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On a Feynman-Kac approach
to growth-fragmentation semigroups

and their asymptotic behaviors
Jean Bertoin∗

This work develops further a probabilist approach to the asymptotic behavior
of growth-fragmentation semigroups via the Feynman-Kac formula, which
was introduced in a joint article with A.R. Watson [4]. Here, it is first
shown that the sufficient condition for a Malthusian behavior which was
established in [4], is also necessary. We then provide a simple criterion to
ensure exponential speed of convergence, which enables us to treat cases than
were not covered previously in the literature.
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1 Introduction

Imagine a population, for instance of cells or of bacterias, where individuals grow and
divide as time passes, and such that the evolution of each individual only depends on
its own mass, without interaction between different individuals. Assume also that when
a division event happens, the sum of the masses of daughters resulting from the divi-
sion equals the mass of the mother before division. In other words, the total mass is
a preserved quantity when division occurs, but may grow between consecutive division
events. Growth-fragmentation equations provide a mathematical model for such dynam-
ics, by describing the evolution of concentrations of individuals as a function of masses
and time. The rate of growth of an individual may depend on its mass, and the rate at
which a mother produces daughters may also depend both on the mass of the mother
just before division and on the masses of its daughters right after the division.
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Specifically, one considers an operator of the form

Af(x) = c(x)f ′(x) +
∫ x

0
f(y)k(x, y)dy −K(x)f(x), x > 0, (1)

which is defined on some domain DA of smooth functions f : (0,∞) → R. Here c(x)
describes the growth rate as a function of the mass, and k(x, y) the rate at which a
daughter particle with mass y appears as the result of the division of a mother particle
with mass x > y. Finally, K(x) is the total rate of division of individuals with mass x,
and the assumption of conservation of mass at division events thus translates into

K(x) =
∫ x

0

y

x
k(x, y)dy. (2)

Under fairly simple general assumptions on the rates c and k that will be introduced
later on, A is the infinitesimal generator of a strongly continuous positive semigroup
(Tt)t≥0, so that a growth-fragmentation equation can be given in the form

dTtf
dt = ATtf , f ∈ DA.

In this setting, the measure µt(x, dy) on (0,∞) such that

Ttf(x) =
∫

(0,∞
f(y)µt(x, dy) := 〈µt(x, ·), f〉

describes the concentration at time t of individuals of mass y, when one starts at time
0 from a unit concentration of individuals of mass x, i.e. µ0(x, dy) = δx(dy).

In general, there is of course no explicit expression for the growth-fragmentation
semigroup (Tt)t≥0, and many works in this area are concerned with its large time asymp-
totic behavior. See in particular [1, 2, 3, 6, 11, 12, 16, 17, 18, 20] and further references
therein. Typically, one expects that under adequate assumptions on the rates of growth
and of fragmentation, there exists a principal eigenvalue ρ ∈ R such that

lim
t→∞

e−ρtTtf(x) = h(x)〈ν, f〉, x > 0, (3)

at least for every continuous and compactly supported function f : (0,∞) → R. Here,
ν(dy) is a Radon measure on (0,∞), which is often referred to as the asymptotic profile,
and h some positive function. We stress that (3) may fail; see for instance Doumic and
Escobedo [10] and Gabriel [12].

When (3) holds, it is further important to be able to estimate the speed of convergence.
Indeed, say for ρ > 0, an indefinite exponential growth is of course unrealistic in practice,
and the growth-fragmentation equation can only be pertinent for describing rather early
stages of the evolution of a population when certain effects such as competition between
individuals for space or resources can be neglected. As a consequence, the notions of
principal eigenvalue and of asymptotic profile are only relevant for applications when
the convergence in (3) occurs fast enough.
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Spectral theory for semigroups and generators yields a well-established and classical
framework for establishing the validity of (3), again provided that the growth and frag-
mentation rates are properly chosen. In short, if one can find positive eigenelements,
namely a Radon measure ν and a positive function h on (0,∞), such that for some
ρ ∈ R:

Ah = ρh , A∗ν = ρν, and 〈ν, h〉 = 1,
where A∗ denotes the dual of A, then the so-called general relative entropy method (see
in particular Chapter 6 in Perthame [19] and Michel et al. [17]) shows that (3) holds.
In turn, explicit criteria in terms of the rates of growth c and of fragmentation k that
ensure the existence of positive eigenelements, have been obtained by Michel [16] and
by Doumic and Gabriel [11]. These works rely crucially on the Krein-Rutman theorem,
a version of the Perron-Frobenius theorem for positive compact operators. On the other
hand, exponential rate of convergence in (3) is essentially equivalent to the existence of
a spectral gap. This has been obtained under specific assumptions on the growth and
fragmentation rates notably by Perthame and Ryzhik [20], Laurençot and Perthame [14],
Cáceres et al. [6] and Mischler and Scher [18].

Quite recently, together with A.R. Watson [4], we devised a probabilistic approach to
(3), which circumvents spectral theory of semigroups and further provides probabilistic
expressions for the various quantities of interest. This requires some assumptions on the
growth rate c and the fragmentation k that we now introduce. First,

the function x 7→ c(x)/x is continuous, positive and bounded on (0,∞), (4)

and second, writing k̄(x, y) := x−1yk(x, y) for every 0 < y < x,

the map x 7→ k̄(x, ·) from (0,∞) to L1(dy) is continuous and bounded. (5)

Our probabilistic approach relies on an instrumental Markov process X = (Xt)t≥0
with infinitesimal generator

Gf(x) := c(x)f ′(x) +
∫ x

0
(f(y)− f(x))k̄(x, y) dy. (6)

Assumption (5) guaranties that the total jump rate (2) remains bounded, so the jump
times of X never accumulate. One says X is piecewise deterministic (see [7] and ref-
erences therein), in the sense that the trajectory t 7→ Xt is driven by the steady flow
velocity c between two consecutive jumps, and jump times and locations are the sole
source of randomness. We finally assume that

the Markov process X is irreducible, (7)

that is, for every x, y > 0, the probability that the Markov process started from x
visits y > 0 is strictly positive. Roughly speaking, this means that there are no strict
subintervals I of (0,∞) that form traps for X, in the sense that once the path enters
I, it cannot exit from I. Because X is piecewise deterministic and has only downwards
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jumps, this can be ensured by a simple non-degeneracy assumption on the fragmentation
kernel k; see the forthcoming Lemma 3.1 and its proof for details.

The growth-fragmentation semigroup Tt can then be given by a Feynman-Kac formula
(we refer to [9] for treatise on this topic in discrete time):

Ttf(x) = xEx
(
Et
f(Xt)
Xt

)
, with Et := exp

(∫ t

0

c(Xs)
Xs

ds
)
, (8)

where Ex stands for the expectation when X starts at X0 = x. The first hitting time of
y > 0 by X,

H(y) := inf {t > 0 : Xt = y} , (9)
and the Laplace transform

Lx,y(q) := Ex
(
e−qH(y)EH(y), H(y) <∞

)
, q ∈ R, (10)

then play a key role for the asymptotic behavior of Tt as we shall now explain.
Note that Lx,y is always a non-increasing convex function with values in (0,∞], with

limq→∞ Lx,y(q) = 0 and limq→−∞ Lx,y(q) = ∞. In particular, it possesses a right-
derivative L′x,y(q) at every point q of its effective domain, i.e. with Lx,y(q) <∞. Defining
the Malthus exponent by

λ := inf{q ∈ R : Lx,x(q) < 1} (11)

(actually, this definition does not depend on x > 0), the main results of [4] can be
summarized as follows. First, if

Lx,x(λ) = 1 and − L′x,x(λ) <∞ (12)

(again, this condition does not depend on x), then (3) holds with ρ = λ. Moreover, the
asymptotic profile ν and the function h are given for some arbitrarily chosen x0 > 0 by

h(y) = yLy,x0(λ) and ν(dy) = dy
h(y)c(y)|L′y,y(λ)| , y > 0. (13)

Second, if
there exists some q < λ and x > 0 with Lx,x(q) <∞, (14)

then the convergence (3) takes place exponentially fast. Specifically, there exists β > 0
such that

e−λtTtf(x) = h(x)〈ν, f〉+ o(e−βt) as t→∞ (15)
for every continuous function f with compact support and every x > 0. We stress that,
by convexity of Lx,x, (14) is of course a stronger requirement than (12).

Throughout the rest of this work, we always assume that (4), (5) and (7) hold.
We have two main purposes. First, we shall observe that the condition (12) is also
necessary for the Malthusian behavior (3), and in particular, whenever the latter holds,
the principal eigenvalue ρ is always given by the Malthus exponent defined by (11). We
shall actually establish an even slightly stronger result.
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Theorem 1.1. Suppose that for some ρ ∈ R:
(i) there exist x1 > 0 and a continuous function f : (0,∞)→ R+ with compact support

and f 6≡ 0, such that
lim sup
t→∞

e−ρtTtf(x1) <∞,

(ii) there exist x2 > 0 and a continuous function g : (0,∞) → R+ with compact
support, such that

lim inf
t→∞

e−ρtTtg(x2) > 0.

Then ρ = λ, (12) holds and thus also the Malthusian behavior (3) with (13).

The assumptions in (12) and (14) are given in terms of the Laplace transform Lx,y
rather than directly in terms of the coefficients c and k as one might have wished, and
the second purpose of the present work is to remedy (at least partly) this problem by
providing the following simple criterion.

Theorem 1.2. If the Malthus exponent λ defined in (11) and the growth rate c fulfill

lim sup
x→0+

c(x)
x

< λ and lim sup
x→∞

c(x)
x

< λ, (16)

then the exponential convergence (15) holds.

Theorem 1.2 might seem unsatisfactory, as its requirements are not given only in
terms of the rates c and k, but also involve the Malthus exponent λ. However, there are
simple explicit conditions in terms of c and k only that ensure (16). In particular, it is
easily seen that λ > infx>0 c(x)/x when X is recurrent and c is not linear, cf. Proposition
3.4(ii) in [4]. Thus (16) is then fulfilled whenever

lim
x→0+

c(x)
x

= lim
x→∞

c(x)
x

= inf
x>0

c(x)
x
. (17)

In turn, explicit conditions in terms of c and k guarantying recurrence for X are easy
to obtain, as we shall further discuss in Section 3.6(i-ii). This yields explicit criteria for
(15) that enables us to treat cases than were not covered previously in the literature.

It may be interesting to discuss a bit further Criterion (16). Requesting an upper-
bound for the growth rate at infinity should not come as a surprise as similar assump-
tions are made in the literature to prevent the formation of too large particles. For
instance, Doumic Jauffret and Gabriel [11] request (among other assumptions) that
limx→∞ xK(x)/c(x) = ∞, which forces in our setting limx→∞ c(x)/x = 0 since we also
assumed in (5) that the total rate of fragmentation K remains bounded; see Equation
(13) in [11], and also Equation (11) in Balagué et al. [1]. On the other hand, imposing
an upper-bound for the growth rate at 0+ may be more surprising, as on the contrary,
it is often assumed in the literature that the growth for small particles should be strong
enough in order to prevent shattering (see notably Equation (11) in [11] and Equation
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(10) in [1]). One might be further puzzled by the fact that the fragmentation rate k does
not appear explicitly in (16); however, the value of the Malthus exponent λ depends of
course both on c and k.

Let us also try to offer a rather informal interpretation of (16). The Feynman-
Kac formula provides a representation of the growth-fragmentation semigroup (Tt)t≥0 in
terms of a weighted particle (Xt, Et), where Xt is the location of the particle at time t
and Et its weight. The weight thus increases at rate c(x)/x when the particle is located
at x, and in this setting, the Malthus exponent λ can be interpreted as the long-time
average rate of increase of the weight. Then (16) means that the weight of the particle
increases more slowly than on average when the particle is either close to 0 or close to
∞. Informally, the particle has thus a more important contribution to the Feynman-
Kac formula when it stays away from 0 and from ∞, that is essentially when it remains
confined in a compact interval. And it is precisely for processes staying in compact
spaces that exponential ergodicity is expected.

The rest of this article is organized as follows. The two theorems are established in
the next two sections, where the main ideas of the proofs are sketched first. We also
gather in Section 3.6 miscellaneous comments about Theorem 1.2, notably discussing
further the connection with earlier results in the literature.

We conclude this introduction by recalling that the Feynman-Kac functional E defined
in (8) is multiplicative, in the sense that for every s, t ≥ 0, there is the identity

Et+s = Et × (Es ◦ θt),

where Es ◦ θt stands for the functional Es evaluated for the shifted path X ◦ θt = Xt+·.
In the sequel, this basic property will be often used without specific mentions, notably
in combination with the Markov property.

2 Proof of Theorem 1.1

The arguments for proving Theorem 1.1 belong to the same vein as in [4], with the
difference that the role of remarkable martingales there is rather played here by super-
martingales. Specifically, we shall first establish some properties of the first hitting time
H(y) and of its Laplace transform Lx,y, which are then applied to introduce supermartin-
gales related to the Feynman-Kac formula. Then we shall use the latter and introduce
another one-parameter family of (possibly defective) Markov process Y (q) by probability
tilting. This yields a more direct probabilistic representation the growth-fragmentation
semigroup, and analyzing the behavior of Y (q) via the regeneration property at return
times then readily yields the conclusion.

We start by considering the motion t 7→ x(t) of a Lagrangian particle in the steady
flow velocity c, viz.

dx(t) = c(x(t))dt,
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which governs the dynamics of the piecewise deterministic processX between consecutive
jump times, and introduce some notation in this setting that will be useful in several
parts of this work. For 0 < x < y, denote by s(x, y) the travel time from x to y, that is

x(s(x, y)) = y when x(0) = x.

Obviously s(·, ·) decreases in the first variable and increases in the second one. Consider
also the event Λx,y that process X started at x reaches y before making any jump. Since
K(z) is the total jump rate when the process is located at z, we have

p(x, y) := Px(Λx,y) = exp
(
−
∫ s(x,y)

0
K(x(t))dt

)
= exp

(
−
∫ y

x

K(z)
c(z) dz

)
. (18)

This is a positive quantity which increases with x and decreases with y.
We proceed with the following uniform lower-bound for the cumulative distribution

functions of first hitting times (9).

Lemma 2.1. For every 0 < a < b, there exists t(a, b) ∈ R+ such that

inf
x,y∈[a,b]

Px(H(y) < t(a, b)) > 0.

Proof. Consider first the process X started from b. The irreducibility assumption (7)
ensures that we can find two real numbers q(a, b) ∈ (0, 1) and r(a, b) > 0 such that

Pb(H(a) < r(a, b)) > q(a, b).

Next consider the process X started from an arbitrary point x ∈ [a, b]. By focusing
on trajectories which first hit b before having any jump, then need an amount of time
less than r(a, b) for traveling from b to a, and finally hit y ∈ [a, b] before having any
further jump, we deduce from an application of the strong Markov property that there
is the lowerbound

Px(H(y) < 2s(a, b) + r(a, b)) > p(a, b)2q(a, b) > 0.

This proves our claim with t(a, b) = 2s(a, b) + r(a, b).

Next, recall the notation (10) for the Laplace transform Lx,y, (11) for the Malthus
exponent, and fix x1 > 0 arbitrarily.

Lemma 2.2. For every q ≥ λ, the function

`q : x 7→ Lx,x1(q), x > 0,

is bounded away from 0 and from ∞ on every compact interval of (0,∞).
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Proof. Let us assume that q > 0, the case when q ≤ 0 being somewhat simpler. We
have plainly

`q(x) ≥ vq(x, x1) := Ex
(
e−qH(x1), H(x1) <∞

)
.

Fix a > 0 arbitrarily small and b > 0 arbitrarily large, with a < x1 < b. Lemma 2.1
ensures the existence of t(a, b) > 0 and p > 0 such that, for all x, y ∈ [a, b],

vq(x, y) ≥ Ex
(
e−qH(y), H(y) < t(a, b)

)
≥ pe−qt(a,b).

A fortiori, infa≤x≤b `q(x) > 0.
On the other hand, our assumption q ≥ λ and the very definition (11) entail that

Lx1,x1(q′) < 1 for every q′ > q. Equation (16) in [4] states that then Lx,x1(q′)Lx1,x(q′) < 1
for every x > 0. By right-continuity of the functions Lx,y, we have

`q(x) = Lx,x1(q) ≤ 1/Lx1,x(q),

and since
Lx1,x(q) ≥ vq(x1, x) ≥ pe−qt(a,b),

we conclude that supa≤x≤b `q(x) <∞.

Theorem 4.4 in [4], which states that if Lx,x(λ) = 1, then the process
(
e−λt`λ(Xt)Et

)
t≥0

is a martingale, is a cornerstone of the probabilistic approach which is developed there.
Here is a version of the latter in terms supermartingales.

Lemma 2.3. For every q ≥ λ, the process

S(q)
t := e−qt`q(Xt)Et, t ≥ 0

is a Px-supermartingale for every x > 0.

Proof. Write
Nt := #{0 < s ≤ t : Xs = x1}, t ≥ 0

for the process which counts the number of visits of X to x1 as time passes, and

Rn := inf{t > 0 : Nt = n}, n ≥ 1

for the instant when X returns to x1 for the n-th time. Write also (Ft)t≥0 for the
natural filtration of X and recall that the return times Rn are (Ft)-stopping times.
Further, writing Gn := FRn , we know that for every t ≥ 0, Nt+ 1 is a (Gn)-stopping time
and the first return to x1 after time t can be expressed as

Dt := inf{s > t : Xs = x1} = RNt+1.

On the one hand, we see from the Markov property at time t and the definition of
the function `q in Lemma 2.2 that for every x > 0,

S(q)
t = Ex

(
e−qDtEDt1{Dt<∞} | Ft

)
= Ex

(
e−qRNt+1ERNt+11{RNt+1<∞} | Ft

)
. (19)
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On the other hand, the strong Markov property and the fact that Lx1,x1(q) ≤ 1 (from
the definition (11) and our assumption q ≥ λ) entail that for every x > 0,

e−qRnERn1{Rn<∞} , n ≥ 1

is a Px-supermartingale in the filtration (Gn)n≥1. Since for s ≤ t, Ns + 1 ≤ Nt + 1 are
two (Gn)-stopping times, it follows from the optional sampling theorem for nonnegative
supermartingales that

Ex
(
e−qRNt+1ERNt+11{RNt+1<∞} | GNs+1

)
≤ e−qRNs+1ERNs+11{RNs+1<∞}.

Then on both sides, take the conditional expectation given Fs, which is a sub-algebra
of FDs = GNs+1. We get from (19) (applied at time s rather than t)

Ex
(
e−qRNt+1ERNt+11{RNt+1<∞} | Fs

)
≤ S(q)

s .

We conclude the proof by using once again (19) and the so-called tower property of
conditional expectations on the left-hand.

The supermartingale S(q) in Lemma 2.3 enables us to introduce a possibly defective
(i.e. possibly with finite lifetime ζ) càdlàg Markov process Y (q) = (Y (q)

t )0≤t<ζ with
distribution denoted by P(q) as follows. For every t ≥ 0 and every nonnegative functional
F defined on Skorokhod’s space D[0,t] of càdlàg paths ω : [0, t]→ (0,∞), one sets

E(q)
x [F ((Y (q)

s )0≤s≤t), ζ > t] = 1
`q(x)Ex[S

(q)
t F ((Xs)0≤s≤t)], x > 0.

We stress that the distribution of (Y (q)
s )0≤s≤t under the conditional law P(q)

x (· | ζ > t)
is absolutely continuous with respect to that (Xs)0≤s≤t under Px, and as a consequence,
Y (q) inherits irreducibility from (7).

Lemma 2.4. (i) Suppose that the assumption (i) of Theorem 1.1 holds. Then ρ ≥ λ.
(ii) Suppose further that the assumption (ii) of Theorem 1.1 also holds, and set Y :=

Y (ρ). Then there exists b > 0 and s > 0 sufficiently large, such that

lim inf
t→∞

P(ρ)
b (Yr = b for some r ∈ [t, t+ s]) > 0.

Proof. (i) Suppose ρ < λ and pick any q ∈ (ρ, λ). On the one hand, since q > ρ,
assumption (i) of Theorem 1.1 entails that∫ ∞

0
e−qtTtf(x1)dt <∞

for some x1 > 0 and some continuous function f : (0,∞) → R+ with f 6≡ 0. On
the other hand, as q < λ, we have Lx1,x1(q) ≥ 1, and the assertion above contradicts
Proposition 3.3 in [4].
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(ii) Thanks to (i), we may now take q = ρ. Note from the very definition of Y that
the Feynman-Kac formula (8) can be translated as follows: for every x > 0 and every
continuous and compactly supported function f : (0,∞)→ R, there is the identity

e−ρt
x`(x)Ttf(x) = E(ρ)

x

(
f(Yt)
Yt`(Yt)

, ζ > t

)
, (20)

with ` := `ρ. Combining this with assumption (ii) of Theorem 1.1 and the fact that,
thanks to Lemma 2.2, ` remains bounded away from 0 on compact intervals of (0,∞),
we deduce that

lim inf
t→∞

P(ρ)
x2 (Yt ∈ [a, b], ζ > t) > 0, (21)

for any 0 < a < b such that Supp(g) ⊆ [a, b].
On the other hand, recall the notation from the first paragraph in the proof of Lemma

2.1, and for every x ∈ [a, b], consider the probability p(ρ)(x) that process Y started at
x reaches b at time s(x, b), before dying or making any jump. The obvious bound
S(ρ)
t ≥ `(Xt) exp(−ρ+t) (where ρ+ stands for the positive part of ρ) yields

p(ρ)(x) = 1
`(x)Ex

(
S(ρ)
s(x,b), X has no jump before time s(x, b)

)
≥ `(b)

`(x) exp
(
−ρ+s(x, b)

)
p(x, b)

≥ `(b)
sup[a,b] `

exp
(
−ρ+s(a, b)

)
p(a, b).

Again by Lemma 2.2 and the first paragraph in the proof of Lemma 2.1, the right-hand
above is positive, hence

inf
[a,b]

p(ρ) > 0.

We now see from the Markov property of Y that

P(ρ)
x2 (Yr = b for some r ∈ [t, t+ s(a, b)]) ≥ inf

[a,b]
p(ρ) × P(ρ)

x2 (Yt ∈ [a, b], ζ > t),

and then, combining with (21), that

lim inf
t→∞

P(ρ)
x2 (Yr = b for some r ∈ [t, t+ s(a, b)]) > 0.

Recalling that Y is irreducible and applying the strong Markov property at time HY (b)
completes the proof.

We readily deduce from Lemma 2.4 the following
Corollary 2.5. Under the assumptions (i) and (ii) of Theorem 1.1, the Markov process
Y = Y (ρ) is point-recurrent and positive, that is

Ex(HY (y)) <∞ for every x, y > 0,

where HY (y) := inf{t ∈ (0, ζ) : Yt = y} stands for the first hitting time of y by the
process Y , with the usual convention that inf ∅ =∞.
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Proof. We start by observing from Lemma 2.4(ii), the irreducibility of Y , and an ap-
plication of the strong Markov property at time HY (b) that b must be a recurrent state
for Y , i.e.

Pb(HY (b) <∞) = 1.
By the strong Markov property at return times, the set of passage times at b, {t ≥ 0 :
Yt = b} is regenerative, i.e. it can be expressed as the set of partial sums of a sequence
of independent copies of the variable HY (b). Its so-called renewal function is given by

U(t) := Eb (Card{r ≤ t : Yr = b}) , t ≥ 0,

and the elementary renewal theorem shows that

lim
t→∞

t−1U(t) = 1/Eb(HY (b)).

Again from an application of the strong Markov property at the first hitting time of b
under P(ρ)

x2 , we easily see that for every s > 0, there is the lower bound

lim
t→∞

t−1U(t) ≥ s−1 lim inf
t→∞

P(ρ)
x2 (Yr = b for some r ∈ [t, t+ s]) ,

and we now can deduce from Lemma 2.4(ii) that Eb(HY (b)) <∞. Since Y is irreducible,
the conclusion of the statement follows.

We now have all the ingredients needed to prove Theorem 1.1. Indeed, Corollary 2.5
implies that under the assumptions (i) and (ii) of Theorem 1.1, Y cannot be defective,
i.e. P(ρ)

x (ζ = ∞) = 1. That is, equivalently, Ex(S(ρ)
t ) = `(x) for all t ≥ 0, and since

a supermartingale with a constant expectation must be a martingale, S(ρ) is a Px-
martingale for every x > 0.

Then, point-recurrence for Y gives for every x > 0

1 = lim
t→∞

P(ρ)
x (HY (x) ≤ t) = lim

t→∞

1
`(x)Ex[S

(ρ)
t , H(x) ≤ t].

On the other hand, the martingale property of S(ρ) under Px and the optional sampling
theorem yield

Ex[S(ρ)
t , H(x) ≤ t] = Ex[S(ρ)

H(x), H(x) ≤ t] = `(x)Ex[e−ρH(x)EH(x), H(x) ≤ t].

We deduce by monotone convergence that

Lx,x(ρ) = Ex[e−ρH(x)EH(x), H(x) <∞] = 1,

which implies both that λ = ρ and the first condition in (12) holds.
We now see that the function ` = `ρ = `λ here is the same as that in Section 4 of

[4], the martingale S(ρ) coincides with the martingaleM there, and finally, the Markov
process Y here is the same as that in Section 5 of [4]. Recall from Corollary 2.5 that Y
is positive recurrent, and we conclude from Lemma 5.2(i) in [4] that the right-derivative
of the Laplace transform Lx,x(·) at λ is necessarily finite, which is the second condition
in (12). The proof of Theorem 1.1 is now completed.
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3 Proof of Theorem 1.2

Our goal in this section is to check that, when the assumptions of Theorem 1.2 are
fulfilled, then (14) holds, as the exponential convergence then follows from Theorem 1.1
in [4]. This will be achieved in three main steps.

To start with, we work on a compact interval [a, b], where 0 < a < b are given, and
consider the first exit-time

σ(a, b) := inf{t > 0 : Xt 6∈ [a, b]}.

We first discuss irreducibility for the process killed when exiting from [a, b], which is a
necessary preamble for the rest of our analysis. We then verify that the Krein-Rutman
theorem can be applied in this compact setting, by analyzing the trajectories of X.
This yields a principal eigenvalue ρa,b for the system where particles are killed when
exiting [a, b], and a corresponding positive eigenfunction ha,b. We then construct useful
martingales from the latter, which in turn will enable us to compute certain expectations
by application of optional sampling.

For the next step, we fix the lower-boundary point a small enough (respectively,
the upper-boundary point b large enough), and let b tend to ∞ (respectively, a tend
to 0+). We shall establish the existence of λa < λ and a non-degenerate function
ga : [a,∞) → R+ (respectively, λb < λ and gb : (0, b] → R+) such that the process
ga(Xt)Ete−λat1{t<σ(a,∞)} (respectively, gb(Xt)Ete−λ

bt
1{t<H(b)}) is a supermartingale.

Finally, (14) is established by putting the pieces together. In short, we pick a large
enough interval [a, b], q < λ close enough to λ, decompose the excursion of the process
away from its starting point at certain first-exit times, and estimate the various pieces
using the preceding steps.

3.1 Irreducibility in compact intervals

We start by addressing the slightly technical question of irreducibility. Even though
X has been assumed to be irreducible, it may happen that for some 0 < a < b, there
exist two states x < y both in (a, b) such that no path of X started from y can reach x
without exiting first from [a, b]. Recall however that the probability that X started from
x follows the flow velocity without having jumps until it reaches y is always positive, so
the problem can only arise when the starting point is larger than the target. When this
occurs, the process killed at time σ(a, b) is then no longer irreducible, and this creates
an obstacle for our analysis.

We call an interval (a, b) with 0 < a < b good, if the process killed at time σ(a, b)
remains irreducible, that is if

Px(H(y) < σ(a, b)) > 0 for all x, y ∈ (a, b). (22)

We now argue that we can always find good intervals (a, b) with a > 0 as small as we
wish and b as large as we wish.

12



Lemma 3.1. For every ε ∈ (0, 1), there exists a good interval (a, b) with a < ε and
b > 1/ε.

Proof. Consider any β > 0 such that total jump rateK(β) > 0, and then any α < β such
that the right-neighborhood of α belongs to the support of k̄(β, ·), i.e.

∫ x
α k̄(β, y)dy > 0

for all x > α. Thanks to (5), the same still holds when we replace β by any β′ < β close
enough to β, and using again the fact that on any finite time interval, the probability
that X follows the flow velocity without having jump is positive, we now readily see that
(22) holds for a = α and b = β.

Such intervals (α, β) form a covering of (0,∞), as otherwise, the assumption of ir-
reducibility (7) would fail. There thus exists a finite covering of the compact interval
[ε, 1/ε], say {(αi, βi) : i = 1, . . . , n}, and it is then easy to check from the strong Markov
property that a = minαi and b = max βi fulfill the requirements of the statement.

3.2 Applying the Krein-Rutman theorem in a compact interval

We next consider the Banach space C0[a, b) of continuous functions f : [a, b] → R with
f(b) = 0, endowed with the usual norm ‖f‖ = supx∈[a,b) |f(x)|. The reason for imposing
f(b) = 0 is that the two boundary points the interval [a, b] have a different status for
the Markov process killed at time σ(a, b). Specifically, a is an entrance boundary, in the
sense that the process started at a then stays in [a, b] for a strictly positive amount of
time Pa-a.s., whereas b is an exit boundary, meaning that the process started at b leaves
[a, b] instantaneously Pb-a.s. We do not assume right now that the interval (a, b) is good,
but this assumption will of course be essential in a later part of our analysis.

Recall our assumption (4) and define qc := 1 + supx>0 c(x)/x, so that

Ete−tqc ≤ e−t for all t ≥ 0.

We introduce for every bounded measurable function f : [a, b]→ R

Ua,bf(x) := Ex
(∫ σ(a,b)

0
f(Xt)Ete−tqcdt

)
, x ∈ [a, b].

Lemma 3.2. The operator Ua,b maps C0[a, b) into itself. More precisely the family of
functions {Ua,bf : ‖f‖ ≤ 1} is equicontinuous.

Proof. We first note that Ua,bf(b) = 0 (since σ(a, b) = 0, Pb-a.s.), and also that Ua,b is
a contraction, i.e. ‖Ua,bf‖ ≤ ‖f‖. Then recall that for 0 < x < y, s(x, y) denotes the
travel time from x to y for a Lagrangian particle driven by the flow velocity c, and that
Λx,y stands for the event that X starts from x and reaches y before making any jump.
Observe that on that event, we have

ln Es(x,y) =
∫ s(x,y)

0

c(x(s))
x(s) ds = ln y − ln x.

13



Take a ≤ x < y ≤ b. By decomposing the trajectory at time s(x, y) and applying the
Markov property on the event Λx,y, we now easily see that for every f with ‖f‖ ≤ 1,
there is the inequality

|Ua,bf(x)− Ua,bf(y)| ≤ 2(1− Px(Λx,y)) + s(x, y) +
∣∣∣∣yxe−qcs(x,y) − 1

∣∣∣∣ .
On the one hand, (18) shows that 1−Px(Λx,y) converges to 0 as y− x→ 0+, uniformly
for a ≤ x < y ≤ b. On the other hand, it is easily checked that the same holds for s(x, y)
(because the flow velocity c is bounded away from 0 on [a, b]). This entails that

sup
x,y∈[a,b],|y−x|<ε

|Ua,bf(x)− Ua,bf(y)| → 0 as ε→ 0+,

uniformly for f with ‖f‖ ≤ 1, and our claim is proven.

The subspace C+
0 [a, b) of nonnegative functions in C0[a, b) is a reproducing cone, that is

C+
0 [a, b) is a closed convex set which is stable by multiplication by nonnegative constants,

and f = f+ − f− is a decomposition of a generic function f ∈ C0[a, b) as the difference
of two functions in C+

0 [a, b). We stress that, due to the 0 boundary condition at b, the
interior of C+

0 [a, b) is empty and C+
0 [a, b) is not a solid cone.

It follows from Lemma 3.2 by the Arzelà-Ascoli theorem that the operator Ua,b is
compact. Obviously, it is also positive, i.e. maps the cone C+

0 [a, b) into itself. However,
since C+

0 [a, b) is not a solid cone, Ua,b is not strongly positive, and in order to apply the
Krein-Rutman theorem to Ua,b, we thus still need to establish positivity of its spectral
radius.

Lemma 3.3. For every good interval (a, b), the spectral radius r(a, b) of Ua,b is positive.

Proof. Let Un
a,b denote the n-th power of Ua,b, so that by Gelfand’s formula,

r(a, b) = lim
n→∞

sup{‖Un
a,bf‖1/n : f ∈ C0[a, b), ‖f‖ ≤ 1}.

Take any a′ < b′ in (a, b) and consider the function f ∈ C+
0 [a, b) with ‖f‖ = 1, such that

f ≡ 1 on [a, a′], f ≡ 0 on [b′, b], and f(x) = (b′−x)/(b′−a′) for x ∈ [a′, b′]. Since (a, b) is
good, Pb′(H(a′) < σ(a, b)) > 0, and it follows from the strong Markov property applied
at time H(a′) that

Ua,bf(b′) ≥ Eb′

(
EH(a′)e−qcH(a′), H(a′) < σ(a, b)

)
Ua,bf(a′) > 0.

For every x ∈ [a, b′], by focusing on the event Λx,b′ where trajectories follow the steady
flow velocity c until the hitting time of b′ without having any jump, and then applying
the strong Markov property at time H(b′), we get the lowerbound

Ua,bf(x) ≥ b′

x
exp(−qcs(x, b′))Px(Λx,b′)Ua,bf(b′).
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Then, plainly,

inf
a≤x≤b′

Ua,bf(x) ≥ γ := exp(−qcs(a, b′))Pa(Λa,b′)Ua,bf(b′) > 0,

and therefore we have Ua,bf(x) ≥ γf(x) for all x ∈ [a, b]. Since Ua,b is a positive operator,
we conclude from Gelfand’s formula that γ is a lowerbound for the spectral radius, and
a fortiori r(a, b) > 0.

We have now checked all the requirements for the Krein-Rutman theorem (see, e.g.
Chapter 6 in Deimling [8]), which asserts that the spectral radius r(a, b) is then an eigen-
value of the operator Ua,b and also of the dual operator U∗a,b, and that the corresponding
eigenfunctions can be chosen positive. In this direction, recall from the Riesz-Markov
representation theorem that any linear functional on C0[a, b) which is positive (in the
sense that it maps C+

0 [a, b) into R+), can be represented by a finite Borel measure on
[a, b] that has no atom at b. Plainly, the dual operator U∗a,b maps any such measure, say
m, to another finite measure U∗a,bm on [a, b] without atom at b, via the identity

〈U∗a,bm, f〉 = 〈m,Ua,bf〉 for all f ∈ C+
0 [a, b).

This is the first milestone for the proof of Theorem 1.2, and we record it for future use.

Proposition 3.4. Let (a, b) be a good interval. Then there exist a function ha,b ∈ C+
0 [a, b)

with ha,b(x) > 0 for every x ∈ [a, b) and a finite measure νa,b on [a, b] with νa,b({b}) = 0,
such that

〈νa,b, ha,b〉 = 1 , Ua,bha,b = r(a, b)ha,b , and U∗a,bνa,b = r(a, b)νa,b.

Proof. We are only left with the proof of the positivity assertion for ha,b on [a, b). But
this immediately follows from the irreducibility (22), the identity

ha,b(x) = r(a, b)−1Ex
(∫ σ(a,b)

0
ha,b(Xt)Ete−tqcdt

)
,

and the fact that ha,b ∈ C+
0 [a, b) is not identically 0.

Proposition 3.4 enables us to introduce the following useful martingale.

Lemma 3.5. Set ρa,b := qc − 1/r(a, b). The process

Ma,b(t) := 1{t<σ(a,b)}ha,b(Xt)Ete−tρa,b , t ≥ 0

is a Px-martingale for every x ∈ [a, b].

Proof. Recall that (Ft)t≥0 denotes the natural filtration of X. By the Markov property,
we can express the martingale

Mt := Ex
(∫ σ(a,b)

0
ha,b(Xs)Ese−sqcds | Ft

)
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as
Mt =

∫ t∧σ(a,b)

0
ha,b(Xs)Ese−sqcds+ 1{t<σ(a,b)}Ete−tqcUa,bha,b(Xt).

From the identity Ua,bha,b = r(a, b)ha,b and stochastic calculus, we deduce that

Ma,b(t) =Ma,b(0) + 1
r(a, b)

∫ t

0
e−sqcdMs,

and the stochastic integral in the right-hand side is a Px-martingale.

We now arrive at a second milestone of the proof of Theorem 1.2.

Proposition 3.6. Take any good interval (a, b). Then for all x, y ∈ (a, b), there is the
identity

Ex
(
EH(y)e−ρa,bH(y), H(y) < σ(a, b)

)
= ha,b(x)/ha,b(y).

Proof. Perhaps, it could be tempting to try to derive the statement from Lemma 3.5
by an application of optional sampling to the martingale Ma,b and the stopping time
H(y). Note however that this would not be legitimate as the latter is not bounded and
the martingaleMa,b is not uniformly integrable.

We use the martingaleMa,b to introduce a new Markov process (Zt)t≥0 on [a, b) with
law P(a,b)

x , by setting

E(a,b)
x [F ((Zs)0≤s≤t)] = 1

ha,b(x)Ex[Ma,b(t)F ((Xs)0≤s≤t)],

where F stands for a generic nonnegative functional defined on Skorokhod’s space D[0,t].
Recall Proposition 3.4 and consider the probability measure ma,b(dx) := ha,b(x)νa,b(dx)
on [a, b). We claim that ma,b is a stationary distribution for Z. In this direction, define
first for every bounded measurable function f : [a, b)→ R and every q > 0

V qf(x) := Ex
(∫ σ(a,b)

0
f(Xt)Ete−(q+qc)tdt

)
, x ∈ [a, b].

In particular, V 0 = Ua,b and the resolvent equation reads V q = Ua,b − qUa,bV q. With
this notation at hand, and recalling from Lemma 3.5 that ρa,b = qc − 1/r(a, b), we have

E(a,b)
ma,b

(∫ ∞
0

e−qtf(Zt)dt
)

= Eνa,b

(∫ σ(a,b)

0
e−(q+qc−1/r(a,b))tf(Xt)ha,b(Xt)Etdt

)
= 〈νa,b, V q−1/r(a,b)(fha,b)〉
= 〈νa,b, Ua,b(fha,b)〉 − (q − 1/r(a, b))〈νa,b, Ua,bV q−1/r(a,b)(fha,b)〉
= r(a, b)〈νa,b, fha,b〉 − (r(a, b)q − 1)〈νa,b, V q−1/r(a,b)(fha,b)〉,

where we used the resolvent equation at the third line, and that U∗a,bνa,b = r(a, b)νa,b at
the fourth. This yields

E(a,b)
ma,b

(∫ ∞
0

e−qtf(Zt)dt
)

= q−1〈νa,b, fha,b〉 = q−1〈ma,b, f〉,
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showing that indeed ma,b is a stationary law for Z.
Plainly, Z inherits irreducibility from (22). Further, just as X, its trajectories have

only negative jumps and increase between two consecutive jumps times. The existence
of a stationary law then easily implies point recurrence, so that for all x, y ∈ (a, b), in
the obvious notation,

1 = lim
t→∞

P(a,b)
x (HZ(y) ≤ t) = lim

t→∞

1
ha,b(x)Ex[Ma,b(t), H(y) ≤ t ∧ σ(a, b)]

= ha,b(y)
ha,b(x) lim

t→∞
Ex[EH(y)e−ρa,bH(y), H(y) ≤ t ∧ σ(a, b)],

where the last equality stems from Lemma 3.5 and Doob’s optional sampling theorem.
By monotone convergence, this proves that

Ex
(
EH(y)e−ρa,bH(y), H(y) < σ(a, b)

)
= ha,b(x)
ha,b(y) .

Proposition 3.6 enables us to compare the eigenvalues ρa,b for nested good intervals,
and also with the Malthus exponent λ.

Lemma 3.7. We have:
(i) Let (a, b) and (a′, b′) two good intervals with a < a′ < b′ < b. Then

ρa′,b′ < ρa,b < λ.

(ii) λ = sup{ρa,b : (a, b) is a good interval}.

Proof. (i) Since σ(a′, b′) ≤ σ(a, b) and the inequality is strict with positive Px-probability
for any x ∈ [a′, b′], it follows from Proposition 3.6 that

Ex
(
EH(x)e−ρa′,b′H(x), H(x) < σ(a, b)

)
> 1 = Ex

(
EH(x)e−ρa,bH(x), H(x) < σ(a, b)

)
.

This forces ρa′,b′ < ρa,b. Similarly,

Ex(EH(x)e−λH(x), H(x) < σ(a, b)) < Ex(EH(x)e−λH(x), H(x) <∞) ≤ 1,

where the second inequality follows from the right-continuity of the Laplace transform
Lx,x and the definition (11) of the Malthus exponent. This yields ρa,b < λ.

(ii) Set ρ̄ := sup{ρa,b : (a, b) is a good interval}. Then, by monotone convergence and
Lemma 3.1, we have

Ex
(
EH(x)e−ρ̄H(x), H(x) <∞

)
= sup{Ex

(
EH(x)e−ρ̄H(x), H(x) < σ(a, b)

)
: (a, b) is a good interval}

≤ sup{Ex
(
EH(x)e−ρa,bH(x), H(x) < σ(a, b)

)
: (a, b) is a good interval},

showing that Lx,x(ρ̄) ≤ 1. Hence ρ̄ ≥ λ, and the converse inequality follows from (i).
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3.3 Letting the upper-boundary point go to ∞

Next, for a > 0, we write

σ(a,∞) = lim
b→∞

σ(a, b) = inf{t > 0 : Xt < a}

for the first passage time below the level a and state the main result of this sub-section:
Proposition 3.8. Assume lim supx→∞ c(x)/x < λ. Then the following hold:
(i) There exists a good interval (a, b) such that supx≥b c(x)/x < ρa,b.
(ii) For every b′ ∈ (a, b) with supx≥b′ c(x)/x ≤ ρa,b, there exists λa ∈ [ρa,b, λ) with

Eb′

(
EH(b′)e−λaH(b′), H(b′) < σ(a,∞)

)
= 1.

Proof. (i) We first use Lemma 3.7 and the assumption that lim supx→∞ c(x)/x < λ to
find a good interval (α, β) with lim supx→∞ c(x)/x < ρα,β. Then consider

γ := sup{x > 0 : c(x)/x ≥ ρα,β} <∞,

and choose a good interval (a, b) with 0 < a < α and b > β ∨ γ. By Lemma 3.7(i), we
have then ρa,b > ρα,β, and a fortiori c(x)/x < ρa,b for all x ≥ b.

(ii) Consider the convex and nonincreasing function Φ : R→ (0,∞] defined by

Φ(q) := Eb′

(
EH(b′)e−qH(b′), H(b′) < σ(a,∞)

)
.

Clearly from (10) and (11), Φ(λ) < Lb′,b′(λ) ≤ 1, and we now check that Φ(ρa,b) ∈ [1,∞).
This will entail our claim, by taking for λa the unique solution to Φ(q) = 1.

The lower bound should be plain from Proposition 3.6; indeed1

Φ(ρa,b) ≥ Eb′

(
EH(b′)e−ρa,bH(b′), H(b′) < σ(a, b)

)
= 1.

On the other hand, recall that the process started from b′ first stays in [b′,∞) until
it eventually makes a jump across b′ at time σ(b′,∞), and then stays in (0, b′) until it
eventually hits b′ for the first time at the instant H(b′). Recall that supx≥b′ c(x)/x ≤ ρa,b,
which ensures that Eσ(b′,∞)e−ρa,bσ(b′,∞) ≤ 1. An application of the strong Markov property
at time σ(b′,∞) then enables us to bound Φ(ρa,b) from above by∫

[a,b′)
Ex
(
EH(b′)e−ρa,bH(b′), H(b′) < σ(a, b)

)
Pb′(Xσ(b′,∞) ∈ dx, σ(b′,∞) <∞)

=
∫

[a,b′)

ha,b(x)
ha,b(b′)

Pb′(Xσ(b′,∞) ∈ dx, σ(b′,∞) <∞),

where the equality is seen from Proposition 3.6. Since ha,b is bounded and ha,b(b′) > 0,
we conclude that Φ(ρa,b) <∞.

1 We point out that this inequality may actually be an equality, as it may happen that the events
{H(b′) < σ(a, b)} and {H(b′) < σ(a,∞)} coincide Pb′ -a.s. Specifically, irreducibility may fail for the
process X killed when crossing the level a, and it can occur that once the process X becomes larger
than b, it can no longer visit b′ without exiting first from [a,∞). Nonetheless, irreducibility will not
be an issue in this subsection.
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In turn, Proposition 3.8(ii) yields another remarkable martingale.

Corollary 3.9. Under the same assumptions and notation as in Proposition 3.8, intro-
duce the function

ga(x) := Ex
(
EH(b′)e−λaH(b′), H(b′) < σ(a,∞)

)
, x ≥ a.

Then the process
Ma(t) := ga(Xt)Ete−λat1{t<σ(a,∞)}, t ≥ 0

is a Px-martingale for all x ∈ [a,∞).

Proof. Since ga(b′) = 1 by the very definition of λa in Proposition 3.8, the claim follows
from the same argument as in the proof of Theorem 4.4 of [4].

3.4 Letting the lower-boundary point go to 0

We now rather fix the upper-boundary point b and let the lower-boundary point a tend
to 0, and develop results similar to those of the preceding sub-section. Some arguments
and statements need to be adapted to that case, other simply work just as well. Beware
in particular that the notation λb below refers to a quantity that depends on the upper-
boundary point b, and not to the Malthus exponent raised to the power b. Note also that
due to the absence of positive jumps, the identity lima→0 σ(a, b) = H(b) holds Px-a.s.
for all x < b.

Proposition 3.10. Assume lim supx→0 c(x)/x < λ. Then the following hold:
(i) There exist a good interval (a, b) such that supx≤a c(x)/x < ρa,b.
(ii) For every a′ ∈ (a, b) with supx≤a′ c(x)/x ≤ ρa,b and every b′′ ∈ (a′, b) sufficiently

close to b, there exists then λb < λ with

Ea′

(
EH(a′)e−λ

bH(a′), H(a′) < H(b′′)
)
∈ (0, 1].

Proof. (i) The argument is just the same as in Proposition 3.8(i).
(ii) The irreducibility (22) entails that Pa′(H(a′) < H(b′′)) > 0 provided that b′′ ∈

(a′, b) is chosen close enough to b. Then consider the convex and nonincreasing function
Ψ : R→ (0,∞] defined by

Ψ(q) := Ea′

(
EH(a′)e−qH(a′), H(a′) < H(b′′)

)
.

Since ρa,b < λ by Lemma 3.7, we may pick r ∈ (ρa,b, λ). We shall check that Ψ(r) <∞
and our claim then follows. Indeed, if actually Ψ(r) ≤ 1 then we simply take λb = r.
Otherwise, since we have always Ψ(λ) < La′,a′(λ) ≤ 1, the equation Ψ(q) = 1 has a
unique solution λb ∈ (r, λ).
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On the event H(a′) < H(b′′), the process started from a′ first stays in [a′, b′′] until it
makes a jump across a′ at time σ(a′, b′′), and then stays in (0, a′) until it eventually hits
a′ for the first time at the instant H(a′). Since

sup
x≤a′

c(x)/x ≤ ρa,b < r,

on the event that H(a′) < H(b′′), there is the inequality
EH(a′)e−rH(a′) ≤ Eσ(a′,b′′)e−rσ(a′,b′′).

We have therefore
Ea′

(
EH(a′)e−rH(a′), H(a′) < H(b′′)

)
≤ Ea′

(
Eσ(a′,b′′)e−rσ(a′,b′′), H(a′) < H(b′′)

)
= Ea′

∑
t≥0
Ete−rt1{t≤σ(a′,b′′),Xt<a′}


= Ea′

(∫ σ(a′,b′′)

0
Ete−rt

(∫ a′

0
k̄(Xt−, y)dy

)
dt
)

≤ ‖K‖Ea′

(∫ σ(a′,b′′)

0
Ete−rtdt

)
,

where the third line stems from the fact that the predictable compensator of the jump
process of X is k̄(Xt−, y)dydt, and on the last line, ‖K‖ = supx>0K(x) is the maximal
jump rate.

We then write δ := r − ρa,b > 0 and use the inequality

Ea′

(
Ete−rt, t < σ(a′, b′′)

)
≤ e−δt

min[a′,b′′] ha,b
Ea′

(
Ete−ρa,btha,b(Xt), t < σ(a, b)

)
= e−δt ha,b(a′)

min[a′,b′′] ha,b
,

where the equality is seen from Lemma 3.5. Since min[a′,b′′] ha,b > 0 by Proposition 3.4,
we now get that ∫ ∞

0
Ea′

(
Ete−rt1{t<σ(a′,b′′)}

)
dt <∞,

which entails our claim.

Proposition 3.10(ii) enables us to repeat the argument for the proof of Lemma 2.3,
and this yields the following weak analog of Corollary 3.9.
Corollary 3.11. Notation and assumptions are as in Proposition 3.10. For 0 < x < b′′,
we consider

gb(x) := Ex
(
EH(a′)e−λ

bH(a′), H(a′) < H(b′′)
)
.

The process
Sb(t) := gb(Xt)Ete−λ

bt
1{t<H(b′′)}, t ≥ 0.

is then a Px-supermartingale for every 0 < x < b′′.

We have now completed all the preliminary steps needed to establish Theorem 1.2.
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3.5 Proof of (14)

We first pick two good intervals (a, b) and (a′, b′) with 0 < a < a′ < b′ < b sufficiently
large such that

sup
(0,a′]∪[b′,∞)

c(x)/x < ρa,b

(recall that this is indeed possible, thanks to Lemma 3.7 and the assumptions of Theorem
1.2). The irreducibility of the process killed when exiting from [a, b] shows that provided
we choose b′′ ∈ (b′, b) close enough to b, then Pb′(H(a′) < H(b′′)) > 0. Next, in the
notation introduced in Proposition 3.8 and Proposition 3.10, take any max{ρa,b, λa, λb} <
q < λ. In particular,

c(x)/x < q for all x ∈ (0, a′] ∪ [b′,∞).

We shall prove that (14) holds with x = b′. We thus let the process start from b′

and split the excursion interval (0, H(b′)) at times σ(b′,∞) and σ(a′,∞). Recall that
σ(b′,∞) is the first instant when X jumps across b′, so plainly σ(b′,∞) ≤ σ(a′,∞) Pb′-
a.s., and these two first-exit times may coincide with positive probability. Because X
stays in [b′,∞) until time σ(b′,∞), we have

Eσ(b′,∞)e−qσ(b′,∞) ≤ 1 Pb′-a.s.,

and we see from the strong Markov property that (14) will follow from

sup
x≤b′

Ex
(
EH(b′)e−qH(b′), H(b′) <∞

)
<∞. (23)

First consider the case x ≤ a′. The process started from x stays in (0, a′] until time
H(a′), thus

EH(a′)e−qH(a′) ≤ 1 Px-a.s.,
and therefore we have, again from the strong Markov property,

Ex
(
EH(b′)e−qH(b′), H(b′) <∞

)
≤ Ea′

(
EH(b′)e−qH(b′), H(b′) <∞

)
.

In the notation of Corollary 3.11, Proposition 3.10(ii) ensures that gb(a′) ∈ (0, 1], and
since b′′ has been chosen such that Pb′(H(a′) < H(b′′)) > 0, we have also gb(b′) > 0. We
now deduce from the optional sampling theorem applied to the supermartingale Sb in
Corollary 3.11 and the stopping time H(b′) < H(b′′), that the right-hand side above is
bounded by gb(a′)/gb(b′), and hence

sup
x≤a′

Ex
(
EH(b′)e−qH(b′), H(b′) <∞

)
≤ gb(a′)
gb(b′) <∞. (24)

Next, we consider the case x ∈ (a′, b′], and distinguish whether the process exits from
[a′, b′] through the upper or the lower boundary. On the one hand, Lemma 3.5 and the
optional sampling theorem readily yield for every x ∈ [a′, b′]:

Ex
(
EH(b′)e−qH(b′), H(b′) < σ(a, b)

)
≤ ha,b(x)
ha,b(b′)

,
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and a fortiori

sup
a′≤x≤b′

Ex
(
EH(b′)e−qH(b′), H(b′) ≤ σ(a′, b′)

)
≤

max[a′,b′] ha,b
ha,b(b′)

<∞.

On the other hand, the same argument as in the proof of Proposition 3.10(ii) shows that
for every x ∈ [a′, b′]:

Ex
(
Eσ(a′,b′)e−qσ(a′,b′), σ(a′, b′) < H(b′)

)
= Ex

∑
t≥0
Ete−qt1{t≤σ(a′,b′),Xt<a′}


≤ ‖K‖Ex

(∫ σ(a′,b′)

0
Ete−qtdt

)

≤ ‖K‖ha,b(x)
δmin[a′,b′] ha,b

,

where δ = q − ρa′,b′ > 0 and ‖K‖ is the maximal jump rate. Combining this with (24)
and the strong Markov property, we conclude that

sup
a′≤x≤b′

Ex
(
EH(b′)e−qH(b′), σ(a′, b′) < H(b′) <∞

)
<∞.

This completes the proof of (14), and thus of Theorem 1.1.

3.6 Miscellaneous comments about (16)

(i) We have argued in the Introduction that (16) yields the more explicit criterion
(17) when X is recurrent, and we now discuss simple conditions in terms of the
growth and fragmentation rates that ensure recurrence. Since X is irreducible and
its trajectories have no positive jumps, point-recurrence can only fail if sample
paths converge either to 0 or to ∞ a.s., which can easily be impeded by Foster-
type conditions (see for instance [15] and [13] for general references). Typically,
consider the power function f(x) = xr for some r > 0, and assume that Gf(x) ≤ 0
for all large enough x. That is, for some x∞ > 0:

rc(x)xr +
∫ x

0
(yr − xr)yk(x, y)dy ≤ 0 for all x ≥ x∞. (25)

Then the process f(Xt∧σ(x∞,∞)) is a Px-supermartingale for every x ≥ x∞, and
it follows that Px(limt→∞Xt = ∞) = 0. Similarly, working now with negative
powers and considering g(x) = x−q for some q > 0, if for some x0 > 0

−qc(x)x−q +
∫ x

0
(y−q − x−q)yk(x, y)dy ≤ 0 for all x ≤ x0, (26)

then the process g(Xt∧H(x0)) is a Px-supermartingale for every x ≤ x0, and it follows
that Px(limt→∞Xt = 0) = 0. We refer further to Bouguet [5], who considered
specifically positive recurrence for the family of piecewise deterministic Markov
processes that arise in our setting; see notably Theorem 4 and also Remark 3 there.
Putting the pieces together and excluding implicitly the case of linear growth2, we

2Linear growth rate c(x) = ax was already discussed in details in Section 6 of [4]
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get that exponentially fast convergence (15) holds provided that (17), (25) and
(26) are satisfied.
Recall that Doumic Jauffret and Gabriel [11] obtained conditions that ensure the
existence of eigenelements and thus also the Malthusian behavior (3) by the gen-
eral relative entropy method (however their approach does not yield exponential
speed of convergence (15)). The comparison of those conditions displays certain
resemblance and but also differences. For instance, (12) and (13) in [11] can be
loosely related to (25) and (26) here; we do not need here to make assumptions
such as (5,7,10) in [11]; on the other hand [11] also covers the situation where the
growth rate c does not fulfill (4).

(ii) If we assume self-similarity of the fragmentation kernel, that is
k(x, y) = x−1K(x)p(y/x), 0 < y < x,

where p ∈ L1
+([0, 1]) with

∫ 1
0 p(u)udu = 1, then (25) and (26) translate respectively

into
c(x)
xK(x) ≤ r−1

∫ 1

0
(1− ur)up(u)du for all x ≥ x∞ (27)

and
c(x)
xK(x) ≥ q−1

∫ 1

0
(u−q − 1)up(u)du for all x ≤ x0. (28)

Putting pieces together, we thus see that in the self-similar case, exponentially fast
convergence (15) holds whenever (17), (27) and (28) are fulfilled.
This should be compared with Theorem 1.11 of Balagué et al. [1] in which the
existence of a spectral gap is asserted under more stringent conditions. We stress
however that [1] also cover cases where the growth rate c does not fulfill (4). If we
further assume that the total fragmentation rate is constant, say K(x) ≡ 1, then
we are in the setting of Section 7 of [4] (one says that the fragmentation rate is
homogeneous), and Theorem 1.2 also improves Proposition 7.1 in [4].

(iii) We point out that exponential speed of convergence (15) may hold without (16).
For instance, in the case of linear growth rate c(x) = ax, Section 6 in [4] discusses
situations where λ = a and nonetheless (15) takes place.

(iv) We also recall from Corollary 4.5 and Lemma 4.6 in [4], that when (16) holds, then
h is an eigenfunction for the eigenvalue λ of the growth-fragmentation operator A
(in particular h belongs to the domain of A), and further the function x 7→ h(x)/x
is continuous and bounded.
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