the pieces together. In short, we pick a large
enough interval [a, b], q < λ close enough to the Malthus exponent λ, decompose the
excursion of the process away from its starting point at certain first-exit times, and
estimate the various pieces using the preceding steps.

3.1 Irreducibility in compact intervals

We start by addressing the slightly technical question of irreducibility. Even when X is
irreducible, it may happen that for some 0 < a < b, there exist two states x < y both
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in (a, b) such that no path of X started from y can reach x without exiting first from
[a, b]. When this occurs, the process killed at time σ(a, b) is then no longer irreducible,
and this creates an obstacle for our analysis. Recall however that the probability that
X started from x follows the flow velocity without having jumps until it reaches y is
always positive, so the problem can only arise when the starting point is larger than the
target.

We call an interval (a, b) with 0 < a < b good, if the process killed at time σ(a, b)
remains irreducible, in the sense that

Px(H(y) < σ(a, b)) > 0 for all x, y ∈ (a, b). (25)

In the next statement, we first justify the criterion for irreducibility in terms of the
kernel k̄ which has been asserted in the Introduction, and then argue that we can always
find good intervals (a, b) with a > 0 as small as we wish and b as large as we wish.

Lemma 3.1. (i) The conditions (9) and (10) are equivalent.
(ii) Assuming that either (9) or (10) hold, for every ε ∈ (0, 1), there exists a good

interval (a, b) with a < ε and b > 1/ε.

Proof. (i) We call a pair (β, α) with 0 < α < β a possible jump if α belongs to the
two-sided support of k̄(β, ·), in the sense that∫ α+η

α
k̄(β, y)dy > 0 and

∫ α

α−η
k̄(β, y)dy > 0 for all 0 < η < α.

Note that thanks to (7), the condition above remains fulfilled when we replace α, re-
spectively β, by any α′ close enough to α, respectively any β′ close enough to β, so the
set of possible jump pairs is open in {(y, x) : 0 < x < y}.

Because the sample paths of X increase between consecutive jump times and the
jump rates of X are given by k̄, we readily deduce from the observation above that if
(β, α) is a possible jump pair, then the probability under Pβ that X makes a single jump
straddling the interval (α, β) before hitting α, is strictly positive.

Now assume that (10) holds, so that the family of intervals (α, β) associated to possible
jumps pairs (β, α) form a covering of (0,∞), and consider any 0 < x < y. By compact-
ness, there exists a finite covering of [x, y] by intervals associated to possible jumps pairs,
and it is now easy to check from the strong Markov property that Py(Hx <∞) > 0. So
(9) holds.

Conversely, if (10) fails for some x > 0, the process X can never make a jump across
x. Because paths increase between two consecutive jump times, we see that the process
started for any y > x will never visit x, and hence (9) also fails.

(ii) We first observe that the argument in the proof of (i) actually yields a slightly
better result. Namely, if (β, α) is a possible jump pair, then for any α < x < y < β, the
probability under Py that X makes a single jump straddling the interval [x, y] before
hitting x and also stays in the interval (α, β) up to time Hx, is strictly positive. Using
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again the fact that on any finite time interval, the probability that X follows the flow
velocity without having jump is positive, we now readily see that (25) holds for a = α
and b = β. In other words, if (β, α) is a possible jump pair, then the interval (α, β)
is good. As intervals associated to possible jump pair form a covering of (0,∞), there
exists a finite covering of the compact interval [ε, 1/ε], say {(αi, βi) : i = 1, . . . , n}, and
it is then immediate to check from the strong Markov property that a = minαi and
b = max βi fulfill the requirements of the statement.

Throughout the rest of this section, we henceforth assume that (6), (7) and (9) hold.

3.2 Applying the Krein-Rutman theorem in a compact interval

We next consider the Banach space C0[a, b) of continuous functions f : [a, b] → R with
f(b) = 0, endowed with the usual norm ‖f‖ = supx∈[a,b) |f(x)|. The reason for imposing
f(b) = 0 is that the two boundary points the interval [a, b] have a different status for
the Markov process killed at time σ(a, b). Specifically, a is an entrance boundary, in
the sense that the process started at a then stays in [a, b] for a strictly positive amount
of time Pa-a.s., whereas b is an exit boundary, meaning that the process started at b
leaves [a, b] instantaneously Pb-a.s. We refer to [21] on pages 108 and 130-131 for more
about these notions introduced by Feller in the setting of diffusion processes. We do not
assume right now that the interval (a, b) is good, but this assumption will of course be
essential in a later part of our analysis.

Recall our assumption (6) and define qc := 1 + supx>0 c(x)/x, so that

Ete−tqc ≤ e−t for all t ≥ 0.

We introduce for every bounded measurable function f : [a, b]→ R

Ua,bf(x) := Ex
(∫ σ(a,b)

0
f(Xt)Ete−tqcdt

)
, x ∈ [a, b].

Lemma 3.2. The operator Ua,b maps C0[a, b) into itself. More precisely the family of
functions {Ua,bf : ‖f‖ ≤ 1} is equicontinuous.

Proof. We first note that Ua,bf(b) = 0 (since σ(a, b) = 0, Pb-a.s.), and also that Ua,b is
a contraction, i.e. ‖Ua,bf‖ ≤ ‖f‖. Then recall that for 0 < x < y, s(x, y) denotes the
travel time from x to y for a Lagrangian particle driven by the flow velocity c, and that
Λx,y stands for the event that X starts from x and reaches y before making any jump.
Observe that on that event, we have

ln Es(x,y) =
∫ s(x,y)

0

c(x(s))
x(s) ds = ln y − ln x.
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Take a ≤ x < y ≤ b and any f with ‖f‖ ≤ 1. On the event Λx,y, we decompose the
trajectory at time s(x, y), set

X ′t := Xs(x,y)+t , σ′(a, b) := inf{t > 0 : X ′t 6∈ [a, b]} , E ′t := exp
(∫ t

0

c(X ′s)
X ′s

ds
)
,

and get the bounds∣∣∣∣∣
∫ σ(a,b)

0
f(Xt)Ete−tqcdt− y

x
e−qcs(x,y)

∫ σ′(a,b)

0
f(X ′t)E ′te−tqcdt

∣∣∣∣∣ ≤ s(x, y).

On the complementary event Λc
x,y, we use the trivial bounds∣∣∣∣∣
∫ σ(a,b)

0
f(Xt)Ete−tqcdt

∣∣∣∣∣ ≤ 1.

The Markov property shows that conditionally on the event Λx,y, X ′ has the law Py; we
deduce that Ua,bf(x) is bounded from below by

−s(x, y) + y

x
e−qcs(x,y)Ua,bf(y)Px(Λx,y)− (1− Px(Λx,y))

and from above by

s(x, y) + y

x
e−qcs(x,y)Ua,bf(y)Px(Λx,y) + 1− Px(Λx,y).

Recalling that |Ua,bf(y)| ≤ 1, this yields the inequality

|Ua,bf(x)− Ua,bf(y)| ≤ s(x, y) +
∣∣∣∣yxe−qcs(x,y) − 1

∣∣∣∣+ 2(1− Px(Λx,y)).

On the one hand, (21) shows that 1−Px(Λx,y) converges to 0 as y−x→ 0+, uniformly
for a ≤ x < y ≤ b. On the other hand, it is easily checked that the same holds for s(x, y)
(because the flow velocity c is bounded away from 0 on [a, b]). This entails that

sup
x,y∈[a,b],|y−x|<ε

|Ua,bf(x)− Ua,bf(y)| → 0 as ε→ 0+,

uniformly for f with ‖f‖ ≤ 1, and our claim is proven.

The subspace C+
0 [a, b) of nonnegative functions in C0[a, b) is a reproducing cone, that is

C+
0 [a, b) is a closed convex set which is stable by multiplication by nonnegative constants,

and f = f+ − f− is a decomposition of a generic function f ∈ C0[a, b) as the difference
of two functions in C+

0 [a, b). Obviously, the operator Ua,b positive, i.e. maps the cone
C+

0 [a, b) into itself. Recall also from the Riesz-Markov representation theorem that any
linear functional on C0[a, b) which is positive (in the sense that it maps C+

0 [a, b) into R+),
can be represented by a finite Borel measure on [a, b] that has no atom at b. Plainly,
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the dual operator U∗a,b maps any such measure, say m, to another finite measure U∗a,bm
on [a, b] without atom at b, via the identity

〈U∗a,bm, f〉 = 〈m,Ua,bf〉 for all f ∈ C+
0 [a, b).

The Krein-Rutman theorem yields the first milestone for the proof of Theorem 1.2.
Recall that the notion of good interval has been introduced in (25).

Proposition 3.3. Let (a, b) be a good interval. Then:
(i) the spectral radius r(a, b) of Ua,b is positive,
(ii) there exist a function ha,b ∈ C+

0 [a, b) with ha,b(x) > 0 for every x ∈ [a, b) and a
finite Borel measure νa,b on [a, b] with νa,b({b}) = 0, such that

〈νa,b, ha,b〉 = 1 , Ua,bha,b = r(a, b)ha,b , and U∗a,bνa,b = r(a, b)νa,b,

(iii) the spectral gap holds, i.e. any r 6= r(a, b) in the spectrum of Ua,b has |r| < r(a, b).

Proof. We just need to verify the requirements of Theorem 19.5 in Deimling [13]. First, it
follows from Lemma 3.2 by the Arzelà-Ascoli theorem that the operator Ua,b is compact.
Second, observe from the strong Markov property that for every f ∈ C+

0 [a, b) with f 6≡ 0,
(25) ensures that Ua,bf(x) > 0 for every x ∈ [a, b). Then, 〈m,Ua,bf〉 > 0 for every Borel
measure on [a, b] with no atom at b, which is Condition (8) on page 235 of [13].

Proposition 3.3 enables us to introduce the following useful martingale.

Lemma 3.4. Set ρa,b := qc − 1/r(a, b). The process

Ma,b(t) := 1{t<σ(a,b)}ha,b(Xt)Ete−tρa,b , t ≥ 0

is a Px-martingale for every x ∈ [a, b].

Proof. Recall that (Ft)t≥0 denotes the natural filtration of X. By the Markov property,
we can express the uniformly integrable martingale

Mt := Ex
(∫ σ(a,b)

0
ha,b(Xs)Ese−sqcds | Ft

)
as

Mt =
∫ t∧σ(a,b)

0
ha,b(Xs)Ese−sqcds+ 1{t<σ(a,b)}Ete−tqcUa,bha,b(Xt).

From the identity Ua,bha,b = r(a, b)ha,b and stochastic calculus, we deduce that

Ma,b(t) =Ma,b(0) + 1
r(a, b)

∫ t

0
es/r(a,b)dMs.

The stochastic integral in the right-hand side is a Px-martingale since both the integrand
and the martingale M are bounded on [0, t].

17



We now arrive at a second milestone of the proof of Theorem 1.2.

Proposition 3.5. Take any good interval (a, b). Then for all x, y ∈ (a, b), there is the
identity

Ex
(
EH(y)e−ρa,bH(y), H(y) < σ(a, b)

)
= ha,b(x)/ha,b(y).

Proof. Perhaps, it could be tempting to try to derive the statement from Lemma 3.4
by an application of optional sampling to the martingale Ma,b and the stopping time
H(y). Note however that this would not be legitimate as the latter is not bounded and
the martingaleMa,b is not uniformly integrable (actually,Ma,b(∞) = 0 Px-a.s.).

We use the martingaleMa,b to introduce a new Markov process (Zt)t≥0 on [a, b) with
law P(a,b)

x , by setting

E(a,b)
x [F ((Zs)0≤s≤t)] = 1

ha,b(x)Ex[Ma,b(t)F ((Xs)0≤s≤t)],

where F stands for a generic nonnegative functional defined on Skorokhod’s space D[0,t].
We also write HZ(y) = inf{t > 0 : Zt = y} for the first hitting time of y by Z.

The purpose of introducing the process Z is that there are the identities

P(a,b)
x (HZ(y) ≤ t) = 1

ha,b(x)Ex[Ma,b(t), H(y) ≤ t]

= 1
ha,b(x)Ex[Ma,b(H(y)), H(y) ≤ t]

= ha,b(y)
ha,b(x)Ex[EH(y)e−ρa,bH(y), H(y) ≤ t ∧ σ(a, b)],

where the second line stems from Lemma 3.4 and Doob’s optional sampling theorem
applied at the bounded stopping time t ∧ H(y), and the third from the definition of
Ma,b.

Our claim now amounts to checking that the left-hand side above converges to 1 as
t → ∞, that is that HZ(y) < ∞, P(a,b)

x -a.s. In this direction, we shall prove that Z is
point recurrent using the full strength of Proposition 3.3 (whereas for Lemma 3.4, we
only needed to know that Ua,bha,b = r(a, b)ha,b).

Introduce the probability measure ma,b(dx) := ha,b(x)νa,b(dx) on [a, b). We claim that
ma,b is a stationary distribution for Z. In this direction, define first for every bounded
measurable function f : [a, b)→ R and every q > 0

V qf(x) := Ex
(∫ σ(a,b)

0
f(Xt)Ete−(q+qc)tdt

)
, x ∈ [a, b].

In particular, V 0 = Ua,b and the resolvent equation reads V q = Ua,b − qUa,bV q. With
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this notation at hand, and recalling from Lemma 3.4 that ρa,b = qc − 1/r(a, b), we have

E(a,b)
ma,b

(∫ ∞
0

e−qtf(Zt)dt
)

= Eνa,b

(∫ σ(a,b)

0
e−(q+qc−1/r(a,b))tf(Xt)ha,b(Xt)Etdt

)
= 〈νa,b, V q−1/r(a,b)(fha,b)〉
= 〈νa,b, Ua,b(fha,b)〉 − (q − 1/r(a, b))〈νa,b, Ua,bV q−1/r(a,b)(fha,b)〉
= r(a, b)〈νa,b, fha,b〉 − (r(a, b)q − 1)〈νa,b, V q−1/r(a,b)(fha,b)〉,

where we used the resolvent equation at the third line, and that U∗a,bνa,b = r(a, b)νa,b at
the fourth. This yields

E(a,b)
ma,b

(∫ ∞
0

e−qtf(Zt)dt
)

= q−1〈νa,b, fha,b〉 = q−1〈ma,b, f〉,

showing that indeed ma,b is a stationary law for Z.
The existence of a stationary law for Z now readily entails point recurrence. Take any

x ∈ (a, b); plainly Z inherits irreducibility from (25), and in particular P(a,b)
ma,b

(HZ(x) <
∞) := α > 0. By stationarity, we have for every s > 0 that

P(a,b)
ma,b

(∃t ≥ s : Zt = x) ≥ α,

and a fortiori
P(a,b)
ma,b

(sup{t ≥ 0 : Zt = x} =∞) ≥ α.

We conclude from the strong Markov property that HZ(x) < ∞, P(a,b)
x -a.s., which is

what we needed to verify.

Proposition 3.5 enables us to compare the eigenvalues ρa,b for nested good intervals,
and also with the Malthus exponent λ.

Lemma 3.6. We have:
(i) Let (a, b) and (a′, b′) two good intervals with a < a′ < b′ < b. Then

ρa′,b′ < ρa,b < λ.

(ii) λ = sup{ρa,b : (a, b) is a good interval}.

Proof. (i) Since σ(a′, b′) ≤ σ(a, b) and the inequality is strict with positive Px-probability
for any x ∈ [a′, b′], it follows from Proposition 3.5 that

Ex
(
EH(x)e−ρa′,b′H(x), H(x) < σ(a, b)

)
> 1 = Ex

(
EH(x)e−ρa,bH(x), H(x) < σ(a, b)

)
.

This forces ρa′,b′ < ρa,b. Similarly,

Ex(EH(x)e−λH(x), H(x) < σ(a, b)) < Ex(EH(x)e−λH(x), H(x) <∞) ≤ 1,
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where the second inequality follows from the right-continuity of the Laplace transform
Lx,x and the definition (14) of the Malthus exponent. This yields ρa,b < λ.

(ii) Set ρ̄ := sup{ρa,b : (a, b) is a good interval}. Then, by monotone convergence and
Lemma 3.1, we have

Ex
(
EH(x)e−ρ̄H(x), H(x) <∞

)
= sup{Ex

(
EH(x)e−ρ̄H(x), H(x) < σ(a, b)

)
: (a, b) is a good interval}

≤ sup{Ex
(
EH(x)e−ρa,bH(x), H(x) < σ(a, b)

)
: (a, b) is a good interval},

showing that Lx,x(ρ̄) ≤ 1. Hence ρ̄ ≥ λ, and the converse inequality follows from (i).

3.3 Letting the lower-boundary point go to 0

We now fix the upper-boundary point b and let the lower-boundary point a tend to 0.
Note that due to the absence of positive jumps, the identity lima→0 σ(a, b) = H(b) holds
Px-a.s. for all x < b.

Proposition 3.7. Assume lim supx→0 c(x)/x < λ. Then the following hold:
(i) There exist a good interval (a, b) such that supx≤a c(x)/x < ρa,b.
(ii) For every a′ ∈ (a, b) with supx≤a′ c(x)/x ≤ ρa,b and every b′′ ∈ (a′, b) sufficiently

close to b, there exists then γ < λ with

Ea′

(
EH(a′)e−γH(a′), H(a′) < H(b′′)

)
∈ (0, 1].

Proof. (i) We first use Lemma 3.6 and the assumption that lim supx→0 c(x)/x < λ to
find a good interval (a′, b′) with lim supx→0 c(x)/x < ρa′,b′ . Then consider

a′′ := inf{x > 0 : c(x)/x ≥ ρa′,b′} ∈ (0,∞],

and choose a good interval (a, b) with 0 < a < a′ ∧ a′′ and b > b′. By Lemma 3.6(i), we
have then ρa,b > ρa′,b′ , and a fortiori c(x)/x < ρa,b for all x ≤ a.

(ii) The irreducibility (25) entails that Pa′(H(a′) < H(b′′)) > 0 provided that b′′ ∈
(a′, b) is chosen close enough to b. Then consider the convex and nonincreasing function
Ψ : R→ (0,∞] defined by

Ψ(q) := Ea′

(
EH(a′)e−qH(a′), H(a′) < H(b′′)

)
.

Since ρa,b < λ by Lemma 3.6, we may pick r ∈ (ρa,b, λ). We shall check that Ψ(r) <∞
and our claim then follows. Indeed, if actually Ψ(r) ≤ 1 then we simply take γ = r.
Otherwise, since we have always Ψ(λ) < La′,a′(λ) ≤ 1, the equation Ψ(q) = 1 has a
unique solution γ ∈ (r, λ).
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On the event H(a′) < H(b′′), the process started from a′ first stays in [a′, b′′] until it
makes a jump across a′ at time σ(a′, b′′), and then stays in (0, a′) until it eventually hits
a′ for the first time at the instant H(a′). Since

sup
x≤a′

c(x)/x ≤ ρa,b < r,

on the event that H(a′) < H(b′′), there is the inequality

EH(a′)e−rH(a′) ≤ Eσ(a′,b′′)e−rσ(a′,b′′),

and we have therefore

Ea′

(
EH(a′)e−rH(a′), H(a′) < H(b′′)

)
≤ Ea′

(
Eσ(a′,b′′)e−rσ(a′,b′′), H(a′) < H(b′′)

)
.

Observe that there exists an instant t ≤ σ(a′, b′′) withXt < a′ if and only if the process
X stays in [a, b] during the whole time-interval [0, t) and exits from [a′, b′′] at time t by
jumping across the level a′, that is if and only if t = σ(a′, b′′) and H(a′) < H(b′′).
Combining this observation with the fact that the predictable compensator of the jump
process of X is k̄(Xt−, y)dydt, we deduce that

Ea′

(
Eσ(a′,b′′)e−rσ(a′,b′′), H(a′) < H(b′′)

)
= Ea′

(∫ σ(a′,b′′)

0
Ete−rt

(∫ a′

0
k̄(Xt−, y)dy

)
dt
)

≤ ‖K‖∞Ea′

(∫ σ(a′,b′′)

0
Ete−rtdt

)
,

where ‖K‖∞ = supx>0K(x) is the maximal jump rate.
We then write δ := r − ρa,b > 0 and use the inequality

Ea′

(
Ete−rt, t < σ(a′, b′′)

)
≤ e−δt

min[a′,b′′] ha,b
Ea′

(
Ete−ρa,btha,b(Xt), t < σ(a, b)

)
= e−δt ha,b(a′)

min[a′,b′′] ha,b
,

where the equality is seen from Lemma 3.4. Since min[a′,b′′] ha,b > 0 by Proposition 3.3,
we now get that ∫ ∞

0
Ea′

(
Ete−rt, t < σ(a′, b′′)

)
dt <∞,

which entails our claim.

Proposition 3.7(ii) enables us to repeat the argument for the proof of Lemma 2.3, and
this yields the following:
Corollary 3.8. Notation and assumptions are as in Proposition 3.7. For 0 < x < b′′,
we consider

g(x) := Ex
(
EH(a′)e−γH(a′), H(a′) < H(b′′)

)
.

The process
S(t) := g(Xt)Ete−γt1{t<H(b′′)}, t ≥ 0.

is then a Px-supermartingale for every 0 < x < b′′.
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We have now completed all the preliminary steps needed to establish Theorem 1.2.

3.4 Proof of (17)

We first pick two good intervals (a, b) and (a′, b′) with 0 < a < a′ < b′ < b sufficiently
large such that

sup
(0,a′]∪[b′,∞)

c(x)/x < ρa,b

That this is indeed possible is seen from the same argument as in the proof of Proposition
3.7(i), thanks to Lemmas 3.1(ii) and 3.6 and the assumptions of Theorem 1.2. The
irreducibility of the process killed when exiting from [a, b] shows that provided we choose
b′′ ∈ (b′, b) close enough to b, then Pb′(H(a′) < H(b′′)) > 0. Next, in the notation
introduced in Proposition 3.7, take any max{ρa,b, γ} < q < λ. In particular,

c(x)/x < q for all x ∈ (0, a′] ∪ [b′,∞).

We shall prove that (17) holds with x = b′. We thus let X start from b′ and split the
excursion interval (0, H(b′)) at times σ(b′,∞) and σ(a′,∞). Recall that σ(b′,∞) is the
first instant when X jumps across b′, so plainly σ(b′,∞) ≤ σ(a′,∞) Pb′-a.s., and these
two first-exit times may coincide with positive probability. Because X stays in [b′,∞)
until time σ(b′,∞), we have

Eσ(b′,∞)e−qσ(b′,∞) ≤ 1 Pb′-a.s.,

and we see from the strong Markov property that (17) will follow from

sup
x<b′

Ex
(
EH(b′)e−qH(b′), H(b′) <∞

)
<∞. (26)

First consider the case x ≤ a′. The process started from x stays in (0, a′] until time
H(a′), thus

EH(a′)e−qH(a′) ≤ 1 Px-a.s.,

and therefore we have, again from the strong Markov property,

Ex
(
EH(b′)e−qH(b′), H(b′) <∞

)
≤ Ea′

(
EH(b′)e−qH(b′), H(b′) <∞

)
.

Next recall Proposition 3.7, and chose b′′ ∈ (b′, b) close enough to b such that Pb′(H(a′) <
H(b′′)) > 0. In the notation of Corollary 3.8, Proposition 3.7(ii) ensures that g(a′) ∈
(0, 1], and we have also g(b′) > 0. We now deduce from the optional sampling theorem
applied under Pa′ to the supermartingale S in Corollary 3.8 and the stopping time
H(b′) < H(b′′), that

Ea′

(
EH(b′)e−qH(b′), H(b′) <∞

)
≤ 1
g(b′)Ea

′

(
SH(b′)

)
≤ g(a′)
g(b′) ,
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and hence
sup
x≤a′

Ex
(
EH(b′)e−qH(b′), H(b′) <∞

)
≤ g(a′)
g(b′) <∞. (27)

Next, we consider the case x ∈ (a′, b′), and distinguish whether the process exits from
[a′, b′] through the upper or the lower boundary. On the one hand, Lemma 3.4 and the
optional sampling theorem readily yield for every x ∈ [a′, b′]:

Ex
(
EH(b′)e−qH(b′), H(b′) < σ(a, b)

)
≤ ha,b(x)
ha,b(b′)

,

and a fortiori

sup
a′≤x<b′

Ex
(
EH(b′)e−qH(b′), H(b′) ≤ σ(a′, b′)

)
≤

max[a′,b′] ha,b
ha,b(b′)

<∞. (28)

On the other hand, the same argument as in the proof of Proposition 3.7(ii) shows that
for every x ∈ [a′, b′):

Ex
(
Eσ(a′,b′)e−qσ(a′,b′), σ(a′, b′) < H(b′)

)
≤ ‖K‖∞Ex

(∫ σ(a′,b′)

0
Ete−qtdt

)

≤ ‖K‖∞ha,b(x)
δmin[a′,b′] ha,b

,

where δ = q− ρa′,b′ > 0 and ‖K‖∞ is the maximal jump rate. Combining this with (27)
and the strong Markov property, we conclude that

sup
a′≤x<b′

Ex
(
EH(b′)e−qH(b′), σ(a′, b′) < H(b′) <∞

)
<∞. (29)

Together, (27), (28) and (29) establish (26), and this completes the proof of Theorem
1.2.

3.5 Miscellaneous comments about Theorem 1.2

(i) We have argued in the Introduction that (19) yields the more explicit criterion
(20) when X is recurrent, and we now discuss simple conditions in terms of the
growth and fragmentation rates that ensure recurrence. Since X is irreducible and
its trajectories have no positive jumps, point-recurrence can only fail if sample
paths converge either to 0 or to ∞ a.s., which can easily be impeded by Foster-
type conditions (see for instance [25] and [20] for general references). Typically,
consider the power function f(x) = xr for some r > 0, and assume that Gf(x) ≤ 0
for all large enough x. That is, for some x∞ > 0:

rc(x)xr +
∫ x

0
(yr − xr)yk(x, y)dy ≤ 0 for all x ≥ x∞. (30)
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Then the process f(Xt∧σ(x∞,∞)) is a Px-supermartingale for every x ≥ x∞, and
it follows that Px(limt→∞Xt = ∞) = 0. Similarly, working now with negative
powers and considering g(x) = x−q for some q > 0, if for some x0 > 0

−qc(x)x−q +
∫ x

0
(y−q − x−q)yk(x, y)dy ≤ 0 for all x ≤ x0, (31)

then the process g(Xt∧H(x0)) is a Px-supermartingale for every x ≤ x0, and it follows
that Px(limt→∞Xt = 0) = 0. We refer further to Bouguet [7], who considered
specifically positive recurrence for the family of piecewise deterministic Markov
processes that arise in our setting; see notably Theorem 4 and also Remark 3 there.
Putting the pieces together and excluding implicitly the case of linear growth2, we
get that exponentially fast convergence (18) holds provided that (20), (30) and
(31) are satisfied.
Recall that Doumic Jauffret and Gabriel [17] obtained conditions that ensure the
existence of eigenelements and thus also the Malthusian behavior (5) by the gen-
eral relative entropy method (however their approach does not yield exponential
speed of convergence (18)). The comparison of those conditions displays certain
resemblance and but also differences. For instance, (12) and (13) in [17] can be
loosely related to (30) and (31) here; we do not need here to make assumptions
such as (5,7,10) in [17]; on the other hand [17] also covers the situation where the
growth rate c does not fulfill (6).

(ii) If we assume self-similarity of the fragmentation kernel, that is

k(x, y) = x−1K(x)p(y/x), 0 < y < x,

where p ∈ L1
+([0, 1]) with

∫ 1
0 p(u)udu = 1, then (30) and (31) translate respectively

into
c(x)
xK(x) ≤ r−1

∫ 1

0
(1− ur)up(u)du for all x ≥ x∞ (32)

and
c(x)
xK(x) ≥ q−1

∫ 1

0
(u−q − 1)up(u)du for all x ≤ x0. (33)

Putting pieces together, we thus see that in the self-similar case, exponentially fast
convergence (18) holds whenever (20), (32) and (33) are fulfilled.
This should be compared with Theorem 1.11 of Balagué et al. [1] in which the
existence of a spectral gap is asserted under more stringent conditions. We stress
however that [1] also covers cases where the growth rate c does not fulfill (6).

(iii) We point out that exponential speed of convergence (18) may hold without (19).
For instance, in the case of linear growth rate c(x) = ax, Section 6 in [6] discusses
situations where λ = a and nonetheless (18) takes place.

2Linear growth rate c(x) = ax was already discussed in details in Section 6 of [6]
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(iv) We also recall from Corollary 4.5 and Lemma 4.6 in [6], that when (19) holds, then
h is an eigenfunction for the eigenvalue λ of the growth-fragmentation operator A
(in particular h belongs to the domain of A), and further the function x 7→ h(x)/x
is continuous and bounded.

Acknowlegdment: I would like to thank warmly two anonymous referees for their
very constructive comments and questions, and for pointing at relevant references which
I missed initially. They greatly helped resolving several ambiguities in the original draft.
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