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Abstract

1. Recent findings highlighted the central role of the structure of the river network

in shaping spatial patterns of genetic diversity in riverscapes. However, the influ-

ence of multiple anthropogenic stressors on these patterns may be just as impor-

tant and the relative impacts of these two types of predictors have rarely been

quantified simultaneously in river networks. Here, we contributed to filling this

gap by investigating the relative contribution of both network structure and mul-

tiple anthropogenic stressors in shaping spatial patterns of genetic diversity in

two freshwater fishes (Gobio occitaniae and Phoxinus phoxinus).

2. We focused on two rivers in which the two fish species were sampled along the

upstream–downstream gradient. Microsatellite markers were used to quantify

genetic diversity from three indices: allelic richness, private allelic richness and

genetic uniqueness. Each sampling site was physically characterised according to

its position in the network, and was described for multiple anthropogenic stressors

including habitat degradation, fragmentation and stocking. This multiple-stressors

approach was conducted using a fully explicit and generalisable analytical frame-

work designed to cope with strong collinearity among environmental variables.

3. Overall, the contribution of network structure to the variance in genetic diversity

was 1.8 times higher than the contribution of anthropogenic stressors. Both the

position of sites along the upstream–downstream gradient and stocking were

strong and consistent drivers of genetic variability. Conversely, the local influences

of habitat degradation and fragmentation were species- and river-specific, some-

times even varying along the river channel, thus preventing any generalisations.

4. We concluded that the natural structure of networks and stocking strongly influ-

ence spatial patterns of genetic diversity in a predictable way, whereas the influ-

ence of other human activities may be much more difficult to predict over

species and contexts.
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1 | INTRODUCTION

Human activities are responsible for an unprecedented pace of envi-

ronmental changes worldwide (Vitousek, Mooney, Lubchenco, &

Melillo, 1997), with high frequencies of recurrent biotic and abiotic

stresses (sensu Borics, V�arb�ır�o, & Padis�ak, 2013) such as habitat loss

and landscape fragmentation, overexploitation of resources, pollu-

tions, introduction of non-native species or climate change (Fahrig,

2003; Gurevitch & Padilla, 2004; Halpern, Selkoe, Micheli, & Kappel,

2007; McCarty, 2001). Understanding and predicting the impact of

these stresses on biodiversity is essential for conservation planning,

although this remains highly challenging. Anthropogenic stressors

indeed act on all forms of biodiversity, that is, from individuals to

ecosystems. Furthermore, they involve many interacting variables

with complex additive, synergistic and antagonistic effects that are

to be disentangled to allow appropriately set management plans and

to generate reliable predictions (Christensen et al., 2006; Côt�e, Dar-

ling, & Brown, 2016; Folt, Chen, Moore, & Burnaford, 1999).

While multiple stressors have long been recognised as key fac-

tors influencing behavioural (e.g., Bonnot et al., 2013), physiological

(e.g., Nacci, Gleason, & Munns, 2002), morphological (e.g., Shinn,

Blanchet, Loot, Lek, & Grenouillet, 2015) or demographical (e.g.,

D�avalos, Nuzzo, & Blossey, 2014) characteristics of populations, as

well as community structure and ecosystem functioning (e.g., Con-

nell, Hughes, & Wallace, 1997; N~oges et al., 2016), their impacts on

intraspecific genetic diversity are less well appreciated (Banks et al.,

2013). Multiple stressors have direct and indirect impacts on main

evolutionary forces shaping both neutral and adaptive genetic diver-

sity (Hoffmann & Willi, 2008). For instance, pollutants may directly

affect mutation rates (e.g., Inostroza et al., 2016; Rogstad, Keane, &

Collier, 2003), decrease effective population size (Ribeiro & Lopes,

2013), or induce directional selection on tolerant genotypes (Reid

et al., 2016), whereas landscape degradation or fragmentation may

affect both gene flow and genetic drift through the direct or indirect

alteration of demographical processes such as mortality, recruitment,

competition or dispersal (Banks et al., 2013; Manel, Schwartz, Lui-

kart, & Taberlet, 2003).

Studies investigating the influence of multiple stressors on pat-

terns of genetic diversity usually take an evolutionary standpoint,

focusing on the adaptive response of organisms to stresses through

common garden experiments (e.g., Côt�e et al., 2016; Pini, Planes,

Rochel, Lecchini, & Fauvelot, 2011; Swindell, 2006) and, more

recently, through population genomics and related methodologies

such as genome-wide-association studies (Hand et al., 2016;

Narum, Buerkle, Davey, Miller, & Hohenlohe, 2013; Vandamme

et al., 2014). Investigating the influence of multiple stressors on

patterns of neutral genetic diversity in natural populations yet

remains of prime importance to develop appropriate conservation

strategies (Frankham, 2010; Paz-Vinas, Loot, Stevens, & Blanchet,

2015; Pearse & Crandall, 2004), but also to properly segregate pat-

terns of adaptive genetic variation from those shaped by neutral

processes in studies handling genomic data (Andrew et al., 2013;

Banks et al., 2013).

Inhabiting highly constraining environments, freshwater species

are confronted with multiple anthropogenic stressors (Dudgeon

et al., 2006) that may interactively affect evolutionary processes

such as gene flow and genetic drift. For instance, river fragmentation

by weirs and dams can affect both gene flow and effective popula-

tion sizes (Blanchet, Rey, Etienne, Lek, & Loot, 2010; Faulks, Gilligan,

& Beheregaray, 2011; Raeymaekers et al., 2008). Human activities in

the direct vicinity of local populations are also expected to influence

patterns of genetic diversity through habitat degradation, over-har-

vesting of resources, stocking and/or introduction of non-native spe-

cies (Allan, 2004; Laikre et al., 2010; Midway, Wagner, Tracy,

Hogue, & Starnes, 2015). In addition to these anthropogenic stres-

sors, the natural topological characteristics of river networks are

strongly shaping patterns of genetic variation (Altermatt, 2013). For

instance, several studies reported a downstream increase in genetic

diversity (DIGD), as well as an increase in allelic richness (AR) in

highly connected demes in confluence zones (Paz-Vinas & Blanchet,

2015; Paz-Vinas et al., 2015; Thomaz, Christie, & Knowles, 2016).

These recent studies highlight the combined effects of demes’ loca-

tion along the main channel, network dendricity and spatial hetero-

geneity in local carrying capacities along the upstream–downstream

gradient on neutral genetic diversity.

In this study, we investigated the impacts of multiple natural

features and anthropogenic stressors on spatial patterns of neutral

genetic diversity and differentiation in two cyprinid fishes (the Eur-

asian minnow Phoxinus phoxinus and the Languedoc gudgeon Gobio

occitaniae; Kottelat & Persat, 2005) simultaneously sampled in two

riverscapes. We specifically focused on natural features and anthro-

pogenic stressors likely to influence major evolutionary processes

(genetic drift, gene flow and genetic introgression), and we quanti-

fied the relative influence of each stressor. To that aim, we

designed a novel analytical framework to synthesise a large number

of variables into a few thematic predictors and assess their respec-

tive and interactive contributions to the variance in response vari-

ables while accounting for multicollinearity among predictors

(Box 1). Thematic predictors were either related to natural features

of the rivers (upstream–downstream gradient, local connectivity) or

to anthropogenic stressors (fragmentation, habitat degradation and

stocking). According to both theoretical expectations and empirical

knowledge, we expected an increase in genetic diversity and a

decrease in genetic differentiation along the main channel, particu-

larly in highly connected demes (Paz-Vinas & Blanchet, 2015; Paz-

Vinas et al., 2015). Conversely, we expected a decrease in genetic

diversity and a possible increase in genetic differentiation with an

increase in stream fragmentation (due to weirs and dams) and habi-

tat degradation (due to water pollution and microhabitat alteration).

Fragmentation is indeed expected to increase genetic drift and to

decrease gene flow as it may both affect local carrying capacities

and dispersal movements (e.g., Blanchet et al., 2010; Prunier,

Dubut, Chikhi, & Blanchet, 2017). Similarly, habitat degradation is

likely to affect both effective population sizes through reproductive

impairment and higher mortality rate (increase in genetic drift; e.g.,

Bickham, Sandhu, Hebert, Chikhi, & Athwal, 2000) and gene flow
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patterns through isolation-by-environment, as individuals from high

water/microhabitat quality may be reluctant to settle in stretches

with different or lower water/microhabitat quality (e.g., Wang,

2013). We further expected both local changes in genetic diversity

and a local increase in genetic differentiation in the presence of

stocking, through genetic introgression from non-native individuals

(Champagnon, Elmberg, Guillemain, Gauthier-Clerc, & Lebreton,

2012; Laikre et al., 2010; Marie, Bernatchez, & Garant, 2010).

Finally, as the relative influence of stressors on biological dynamics

depends on the intensity and frequency of their effects (Borics

BOX 1

Flowchart of the analytical framework used in this study to handle a large number of interacting variables and cope with multi-

collinearity issues. Raw variables were synthesised into thematic predictors using principal component analyses, so that each predictor

was both meaningful and valid across datasets. These thematic predictors were then filtered at three different steps through selection

criteria intended (1) to discard non-informative, non-representative or redundant predictors, (2) to discard predictors explaining negli-

gible amounts of variance in the dependent variable and thus likely to act as suppressors and (3) to discard any suppressor or unnec-

essary predictors retained in the course of AIC-based model selection.

A1.A2A1 A2Y = + +

A1.A2A1 A2Y = + + +

A1.A2A1 A2 C1Y = + + +

A1.A2 A1.C1A1 A2 C1Y = + + + +

A1 A2 C1 A1.A2 A1.C1

A1.A2 A1.B1 A1.C1 A2.B1 A2.C1 B1.C1

Raw variables

Theme
A

Theme
B

Theme
C

A1 A2 B1 C1

A1 A2 B1 B2 C1

A1 A2 B1 C1

C2

Arrange raw variables 
into thematic categories

Get coordinates of variables 
along the two first PCA axes 

and interpret components 
biologically

Discard non-informative, 
non-representative or 

redundant components 
and use coordinates of 

individuals as thematic predictors

Compute all-possible 
first-order interactions

Define full linear model 
and run AIC-based 

model selection 

Select best model based on AIC

Get regression coefficients, 
p-values, t-values 

and unique contributions

Run CA, discard suppressors 
and unnecessary predictors 

except if they are involved
 in an interaction

Run meta-analysis across datasets

Discard any predictor with low 
squared correlation with Y, 

except if it is involved 
in an interaction

Thematic predictors

First-order interactions

Predictors failing 
to fulfill selection criteria

Thematic categories

Filter criteria

Legend
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et al., 2013), we expected long-term and more stable stressors such

as fragmentation to have a higher relative influence on neutral

genetic diversity than shorter-term and more punctual stressors

such as habitat degradation. Overall—and for the same reasons—

the effects of anthropogenic stressors should be relatively weaker

than natural features.

2 | METHODS

2.1 | Study area and biological models

The study was carried out in the C�el�e River and the Viaur River,

both located in the Adour-Garonne river drainage in Southwestern

France (Figure 1a). Both drainage basins are of similar area (1,350

and 1,530 km2, respectively) and both rivers are of comparable

length (136 and 168 km, respectively). Nevertheless, both rivers dif-

fer in terms of network topology, fragmentation and land use within

their basins. The C�el�e River is characterised by a large amount of

branching (and thus complexity) in the upstream half part of the

main channel and by a very simple topology in its downstream part

(Figure 1b). The main channel is also weakly fragmented, with 22

identified weirs (<3 m high), most of the highest ones (2–3 m high)

being equipped with fish ladders allowing fish crossing. Furthermore,

only 19.5% of the C�el�e River drainage basin is mainly composed of

urban and agricultural areas in its upstream half part. On the

contrary, the Viaur River is characterised by a high complexity, with

(a)
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(c)
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F IGURE 1 Main characteristics of the two studied systems: location of studied rivers in France (a), land cover, network topology and
locations of sampled sites, of obstacles and stocking events along the C�el�e River (b) and the Viaur River (c)
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a large number of tributaries all along its course (Figure 1c). The

main channel is highly fragmented, with 37 identified weirs (<3 m

high) as well as two dams (30 m high), respectively, located 30 and

80 km from the source. Finally, 60% of the Viaur drainage basin is

covered by agricultural areas.

We focused on two widely distributed species in Southwestern

France: the Languedoc gudgeon G. occitaniae and the Eurasian

minnow P. phoxinus. Both species are of similar maximal body

length (200 and 140 mm, respectively), belong to the same family

(Cyprinidae) and to the same trophic level: they are insectivorous,

although G. occitaniae preferentially feeds on the bottom, whereas

P. phoxinus feeds in the water column. They are both abundant

species with supposedly large effective population size, which

suggests that the effect of genetic drift might be similar

between species. However, P. phoxinus is less tolerant than G. occ-

itaniae, which leads to a narrower spatial distribution and poten-

tially to a higher (genetic) sensitivity to stressors such as habitat

degradation.

2.2 | Genetic sampling and genotyping

In 2010, 22 and 25 sites were, respectively, sampled along the main

channels of the C�el�e and Viaur Rivers (Figure 1), with up to 30

adults from each species caught by electrofishing (Table S2). For

each individual, we collected and preserved in 70% ethanol a small

piece of pelvic fin. All individuals were released alive in their

respective sampling site. Fieldwork was conducted in accordance

with French laws and with adequate administrative permits for

electrofishing.

Genomic DNA was extracted using a salt-extraction protocol

(Aljanabi & Martinez, 1997). A subset of 11 and 16 autosomal

microsatellite loci chosen among those described in Grenier, Coste-

doat, Chappaz, and Dubut (2013; Table S1) were amplified and

genotyped in G. occitaniae and P. phoxinus, respectively. Polymerase

chain reactions (PCR) and genotyping were performed as detailed in

Grenier et al. (2013). The presence of null alleles was assessed at

each locus by analysing homozygote excess in each population using

MICROCHECKER 2.2.3 (Van Oosterhout, Hutchinson, Wills, & Ship-

ley, 2004). We also checked for gametic disequilibrium using GENE-

POP 4.2.1 (Rousset, 2008) after sequential Bonferroni correction to

account for multiple related tests (Rice, 1989). We discarded from

further analyses any locus showing significant gametic disequilibrium

and/or evidence of null alleles, resulting in the withdrawal of three

loci in P. phoxinus, for a total number of 13 loci in this species.

Genetic characteristics of sampled populations are given in Table S2.

2.3 | Measures of genetic diversity and genetic
differentiation

For each dataset (gudgeons in the C�el�e River, gudgeons in the Viaur

River, minnows in the C�el�e River and minnows in the Viaur River),

we computed three genetic metrics. The two-first metrics stood for

local genetic diversity: the standardised AR and the standardised

private allelic richness (PA). Both AR and PA were computed using

the rarefaction procedure implemented in ADZE 1.0 (Szpiech, Jakob-

sson, & Rosenberg, 2008), with 20 as the standardised sample size

across all populations (i.e., the lowest number of individuals caught

at the site level, except for site 22 on the river Viaur where only 12

minnows were caught; see Table S2). The third metric stood for local

genetic uniqueness UNI and was computed as the average of pair-

wise G’st values observed between a deme and all other demes

(Coleman, Weeks, & Hoffmann, 2013; Hedrick, 2005). G’st values,

allowing comparison of estimates among species, were computed

using the R package diveRsity (Keenan, McGinnity, Cross, Crozier, &

Prod€ohl, 2013).

2.4 | Localisation of stocking

Local angling associations reported that both studied rivers have

been stocked with non-native gudgeons Gobio gobio (Linnaeus,

1758) and/or non-native minnows from the Loire River basin

(France). Stocking occurred a few times in the few years preceding

the sampling session. For each species, we used the Bayesian clus-

tering algorithm implemented in STRUCTURE (Pritchard, Stephens, &

Donnelly, 2000) with non-native genotypes from the Arroux River

(Loire River basin; ~90 individuals for each species, from three dis-

tinct locations; see Figure S1) as an outlier group to identify

stretches in which these stocking events occurred (Zalapa, Brunet, &

Guries, 2010).

2.5 | Environmental predictors

We considered 18 variables that were likely to affect local genetic

diversity and uniqueness. These variables were classified into four

main categories, depending on whether they were related to natural

characteristics of the rivers, anthropogenic fragmentation of the

main channel, land use in the vicinity of each site or local probability

of an influence of stocking.

For variables related to natural characteristics of the rivers, we

considered the sites’ river distance from the source, the local alti-

tude, the Strahler stream order class, the number and the cumulated

length of all upstream tributaries, the river width, the mean tempera-

ture (in situ measurements during summer 2015 using a Hobo Pen-

dant Temperature data logger) and the concentration in dissolved

oxygen, as well as the betweenness centrality index of each site

within the network that measures how often a node serves as a

bridge between upstream and downstream nodes along a network

(ComplexNetGIS toolbox in ARCGIS; Caschili, 2010). Although possi-

bly affected by various anthropogenic effects, river width, tempera-

ture and concentration in dissolved oxygen are usually highly

correlated with distance from the source and were thus here consid-

ered as natural variables (Table 1) rather than estimates of habitat

degradation. For anthropogenic fragmentation, we considered the

number of weirs, the number of dams and the cumulated height of

obstacles (including both weirs and dams) in a 2-km buffer around

each sampling site, so as to take into account both upstream and

10 | PRUNIER ET AL.



downstream possible reduction in dispersal movements. We also

considered estimates of home-range sizes, calculated as the surface

of free water (length 9 width of both the main channel and tribu-

taries) delimited by upstream and downstream first obstacles (weirs

or dams; Prunier, Dubut, et al., 2017). Local levels of habitat degra-

dation were represented using estimates of local land use, computed

from the Corine LandCover 2006 dataset (European Environment

Agency) as the respective percentage of urban areas, woods, mead-

ows and cultivated crops in a 2-km buffer around each sampling site.

Land cover in the vicinity of rivers being known to drastically impact

stream’s ecological integrity (local inputs of pollutants, impacts on

riparian and stream channel habitat, flow alteration, etc.), it consti-

tutes an integrative proxy for both water quality and microhabitat

quality (Allan, 2004). Finally, when applicable (see “Section 2.4”), we

estimated the probability p of each site being impacted by recent

stocking events according to the following equation:

p ¼ 1� d
dmax

� �
� 1

a

with d the distance between each deme and the closest upstream or

downstream stocking site, dmax the maximal recorded distance

between a sampling site and a stocking site, and a an asymmetry

TABLE 2 Thematic predictors considered in each dataset

Predictors

C�el�e Viaur

Gobio
occitaniae

Phoxinus
phoxinus

Gobio
occitaniae

Phoxinus
phoxinus

UDG 9 9 9 9

UDG2 9 9 9 9

BET 9 9

CRO 9 9 9 9

URB 9 9

HR 9 9 9 9

STO 9 9 9

TABLE 1 Contribution of raw variables to principal components (Axis 1 and Axis 2) in each river (CELE, VIAUR). Principal component
analyses were performed on variables classified into four thematic categories. For each river, the table provides the coordinates of raw
variables on the two-first axes, the total inertia of each axis, as well as its interpretation. In bold, coordinates of variables with a substantial
contribution to the axis. In italic: discarded axes. UDG, upstream–downstream gradient; BET, betweenness; CRO, crops; URB, urban areas; HR,
home range; LI, low inertia (<10%); NR, non-representative axis; RI, axis with a redundant interpretation

Thematic categories Raw variables

CELE VIAUR

Axis 1 Axis 2 Axis 1 Axis 2

Natural Distance from the source (m) 0.935 �0.301 0.981 �0.064

Altitude (m) �0.992 0.017 �0.974 �0.052

Strahler number 0.802 0.563 0.956 0.074

Number of upstream tributaries 0.982 �0.140 0.974 �0.095

Cumulated length in upstream

tributaries (m)

0.977 0.117 0.963 �0.122

Betweenness centrality index 0.072 0.985 0.618 0.764

River width (m) 0.977 0.170 0.987 0.082

Dissolved oxygen (mg/L) �0.800 0.465 �0.779 0.281

Temperature (°C) 0.889 0.006 0.963 �0.189

Inertia 0.757 0.184 0.844 0.082

Interpretation UDG BET UDG LI

Land cover Crops (%) 0.953 �0.265 0.948 �0.241

Meadows (%) �0.437 0.341 0.042 0.995

Urban areas (%) �0.067 0.851 0.000 0.000

Woods (%) �0.668 �0.686 �0.958 �0.196

Inertia 0.388 0.345 0.606 0.362

Interpretation CRO URB CRO NR

Fragmentation Number of weirs �0.966 0.216 0.522 �0.567

Number of dams 0.000 0.000 0.911 0.361

Cumulated height of

obstacles (m)

�0.962 0.234 0.972 0.181

Home-range size (m2) 0.865 0.501 �0.259 0.809

Inertia 0.869 0.118 0.528 0.285

Interpretation HR RI NR HR

PRUNIER ET AL. | 11



coefficient taking into account reduced upstream migration rates in

each species (a = 1, except for sites located upstream of the most

upstream stocking event where a = 6.437 (Gudgeons from the C�el�e

River), 9.08 (Gudgeons from the Viaur River) and 8.631 (Minnows

from the Viaur River), as estimated by Paz-Vinas, Qu�em�er�e, Chikhi,

Loot, & Blanchet, 2013). This probability ranged from 0 (minimal

impact of stocking) to 1 (maximal impact).

2.6 | Data manipulation and statistical analyses

Box 1 illustrates as a flowchart the three major steps of the analyti-

cal framework we used to handle these data and cope with multi-

collinearity issues.

2.6.1 | Step 1—creation of thematic predictors

All variables belonging to the same category (except for stocking

probability) were compiled using principal components analyses

(R function dudi.pca; package ade4). The contribution of each raw

variable to an axis was considered as substantial when it was higher

than the value expected under the assumption of a uniform contri-

bution of the variable (R function fviz_contrib; package factoextra).

The two-first principal components were systematically retained,

except when the amount of variance explained by one of the com-

ponent did not exceed 10% (axis with little inertia), when the cumu-

lated absolute contribution of the two most influential points to the

axis (R function inertia.dudi; package ade4) exceeded 50% (non-

representative axis) or when the biological interpretation of the sec-

ond component was redundant with the interpretation of the first

one (redundant interpretation), in which case the corresponding axis

was discarded (Table 1). To limit multicollinearity issues (Dormann

et al., 2013; Prunier, Colyn, Legendre, Nimon, & Flamand, 2015), we

also checked that pairs of predictors showed univariate Pearson’s

correlation coefficients lower |r| = .8. Individual coordinates on each

of the retained principal components were used to create thematic

predictors in the following statistical analyses. This procedure

resulted in six possible thematic predictors (UDG, BET, CRO, URB,

HR and STO), each one representing a possible driver of genetic

variability (Tables 1 and 2): UDG stood for the upstream–down-

stream gradient in natural characteristics of rivers (e.g., distance from

the source, altitude, temperature); BET stood for an increase in the

betweenness centrality index; CRO and URB, respectively, stood for

an increase in crops and in urban areas in a 2-km buffer around each

site; HR stood for an increase in the home range; finally, STO was

kept unchanged and stood for the probability of being impacted by

recent stocking events.

2.6.2 | Step 2—model selection and regression
commonality analyses

For each dependent variable (AR, PA and UNI) and each dataset,

we designed a complete linear model including all retained thematic

predictors along with all possible first-order interactions. Additive

(simple) regression coefficients can be interpreted as the effect of

a predictor when all other predictors are set to zero (Aiken, West,

& Reno, 1991; Appendix S1). As they stemmed from principal com-

ponents, all predictors but STO were centred: all additive terms

could thus be interpreted as the effect of a predictor in absence of

stocking (STO = 0) and for intermediate values of other predictors

(mean = 0). We also included the squared predictor UDG, hereafter

named UDG2, as quadratic relationships between genetic diversity

and distance from the source may arise from dendritic branching

patterns (Paz-Vinas & Blanchet, 2015). Given the limited size of

each dataset, we simplified these complete models by discarding

any additive or interaction term showing a univariate squared cor-

relation r2 with the dependent variable lower than .1, except for

additive terms involved in retained interactions. The rationale for

this withdrawal is that predictors showing no or little correlation

with the dependent variable are likely to act as statistical suppres-

sors, leading to a possible distortion of regression coefficients, as

well as a distortion of their standard errors and marginal statistics

used to test their significance (Paulhus, Robins, Trzesniewski, &

Tracy, 2004; Prunier, Colyn, Legendre, & Flamand, 2017; Prunier

et al., 2015). Suppressors are of three kinds (Conger, 1974): classi-

cal, reciprocal and cross-over suppressors. In classical and reciprocal

suppression situations, a suppressor variable, although unrelated (or

only slightly related) to the dependent variable, receives a high

standardised regression weight when it is included in the model. In

cross-over suppression, a suppressor shows a slight (positive or

negative) relationship with the dependent variable but is yet

assigned a large standardised regression weight, with an opposite

sign when compared with its univariate correlation with the depen-

dent variable. Discarding predictors with low univariate squared

correlation thus led to the design of a reduced model for each

dataset, only containing additive and interaction terms likely to

explain non-negligible amounts of variance in the dependent vari-

able. We then performed automated model selection based on

Akaike’s information criterion (AICc) as a measure of model fit

(Burnham & Anderson, 2002), with a maximum of seven terms at a

time in a tested model to avoid overfitting (function dredge in R-

package MuMIn; Barton, 2016). Given the imbalance in the number

of models containing each variable (Burnham & Anderson, 2002),

we did not investigate the relative importance of each variable but

solely focused on the analysis of the most parsimonious model

(ΔAICc = 0). Nevertheless, we considered the number of occur-

rences of each predictor within the best set of models (ΔAICc < 4)

as an indication of relative support for each variable.

Some suppressors were likely to be retained in the course of

AIC-based model selection as the inherent characteristic of suppres-

sors is to artefactually increase model fit (Ray-Mukherjee et al.,

2014). We thus used commonality analyses (CA; Nimon, Lewis,

Kane, & Haynes, 2008; Prunier et al., 2015; Ray-Mukherjee et al.,

2014) to identify—from the best selected model for each dependent

variable—the main contributors to the variance in the dependent

variable while revealing spurious correlations stemming from syner-

gistic associations among collinear predictors or from suppression

12 | PRUNIER ET AL.



situations (Prunier et al., 2015). For each best model, we used CA (R

package yhat; Nimon, Oswald, & Roberts, 2013) to identify and dis-

card possible suppressors and unnecessary predictors (as long as

they were not involved in interaction terms; see Table S3). Variables

were identified as suppressors when their unique contribution was

(almost) totally counterbalanced by a negative commonality coeffi-

cient (classical and reciprocal suppression) or when standardised

regression coefficients and univariate correlation coefficients were

of opposite signs (cross-over suppression; Prunier, Colyn, et al.,

2017). Variables were identified as unnecessary when their unique

contribution (U) was substantially low (U < 1%) and lower than their

common contribution, indicating that they only contributed to the

variance in the dependent variable because of their synergistic asso-

ciation with another predictor (Prunier et al., 2015). The purpose of

this framework was to avoid some predictors to influence the esti-

mates of other important effects in subsequent analyses.

To quantify the relative contribution of natural features (UDG,

UDG2 and BET) and anthropogenic stressors (HR, CRO, URB, STO

and interactions involving anthropogenic stressors) to genetic vari-

ability, we computed averaged unique contributions of all possible

predictors per species, rivers, genetic metrics and across all datasets.

Predictors absent from a given model were given a unique contribu-

tion of 0. Results were plotted into 100% stacked barplots.

2.6.3 | Step 3—meta-analysis

We finally used a meta-analytic framework to investigate the magni-

tude (effect sizes) and precision (95% confidence intervals) of the

effects of each thematic predictor on AR, PA and UNI across species

and rivers. For each predictor and each dataset, we first calculated

the r statistic, a standardised effect statistic for continuous variables

that belongs to the family of correlation coefficients (Nakagawa &

Cuthill, 2007). r statistics were computed as follows:

r ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ df

p

with t values and df values (the number of degrees of freedom) obtained

from the final multiple regression models (Nakagawa & Cuthill, 2007, eq.

11). We converted r statistics to Fisher’s z metrics using the Fisher’s z

transformation as follows (Nakagawa & Cuthill, 2007, eq. 20):

z ¼ 0:5� ln
1þ r
1� r

� �

Contrary to r statistics, Fisher’s z metrics are normally distributed.

We then computed the variance mz and the standard error sez of

each Fisher’s z metric as follows (Nakagawa & Cuthill, 2007, eq. 19):

vz ¼ 1
n� 3

and sez ¼
ffiffiffiffi
vz

p

with n the sample size of each dataset.

In order to obtain the most precise estimate (or summary effect)

of each predictor across datasets, we calculated M, the weighted

mean of Fisher’s z metrics, with the weight Wi assigned to each

dataset i being the inverse of within-dataset variance vzi (Borenstein,

2009, eqs. 11.2–11.3):

Wi ¼ 1
vzi

andM ¼
Pk

i¼1 WiziPk
i¼1 Wi

Finally, 95% lower and upper limits for summary effects M were

computed as (Borenstein, 2009, eqs. 11.5–11.7):

M� 1:96�
ffiffiffiffiffiffiffi
VM

p

with VM the variance of the summary effect M, estimated as the

reciprocal of the sum of the weights Wi across datasets (Borenstein,

2009, eq. 11.4):

VM ¼ 1Pk
i¼1 Wi

All statistical analyses were performed in R 3.1.2 (R Development

Core Team 2014).

3 | RESULTS

Three stocking places were reported by local angling associations:

two in the C�el�e River with non-native gudgeons released in sites 12

and 22 (Figure 1b), and one in the Viaur River with both non-native

gudgeons and minnows released in site 22 (Figure 1c; see also Fig-

ure S1). The Bayesian clustering procedure pointed out both pure

non-native G. gobio and G. occitaniae 9 G. gobio hybrids in sites 12,

13 and 22 in the C�el�e River (Figure S1). Although minnows from the

Viaur River did not show introgression with respect to the STRUC-

TURE analysis (Figure S1), a discriminant analysis of principal compo-

nents (dAPC; Jombart, Devillard, & Balloux, 2010) pointed the site

22 as an outlier (Figure S2), corroborating reports by local angling

associations.

From 3 to 15 models were identified as part of the best sets of

models (DAICc < 4) across datasets (Table 3). The relative support of

predictors ranged from 0.33 to 1. After withdrawal of suppressors

and unnecessary variables, best fitting models (DAICc = 0) comprised

from 1 to 5 predictors.

Considering AR, adjusted multiple R2 ranged from 0.629 to 0.950,

indicating that retained predictors correctly captured most of genetic

variability in all datasets (Table 3). None of the predictors related to

land cover (CRO, URB) were retained as possible drivers of AR.

Whatever the dataset, AR increased along the upstream–downstream

gradient (UDG; Figure 2). We also identified quadratic relationships

between AR and UDG in gudgeons from the C�el�e River and minnows

from the Viaur River, the former concave (bell-shaped) and the latter

convex (U-shaped; Figure 3). The increase in both local connectivity

(BET) and local home range were further found to covary positively

with AR, in minnows from the C�el�e River and in gudgeons from the

Viaur River, respectively (Table 3). Finally, AR in gudgeons from both

rivers increased with stocking probability STO (Figure 2).

For the PA, adjusted multiple R2 ranged from 0.279 to 0.671

(Table 3). The only retained predictors were UDG (in minnows) and

STO (in gudgeons; Figure 2). PA increased along UDG in minnows

from both rivers, with a U-shaped quadratic relationship in minnows
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TABLE 3 For each river and each species (Sp), results of multiple linear regressions, as well as additional parameters derived from CA:
dependent variables (DV), adjusted coefficient of determination (adj. R2), predictors (Pred), regression coefficients (Coef), p-values corrected for
false discovery rate (Pval), and unique, common and total contributions of predictors to the variance in the dependent variable (U, C and T). RS:
relative support of each predictor, defined here as the ratio of the number of occurrences of each predictor within the best set of models over
the number of best models (DAICc < 4). In bold: Significant p-values at a = 5%

DV River Sp Adj. R2 Pred RS Coef Pval U C T

AR C�el�e G 0.679 Intercept — 6.141 0.000 — — —

UDG 11/11 0.060 0.076 0.071 0.407 0.478

UDG2 9/11 �0.031 0.008 0.195 0.126 0.322

STO 5/11 0.361 0.076 0.054 0.360 0.414

M 0.950 Intercept — 6.322 0.000 — — —

UDG 6/6 0.321 0.000 0.811 0.000 0.811

BET 6/6 0.275 0.000 0.144 0.000 0.144

Viaur G 0.629 Intercept — 4.912 0.000 — — —

UDG 12/15 0.068 0.054 0.065 0.385 0.449

HR 14/15 0.181 0.041 0.121 0.103 0.224

STO 11/15 0.702 0.041 0.093 0.379 0.471

M 0.840 Intercept — 5.810 0.000 — — —

UDG 9/9 0.125 0.000 0.791 �0.046 0.744

UDG2 9/9 0.018 0.001 0.109 �0.046 0.063

PA C�el�e G 0.403 Intercept — 0.077 0.000 — — —

STO 11/13 0.127 0.001 — — 0.431

M 0.666 Intercept — 0.236 0.000 — — —

UDG 10/10 0.028 0.004 — — 0.682

Viaur G 0.279 Intercept — 0.119 0.000 — — —

STO 6/10 0.098 0.031 — — 0.309

M 0.671 Intercept — 0.093 0.000 — — —

UDG 4/4 0.016 0.000 0.325 �0.062 0.263

UDG2 4/4 0.007 0.000 0.435 �0.062 0.373

UNI C�el�e G 0.740 Intercept — 0.016 0.012 — — —

UDG 1/3 �0.001 0.657 0.003 0.063 0.066

UDG2 1/3 0.002 0.003 0.225 �0.186 0.039

HR 3/3 0.002 0.440 0.012 0.041 0.053

STO 3/3 0.036 0.006 0.167 �0.135 0.032

HR:STO 3/3 �0.037 0.000 0.446 �0.145 0.301

M 0.901 Intercept — 0.049 0.000 — — —

UDG 7/7 �0.005 0.000 0.205 0.276 0.482

BET 7/7 �0.010 0.000 0.323 0.023 0.346

URB 5/7 0.000 0.821 0.000 0.080 0.080

URB:UDG 5/7 0.003 0.004 0.071 0.254 0.325

Viaur G 0.565 Intercept — 0.015 0.000 — — —

HR 4/4 �0.002 0.185 0.039 �0.014 0.025

STO 4/4 0.010 0.062 0.092 0.222 0.314

HR:STO 4/4 0.020 0.004 0.246 0.177 0.423

M 0.824 Intercept — 0.027 0.000 — — —

UDG 3/3 �0.002 0.067 0.031 0.038 0.070

UDG2 3/3 0.001 0.008 0.079 0.366 0.446

STO 3/3 0.058 0.000 0.273 0.349 0.622
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from the Viaur River (Figure 3). PA increased with stocking probabil-

ity in gudgeons from both rivers.

Results regarding genetic uniqueness (UNI) were more variable

across datasets, with some interactions between predictors. Adjusted

multiple R2 ranged from 0.565 to 0.901 (Table 3). UNI decreased along

UDG in minnows from both rivers, with a U-shaped quadratic relation-

ship in minnows from the Viaur River (Figures 2 and 3). We also found

a U-shaped quadratic relationship between UNI and UDG in gudgeons

from the C�el�e River, but without any significant downstream decrease

of UNI. Local connectivity (BET) was associated with a decrease in UNI

only in minnows from the C�el�e River (Figure 2). In all datasets with

stocking events, we found a positive correlation between UNI and STO

(Figure 2). Nevertheless, we identified contrasting interactions of

stocking with home range (HR) in gudgeons (Figure 4a,b): in absence of

stocking, UNI did not significantly covary with HR, but showed a signif-

icant decrease in the C�el�e River, as opposed to a significant increase in

the Viaur River, as stocking probability increased. A last interaction was

retained between urban areas (URB) and UDG in minnows from the

C�el�e River: the negative relationship between UNI and UDG identified

for low to intermediate values of URB was reversed as URB increased

(Figure 4c).

Overall, only predictors UDG and STO showed congruent effect

sizes across datasets, with UDG positively correlated with AR and

PA and negatively correlated with UNI, and STO positively corre-

lated with all dependent variables (Figure 2). Other predictors were

either retained in single datasets (e.g., BET) or showed opposite rela-

tionships across datasets (e.g., HR.STO). As a result, the relative con-

tributions of natural features and anthropogenic stressors varied

largely between species (Figure 5a), with genetic variability being

mostly explained by anthropogenic stressors (STO; 77%) in gudgeons

and by natural features (UDG; 96%) in minnows (v2 = 107.6;

p < .000). Although slightly higher, the relative contribution of

anthropogenic stressors on genetic variability across species in the

Viaur River (42%) was not significantly different from the one in the

C�el�e River (32%; v2 = 1.7; p = .18; Figure 5a). Pooling all datasets,

the relative contributions of natural features to the variance of AR

and PA were, respectively, more than five times and almost twice

higher than the contribution of anthropogenic stressors (Figure 5b).

On the contrary, the contribution of anthropogenic stressors to the

variance in UNI was higher than the contribution of natural features.

Overall, the here tested natural features contributed 1.82 times

more than anthropogenic stressors to genetic variability.

4 | DISCUSSION

4.1 | Contribution of the natural river network
structure

Natural features such as upstream–downstream gradients, dendritic

branching patterns and local connectivity in confluence zones are

known as important drivers of genetic variability in dendritic river

networks, as they directly influence patterns of gene flow and

genetic drift. Several studies highlighted general and repeatable pat-

terns in their effects (Paz-Vinas & Blanchet, 2015; Paz-Vinas et al.,

2015; Thomaz et al., 2016). One of these patterns is the DIGD (Paz-

Vinas et al., 2015) which involves a downstream increase in AR. In

fish, DIGD is assumed to result from different, possibly interacting

mechanisms such as local historical context (e.g., upstream-directed

colonisation, with successive founder effects leading to an upstream

impoverishment in alleles) and river structure (e.g., downstream

increase in effective population sizes through increased habitat avail-

ability; Paz-Vinas et al., 2015). In line with these theoretical expecta-

tions, our meta-analysis revealed that upstream–downstream

gradients were strong and consistent drivers of genetic variability

across species and rivers: both AR and PA increased along the

upstream–downstream gradients, with significant effect sizes across

datasets (see also Figure S2). We also found a consistent decrease in

genetic uniqueness along the upstream–downstream gradients in

{ {AR PA UNI

{Anthropogenic
{Natural

Gudgeons
Minnows
Célé River
Viaur River

Combined effect size

−1 0 1 2
Effect sizes
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UDG.URB

URB

−1 0 1 2
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F IGURE 2 Effect sizes (and 95% confidence intervals) of all retained predictors for allelic richness (AR), private allelic richness (PA) and
uniqueness (UNI), as computed from the meta-analysis framework
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minnows. Such a downstream decrease in genetic differentiation

was already observed in several studies (e.g., Finn, Bonada, M�urria,

& Hughes, 2011), and it was shown to primarily result from dendritic

connectivity, possibly reinforced in combination with asymmetric

gene flow, differences in population sizes and upstream-directed

colonisation (Paz-Vinas et al., 2015). These relationships were not

always linear, as we found both bell-shaped and U-shaped relation-

ships between genetic metrics and upstream–downstream gradients

in two datasets (quadratic term UDG2 retained in final models). Such

nonlinear relationships, reported in both empirical and simulation

studies (Paz-Vinas & Blanchet, 2015; Paz-Vinas et al., 2015), may

arise from the allelic enrichment of populations benefiting from

dispersal from tributaries (branching pattern), but also from other

peculiarities of studied systems such as historical contingencies. The

bell-shaped relationship in gudgeons from the C�el�e River probably

stemmed from the influence of tributaries on AR in demes located

at intermediate distances from the river source. The specific topol-

ogy of the C�el�e River, with a large amount of branching in the

upstream half part of the main channel but a very simple topology in

its downstream part, was indeed very similar to simplified dendritic

networks used in the simulation study by Paz-Vinas and Blanchet

(2015), who provided the first theoretical evidence of bell-shaped

relationships arising from dendritic branching patterns in species

with low to intermediate migration rates. Conversely, U-shaped rela-

tionships observed in minnows from the Viaur River could stem from

an increase in habitat quality in upstream demes (Keith, Persat,

Feunteun, Adam, & Geniez, 2011) and from an enrichment of down-

stream genetic pools by dispersal individuals coming from unsampled

demes in the main stem or in tributaries located downstream.
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While the possible large-scale influence of dendritic connectivity

was taken into account with quadratic terms UDG2, local between-

ness was identified as another natural predictor favouring an

increase in AR and a decrease in uniqueness for minnows living in

highly connected demes from the C�el�e River. Although not retained

in final models, we found similar trends in gudgeons from the C�el�e

River (data not shown). As central nodes within the network, these

highly connected demes may receive alleles from unsampled popula-

tions from tributaries but also from the main channel through down-

stream-orientated gene flow (Morrissey & de Kerckhove, 2009), thus

increasing local AR but also limiting genetic uniqueness when com-

pared with more isolated demes.

4.2 | Contribution of anthropogenic stressors

Possibly interacting with natural characteristics of river systems,

human activities are known to critically affect evolutionary processes

such as gene flow and genetic drift through riverscape

fragmentation, habitat degradation or stocking (Hoffmann & Willi,

2008). Among the various anthropogenic stressors considered in this

study, only stocking had a strong and consistent influence on pat-

terns of genetic diversity and genetic differentiation, notably in gud-

geons. Stocking of small game fish species such as minnows and

gudgeons in freshwater rivers is a common practice that notably

aims at sustaining angling activities (Arlinghaus, Beardmore, Riepe,

Meyerhoff, & Pagel, 2014). However, introduced fish usually origi-

nate from hatcheries or other geographical regions and bear original

genetic signatures, with different impacts on autochthonous genetic

pools depending on the intensity of stocking practices (Marie et al.,

2010). We expected moderately stocked populations to experience

an increase in both AR and PA but also an increase in genetic

uniqueness through local introgression of non-native alleles (Marie

et al., 2010; Perrier, Guyomard, Bagliniere, Nikolic, & Evanno, 2013).

Our findings were consistent with these expectations: stocking

showed positive relationships with AR, PA and UNI in both gud-

geons datasets, with significant effect sizes across datasets (see also

Figure S1). Although stocking could be considered as rather anecdo-

tal in minnows from the Viaur River (but see Figure S2), it was still

retained as a possible driver of uniqueness, suggesting a long-lasting

signature of introgression on patterns of genetic differentiation in

this system (Perrier et al., 2013).

Two additional anthropogenic stressors were punctually found to

influence patterns of genetic variability, the first of which was

home-range sizes. Home ranges were delimited by upstream and

downstream obstacles (weirs and dams) and were thus related to

local levels of fragmentation. An increase in the size of home ranges

may promote larger effective population sizes, thus balancing the

influence of genetic drift and eventually increasing AR. A corollary is

that a decrease in home-range size, implying an increase in the num-

ber of obstacles in the direct vicinity of populations, may result in

restricted gene flow and genetic differentiation. We found a con-

comitant increase in home-range size and AR in gudgeons from the

Viaur River, suggesting that populations from this highly fragmented

river may suffer from higher genetic drift when obstacles restrain

their home range. Although not retained in the final model, a similar

trend was observed in minnows from the Viaur River (data not

shown). Variations in home-range size did not show significant addi-

tive effect on other genetic metrics. In gudgeon datasets though, we

found contrasting results as to the influence of home-range size on

uniqueness as stocking increased. Interactions indeed indicated that

uniqueness decreased or conversely increased with the increase in

stocking probability in the C�el�e River and in the Viaur River, respec-

tively. These unexpected outcomes are attributable to the variance

in levels of fragmentation at stocking places: high probabilities of

stocking were found in highly fragmented locations (low home-range

sizes) in the C�el�e River, whereas it was the opposite in the Viaur

River (Figure 4a,b). These interactions could thus be considered sim-

ple modalities of stocking influence on genetic uniqueness.

The last anthropogenic stressor found to covary with genetic

variability was the percentage of urban areas in a 2-km buffer

around populations of minnows in the C�el�e River. The influence of
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urban land use on genetic uniqueness varied along the upstream–

downstream gradient. From low to moderate urban cover, unique-

ness decreased along the upstream–downstream gradient, but

conversely increased as urban land use increased (Figure 4c). This

interaction resulted from the existence of a downstream gradient of

urbanisation in the upstream half part of the main channel (demes

4–5–6, 9–10 and 13–14 in Figure 1b, the two latter showing an

urban coverage of 100%), counterbalancing the natural decrease in

uniqueness along the first half of the upstream–downstream gradi-

ent. One can only speculate as to the origin of the increase in

genetic differentiation in minnows inhabiting river stretches sur-

rounded by urbanised areas. Urban land use may cause dispropor-

tionately large stresses in river networks, considering the restricted

surface that it usually represents over total catchment areas (Allan,

2004). Increased runoff from impervious surface cover and bank arti-

ficialisation may critically affect hydrology, geomorphology and water

quality of stream habitats, with serious impacts on algal, invertebrate

and fish communities (Paul & Meyer, 2001). The observed pattern in

minnows from the C�el�e River may, for instance, result from a pro-

cess of isolation-by-environment (Wang, 2013): populations in urba-

nised zones may experience reduced effective immigration from

(and/or emigration to) neighbouring non-urbanised demes as a result

of differential fitness or matching habitat choice in dispersers (phe-

notype-specific habitat selection; Edelaar, Siepielski, & Clobert,

2008). This hypothesis implies eventual local adaptations to urban-

driven environmental conditions in these populations (Brown, Gray,

Hugues, & Meador, 2005) and would require further investigations.

Introgression might yet disrupt such patterns of local adaptation and

affect the maintenance of urban populations (Marie et al., 2010).

4.3 | Multiple stressors in riverscape genetics

By averaging predictors’ unique contributions to genetic metrics

across natural and anthropogenic thematic categories, we showed

that the relative influences of natural features and human-induced

stresses were primarily species-dependent: genetic variability was

mostly explained by natural features (upstream–downstream gradi-

ents) in minnows and by anthropogenic stressors (stocking) in gud-

geons, notably because the latter species experienced introgression

in both rivers. It is surprising that fragmentation did not lead to more

striking genetic signals as fragmentation is a rather old stress (no-

tably in the Viaur River where weirs are up to 300 years old) and

with a constant effect on populations. This may be explained by the

relatively large effective population sizes of the two target species

that may lessen the negative effects of reduced gene flow on

genetic differentiation. Relative contributions also varied across

genetic metrics, from AR, mostly driven by upstream–downstream

gradients in accordance with the principle of DIGD, to genetic

uniqueness, driven by complex additive and interactive effects

among anthropogenic stressors, thus limiting any generalisation.

Overall, natural features contributed 1.82 times more than anthro-

pogenic features to genetic variability across species, rivers and

genetic metrics. Whether this proportion could be used as a

benchmark for future comparisons with other genetic studies based

on a multiple-stressors approach is still to be determined. Neverthe-

less, quantifying the relative contribution of natural features and

anthropogenic stressors on patterns of genetic diversity remains cru-

cial, as it provides an interesting overview of ongoing processes in

studied systems and could be used to further alert stakeholders to

the various impacts of human activities, here accounting for about

35% of variance in spatial patterns of genetic diversity.

4.4 | Conclusions

This study illustrated how a multiple-stressors approach, coupled

with a fully explicit and conservative analytical framework, can help

unveil the respective contributions of natural features and anthro-

pogenic stressors to patterns of neutral genetic diversity and differ-

entiation in wild populations across riverscape replicates (Short Bull

et al., 2011). We showed that natural structure of networks and

stocking were strong and consistent drivers of spatial patterns of

genetic diversity in a predictable way, whereas the influence of other

human activities may be much more difficult to predict over species

and contexts.
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