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Abstract: This paper addresses the problem of root cause analysis (RCA) of actuator fault. By 
considering an actuator as an individual dynamic subsystem connected with process dynamic 
subsystem in cascade, an interconnected system is then constituted. The fault detection and 
diagnosis (FDD) algorithm is carried out in actuator subsystem and aims at identifying the root 
causes of actuator faults. According to real plant, outputs of the actuator subsystem are assumed 
inaccessible and are reconstructed by measurements of the global system, thus providing a means 
of monitoring and diagnosis of the plant at both local and global level. A condition of 
invertibility of the interconnected system is first developed to guarantee that faults occurring in 
the actuator subsystem will affect the measured output of the global system distinguishably. For 
that, a necessary and sufficient condition is proposed to ensure invertibility of the interconnected 
system. Effectiveness of the proposed approach is demonstrated on an intensified HEX reactor. 
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1 Introduction 

Modern control system often consists of large number of 
interconnected sensors, actuators and system components. 
Technological advancements have made these units 
increasingly integrated and complex. Each unit may consist 
of more than one component connected in any 
configuration, therefore each unit itself is a dynamic system 
and exhibits complicate system dynamics. For instance, a 
valve actuator is an assembly of positioner, pneumatic 
servo-motor and control valve. A failure of any of these 
units results in the failure of the entire system. In all 
situations, a dynamical system or a subsystem can be 
analysed at different levels down to the component level in 
estimating the reliability of the whole plant. 

In this work, we focus on actuator faults. Many fault 
detection and diagnosis (FDD) methods are presented in the 
literature for nonlinear dynamic systems subject to actuator 
fault. One main category is system level-based diagnosis 
approach which aims at detecting and identifying fault 
existence and location from the view point of global system. 
Another common kind focuses on the field component level 
which aims at analysing internal dynamics of a specific 
actuator. 

Current FDD methodologies typically focus on system 
level where the major objective relates to performance 
supervision of the final product. In these methods, dynamics 
of field devices (i.e., actuator) is normally ignored, instead, 
they are treated as a component which is viewed as constant 
in the input/output coefficient matrix/function of the process 
system model. A key approach is based on residual 
generation. In Persis and Isidori (2001), a nonlinear FDI 
filter is designed for generating residuals using a geometric 
approach, theses residuals are affected by a particular fault 
and not affected by disturbances and the rest of faults. 
Besides, actuator fault isolation is studied by exploiting the 
system structure to generate dedicated residuals (see 
Methnani, 2013; Chen et al., 2005; Li and Dahhou, 2006). 
In this approach, each residual, defined as the differences 
between state measurements and their expected trajectories, 
is uniquely sensitive to one fault. Thus, a fault is isolated 
when the corresponding residual breaches its threshold. In 
addition, adaptive estimation techniques are used to 
explicitly account for unstructured modelling uncertainty 
for a class of Lipschitz nonlinear systems (see Zhang et al., 
2010; Fragkoulis et al., 2011; Farza et al., 2007). In these 
results, residuals, defined as output estimation errors, and 
time-varying thresholds are generated using a bank of 
estimators, and a fault is isolated when the corresponding 



residuals breach their thresholds. Another approach 
different to residual generation is fault estimation or fault 
reconstruction which can determine the size, location and 
dynamics behaviour of the fault. The relevant literature on 
this topic has its roots on system inversion theory (Pinheiro 
and Araújo, 2013). There are several techniques available 
for fault reconstruction: sliding mode observers (Xu et al., 
2012; Edwards et al., 2012; Martínez-Guerra et al., 2013), 
unknown input observers (Manaa et al., 2015; Blesa et al., 
2014; Nagy-Kiss and Schutz, 2013; Zarei and Shokri, 
2014), input reconstruction (Maksimov and Pandolfi, 2001; 
Yang et al., 2015; Szigeti et al., 2002; Schubert et al., 2012; 
Edelmayer et al., 2004). The key requirement is to 
completely decouple the faults from the effect of 
disturbances and also the input signals. 

With respect to the above results, fault symptoms can be 
detected without having the capability to pinpoint the root 
causes of these faults. For example, Benaïssa et al. (2008) 
show that decrease of measured temperature in HEX/reactor 
may be due to decrease of fluid flowrate, this implies an 
actuator fault. With the help of above FDD algorithms, we 
can detect and isolate the actuator fault, but fail to realise 
the root cause of the fault in that particular actuator. The 
involving candidate root causes of this fault could be valve 
clogging, stop of utility fluid pump or leakage. A main 
reason that leads to this is that actuator is treated as a 
component, rather than a dynamic system in the process. 
Varying failure signatures are denoted by the changes of 
elements of the input matrix function. Therefore, the 
applications of the above FDD methodologies mainly limit 
to the existence and the isolation of a fault at a global level, 
while seldom further efforts are made for root cause 
analysis (RCA) of the detected fault. However, a single 
disturbance may indicate more than one candidate of root 
causes. Hence, the determination of these malfunctions of 
subcomponents, especially those small and incipient faults, 
before they become serious has important influences on 
safety and productivity. 

In order to examine potential relationship from causes to 
effects of an actuator fault, efforts have been made to locate 
subcomponent faults for RCA from the view point of 
component level. There are two main kinds: self-validating 
and FDD method, however, both kinds are restricted to local 
level. The former one only self-diagnosis from local level as 
so called smart actuator (Yang and Clarke, 1999). Smart 
actuator is independent of FDD approach; it is an instrument 
that is designed to compensate for its own undesirable 
inherent characteristics, to correct from fault conditions, 
e.g., smart positioner in Bartyś et al. (2006). Also, there are
FDD involved methods by which actuator are treated as a
dynamic system. Sarosi et al. (2015) propose an algorithm
to detect valve stiction for diagnosis of oscillation. Other
artificial neural network-based methods for fault diagnosis
can be found in Subbaraj and Kannapiran (2014), Zhang
(2011) and McGhee et al. (1997). Model-based FDD
approaches are proposed in Wickramatunge and
Leephakpreeda (2013), Roy et al. (1998) and Ding and Zhao
(2014). For example, Puig et al. (2006) develops an interval

observer-based passive fault detection method for control 
valve. But these available results are limited to actuator 
level and fail to monitor the whole process simultaneously. 
It is because the component level-based diagnosis method 
focuses only on management of the subsystems that use the 
local information, i.e., states/outputs of this subsystem. 
Another challenge when researching FDD methods locally 
is getting data from the subsystem being observed to 
develop and validate these methods, because physical 
measurements of actuators are often not possible or difficult 
owing to distances or rough environment. 

In summary, there is a lack of results on actuator FDD 
that allows to implement advanced FDD methods capable of 
RCA at local level, as well as of system supervision at 
global level. Motivated by the above considerations, the 
main contribution of this paper is to combine RCA of fault 
from a local level with generally global system supervision. 
The objective is to explain how the behaviour of global 
output can be interpreted to identify root cause of actuator 
faults in actuator subsystem. We propose a left invertible 
interconnected nonlinear system structure with input 
reconstruction laws which is based on dynamic inversion, 
forming a new model-based actuator FDD and RCA 
algorithm. Actuator is viewed as subsystem connected with 
the process subsystem in cascade manner, thus identifying 
reasons of actuator faults with advancing FDD algorithm in 
actuator subsystem. Outputs of the actuator subsystem are 
assumed unmeasured and reconstructed by measured global 
outputs. The left invertibility of individual subsystem is 
required for ensuring that faults occurring in actuator 
subsystem can be transmitted to the process subsystem 
uniquely, and for reconstructing inputs of process 
subsystem, also outputs of actuator subsystem, from 
measured global outputs. The developed fault diagnosis 
algorithm is an effort to combine the strength of system 
level and the component level model-based fault diagnosis. 

The paper is organised as follows. Section 2 describes 
the proposed strategy and formulates the problem. The main 
results of invertibility are presented in Section 3, involving 
definition of invertibility for both subsystems and the 
cascade system, and conditions for checking invertibility. In 
Section 4, a dynamic model for actuator subsystem is 
proposed and detection observer together with RCA 
observer is designed for actuator FDD and RCA. In 
Section 5, performance of the proposed scheme is validated 
and discussed on an intensified HEX/reactor. Finally, 
conclusion is made in Section 6. 

2 Architecture of the fault diagnosis system 

In this section, we describe the main idea of the proposed 
strategy and develop the involved conditions for achieving 
the objectives of actuator fault detection and RCA of the 
detected fault. 



2.1 Structure of an interconnected system and system 
model 

As shown in Figure 1, an interconnected system Σ is 
considered which is composed of two subsystems: actuator 
Σa and process Σp. The basic idea is to identify the fault V at 
local level, while monitoring the plant at global level. The 
fault vector V indicates candidates of root causes of actuator 
faults. 

Figure 1 Interconnected system structure (see online version  
for colours) 

Assuming that the MIMO process subsystem is an input 
affine nonlinear system, and is described by: 

( )a 0 0
p

x(t) f (x) g(x)u , x t x
y(t) h(x)

⎧ = + =
Σ ⎨

=⎩

�
(1)

where x(t) ∈ ℜn is the state of the process subsystem, 
y(t) ∈ ℜm is the output of the global system, which is also 
the output of the process subsystem. ua ∈ ℜm is the input of 
process subsystem, which is also the output of the actuator 
subsystem. ua is inaccessible and is reconstructed from 
measurement of y(t). f(x) and g(x) are smooth vector field 
on ℜn and g(x) is smooth vector field on ℜm. 

Assuming that the actuator subsystem is a nonlinear 
system described by: 

( )
( )

a a a a
a

a a a s

x f x , u, θ

u h x , u, θ

⎧ =⎪Σ ⎨
=⎪⎩

�
(2)

where xa ∈ ℜn is the state, u ∈ ℜl is the input, ua ∈ ℜm is 
the output of the actuator subsystem, which is also the input 
of the process subsystem, θa ∈ ℜk represents the parameters 
of the actuator subsystem, when no faults are present 
θa = θa0 (θa0 is the nominal parameter vector). θs ∈ ℜk 
represents the parameters in the output equation (if a sensor 
fault occurs θs ≠ θs0, where θs0 represent the nominal 
parameters in the output equation). 

Thus, an interconnected cascade system Σ is then 
constructed by these two subsystems Σa and Σp whereby the 
input is vector u while output vector is y. 

Considering fault vector V = (v1, …, vk) as integration 
of either parameters faults in θa, θs or other disturbance 
signals, then a fault model of the actuator subsystem 
becomes: 

( ) ( )
( ) ( )

a a a a a
a

a a a a a

x f x , u g x , u V

u h x , u l x , u V

⎧ = +⎪Σ ⎨
= +⎪⎩

�
(3)

where ga(xa, u) and la(xa, u) are analytic functions of the 
system subject to multiple, possible simultaneously faults. 

The detectability of one fault in nonlinear system (3) is 
defined as: 

Definition 1: The fault vi (i = 1, …, k) is said to be 
non-detectable if for vi ≠ 0 the relation 

( ) ( )a a0 a a a0 a iu x , x , u, 0 u x , x , u, 0, ..., v , ..., 0=

is satisfied; if not, the fault vi is detectable. 

2.2 Description of proposed RCA scheme 

As shown in Figure 2, the main objective is to identify the 
occurrence of the fault vi in (3) independently from each 
other whilst monitoring the whole plant at both local and 
global level, as required for reliable operation of complex 
and high interconnected process system. Fault vi refers to 
resources of an actuator fault which is related with special 
physical meaning, e.g., vi represents fault caused by 
leakage or valve clogging of an actuator. We propose an 
observer-based FDD strategy at local level of actuator 
subsystem, thus realising these resources (vi, i =1, …, k) of 
actuator fault. This procedure is denoted as RCA. 

Figure 2 The proposed algorithm (see online version  
for colours) 

Since advanced FDD strategy is performed in actuator 
subsystem, observers are then fed with input u and output ua 
in actuator subsystem as shown in Figure 2. However, one 
major challenge is that the only available measurement 
relies on the global system output y. That is because online 
diagnosis of actuator component is often achieved by a 
remote supervisory diagnostic system, therefore, it is 
impractical to measure ua in realistic industrial condition. 
Besides, in order to monitor the plant at global level, 
information of global output should be included when FDD 
algorithm is performed at local subsystem. As shown in 
Figure 2, if ua can be estimated from the global 
measurement y uniquely, then the above two problems are 
solved. In that way, advanced FDD strategy performs 
validation of the nominal relationships of the system, using 
the input u, and the output au�  which is reconstructed from 
measured output y. Hence, a means of monitoring and 
diagnosis of the whole plant at both local and global level is 
provided. 



As mentioned above, a key feature, opportunity and 
technical challenge of the scheme is to obtain the conditions 
by which the information (useful input u or faults V) 
provided by actuator subsystem has distinguishable effect 
on system output y. This can be seen as problem of input 
observability if V is viewed as unknown input of the 
system. While input or fault observability are equivalent 
with left-invertibility of system, as shown in reference 
(Edelmayer et al., 2004), the input can be uniquely 
recovered from output and the initial state if dynamical 
system is left-invertible. 

Definition 2: The fault vi (i = 1, …, k) is said to be 
detectable and has distinguishable effect on the system 
output y if the interconnected dynamic system is invertible. 

Moreover, as shown in Figure 2, an essential requirement of 
the combination of individual actuator with an advanced 
diagnostic capability is the availability and reliability of ua, 
which is the output of the actuator subsystem, and also the 
input of the process system. This is considered as problem 
of input reconstruction, which is viewed as problem of 
system inversion (Edelmayer et al., 2004). Some issues of 
inversion concepts for input reconstruction were discussed, 
like Maksimov and Pandolfi (2001), and Szigeti et al. 
(2002). 

In summary, based on the condition that both cascade 
system and process subsystem are invertible, reconstructed 

au�  and fault vector V has one to one relationship. In that 
case, advanced FDD strategy can be carried out in actuator 
subsystem to identify each component vi, thus, achieving 
RCA of the actuator fault. Therefore, the key problem is to 
provide condition for validating invertibility of the cascade 
system and the process subsystem. 

3 System inversion and invertibility of an 
interconnected system 

In this section, we develop the required notations and 
provide some background on the invertibility of nonlinear 
system. Based on that, we develop the definition for 
invertibility of an interconnected dynamic systems followed 
by the formal problem statement. After that, we give 
conditions to validate involved definitions. Finally, input 
reconstruction procedure is discussed. 

3.1 Nonlinear inverse interconnected system 

In fact, for every control system with an input-output, we 
have an input-output map, and the left invertibility of the 
dynamical system basically refers to the injective and 
surjective of this input-output map. 

3.1.1 Nonlinear inverse system 

For simplicity, both subsystems are considered with the 
form as (1). Define the input-output map of process 
subsystem Hp: Ua → Y for input function space Ua and the 
corresponding output function space generated by Y. Hp 

maps an input ua(.)to the output y(.) generated by the  
system driven by ua(.) with an initial condition x0. The 
left-invertibility is the problem of injective and bijective of 
the input-output map Hp. We now proceed to the formal 
definition of invertibility for a nonlinear dynamical system 
as given in Isidori (1995). 

Definition 3: Fix an output set Y, the system (1) is 
invertible at a point x0:= x(t0), if for every y ∈ Y, the 
equality Hp(ua1) = Hp(ua2) = y implies that ua1 = ua2. 

3.1.2 Nonlinear inverse interconnected system 

The inversion of an interconnected system can be thought of 
doing the composition invertible mapping and individual 
input recovery. Consequently, the basic idea for solving the 
invertibility problem is first to do the composition mapping 
by utilising the relationship among the outputs and the states 
of the subsystems, and then use the nonlinear structure 
algorithm for the corresponding subsystem to recover the 
input. 

Considering the input-output map of actuator subsystem 
is Ha: U →Ua for some input function space U, and the 
corresponding output Ua with an initial condition xa0. Define 
composition maps HaHp: U × Ua → Y as input –output map 
of the interconnected system, which maps an input u(.) to 
the output y(.) generated by the system driven by u(.) with 
initial conditions (xa0, x0). We now first extend the 
definition of invertibility to an interconnected system. 

Definition 4: Fix an output set (Ua, Y). An interconnected 
system is invertible if for every y ∈ Y and ua ∈ Ua, the 
equality Ha(u1) Ha(u2) = ua, Hp(ua1) = Hp(ua2) = y and 
composition HaHp(u1) = HaHp(u2) = y implies that u1 = u2 
and ua1 = ua2. 

The invertibility formulated in Definition 4 may fail to hold 
in two ways: 

a there exits two different inputs u1, u2 that yield the same 
output y. 

b there exits two different inputs u1, u2 that yield the same 
output ua. 

The former refers to be non-invertibility of process 
subsystem while the latter possibility is due to 
non-invertibility of actuator subsystem. 

3.2 On the condition of left invertibility of an 
interconnected system 

For checking the invertibility of a dynamic system, 
geometric approach (Persis and Isidori, 2001) and 
differential algebraic approach (Martínez-Guerra et al., 
2013) are proposed. 

3.2.1 On the condition of invertibility of subsystem 

We employ the differential output rank to check system 
invertibility. Details of differential output rank definitions 
can be, for example, found in Martínez-Guerra et al. (2013). 



Differential output rank is defined as the maximum 
number of outputs that are related by a differential 
polynomial equation which is independent of x and u (state 
and input respectively). A simple way to compute 
differential output rank of system (1) is defined by 
Corollary 1. 

Corollary 1: Supposed p outputs, and if there exists r 
possible differential polynomial equations of the form 

( )r 1 2 p 1 2 p 1 2 pP y , y , ..., y , y , y , ..., y , y , y , ..., y , ... 0=� � � �� �� ��  (4) 

then the differential output rank ρ is defined as ρ = ρ – r, 
which implies (p – r) independent outputs. 

Theorem 1: A system is left-invertible if, and only if the 
differential output rank ρ is equal to the total number of 
inputs, e.g., ρ = m in (1). 

Remark 1: If a subsystem has more inputs than outputs, it 
cannot be left invertible. On the other hand, if it has more 
outputs than inputs, then some outputs are redundant (as far 
as the task of recovering the input is concerned). Thus, the 
case of input and output dimensions being equal is the most 
interesting case, e.g., m = p in (1). 

3.2.2 On the condition of invertibility of 
interconnected system 

From Definition 4, non-invertiblity of each subsystem 
results in non-invertibility of the interconnected system. We 
now give a sufficient and necessary condition on the 
subsystem dynamics so that the interconnected system is 
invertible for set U, Ua and Y. 

Theorem 2: Consider the interconnected system Σ which 
consists of two subsystems: actuator Σa and process Σp 
subsytems, and an output set (Ua, Y). The interconnected 
system is invertible at (x0, xa0) over (Ua, Y). If and only if 
each subsystem actuator Σa and process Σp is invertible at 
xa0 over Ua, and x0 over Y, respectively. 

Proof: Consider Ha as the input-output mapping of actuator 
Σa subsystem, while Hp is the input-output mapping of 
process Σp subsystem. Then, the input-output mapping of 
the interconnected system is the composition HaHp. 

a (Sufficiency): invertibility of a dynamic system refers 
to bijective of the input-output mapping. Since both 
subsystems are invertible, the corresponding mapping 
Ha and mapping Hp are bijective mapping. Because 
composition of two bijective mappings is a bijective 
mapping, so input-output mapping HaHp of the series 
system is bijective. Then, the series system is 
invertible. 

b (Necessity): supposed the process subsystem is not 
invertible, while the actuator subsystem is invertible. 
Then, for the actuator subsystem (2), there exists two 
distinct inputs u1 ≠ u2 that yield two distinct outputs 
Ha(u1) = ua1, Ha(u2) = ua2, ua1 ≠ ua2. However, for the 
process subsystem (1), these two distinct inputs  
ua1 ≠ ua2 may proceed two equal output  

Hp(ua1) = Hp(ua2) = y. Therefore, for the series system, 
these two distinct inputs u1 ≠ u2 result in two equal 
outputs HaHp(u1) = HaHp(u2) = y. Thus, the series 
system is not invertible. 

3.3 Input reconstruction procedure 

After verifying the invertibility of individual subsystems, 
we will be able to construct an interconnected inverse 
system that can recover the original input uniquely from the 
global measurement, by which implies that each original 
input affect the global output distinguishably. In fact, if a 
system is invertible, the structure algorithm allows us to 
express the input as a function of the output, its derivatives 
and possibly some states. More details are given in Isidori 
(1995). 

For invertible dynamic system described by (1), the 
relative degree ri of the output yi with respect to the input 
vector ua is the smallest integer which is defined by: 

a i
j

r 1
g ifL L h (x) 0;1 j m− ≠ ≤ ≤  

b j
k

g i ifL L h (x) 0; 0 k r 1, 1 j m= ≤ < − ≤ ≤  

where Lf(.) and Lg(.) represent the lie derivatives of a real 
function h(x) along the vector field f(x) and g(x). 

( )k 1
if0 k

i i if f
L h (x)

L h (x) h (x), L h (x) f (x)
x

−∂
= =

∂
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( )
j

k
ifk

g i jf
L h (x)

L L h (x) g (x).
x

∂
=

∂

To derive an expression for ua(t) as a function of states and 
output in (1), following the inversion algorithm given by 
Isidori (1995), we first need to compute the derivatives of 
yi, i = 1, …, m. We have: 

If ri = 1, then: 

( )

j

i i(1)
ai

m
1 1 0

i i ajf fg
j 1

h (x) h (x)y x(t) f (x) g(x)u
x x

L h (x) L L h (x)u
=

∂ ∂
= = +
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= +∑

�

If ri ≠ 1, then 
j

1 0
ifgL L h (x) 0;=  1 ≤ j ≤ m then we get: 

(1) 1
ii fy L h (x)=  

We should go on this differentia procedure, we have: 
(k) k

i ii fy L h (x); 0 k r 1= ≤ < −  

Until when we reach the relative degree ri, we then obtain: 

( ) ( )i i i
j

m
r r r 1

i g i aji f f
j 1

y L h (x) L L h (x) u ; i 1, ..., m−

=

= + =∑  



Given the output yi for the invertible dynamic system (1), 
calculating expressions for their derivatives, we get: 

( )

( )

i 1

mm

1 1
1 m

m m
1 m

r r
11 f

rr mfm

r 1 r 1
g i g 1f f

a
r 1 r 1

g 1 g mf f

y L h (x)

L h (x)y

L L h (x) L L h (x)
u

L L h (x) L L h (x)

− −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥+ ⎢ ⎥
⎢ ⎥⎣ ⎦

# #

…
… … …

…

 (5a) 

the equation (5a) can be solved for ua to obtain: 

( )

( )

1 1
1 m

m m
1 m

1 1

mm

1r 1 r 1
g 1 g 1f f

a
r 1 r 1

g m g mf f

r r
11 f

rr mfm

L L h (x) L L h (x)
u

L L h (x) L L h (x)

y L h (x)

L h (x)y

−− −

− −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⋅ −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦⎣ ⎦⎝ ⎠

…
… … …

…

# #

 (5b) 

Although inputs of both subsystems can be reconstructed, 
only process subsystem needs to reconstruct the input ua in 
the proposed methodology. 

4 Modelling of actuator subsystem and FDI 
strategy 

4.1 Actuator modelling 

The modelling of an actuator and possible faults is based on 
understanding the physical process. The actuator 
encompasses pneumatic valve in this work. Up to now, 
modelling of pneumatic actuators has benefited from 
researches in automation, like in Bartyś et al. (2006). The 
important aspect of these approaches is the development of 
a model that describes the cause and effect relationships 
between the system variables using state estimation or 
parameter estimation techniques. Roy et al. (1998) provide 
an overview of various models of the fault mode of control 
valve. 

From the interesting references, despite different 
actuators and various considerations, the proposed dynamic 
models benefit from a parameter-affine characteristic 
described in (2). If viewed unexpected variations in 
parameters as unknown inputs and denoted by vector 
V = (v1, v2, …, vk), then we get an input-affine dynamic 
fault model as (3). The objective of this work is to identify 
vi in (3) based on system inversion. From Remark 1, we 
need inputs and outputs in (1) and (3) are equal, that implies 
m = k. 

4.2 Actuator FDD and RCA 

The actuator model (2) and the fault model (3) are 
then incorporated with the advanced FDD, and  
aimed at observing different types of postulated faults  

(vi, i = 1, …, k) which characterise how abnormal 
measurements are related to root causes of actuator faults. 

4.2.1 Detection observer design 

Considering the actuator subsystem model (2), a bank of 
observers in Li and Dahhou (2008) are constituted by: 

( ) ( )
( )

j j j j ji j j
a a a a aa0

j j j jj
a a a s0

ˆ ˆ ˆx f x , u , θ K u u
1 j m

ˆ ˆu h x , u , θ

⎧ = + −⎪≤ ≤ ⎨
=⎪⎩

� �
(6)

where j denotes the jth actuator, j n
ax̂ ∈ℜ�  is the state vector 

of the jth observer, j m
au ∈ℜ�  is the reconstructed input from 

measured vector y, and j m
aû ∈ℜ  is the estimated output 

vector. Kj is the gain matrix, j
a0θ  is the nominal value of 

parameters of jth actuator, while j
s0θ  is the nominal 

parameters in the output equation. 
The residual we use to determine fault existence is: 

j j
j a aˆr (t) u u= −� (7)

Through proper designing the matrix K, the equilibrium rj(t) 
is asymptotically stable. Then, through checking the bank of 
rj(t), if any of them breaches the threshold, fault detection is 
achieved. 

4.2.2 RCA observer design 

After a fault is detected, next task is to identify the causes of 
the fault. Considering the fault model (3), by analysing the 
fault resources vi, i = 1, …, k, we can recognise the root 
cause of the detected fault. Through adaptive diagnostic 
techniques, m banks of k observers proposed in Fragkoulis 
et al. (2011) corresponding for all possible faulty models are 
constructed and extended as below: 

( ) ( ) ( )

( )
( )

( )

j j j j

j
j

j
j j

j j

f

i i i ij j j j j
a a a j a j a j1al ai i

l i

ij
i a a

Tij j j
i a a ii ai

i ij
a a a j

1 j m, 1 i k, t t

ˆ ˆ ˆ ˆ ˆx f x , u g x , u θ g x , u v

ˆH u u

ˆ ˆv 2γ u u P g

ˆ ˆu h x , u

≠

≤ ≤ ≤ ≤ ≥

⎧ = + +
⎪
⎪
⎪ + −
⎨
⎪ = −⎪
⎪ =⎩

∑�

�

�

 (8) 

where j denotes jth actuator, i is ith observer corresponding to 
the ith fault resource candidate. ji n

ax̂ ∈ℜ  is the estimated 
state vector of ith observer for jth actuator, j

iv̂  is the fault 

estimation of vi of jth actuator, and ji
aû  is the estimated 

output vector of the ith observer for jth actuator. j
au�  is 

reconstructed output of jth actuator from y, uj is the input of 
jth actuator. j

lθ  is the nominal value of parameters in jth 

actuator, subscript l ≠ i. j j j
a a af , h , g  are analytic functions of 

jth actuator. jiH  is a Hurwitz matrix that can be chosen 
freely with a goal to increase as much as possible the 



dynamic of the observer, jiγ  is a design constant and jiP  is 
a positive definite matrix. We can calculate the matrix jiP  
with the help of (9); where jiQ  is a positive definite matrix 
that can be chosen freely. 

j j j jj
T

i i i iiH P P H Q+ = − (9)

Denote ji
ye (t)  as the tracking error of the ith observer for jth 

actuator as: 

j ji ij
y a ae (t) u u= −�  

We define the RCA residual as: 

j
j

i
i ys (t) e (t) , 1 i k, 1 j m= ≤ ≤ ≤ ≤ (10)

These residuals are designed to be ‘less’ sensitive to a 
particular fault cause that comes from a specific actuator 
and sensitive to all the others actuator fault causes. For the 
jth actuator, if a fault is caused by the ith fault cause, then the 
ith RCA residual will leave its threshold and never comes 
back to zero again, but the other (k – 1) residuals will stay 
below their thresholds. So every RCA observer is designed 
in such a way to identify a possible fault cause in a specific 
actuator. The RCA of detected faults is then achieved. 

5 Application to an intensified continuous 
HEX/reactor 

A case study is developed to test the effectiveness of the 
proposed scheme on an intensified HEX reactor. The pilot is 
made of three process plates sandwiched between five 
utility plates. More relative information could be found in 
Théron et al. (2014). 

5.1 System modelling 

5.1.1 Process subsystem modelling 

Generally speaking, intensified HEX reactor is a continuous 
reactor (Théron et al., 2014), then flow modelling is 
therefore based on the hypothesis used for modelling of real 
continuous reactors, represented by a series of N perfectly 
stirred tanks (cells). The state and evolutions of the 
homogeneous medium circulating inside a given cell are 
described by the heat balances. Tp, Tu represent temperature 
of process fluid and utility fluid respectively. All the values 
of the model parameters can be found in Zhang et al. 
(2015). The constants and physical data used in the pilot are 
given in Table 1. 

Heat balance of the process fluid (J.s–1) 

( ) ( )p
p p pp p u p p pp pi p

dT
ρ V c hA T T ρ F c T T

dt
= − + −  

Heat balance of the utility fluid (J.s–1) 

( ) ( )u
u u pu u p u u pu ui u

dTρ V c hA T T ρ F c T T
dt

= − + −

Define the state vector as xT = [x1, x2]T = [Tp, Tu]T, the 
control input T

au  = [ua1, ua2]T = [Fp, Fu]T, the output vector 
of measurable variables yT = [y1, y2] = [Tp, Tu]T, then above 
two the equations can be rewritten in the following  
state-space form: 

( ) ( )

( ) ( )

a1
1 pi 1 2 1

p

a2
2 ci 2 1 2

u

ux T x a x x
V
ux T x b x x
V

⎧ = − + −⎪⎪
⎨
⎪ = − + −⎪⎩

�

�
(11)

where 1 1 2 2
p pp p u pu u

hA hAa , b , y x , y x .
ρ c V ρ c V

= = = =

Table 1 Physical data used in the pilot 

Constant Description Value Units

hA Overall heat transfer 
coefficient 

214.8 W.K–1

A Reaction area 4e–6 m2

Vp Process fluid volume 2.685e–5 m3

Vu Utility fluid volume 1.141e–4 m3

ρp, ρu Fluid density 1,000 kg.m3 
cpp, cpu Specific heat of the fluid 4,180 J.kg–1.k–1

Tui Utility fluid input 
temperature 

15.6 °C

Tpi Process fluid input 
temperature 

76 °C 

5.1.2 Actuator description and Fault scenario 

In this work, we need actuators to control flowrate of both 
process fluid and utility fluid. Pneumatic control valve is 
employed to act as actuator in this system. The main 
function of this pneumatic valve is to regulate the flow rate 
in a pipe line. By application of Bernoulli’s continuous flow 
law of incompressible fluids, we have: 

v
PF C f (X)

sg
Δ

=

where F is flow rate (m3s–1), ΔP is the fluid pressure drop 
across the valve (Pa), sg is specific gravity of fluid and 
equals 1 for pure water(kgm–3), X is the valve opening or 
valve ‘lift’ (X = 1 for max flow), Cv is valve coefficient 
(m3s–1) which is given by manufacturer, f(X) is flow 
characteristic which is defined as the relationship between 
valve capacity and fluid travel through the valve. There are 
three flow characteristics to choose from: linear valve 
control; quick opening valve control; equal percentage valve 
control. For linear valve, f(X) = X, the valve opening is 
related to stem displacement. In Bartyś et al. (2006) and 
Roy et al. (1998), a pneumatic control valve has a dynamic 
model of the type: 

2

c a 2

d X dXp A m μ kX
dt dt

= + +



where Aa is the diaphragm area on which the pneumatic 
pressure acts, pc is the pneumatic pressure, m is the mass of 
the control valve stem, μ is the friction of the valve stem, k 
is the spring compliance, and X is the stem displacement or 
percentage opening of the valve. 

Totally, there are 19 kinds of faults that may occur as 
shown in Bartyś et al. (2006); the causes of each fault are 
given in Manninen (2012). 

Four kinds of fault influencing dynamics of the valve 
are considered in this paper: 

1 fault f1: valve clogging, it occurs when the servomotor 
stem is blocked by an external event of a mechanical 
nature. It results in limitation of the piston movement in 
both direction, and therefore the flow cannot drop 
below a certain value. 

2 fault f2: change of pressure drop across valve, results in 
P P .′Δ + Δ  

3 fault f3: bellow-seal leakage due to leak, resulting in 
pcAa + P changed; valve internal leakage is a common 
malfunction with industrial control valves. The causes 
of such leakage are numerous, including damaged plug 
or seat, insufficient seat load or reduced spring rate. 

4 fault f4: control valve diaphragm perforation due to 
pinhole cracks in the periphery, resulting in k changed. 

According to Bartyś et al. (2006), for most parts, single 
actuator faults are observed in industrial practice whilst 
multiple faults rarely occur. This characteristic is suited to 
the situation considered by the scheme proposed in this 
paper. 

5.1.3 Actuator subsystem modelling 

Define subscript 1 to denote the actuator of process fluid, 
then parameters X1, pc1, ΔP1, k1, μ1, F1 represent the opening 
percentage of the valve, the pneumatic pressure, and the 
fluid pressure drop across the valve, the spring compliance 
process fluid, the friction of the valve stem and flowrate of 
the process fluid. And denote subscript 2 for the utility 
fluid, then one gets parameters X2, pc2, ΔP2, k2, μ2, F2 which 
represent the same physical meaning for actuator of utility 
fluid. Since the control valves utilised in this work are 
linear, then 

( ) ( )1 1 2 2f X X , f X X .= =  

In order to evaluate the proposed strategy, the dynamic 
model should have the form given by (2), so the vector state 
xa, input u, and output ua are defined as: 

[ ] 1 2T
a a1 a2 a3 a4 1 2

dX dXx x x x x X X ,
dt dt

⎡ ⎤= = ⎢ ⎥⎣ ⎦

[ ] [ ]T
1 2 c1 c2u u u p p ,= =

[ ] 1 2T
a 1 2 v 1 v 2

P Pu F F C X C X ,
sg sg

⎡ ⎤Δ Δ
= = ⎢ ⎥

⎣ ⎦
 

[ ] 1 2
1 2 3 4 v v

P PC c c c c C 0 C 0 .
sg sg

⎡ ⎤Δ Δ
= = ⎢ ⎥

⎣ ⎦

The actuator subsystem is then described by four states, two 
inputs and two outputs, as: 

a

1 1

a a
a

2 2

a a

0 1 0 0 A 0
mk μ 0 0 0 0m mx x u

0 0 0 1 A0
mk μ0 0 0 0m m

u Cx

⎧ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥
⎪ ⎢ ⎥ ⎢ ⎥− −
⎪ ⎢ ⎥ ⎢ ⎥= +⎪ ⎢ ⎥ ⎢ ⎥⎨ ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎢ ⎥⎪ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪
⎪ =⎩

�
 (12) 

As above description shown, actuator fault may be caused 
by parameters μ, k, u, Δp, then there are eight related 
parameters in two actuators: k1, μ1, k2, μ2, pc1, pc2, ΔP1, ΔP2. 
The process of RCA is to identify abnormal variations of 
these eight parameters. 

For the sake of RCA purpose, we should rewrite the 
above dynamic model into fault model as format (3). 
Therefore, we extend the state, input and output vector as 
follows: 

[ ]T
a a1 a2 a3 a4 a5 a6

1 2 1 2
1 2 v 1 v 2

x x x x x x x

dX dX P PX X C X C X
dt dt sg sg

=

⎡ ⎤Δ Δ
= ⎢ ⎥
⎣ ⎦

[ ]
[ ]

T
1 2 3 4 5 6 7 8

T
1 1 2 2 c1 c2 1 2

V v v v v v v v v

k μ k μ p p P P

=

= Δ Δ

[ ] [ ] [ ]T
a a1 a2 1 2 a5 a6

1 2
v 1 v 2

u u u F F x x

P PC X C X
sg sg

= = =

⎡ ⎤Δ Δ
= ⎢ ⎥
⎣ ⎦

[ ]C 0 0 0 0 1 1=�

Then, the actuator subsystem is with six states, eight 
unknown inputs and two outputs. These two outputs are 
unmeasured which need to be constructed by the global 
measured outputs. The augmented actuator subsystem is: 

( ) ( )
8

a a a ai a i
i

a a

x f x g x v

u Cx

⎧
= +⎪

⎨
⎪

=⎩

∑�

�
(13)

From (13), there are two outputs. According to Remark 2, in 
order to guarantee invertibility of (13), there should be two 
inputs maximum. However, more than two parameters are 
in (13), therefore, we can only recognise two possible 
parameters faults simultaneously. 

5.2 Invertibility checking and input reconstruction 

The foundation of the proposed scheme is based on 
invertibility of an interconnected system. Thus, invertibility 



of individual subsystem is necessary, that means 
invertibility of both process and actuator subsystem in this 
work respectively. Besides, the key difficulty and technical 
challenge is to reconstruct output of actuator system from 
output of the interconnected system. 

5.2.1 Invertibility checking: 

To check if the process subsystem, modelled by (11), is 
invertible, we have to check whether the output differential 
rank is equal to the number of the inputs. There are two 
inputs in this work: flowrate of process fluid Fp and flowrate 
of utility fluid Fu which are denoted by ua1, ua2 in (11) 
respectively. To compute the output differential rank, we 
first need to derive an explicit expression for the input in 
terms of the output y by computing the derivatives of y. 
When it comes to (11), two outputs are temperature of 
process fluid Tp and utility fluid Tu, which are denoted by 
y1, y2 in (11), respectively. As above mentioned, there are 
two inputs in this work, the computed output differential 
rank is equal to the total number of inputs, then the process 
subsystem is invertible. The same steps could easily be 
obtained in actuator subsystem. Therefore, the global series 
system is invertible. 

5.2.2 Input reconstruction 

Thanks to the invertibility of the process subsystem, we can 
reconstruct the inputs as a function of the output and its 
derivatives. From the above equation, an expression for the 
two inputs can be derived as a a1 a2u [u u ] :=� � �  

( )

( )

p
a1 1 2 1

pi 1

u
a2 1 2 1

ci 2

V
u y ay ay

T y
Vu y by by

T y

= − +
−

= − +
−

� �

� �

5.3 Detection observer and RCA observer design 

5.3.1 Detection observer design 

There are two actuators, then a bank of two detection 
observers are generated with the form given by (6). 

( ) ( ) ( )ai a ai a ai a ai

ai ai

ˆ ˆ ˆ ˆx f x g x u K u u1 i 2
ˆu Cx

⎧ = + − −⎪≤ ≤ ⎨
=⎪⎩

� �
 (14) 

Objective of detection observer is to recognise existence of 
actuator fault. Therefore, we suppose that all the conditions 
in the observer are in their nominal values, then if faults 
occur, au�  reconstructed from measured Tp, Tu may be 
different from aû  estimated by observers. After that, 
detection residuals rule (7) is employed to produce detection 
residual 1 2r [r r ].=  Though checking r1, faults in actuator 
of process fluid can be detected, and similar method can 
form r2 for achieving fault detection in actuator of utility 
fluid. 

5.3.2 RCA observer design 

As mentioned before, faults influence μ, k, ΔP, Pc related to 
four possible faults resources f1, f2, f3, and f4. Now, let us 
construct two banks of four observers as (8) for recognising 
those four possible faults in each control valve. 

( ) ( ) ( ) ( )

( ) ( )

l ii i

ii

i i

j j j ji
a a a a a a i al ia a

l i
Tj j j

a i a ai a

j j
a a

1 j 2,1 i 4

ˆ ˆ ˆ ˆ ˆ ˆx f x g x θ g x v H u u

ˆ ˆ ˆv 2γ u u Pg x

ˆ ˆu Cx

≠

≤ ≤ ≤ ≤

⎧ = + + + −
⎪
⎪
⎨ = −⎪
⎪ =⎩

∑� �

�
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 (15) 

where 
i

j
ax̂�  is the estimated state vector, j

iv̂  is the estimation 

of root causes and 
i

j
aû  is the estimated output. The above 

RCA observers aim at generating two banks of four 
residuals for those above mentioned fault causes. One bank 
of residuals are s11, s12, s13, s14, aimed at identifying fault 
causes f1, f2, f3, and f4 in actuator of process fluid, the 
other bank are s21, s22, s23, s24, aimed at identifying fault 
causes f1, f2, f3, and f4 in actuator of utility fluid 
respectively. These residuals are constructed under  
rules (10), if any of these residuals breaches its threshold, 
the fault is caused by the corresponding fault causes. 

5.4 Simulation results 

The simulation results validate the proposed strategy. We 
first give the operating conditions of the simulation. The 
input of the inlet flow rate of the utility fluid Fu is 
4.22e–5m3s–1, and inlet flow rate of the process fluid Fp is 
4.17e–6m3s–1. Initial condition for observers supposed to be 
0. Parameters in actuator subsystem are: m = 2 kg,
Aa = 0.029 m2, μ = 1,500 Nsm–1 and k = 6,089 Nm–1, Pc for
utility fluid is 1 MPa, 1.2 MPa for process fluid, pressure
drop ΔP in utility fluid is 0.6 MPa and 60 kPa in process
fluid.

As above mentioned, for most part in practical situation, 
single fault is observed while multiple faults rarely occur on 
each actuator. So we consider each actuator is subject to 
only one fault, then, two faults may occur simultaneously in 
the actuator subsystem. Two cases are considered to 
illustrate: noise free and noise corrupted. 

5.4.1 Noise free case, fault f3 exists in actuator of 
process fluid and fault f4 exists in actuator of 
utility fluid 

In this part, two faults are considered. For actuator of 
process fluid, fault f3 is supposed to occur at 80 s due to 
unexpected pressure drop across the valve, and for actuator 
of utility fluid, fault f4 is supposed to occur at 60 s. We 
supposed that an expected 50 kPa pressure drop adds to the 
nominal pressure drop across the valve at time 80 s. While 
because of erosion, the gland packing of the valve may 
loosen, which leads to stem vibration, a failure value of 



1,000 nm–1 is added to the spring compliance k. Simulation 
results are listed in Figure 3 to Figure 6. 

Figure 3 Reconstructed input u pF , F� �  from output Tp, Tu in  
case (a) 
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Figure 4 Detection residual in case (a) 
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From Figure 3, after a short transient time, reconstructed 
inputs a1 p a2 uu F , u F= =� �� �  give an accurate estimation value 
to the real inputs ua1 = Fp, ua2 = Fu. At 80 s, the 
reconstructed pF�  unexpectedly increases, and finally it 
stabilises at a new level. This increase implies fault occurs 
and no further variations illustrate no additional fault 
occurs. The similar result is obtained in the reconstructed 

uF� of utility fluid. The simulation curve indicates that the
input reconstruction proposed in this paper is proper for 
recovering unknown inputs. 

As shown in Figure 4, at 80 s and 60 s, the detection 
residuals (r1, r2) break through their thresholds, respectively. 
It implies that at time 80 s, a fault occurs at actuator of 
process fluid, it takes 0.1 s to detect the fault. While for 
actuator of utility fluid, at time 60 s, the detection residual r2 

no longer remains zero which indicates a fault occurs, fault 
detection time is 0.2 s. 

Figure 5 Residuals for identifying fault cause in process fluid in 
case (a) 
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Then, we recognise that, for each actuator, one fault exists. 
The main contribution of this paper is that we can not only 
detect and locate the fault, but also can analyse its root 
cause. Next, we focus on identifying the causes of these two 
faults. 

Figure 5 aims at recognising root cause of the fault at 
actuator of process fluid. RCA residuals s11, s12, s13, s14 are 
designed to recognise four possible candidates: f1, f2, f3, 
and f4. Detection residual r1 has already implied fault 
occurred at 80 s. It is obviously in Figure 5 that, only s13 
breaks through and remains above the threshold, which 
means that fault in actuator of process fluid is caused by 
fault f3. Isolation time is 0.5 s which is ideal. 



Figure 6 Residuals for identifying fault cause in utility fluid in 
case (a) 
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In Figure 6, RCA residuals s21, s22, s23, s24 are designed to 
recognise fault f1, f2, f3, and f4 in actuator of utility fluid. 
Detection residual r2 in Figure 4 has already implied fault 
occurred at 60 s. It is obviously in Figure 6 that only s24 
breaches the threshold and never comes back, which means 
that fault in actuator of utility fluid is caused by fault f4. In 
this case, isolation time is about 0.2 s. The differences in 
isolation time is due to magnitude of fault and the effect it 
has impacted the system. 

5.4.2 Noise corrupted case, fault f2 exists in actuator 
of process fluid and fault f3 exists in actuator of 
utility fluid 

To illustrate the robustness of the proposed scheme, external 
disturbance or measurement noise is considered in this case. 
Suppose the output measurement y is corrupted by a 
coloured noise. The coloured noise is generated with a 

second order AR filter excited by a Gaussian white noise 
with zero mean and unitary variance. The standard deviation 
of the coloured noise is about 3.5. 

Figure 7 Reconstructed input u pF , F� �  from output Tp, Tu in  
case (b) 
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Figure 8 Detection residual in case (b) 
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The same situation as case (a), one fault is considered on 
each actuator separately. For actuator of process fluid, fault 
f2 is supposed to be leakage, and reasons that can lead to the 
leakage are: valve tightness, leaky bushing, and terminals. 
Fault f3 is supposed in actuator of utility fluid, fault f3 is 
caused by valve clogging, and it is a commonly encountered 
fault. If not properly repaired, this kind of fault may cause 
severe impacts on system performance. Simulation results 
are demonstrated in Figure 7 to Figure 10. 

It can be seen from Figure 7 that although noise exists, 
the developed input reconstruction techniques can provide 
reconstructed inputs with a good accuracy. At actuator of 
process fluid, sudden decrease occurs at 60 s which 
indicates occurrence of a fault, and it takes 4 s to steady at 



new value. For actuator of utility fluid, the reconstructed 
value increases from 40 s, and is stable after about 3 s. A 
fault is detected due to the unexpected increase. 

Figure 9 Residuals for identifying fault cause in process fluid in 
case (a) 
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As illustrated in Figure 8, detection residual r1 indicates a 
fault in actuator of process fluid at 60 s, it takes 1.2 s to 
determine the occurrence of the fault. Detection residual r2 
refers to a fault in actuator of utility fluid at time 40 s, and it 
takes 1.5 s to detect it. We can shorten the detection time 
and detect smaller fault by employing larger gain for the 
detection observers or adopt a smaller threshold. However, 
larger gain or larger threshold may fail to detect the fault 
correctly, since observer with larger gain is too sensitive to 
noise and smaller threshold may lead to be undistinguished 
from noise. Therefore a trade between detectability and 
sensitivity should be made in order to detect the fault 
correctly. In summary, a small magnitude fault may not be 
detected within the existence of the noise. Again, after 
detection of the faults, we have to identify their root causes. 

Figure 10 Residuals for identifying fault cause in utility fluid in 
case (b) 
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We can see from Figure 9 that only RCA residual s12 breaks 
through its threshold and remains beyond it, the other three 
RCA residuals are below their thresholds, then, the fault 
resource f2 of actuator of process fluid is identified. In case 
of RCA residuals for actuator of utility fluid in  
Figure 10, only s23 is beyond its threshold which verifies the 
occurrence of fault cause f3. 

From the above simulation results, we can see that the 
proposed strategy is able to detect and locate a fault 
correctly, and RCA for each detected fault is achieved with 
a good accuracy. Encouraging simulation results are 
obtained thanks to the robustness of the proposed scheme. 

6 Conclusions 

The main contribution of this paper lies on the integration of 
both system level and component level-based FDI 
approaches to facilitate FDI and RCA of subcomponents 
actuators. A left invertible interconnected nonlinear system 



structure is developed which guarantees that faults 
occurring in actuator subsystem will affect the measured 
output of the global system uniquely and distinguishably. 
The new system structure, together with the fault diagnosis 
algorithm, is the first to emphasise the importance of RCA 
of field devices fault, as well as the influences of local 
internal dynamics on the global dynamics. Since local 
measurement is assumed inaccessible and estimated from 
global output, it is more realistic due to remote distance or 
physical availability considerations for an industrial 
application. Therefore, this approach not only completes the 
theory but is also of great importance to narrow the gap 
between industry and academia. Simulated results are 
included to demonstrate the applicability and robustness of 
the proposed method and encouraging results are obtained. 

For future work, one interesting research direction is to 
develop an input estimator which avoids using computation 
of successive derivatives of outputs to estimate the inputs of 
the process subsystem. It is because successive derivatives 
are considered unrealistic in practical applications since 
measurements suffer noise and disturbances. Another 
consideration is to approach the problem of parameter 
observability and diagnosability at local subsystem from the 
view point of global output, and to investigate a strategy of 
multi parameters identification. 
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