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Online Via-Points Trajectory Generation for Reactive Manipulations*

Ran Zhao1,2, Daniel Sidobre1,2 and Wuwei He1,3

Abstract— In various circumstances, such as human-robot
interactions and industrial processes, planning at trajectory
level is very useful to produce better movement. In this paper
we present a near time optimal approach to plan a trajectory
joining via points in real time for robot manipulators. To limit
the speed variation, the path is smoothed around via-points
in a limited area. The concept of online trajectory generation
enables systems to react instantaneously at control level to
unforeseen events. Simulation and real-world experimental
results carried out on a KUKA Light-Weight Robot arm are
presented.

I. INTRODUCTION

Defining robot motion by trajectories has many advantages
to describe feasible motions or human acceptable motions.
While a path defined by a polygonal lines doesn’t precise
if the mobile must stop at via-points or smooth the corner,
a trajectory describes precisely the motion. It is also well
known that humans minimize the jerk of their movements
[1] or that the bounding of the jerk and acceleration are
necessary to limit the vibrations and the wear of mechanical
parts during machining [2], [3]. In both case trajectories can
describe the corresponding motion. Also, it is reasonable
to replace paths by trajectories as the interface between
planners and controllers, and to add a trajectory planner as
an intermediate level in the software architecture.

To react to environment changes, the trajectory planning
must be done in real time. Meanwhile, the robot needs to
guarantee the human safety and the absence of collision.
So the model for trajectory must allow fast computation
and easy communication between the different components,
including path planner, trajectory generator, collision checker
and controller. To avoid the replan of an entire trajectory, the
model must allow deforming locally a path or a trajectory.
The controller must also accept to switch from an initial
trajectory to follow to a new one.

In this paper we use third degree polynomial functions to
describe trajectories and we propose an efficient method to
generate trajectories. In the first stage, we suppose that a mo-
tion planner produces a polygonal line. From this polygonal
line, we build a smoothed and feasible trajectory bounded
in jerk, acceleration and velocity. This corresponds to the
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type V trajectories in the classification proposed by Kroger
[4]. As this operation modifies the initial free path, the new
smoothed path must be checked for collision. Locally near a
via-point, the path defines a subspace of dimension two and
the trajectory proposed remains inside this subspace where
the maximum error distance can be verified.

This paper focuses on the via-points trajectory planning
for a service manipulator robot. We present related work in
Section II. Soft Motion trajectory and the concept of online
trajectory generation are detailed in Section III. Section IV
describes a simple approach to build a smooth via-points
trajectory. We explain how to manage the error in Section V.
Simulation and experimental results are presented in Section
VI using a 7-DOF arm.

II. RELATED WORK

Recent years have seen an increase in research in trajectory
planning, especially related to the domains of Human-Robot
Interactions (HRI) and high speed machining. Trajectory
planning is commonly decomposed in two phases [5], firstly
the selection of a path and then the generation of the
trajectory, i.e. the building of a time evolution function
along the path. A partial review for robotic is presented in
Gaspareto et al. [6].

Probabilistic path planning methods [7] have had great
success for robot motion, but they are not directly adapted to
the changing robot environment of human-robot interaction.
A lot of extensions like in [8]–[10] were proposed to improve
reactivity. It should be noted that all these methods provide
a polygonal path as output, which is impossible to follow at
constant speed.

Broquère et al. [11] gives a solution to compute a time
optimum trajectory bounded in jerk, acceleration and velocity
for an axis joining any pairs of states defined by a position, a
velocity and an acceleration. For a point to point movement
in an N-dimensional space, the time optimum straight-line
motion is obtained by projecting the constraints on the line
[12].

The trajectory planning problem can be solved in joint
space or in the operational space, but kinematic models make
the combined problems difficult. A method taking kinematic
and process constraints into account for five-axis machining
is presented in [13]. For more complex kinematics like 7-axis
arm, the problem is still largely open to research.

In this paper we propose a solution to generate a trajectory
from a polygonal path. The objective of the method is
to build a time optimum trajectory while controlling the
distance between the path and the trajectory.



III. ONLINE TRAJECTORY GENERATION (OTG)

A. Soft Motion Trajectory

Trajectories are time functions defined in geometrical
spaces, essentially Cartesian space and joint space. The
rotations can be described using different coordinates system:
quaternion, vector and angle etc. The books from Biagiotti
[5] on one hand and the one from Kroger [4] on the other
hand summarize background trajectory material.

We choose a particular series of 3rd degree polynomial
trajectories and name them as Soft Motion trajectories. A
trajectory T is then a function of time defined as:

T : [tI , tF ] −→ Rn (1)
t 7−→ T (t) (2)

Where T (t) = Q(t) = (1Q(t), 2Q(t), · · · , nQ(t))
T for joint

motions or T (t) = X(t) = (1X(t), 2X(t), . . . , nX(t))
T in

Cartesian space from the time interval [tI , tF ] to Rn. n is the
dimension of the motion space. Without loss of generality,
we suppose that all jQ(t) or jX(t), 0 ≤ j < n share the
same time intervals and that tI = 0. The continuity class of
the trajectory is C2.

A first OTG algorithm is able to calculate a trajectory at
any time instant, which makes the system transfer from the
current state to a target state. A state of motion at an instant
ti is denoted as

Mi = (Pi, Vi, Ai) (3)

where Pi(Pi = Q or Pi = X) represents the position,
Ai the acceleration and Vi the velocity at in instant ti. Fig.1
illustrates the input and output values of OTG algorithm.
We propose several trajectory generators which are capable
of generating Soft Motion trajectories in one time cycle. The
trajectory calculated is a type V trajectory in the classification
proposed by Kröger, which satisfies:

Vi ∈ Rn |jVi| ≤ Vmax

Ai ∈ Rn |jAi| ≤ Amax (4)
Ji ∈ Rn |jJi| ≤ Jmax

Pi ∈ Rn

Jmax, Amax, Vmax are the kinematic constraints and Ji is
the jerk at time ti. Therefore, at a discrete instant, the OTG
algorithm can transfer motion states while not exceeding the
given motion constraints.

B. Trajectory Generators

1) Phase Synchronized Trajectory Generation: Different
solutions where proposed to generate monoaxial trajectories,
but for the multiaxial case, generating trajectories with
the same duration is not enough and a continuous phase
synchronization is necessary to define the shape of the path.
For example, to generate a straight line the ratio between the
velocities of each axes must be constant.

Phase synchronization is the synchronization in position,
velocity, acceleration and jerk spaces. It means that, given
any instant of time, all variables must complete the same

Fig. 1. Online trajectory generation algorithm

Fig. 2. Via-points motion: phase-synchronized and without synchronization

percentage of their trajectories. In a n dimensional space,
Frisoli et al. [14] defines the phase synchronization as:

iX(t)− iX(tI)

jX(t)− jX(tI)
= λ ∀i, j ∈ [0, n− 1], t ∈ [tI , tF ] (5)

Where λ is a constant. Fig.2 illustrates the path of a simple
via-points motion in 2D space. P1, P2, P3 are way points
with zero velocities and accelerations. The difference be-
tween the phase-synchronized and unsynchronized trajecto-
ries are clearly depicted in Fig.3. Phase-synchronized trajec-
tories are very important for many real-world applications.
For instance, phase-synchronized trajectories make sense
when we want to modulate time w.r.t. cost values, which
means, all axis stay at the same phase and slow/accelerate
at the same time. In our case the shape of the curve is not
defined, so we have to synchronize the initial and final state
of motion and to define an acceptable curve.

2) Fixed Time Trajectory Generation: Planning a trajec-
tory with initial position and final position now is well
known, but planning in a fixed time is still an open problem
in numerous cases. Thus to build a motion with predefined
time, we propose two different methods by computing dif-
ferent parameters of the trajectory.

a) Three Segments Method: If we consider a portion
of the trajectory Tin defined by an initial instant tI and a
final instant tF , the initial and final situations to connect are:
(XI , VI , AI) and (XF , VF , AF ). An interesting solution to
connect this portion of trajectories is to define a sequence
of three trajectory segments with constant jerk that bring
the mobile from the initial situation to the final one in the



Fig. 3. Position, velocity and acceleration profile of 2D via points motion:
without synchronization (left) and phase-synchronized (right).

time Timp = tF − tI . We choose three segments because we
need a small number of segments and there is not always a
solution with one or two segments.

The system to solve is then defined by 13 constraints:
the initial and final situations (6 constraints), the continuity
in position velocity and acceleration for the two switching
situations and the time. Each segment of trajectory is defined
by four parameters and one time. If we fix the three durations
T1 = T2 = T3 =

Timp

3 , we obtain a system with 13
parameters where only the three jerks are unknown [15]. As
the final control system is periodic with period T , the times
Timp/3 must be a multiple of the period T and Timp chosen
to be a multiple of 3T .

b) Three Segments Method With Bounded Jerk: Three
segments method solves the fixed time trajectory generation
problem with fixed duration for each segment. However, it
cannot guarantee the computed jerk is always bounded. Here
we introduce a variant three segments method with defined
jerk.

As for the three segments method, the system is also
defined by 13 constraints. But here we fix the jerk on the first
and third segment |J1| = |J3|, which have value bounded
within the kinematic limits. Thus the unknown parameters
in the system are J2 and the three time durations. Thus we
obtain the system of four equations with four parameters (J2,
T1, T2 and T3):

AF = J3T3 +A2 (6)

VF = J3
T 2
3

2
+A2T3 + V2 (7)

XF = J3
T 3
3

6
+A2

T 2
3

2
+ V2T3 +X2 (8)

Timp = T1 + T2 + T3 (9)

Where

A2 =J2T2 + J1T1 +AI

V2 =J2
T 2
2

2
+ (J1T1 +AI)T2 + J1

T 2
1

2
+AIT1 + VI

X2 =J2
T 3
2

6
+ (J1T1 +AI)

T 2
2

2
+ (J1

T 2
1

2
+AIT1 + VI)T2

+ J1
T 3
1

6
+AI

T 2
1

2
+ VIT1 +XI

To choose the value of jerks on each dimension, we take
the velocity VI and VF into account. The jerks are fixed by
J1 = −J3 = Jmax when VI − VF > 0, while J1 = −J3 =
−Jmax when VI−VF < 0. If VI−VF = 0 then we compare
the values of AI and AF instead.

Compared with the fixed time three segments method,
the advantage of this method is that it can generate much
softer motions since 2 of the 3 jerks are surely bounded.
Meanwhile, if we follow a long path and make J1 and J3
saturated, we will get a near zero jerk and a big time T2 on
the second segment, that means we will have a long acceler-
ation constant trajectory along the path, which is much more
smoother than trajectory with changing acceleration.

IV. BUILDING A SMOOTHING MOTION TRAJECTORY
FROM WAY POINTS

In this section, we begin with the two dimensional prob-
lem. Firstly, we present a solution to plan point-to-point
(straight-line) trajectories that halt at each via-point where
the direction of the path changes. Then we smooth the
edges of the trajectory to produce smoother motion defined
by kinematics conditions. Moreover, as the path is not
predefined, different solutions exit for a vertex. We propose
to compute a minimal time motion after defining the limits
of the smoothed zone. Among the infinity of solution we
choose one, which is simple to compute in real time.

A. Time-optimal Straight-line Trajectory

The first step is to convert a piecewise linear path to a
time-optimal trajectory that stops at each via-point. In task
space, straight-line paths are often required between the way
points. The trajectory along a straight-line path should be a
phase-synchronized motion [11].

We note the point-to-point trajectory as Tptp, it is com-
puted by projecting the constraints of each axis on the
straight-line and computing the minimum time necessary for
this point to point movement. The time optimal solution of
this monodimensional problem is then projected on the n
initial axis. For each segment of the trajectory, one of the
velocity, acceleration, or jerk functions of the n initial axes
is saturated. The others are inside their validity domain. In
other words, the motion is minimum time for one direction.
In the other directions, the motions are conditioned by
the minimum one. Repeating this strategy for each straight
segment, we build the time optimal trajectory Tptp that stops
at each all via-points.



Fig. 4. Influence of the start and end points for the smooth area

B. Smoothing a corner

In the second step of the algorithm, we develop a solution
to smooth the corners. We will discuss the case for 2D space
and extend the solution to 3D in the next paragraph.

The point-to-point (straight-line) trajectory Tptp obtained
in the previous paragraph is feasible, but it is not satisfactory
because the velocity varies greatly at each via-point to stop
the motion. These stops can be avoided by allowing the
trajectory to deviate slightly from the via-points by rounding
the edges to smoothly travel near the point while changing
the direction without stopping.

Without loss of generality we consider three adjacent
points (Pi−1, Pi, Pi+1) and the smoothing at the intermediate
via-point Pi. Firstly, the two straight-line trajectories TPi−1Pi

and TPiPi+1
are computed respectively. Then we choose two

points (Pstart, Pend) based on the parameter d, which is the
distance from the point Pi on the trajectory. (dstart, dend)
are used to denote the two distances and they defines the
limits of the smoothed area. The possible choices of these
two points are infinite, and the resulting trajectories can vary
greatly due to the different choices, see Fig.4. But since we
wish a time optimal motion, a first simple idea is to keep
the maximum velocity segment and smooth the area where
the trajectory is not traveled at constant speed. Thence we
choose two time instants: Tevc is the end of velocity constant
segment of TPi−1Pi

; Tsvc is the start of velocity constant
segment of TPiPi+1

, as shown in Fig.4. In a first case, Pstart

and Pend are defined by the kinematic conditions: Mstart =
(Pevc, Vevc, Aevc) and Mend = (Psvc, Vsvc, Asvc). As they
are in the velocity constant segments, Aevc = Asvc = 0 in
this case. Then we compute the minimum time trajectory
between Pstart and Pend independently on the two axes
using the 7 segment method, proposed by Broquère in [11].
The optimal time is the longer one of the two and the

problem becomes to find a motion along the other axis that
last the same time. Then the methods proposed in III-B.2 can
be used to build trajectory Ts from Mstart to Mend. Thus,
we have a trajectory T composed of 3 segments from Ts and
8 segments from Tptp.

However, an exception exits when the angle α formed by
the 3 points is quite small (α < αlim, αlim depends on the
kinematic constraints), the previous solutions can not work
any more because they will get either jerks much larger than
the kinematic constraints or negative time. In this case, for
d ≤ dstart the optimal time solution is to stop at the via
points. So we propose to increase the distance by d′start =
dstart + d′ to smooth the corner.

C. Extension to 3D problem

Now we extend this solution to the three dimensional prob-
lem. Locally to a via point, the two adjacent straight segment
defines a plane. Thus the 3-dimensional smoothing problem
can be solved by projecting the constraints in this plane. For
isotropic constraints in Cartesian space, constraints remain
the same after the projection. Then we can easily apply
the 2D trajectory generation approach to this 3D problem
and finally project back the trajectory in the initial frame.
However, for joint space problem, it is far more complex
to project the constraints. One simple solution is to choose
the minimum constraints among the projected constraints on
each axis.

V. MANAGING THE ERROR

From a user point of view, managing the position error at
via-points can be more important than defining the distance
d where smoothing begins. The trajectory error can be
defined as the largest distance between the initial straight-line
trajectory and the smoothed one. It represents how much the
smooth trajectory deviate from the via-points. This approach
is useful, for example, if the path planner provides some tube
around the path where the motion is free of collision.

A. Error Definition

Considering the case of three adjacent points
Pi−1, P i, Pi+1, see Fig.5, −→ni being the normal unit
vectors to the straight line Pi−1Pi, and Tsi(t) the smoothed
trajectory. Then the error E can be defined as:

E(t) = min
t∈[tI ,tF ]

([Tsi(t)− Pi] · −→ni , [Tsi(t)− Pi] · −−→ni+1)

E = max(E(t)) (10)

To compute this error, we introduce another parameter Ev ,
which is represented by the minimum distance between the
vertex Pi and the trajectory Tsi(t) :

Ev = min
t∈[tI ,tF ]

d(Pi, Tsi(t)) (11)

As the start and end points of the blend we choose locate at
the symmetric segments on each straight-line trajectory, the



Fig. 5. Error between the smoothed trajectory and pre-planed path

error Ev happens at the bisector of the angle α formed by
the 3 adjacent points, Therefore,

Ev = d(Pi, T tI+tF
2

) (12)

E = Ev ∗ sin
α

2
(13)

B. Comply with Maximum Error

We suppose that the task planner provides a maximum
tolerable error D. A simple possibility is to change the
distance d to make the error E ≤ D, as shown in Fig.4.
We introduce a parameter δ, for a general case, it is defined
as:

δ =
d(Pstart, Pi)

d(PTevc, Pi)
(14)

Thus δ ∈ [0, 1]. But when α < 20◦, Pstart locates at the
segment before PTevc, so in this case:

δ =
d(Pstart, Pi)

d(PTevc, Pi)
− 1 (15)

Suppose P i
end is the end point of the previous blend and

P i+1
start is the start point of the next one. To avoid the

discontinuity, the distance d of new points must satisfy:

diend + di+1
start ≤ d(Pi, Pi+1) (16)

Then we can compute in a loop and get the δmax that makes
E ≤ D and also satisfies 16.

VI. EXPERIMENTAL RESULTS

A. Simulation

We set up a simulation environment with a collision
checker1.In each time cycle, the collision checker checks the
collision and each time a collision is detected, the system will
replan the trajectory. The algorithm is shown in algorithm 1.
In this simulation, we set δ = 1 to manage the error between
the via-points and the smoothed trajectory because we aim
at a time optimal motion.

Fig.6 shows the movement of the robot arm from an initial
position Pi to a final position Pf with an obstacle. The
robot successfully reaches the target position after two local
trajectory deformations. It shall be noted that the robot is
reactive, and the same trajectory can be used for a moving
obstacle. Fig.7 presents the traveled trajectory along the

Algorithm 1 Reactive motion to environment changes
1: Plan a point to point trajectory TPiPf

2: if motion is not completed then
3: Execute the trajectory and check collision risk
4: while a collision is detected in 1 second at time t do
5: Get the motion condition M(TPiPf

, t+ 0.5), mark
this point as Pc that will encounter a collision in
0.5 second

6: Choose a via-point Pm

7: Compute a via-points trajectory with Pc, Pm and
Pf

8: Update the trajectory
9: end while

10: Execute the new trajectory
11: end if

Fig. 6. A simulated move form an initial position to an final position
with a static obstacle. The purple dashed line is the trajectory computed
in advance. The green solid line is the real path which the robot follows.
By adding two way points, the robot reaches the target position without
collision and path replanning at the high level.

Z axis. The position curve shows how the trajectory deviate
from the pre-planed one (straight line from the initial position
to the final position) due to the predicted collision risk. In
the first four segments, the executed trajectory coincides with
the pre-planed one. At the collision prediction point 1, the
system switches to a new trajectory. The smooth velocity
profile shows that the trajectory transition is instantaneous
and continuous.

The computation for this Cartesian space trajectory with
6 via-points requires an average execution time of 1.2 ms on
a Intel Core(TM)2 Quad CPU 2.66GHz machine. It is fast
enough for real time applications, such as visual servoing or
reactions to other sensor events.

B. Robot Experiments

We also implemented the via-points trajectory generator
on a KUKA light-weight robot IV [16], which was controlled
through the Fast Research Interface [17]. The software
control is developed using Open Robots tools: GenoM [18].

1http://robotpkg.openrobots.org/robotpkg/graphics/coldman-genom



Fig. 7. The position, velocity, acceleration and jerk of online generated
via-points trajectory on Z axis

Fig. 8. Paths of the robot end effector with different Ev

The sampling time is fixed to 10 ms. The Pose of the
manipulator’s end effector is defined by seven independent
Operational Coordinates. It is composed of a position vector
P = [x, y, z]

T and by a quaternion Q = [n,q]T , where
q = [i, j, k]

T . They give the position and the orientation of
the final body in the reference frame. The linear and angular
end-effector motion bounds are given in table I.

TABLE I
ROBOT MOTION IS LIMITED IN JERK, ACCELERATION, AND VELOCITY

Jmax Amax Vmax
Linear limits 0.900 m/s3 0.300 m/s2 0.150 m/s

Angular limits 0.600 rad/s3 0.200 rad/s2 0.100 rad/s

Fig.8 illustrates the the same path of the robot end effector
as in the previous simulation. δ = 1.0 means the smoothed
trajectory starts at the end of maximum velocity segment.
While δ = 0.8 means the start points are closer to the
intermediate points, which results in a smaller error. The
straight-line path is a path with zero error, which can be
represented by defining δ = 0.

VII. CONCLUSIONS AND FUTURE WORKS

This paper proposed a solution to generate trajectories
defined by via-points and a parameter defining the size of the
smoothing area. Using projection of constraints, it can build
trajectories in Cartesian space. Due to direct computation

without optimization computation or randomized algorithms,
the proposed solution takes short execution time and is able
to be used online. Experimental results show the validity
of the approach for real-time control, especially for online
collision avoidance. We are going to integrate the via-
points generator for realizing a real reactive manipulation. It
would also be interesting to introduce the kinematic model
to take into account both joint and Cartesian constraints.
New solutions for fixed time trajectory generation can be
proposed.
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