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Accurate magnetic material laws are necessary to understand and interpret electrical signals generated by eddy current testing
non-destructive control technique. Taking into account simultaneously, both microscopic and macroscopic eddy currents, a numerical
resolution is obtained which leads to the global magnetic behavior that can be compared to measured quantities. The 2-D or 3-D
(depending on the dimension of the test sample) finite differences space discretization is used for the resolution of the diffusion
equation and dynamic hysteresis model is locally simultaneously solved for the microscopic eddy currents (domain wall movements)
consideration. Local cracks defects are considered in this model as a variation in the local electrical conductivity and magnetic
permeability. The numerical issues such as the proposed solutions for the implementation are described in this paper.

Index Terms— Eddy current testing (ECT), electromagnetic modeling, magnetic hysteresis.

I. INTRODUCTION

THE development of new electromagnetic designs, such
as the improvement of already existing ones, requires

precise simulation tools. Similar tools can also be used for
the understanding and interpretation of non-destructive eddy
current testing (ECT) and Barkhausen noise measurements’
electrical signatures.

The ECT consists of setting up a magnetic flux by passing
alternating current through a test coil. When this coil is
brought closer to the conductive test sample, induced eddy
currents are observed and the changes are interpreted in the
coil impedance or the voltage drop [1].

Numerical simulations are of large interest in ECT domain.
By coupling accurate model to experimental results one can
precisely define the shape and the position of the defects and
cracks in the ferromagnetic material.

Recent scientific investigations around ferromagnetic
model mainly focus on coupling space discretization tech-
niques (SDT), finite-elements method, finite differences
method (DFM) extended with accurate scalar or vectorial,
dynamic or static, and considering hysteresis material law.
For this magnetic material law, it seems that the best results
come from the extension of the quasi-static hysteresis model
(Preisach’s model [2]–[5]) to dynamic behavior as a result of
the separation losses techniques as proposed by Bertotti [6].
The simultaneous resolution between SDT procedures and
hysteresis models can be realized by iterative techniques. One
of them is the so-called fixed point scheme. This technique
leads to accurate results, but numerical problems of conver-
gence appear in particular cases [7]–[9].

To correctly simulate ECT technique, the electromagnetic
model must be able to provide the local and time evolution of
both magnetic induction B and excitation field H . The 2-D
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resolution gives the evolution of both magnetic fields through
the cross section of the test sample, 3-D gives this local infor-
mation through the whole tested sample. To overcome numer-
ical issues due to fixed point or Newton Raphson’s algorithm,
solving the diffusion equation (linked to the macroscopic eddy
currents) and the dynamic hysteresis model (microscopic eddy
currents) simultaneously is proposed.

II. MODEL

A. Diffusion Equation—Macroscopic Eddy
Current Contribution

To correctly perform the ECT simulation a coupled resolu-
tion of dynamic material law and the magnetic field diffusion
equation must be effected [10]–[12]. The magnetic diffusion
equation (1) results from Maxwell’s equations and the law,
which describes the conductive property of the material
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(−→
rot
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)
= −σ · d
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B

dt
. (1)

As the magnetic field is considered perpendicular to the
cross section, in 2-D (1) becomes

∂2 H (x, t)

∂x2 + ∂2 H (y, t)

∂y2 = −σ · d
−→
B

dt
. (2)

The diffusion equation gives precise description of the
macroscopic eddy currents distribution through the cross
section of the test sample.

B. Material Law—Microscopic Eddy Current Contribution

Due to the domain’s wall movements, microscopic eddy
currents appear through the cross section of a magnetic sample
as soon as it is exposed to a varying magnetic field. Below
a threshold frequency (in the decreasing direction) hysteresis
loop area becomes frequency independent, which can be called
as the quasi-static state. Different approaches are available in
the literature for the simulation of the quasi-static hysteresis
behavior [13]–[15]. Among all, Preisach’s model exhibits the
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Fig. 1. Fundamental switching operator–hystereon.

interesting property of being easily reversible. It is indeed
relatively easy to switch from H to B as input in the
quasi-static hysteresis model. The material law solved in this
paper required an inverse hysteresis quasi-static contributions.
Preisach’s quasi-static model has been used to provide this
information.

Preisach’s model has widely been used to describe the
hysteresis phenomenon in magnetic materials [13], [14]. It
is based on the following assumptions: the major hysteresis
loop of a given ferromagnetic sample consists of an infinite
number of square hysteresis loops known as hysterons. Each
hystereron has associated threshold reversal fields up α and
down β as saturation magnetization switches from (+1) back
to (−1) state as illustrated in Fig. 1.

The magnetization M is determined by the contribution
of the set of these elementary particles having a distribution
function μ(α, β) over Preisach’s triangle in the (α, β)-plane
(see Fig. 1)

M = Ms ·
∫

α

∫

β

h(α, β) · μ(α, β)dαdβ (3)

with∫

α

∫

β

μ(α, β)dαdβ = 1 and − H S ≤ α ≤ H S, β ≤ α

where Ms is the magnetization value when H = HS.
In order to model precisely the quasi-static magnetic mate-

rial behavior, it is necessary to accurately determine the
weighing distribution function μ(α, β) from experimental
data. There are mainly two ways to determine this distribution
function. The first way assumes that the distribution function
has a particular form (Lorentzian, Gaussian) and then deter-
mines the parameters of the chosen function in order to depict
the average hysteretic behavior. The second way discretizes
the distribution function in a finite set of values which are
determined by suitable experimental data. In this paper, the
second option is chosen which is expected to provide higher
accuracy.

In this paper, two techniques have been tested for the acqui-
sition of the discretized distribution function: The centered
cycle technique as described in [14] and Biorci’s et al. [16]
method. Both techniques provide relatively correct simulation
results. A higher number of experimental data is required by

Fig. 2. Preisach’s distribution function.

the first technique but a correct behavior can be reached with
a lower size of the discretized distribution implementation and
this means a simpler and reduced memory management.

Fig. 2 shows Preisach’s space discretized distribution func-
tion obtained with Biorci’s method for the tested sample. If
only the quasi-static contribution material law is considered in
the diffusion equation, the resolution is easy but leads to inac-
curate results. In this case, the dynamic effects related to the
high-frequency dynamics of the wall motions are neglected.
The dynamic contribution is considered in the material law by
adding to the quasi-static lump model the product of a damping
constant ρ to the time domain derivation of the induction
field B

ρ · d B(t)

dt
= Hdyn(t) − f −1

static(B(t)). (4)

This product is homogeneous to an equivalent excitation
field H .

C. Simultaneous Resolution

The idea of the simultaneous resolution comes from the
material law equation (4) (microscopic eddy current dynamic
contribution). We note the dB/dt term in (4) constitutes also a
part of the second term in diffusion equation (2). It becomes
natural to replace the dB/dt term of (2) by the second member
of (4). A new formulation of the diffusion equation is obtained
then

∂2 H (x, t)

∂x2 + ∂2 H (y, t)

∂y2 = −σ · Hdyn(t) − f −1
static(B(t))

ρ
. (5)

The DFM is used for the space discretization resolution.
Without the permeability calculation step, we avoid a lot of
numerical issues. Fig. 3(b) gives a first illustration of the
simulation configuration. We assume a high section yoke of
infinite permeability surrounded by a large turn’s number
coil supplied by a perfect current source. This experimental
inductor creates a deterministic (sine waveform, triangular
waveform …) surface tangent excitation field H. Fig. 3(c)
shows the first simulation results. The 3-D configuration is
simulated here. As illustrated Fig. 3(a), in this first simula-
tion, we consider Dirichlet’s boundaries conditions (imposed
H = Hsurf) on three rows of spots on the top of the sample,
other Dirichlet’s boundaries conditions (imposed H = 0)
on the sides and on the bottom of the geometry and finally
and Neuman’s boundaries conditions (d H/dY = 0) on the
remaining spots on the top of the geometry. Fig. 3(c) shows
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Fig. 3. (a) Simulation’s boundary conditions. (b) Simulation’s configuration.
(c) Induction distribution.

first the induction distribution for various levels of excitation
field H . The hysteresis loop in Fig. 3(b) is related to the
evolution of the average induction B (through the cross section
of the sample, xy direction) versus the imposed sine waveform
tangent excitation field H . The numerical result gives the
evolution of both the local induction field Bi and Hi for each
spots of the simulation.

D. Defects Taken Into Account

All metals (including ferromagnetic materials) contain
defects. Different aspects of defects exist. It includes holes,
cracks, segregation, inclusions, surface marks, or undesir-
able metallurgical changes. From a physical point of view,
defects in the matter are characterized by a local variation
of the physical properties (permittivity εd , permeability μd ,

Fig. 4. Hysteresis loop considering different losses contribution.

Fig. 5. Comparison simulation/measure for increasing frequency condition.

conductivity σd ). In our simulation, defects will be considered
through their physical properties, i.e., a local variation of μ
and σ in the finite differences resolution of (5). In the case of
crack defects, as cracks are filled with air a permeability equal
to the vacuum permeability μ0 and a very weak conductivity
is considered.

III. SIMULATION RESULTS

Fig. 4 shows numerical results obtained considering
successively:

1) the macroscopic eddy current contribution;
2) the microscopic eddy current contribution;
3) both contributions.

The model has been set using soft iron silicon material
referenced M400P50 (Euronorm) properties and excitation
frequency has been set to 200 Hz. Table I gives the manu-
facturer’s information for this material.

The conductivity is identified to the value of
4.25 106 (�·m)−1 and the thickness is 0.5 mm. In this
simulation, B is calculated from the average value of all
the local inductions through the cross section of the sample
(xy plane, one spot in the z-direction).

The next numerical result displayed shows the whole simu-
lated experimental setup, including crack defect and magnetic
field B distribution through the 2-D cross section of the
test sample (Fig. 5). In this simulation, the crack defect is
considered as a geometrical space inside the material where
permeability and conductivity are equal to the vacuum ones.
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TABLE I

M400P50 MANUFACTURER’S PROPERTY

Fig. 6. B distribution considering successively: the microscopic eddy
currents, the macroscopic eddy currents, both contributions.

Fig. 7. B(H ) hysteresis loop. Defect (in red), no defect (in blue).

Fig. 6 shows the induction distribution, considering 2-D sim-
ulation. In Fig. 6 (left), where just the microscopic eddy
currents contribution is taken into account, the induction is
homogeneously distributed between the defect and the surface
of the sample. In the middle, where just the macroscopic eddy
currents are considered, we can observe a shielding effect
which borders the magnetic induction in a very thin layer on
top of the sample.

Finally, Fig. 6 (right) shows the induction distribution as
both contributions are taken into account. In Fig. 6, even if
the magnetic induction distribution is limited comparing to the
first one, the shield effect due to the macroscopic eddy current
is also limited.

Fig. 7 shows the hysteresis loop derived from the mea-
sured electrical quantities (voltage and current) in both cases:
with and without defect presence. After a large number of
simulations, we have noticed that the differences observed
between the hysteresis loops obtained with and without the
defect presence is as imagined directly linked to the frequency
of the surface excitation field, the size of the defect and its
space position through the cross section.

IV. CONCLUSION

As a conclusion of this paper, we can say that accu-
rate magnetic material laws are necessary to understand and

interpret electrical signals generated by ECT non-destructive
control technique. By taking into account simultaneously, both
microscopic and macroscopic eddy currents authors succeed
to obtain a very accurate numerical resolution of the local
magnetic quantities (Hi , Bi ). The space average of these
local quantities is obtained which leads to a global mag-
netic behavior that can be compared to measured quanti-
ties. The 2-D or 3-D (depending on the dimension of the
test sample) finite differences space discretization is used
for the resolution of the diffusion equation and a dynamic
hysteresis model is locally simultaneously solved for the
microscopic eddy currents (domain wall movements) consid-
eration. Cracks defects are considered in the model as a local
variation of the physical properties (electrical conductivity
and magnetic permeability). The numerical solutions allow
to give some conclusions dealing with the influence of each
contributions (macroscopic and microscopic eddy currents)
on the evolution of the average measurable quantities. The
influence of the geographic position such as the size of the
defects can also be studied. Finally, the model can also be
used as a tool to precisely define the excitation waveform
(frequency, amplitude) required for the control of a given
sample.
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