
HAL Id: hal-01763839
https://hal.science/hal-01763839

Submitted on 11 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reactive Controller Based on Online Trajectory
Generation for Object Manipulation

Wuwei He, Daniel Sidobre, Ran Zhao

To cite this version:
Wuwei He, Daniel Sidobre, Ran Zhao. A Reactive Controller Based on Online Trajectory Generation
for Object Manipulation. Informatics in Control, Automation and Robotics , 325, 2015, Lectures note
in Electric Engineering, �10.1007/978-3-319-10891-9_9�. �hal-01763839�

https://hal.science/hal-01763839
https://hal.archives-ouvertes.fr

A Reactive Controller Based on Online Trajectory
Generation for Object Manipulation

Wuwei He, Daniel Sidobre, and Ran Zhao ?

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; and Univ de Toulouse;
UPS, LAAS; F-31400 Toulouse, France

{wuwei.he,daniel.sidobre,ran.zhao}@laas.fr

Abstract. In this paper, we present a new solution to build a reactive trajectory
controller for object manipulation in Human Robot Interaction (HRI) context.
Using an online trajectory generator, the controller build a time-optimal trajec-
tory from the actual state to a target situation every control cycle. A human aware
motion planner provides a trajectory for the robot to follow or a point to reach.
The main functions of the controller are its capacity to track a target, to follow a
trajectory with respect to a task frame, or to switch to a new trajectory each time
the motion planner provides a new trajectory. The controller chooses a strategy
from different control modes depending on the situation. Visual servoing by tra-
jectory generation and control is presented as one application of the approache. To
illustrate the potential of the approach, some manipulation results are presented.

Keywords: Robotic, manipulation, trajectory generation, human-robot interac-
tion, control

1 Introduction

Intuitive and natural object exchange is one of the basic necessary manipulation tasks in
the context of Human Robot Interaction (HRI). This paper presents a controller which
enables the robot to realize a complete task of object exchange while respecting hu-
man’s safety and other HRI specifications, such as monitoring the accessibility of hu-
man. This elementary manipulation task demands integration of different elements like
geometrical and human-aware reasoning, position and external force monitoring, 3D
vision and human perception information. The control system presented in this paper
proposes to define a plan as a series of control primitives, each associated with a trajec-
tory segment and a control mode.

Structure of the Paper: We introduce firstly the architecture of the system and present
the related work. In section 2 we present briefly the trajectory generator and how cost
values are associated to the trajectory based on cost maps. In section 3, we discuss the
controller, which is based on online trajectory generation. Some results and comparison
could be found in section 4, followed by the conclusion.
? This work has been supported by the European Communitys Seventh Framework Program

FP7/2007-2013 SAPHARI under grant agreement no. 287513 and by the French National
Research Agency project ANR-07-ROBO-0011 ASSIST and ANR-10-CORD-0025 ICARO.

2 A trajectory Controller for Object Manipulation

1.1 Software Architecture for Human Robot Interaction

Fig. 1: Software Architecture of the robot for HRI manipulation. Tm is the main trajectory calcu-
lated initially by MHP (Motion in Human Presence). The controller takes also cost maps from
SPARK. The controller sends control signals in joint (q in the figure) to the servo system, and
during the execution, the controller sends the state of the controller (s) to the supervisor

The robots capable of doing HRI must realize several tasks in parallel to manage
various information sources and complete tasks of different levels. Figure 1 shows the
proposed architecture where each component is implemented as a GENOM module.
GENOM [14] is a development environment for complex real time embedded software.

At the top level, a task planner and supervisor plans tasks and then supervises the
execution. The module SPARK (Spatial Reasoning and Knowledge) maintains a 3D
model of the whole environment, including objects, robots, posture and position of hu-
mans [29]. It manages also the related geometrical reasoning of the 3D models, such
as collision risk between the robot parts and between robot and environment. An im-
portant element is that SPARK produces cost maps, which discribe a space distribution
relatively to geometrical properties like human accesibility. The softwares for percep-
tion, from which SPARK updates the 3D model of the environment, are omitted here for
simplicity. The module runs at a frenquency of 20Hz, limited mainly by the complexity
of the 3D vision and of the perception of human.

Another important module, MHP (Motion in Human Presence), integrates path and
grasp planner. Rapidly exploring Random Tree (RRT) [24] and its variants are used by
the path planner. The paths could be in Cartesian or joint spaces depending on the task
type. From the path, an output trajectory is computed to take the time into account. MHP
calculates a new trajectory each time the task planner defines a new task or when the
supervisor decides that a new trajectory is needed for the changes of the environment.

The system should adapt its behavior to the dynamic environment, mainly the hu-
man activities. But as the planning algorithms are time consuming, we introduce a tra-
jectory controller that runs at 100 Hz, an intermediate frequency between the one of

A Trajectory Controller for Object Manipulation 3

the MHP planner and the one of the fast robot servo system. This trajectory controller
allows the system to adapt faster the trajectory to the environment changes.

The main functionalities of the whole controller are:

– A decision process capable of integrating information form high-level software and
building control primitives by segmenting the trajectory based on the HRI specifi-
cations.

– Algorithms for target or trajectory tracking, trajectory switching, and coordinates
transformation.

– A low-level collision checker and a monitor of the external torques for the safety
issues.

1.2 Related Works

Reactive controller for object manipulation is a research topic that is part of the funda-
mentals of robotic manipulation. Firstly, trajectory generation based approaches have
been developed. In [7], results from visual system pass firstly through a low-pass filter.
The object movement is modeled as a trajectory with constant acceleration, based on
which, catching position and time is estimated. Then a quintic trajectory is calculated to
catch the object, before being sent to a PID controller. The maximum values of acceler-
ation and velocity are not checked when the trajectory is planned, so the robot gives up
when the object moves too fast and the maximum velocity or acceleration exceeds the
capacity of the servo controller. In [15], inverse kinematic functions are studied, catch-
ing a moving object is implemented as one application, a quintic trajectory is used for
the robot manipulator to joint the closest point on the predicted object movement tra-
jectory. The systems used in those works are all quite simple and no human is present in
the workspace. A more recent work can be found in [19], in which a controller for visual
servoing based on Online Trajectory Generation (OTG) is presented, and the results are
promising.

Secondly, the research area of visual servoing provides also numerous results, a sur-
vey of which were presented by Chaumette and Hutchinson [9], [10] and a comparison
of different methods can be found in [13]. Classical visual servoing methods produce
rather robust results and stability and robustness can be studied rigorously, but they are
difficult to integrate with a path planner, and could have difficulties when the initial and
final positions are distant.

Another approach to achieve reactive movements is through Learning from Demon-
stration(LfD). In [8] and [31], points in the demonstrated trajectory are clustered, then a
Hidden Markov Model(HMM) is built. Classification and reproduction of the trajecto-
ries are then based on the HMM. A survey for this approach is proposed in [1]. Although
LfD can produce the whole movement for objects manipulation, many problems may
arise in a HRI context as LfD demands large set of data to learn, and the learned con-
trol policies may have problem to cope with a dynamic and unpredictable environment
where a service robot works.

Our approach to build the controller capable of controlling a complete manipula-
tion tasks is based on Online Trajectory Generation. More results on trajectory gener-
ation for robot control can be found in [22], [16], and [20]. The controller is capable

4 A trajectory Controller for Object Manipulation

of dealing with various data in HRI context. Compared to methods mentioned above,
approaches based on OTG have the following advantages:

– The integration with a path planner is easy and allows to comply with kinematic
limits like the one given by human safety and comfort.

– The path to grasp a complex moving object is defined in the object frame, making
sure that the grasping movement is collision free.

– The trajectory based method allows to create a simple standard interface for differ-
ent visual and servo systems, easy plug-in modules can be created.

The controller integrates various information from high-level software. More informa-
tion about human-aware motion planning in the system can be found in [23]. More
about geometrical reasoning can be found in [27], [24], and [28]. Physical Human Robot
Interaction is a dynamic research area including various aspects, including safety, con-
trol architecture, planning, human intention recognition, and more. Readers may refer
to [12], [26], and [30] for more information of this promising research field.

2 Trajectory and control primitives

2.1 Online Trajectory Generation

Trajectories are time functions defined in geometrical spaces, mainly Cartesian space
and joint space for robots. The books from Biagiotti [2] and the one from Kroger [17]
summarize background materials. For detailed discussion about the trajectory generator
used in the system, the reader can refer to [6] and [5], here we describe some results
without further discussion.

Given a system in which position is defined by a set of coordinate X , a trajectory T
is a function of time defined as:

T : [tI , tF]−→ RN (1)
t 7−→ T (t) = X(t)

The trajectory is defined from the time interval [tI , tF] to RN where N is the dimen-
sion of the motion space. The trajectory T (t) can be a direct function of time or the
composition C (s(t)) of a path C (s) and a function s(t) describing the time evolution
along this path. The time evolution could be used in the controller to slow down or to
accelerate when necessary [4].

Our trajectory generator is capable of generating type V trajectories defined by
Kroger [17] as satisfying:

X(tI) ∈ R X(tF) ∈ R |V (t)|6Vmax

V (tI) ∈ R V (tF) ∈ R |A(t)|6 Amax (2)

A(tI) ∈ R A(tF) ∈ R |J(t)|6 Jmax

Where X , V , A and J are respectively the position, the velocity, the acceleration and the
jerk.

For a motion of dimension N, the algorithms find a trajectory X(t), which satisfies:

A Trajectory Controller for Object Manipulation 5

Fig. 2: Frames for object exchange manipulation: Fw: world frame; Fr: robot frame; Fc: camera
frame; Fe: end effector frame; Fo: object frame; Fh: human frame. The trajectory realizing a
manipulation should be controlled in different task frames.

1. The initial conditions (IC): X(tI) = XI , V (tI) =VI and A(tI) = AI ;
2. The final conditions (FC): X(t f) = XF , V (t f) =VF and A(t f) = AF ;
3. The continuity class of the trajectory is C 2.
4. The kinematics limits Vmax, Amax and Jmax.

The problem is solved by a series of 3rd degree polynomial trajectories. Such a trajec-
tory is composed of a vector of one-dimensional trajectories, which can be written as
T (t)= (1Q(t),2Q(t), . . . ,NQ(t))T for joint motions or T (t)= (1X(t),2X(t), . . . ,NX(t))T

in Cartesian space.
For the discussion of the next sections, we define Motion Condition as the position,

velocity and acceleration at time t of the trajectory: M(t) = (X(t),V (t),A(t)). Once
the trajectory is calculated, the function M(t) = getMotion(t,T) returns the Motion
Condition on trajectory T at time t.

2.2 Control Primitives

In HRI, the robot does various tasks like picking up an object, giving an object to
human, taking an object from the human. For each of the task, a path is planned to
realize it, and then the path is transformed into a trajectory. The controller designed
here takes directly the trajectory as input and segments it based on the cost maps.

Figure 2 shows the basic frames needed to define a task. The trajectory Tm defines
the move that allows the robot to do the task of grasping an object handed by the human.

Based on the cost values associated to each point of the trajectory, the trajectory is
divided into segments associated to a control strategy. The 3D cost maps used are of
different types: collision risk map calculated based on the minimum distance between
trajectory and the obstacles; visibility and reachability map of a human [27] and safety

6 A trajectory Controller for Object Manipulation

and comfort 3D map of a human, Figure 3 shows two examples of cost maps. For
example, when the risk of collision with the robot base is high, the trajectory can be
controlled in robot the frame. Similarly, in the case where the human is handing an
object to the robot, the grasping must be controlled in the object frame. [26] details
other aspects of the use of cost maps to plan manipulation tasks.

Fig. 3: Left: 3D reachability map for a human. Green points have low cost, meaning that it is
easier for the human to reach, while the red ones, having high cost, are difficult to reach. One
application is that when the robot plans to give an object to a human, an exchange point must be
planned in the green zone. Right: 3D visibility map. Based on visibility cost, the controller can
suspend the execution if the human is not looking at the robot.

To simplify the presentation, in the reminder of the paper we focus on the manipu-
lation tasks where a human hands over an object to the robot. During the manipulations,
the human moves and the different frames defining the task move accordingly. Based on
the change of cost values, we divide the trajectory Tm in Figure 2 into three segments, as
illustrated in the configuration space in the left part of Figure 7. In the figure, the points
connecting the trajectory segments are depicted by red dots. The first segment T1, which
is defined in the robot frame, has a high risk of auto-collision. When human or object
moves, the cost value of collision risk stays the same. Segment T2 has a lower collision
cost value, so modifying the trajectory inside this zone does not introduce high collision
risk. The end part, segment for grasping movement Tg, has a high collision cost value.
To ensure the grasping succeeds without collision this segment of trajectory should be
controlled in the moving object frame.

We name task frame the frame in which the trajectory must be controlled. We define
a control primitive CP by the combination of five elements: a segment of trajectory, a
cost function, a task frame, a control mode, and a stop condition.

CP (t) = (Tseg(t), C (t), F , O, S)T (3)

In which, Tseg(t) is the trajectory segment, C (t) is the cost value associated to the
trajectory which is monitored during the execution of a control primitive, F is the
task frame, O is the control mode which we will define in next section, and S is the
stop condition of the control primitive. For example, the grasping movement includes
five elements: the trajectory segment Tg, the high collision risk cost value C (t), the

A Trajectory Controller for Object Manipulation 7

Tr
aj

ec
to

ry
C

on
tr

ol
M

od
esTraj SegMHP

Robot

Collison
Checker

SPARK

Perception

CP (t)Tm

R

C (t)

Controller

Mt+T

z−1
Mt

Fig. 4: Input and output of the controller. Tm is the trajectory computed by MHP, it is then seg-
mented into control primitives (CP (t)). Traj Seg represents trajectory segmentation. C (t) are the
cost values. R represents the tranformation matrices, giving the position of the target and of the
robot. Mt is the current state of the robot, Mt+T is desired motion condition for the next control
cycle. z−1 represents delay of a control cycle.

task frame Fo, the control mode as trajectery tracking, and the stop condition S as a
predefined threshold for the distance between the robot end effector and the end point
of Tg. In the literature, Manipulation Primitives or Skill Primitives are often the concept
for the intermediate level between planning and control and have been discussed in
numerous works, as in [18].

Using the definition of control primitives (CP (t)) and Motion Condition: M(t) =
(X(t),V (t),A(t)), the different components of the trajectory controller and the input
and output are presented in Figure 4. The initial trajectory Tm is segmented into a series
of CP (t). The cost values C (t) are used during the segmentation, they are also mon-
itored by the controller during execution of a control primitive. The collision checker
integrates data from vision, human perception and encoder of the robot. It prevents col-
lision risk by slowing down or suspending the task execution. With all the data and the
current Motion Condition Mt of the robot, different control modes can compute Motion
Condition for the next control cycle, which are the input for the robot sorvo system.

Figure 5 shows the last control primitive of grasping an object. It is similar to the
end part, Tg, of the trajectory in Figure 2. The grasp position, the contact points and the
final trajectory are planned by the grasp planner. More details on the grasp planner are
given in [3] and [25]. When the object moves, the object frame Fo and the path of the
trajectory moves also. So to avoid collision, the trajectory of these control primitives
must be controlled in the object frame Fo.

3 Reactive Trajectory Control

At the control level, a task is defined by a series of control primitives, each defined
by a quintuplet. The first level of the proposed trajectory controller is a state machine,

8 A trajectory Controller for Object Manipulation

Fig. 5: A simple case of grasp. Left: a planned grasp defines contact points between the end effec-
tor and the object. Right: To finish the grasping, the manipulator must follow the blue trajectory
P1 - Pc, and then close the gripper. This movement must be controlled in the object frame Fo.

which controls the succession of the control modes, the collision managing and other
special situations. Target tracking and trajectory tracking are parts of the control modes
presented after the state machine.

3.1 Execution Monitoring

A state machine controls the switching between the different control modes associated
to each control primitive and monitors the execution. Due to human presence, the robot
environment is moving and the control task must be adapted accordingly. The state
machine can also suspend or stop the control of a control primitive like depicted in
Figure 6.

Suspend Events: When the visual system fails or the target becomes unavailable, or
because of some specific human activities based on the monitoring of cost value C (t),
the trajectory controller should suspend the task.

Stop Events: Whatever the control mode chosen, unpredictable collisions can occur
and they must stop the robot. Our controller uses two modules to detect these situations.
The first one based on [11] monitors the external torques. The second is a geometric
collision checker based on results from [21], it updates a 3D model of the workspace of
the robot, and runs at the same frequency as the trajectory controller.

Slow Down On Trajectory: Based on the input cost function, the controller can
slow down on the main trajectory by changing the time function s(t). Imagine that a
fast movement could cause some people anxiety when the robot is close to them, for
example. Details about this specific situation can be found in [4]. In this situation, the
controller is still executing the task but only at a slower speed.

Each elementary controller based on online trajectory controller is implemented
with a simple state machine inside.

A Trajectory Controller for Object Manipulation 9

Fig. 6: In the left, each circle represents the controller of a control primitive. The system can
suspend or stop the execution of a control primitive.

obstacle

obstacle

obstacle

obstacle

Object

v

Object

Fig. 7: Left: trajectories of the control primitives. Right: trajectory switching for the controller
due to the movement of an obstacle.

3.2 Trajectory Control Modes

Depending on the context defined by the control primitives, different control strategies
must be developed. Online trajectory generator gives a flexible solution to build these
controllers, which can easily react to unforeseen sensor events and adapt the kinematic
parameters, mainly velocity, to the environment context. Switching to a new trajectory
or a new frame in which the trajectory is controlled is also possible.

The main idea of the controller is to compute and follow a trajectory while joining
up the target trajectory or a target point from the current state. Several control modes
are defined to solve the reactive HRI manipulation problem.

Control Mode 1: Target tracking. If we suppose the robot is in an area without risk of
collision, the system can track the end point of the trajectory. In this case, the controller
generates iteratively a trajectory to reach the end point and send the first step of this
trajectory to a low-level controller. In the special case where the controller does target
tracking with visual system, it does visual servoing.

Figure 8 shows the details of the trajectory control mode for Target Tracking. The
object is at position O at current time, and moves following the curve Tob j. This curve

10 A trajectory Controller for Object Manipulation

Fig. 8: Control Mode 1. The robot tracks a point. The object moves to the right, it is drawn at two
times: firstly in brown for time t1 and then in green at time t2. In both cases, the entry point P2 of
the trajectory Tg is drawn relatively to the object frame Fo.

is obtained by a simple Kalman filter, building a movement model from the results of
3D vision system. Fr is the robot base frame, Fc and Fo are camera frame and object
frame, respectively. Also, Rc

r is the 4×4 transformation matrix from Fr to Fc and Ro
c the

transformation matrix from Fc to Fo. They are all in dashed line and they change with
time when the humans or objects move. Initially, the robot is at point Pe, since there is
no risk of collision, the controller can simply track point P2, which is the end point of
the segment. It is also possible for the robot to join up the trajectory at another point
Pjoint defined in the object frame which is the task frame. The details of the algorithm
is given in Algorithm 1 where:

T : duration of one control cycle.
Mr: current motion condition of the robot, so Mr = (Xr,Vr,Ar).
δ: distance threshold to stop the tracking process.
Mg(t): motion conditions at time t on trajectory Tg.
MP2 : motion conditions of the target P2 on the main trajectory, which is calculated by

the planner.
MaxLoop: the maximum times the loop repeats for the controller to track the target

or the trajectory. Once the time exceeds the value, the trajectory controller is sus-
pended and a signal is sent to the supervisor, requiring the replanning of new task
or a new path to realize the task.

X,Q: input signal in Cartesian space and in joint space for low-level controller.

Control Mode 2: Trajectory tracking in task frame. Once robot reaches point P2, it
starts the grasping movement, which corresponds to Tg in Figure 7. The object is still
moving, but as the robot is in the high cost zone, it should track the main trajectory in
the task frame. The details of the control mode is given in Algorithm 2.

A Trajectory Controller for Object Manipulation 11

Figure 9 shows the details of the control mode, all the frames and object movements
are the same as in Figure 8, but the robot is at point P′e. The robot tracks Tg in the frame
Fo, and will end up executing T ′(t) in the robot frame.

O
O'

Fig. 9: Control Mode 2. control mode. Object at time t1 is colored in light brown, and green at
time t2. It follows a movement model given as the blue trajectory Tob j. The purple trajectory for
grasping Tg stays unchanged in the object frame. The robot tracks the trajectory Tg as it does th7e
grasping movement.

Algorithm 1: Control for target tracking (Control Mode 1)
input : Target point P2;
while (distance(P2,Mr)> δ)∧ (Loop < MaxLoop) do

system time t = t +T , Loop = Loop+1;
Update perception data;
if Collision Detected then Emergency stop;
;
if Suspend Events Occur then Suspend task;
;
Coordinates transformations;
Generate Type V control trajectory T (t), for which: IC = Mr , FC = MP2 ;
X = getMotion(t +T,T (t));
Inverse kinematics: X → Q;
Q to the position servo system;

end

Control Mode 3: Path re-planning and trajectory switch: during the execution, a
path can be re-planned, for example when an obstacle moves (see Fig. 7). A new trajec-

12 A trajectory Controller for Object Manipulation

Algorithm 2: Control for trajectory tracking in a moving work frame (Control
Mode 2)

input : Trajectory segment Tg;
while (distance(Pc,Mr)> δ)∧ (Loop < MaxLoop)) do

system time t = t +T , Loop = Loop+1;
Update perception data and object movement model;
if Collision Detected then Emergency stop;
;
if Suspend Events Occur then Suspend task;
;
Coordinates transformations;
MTg

= getMotion(t +T,Tg);
Mob ject = getMotion((t +T,Tob j);
X = MTg

+Mob ject ;
Inverse kinematics: X → Q;
Q to the position servo system;

end

tory is computed and given to the controller that switches to the new trajectory. While
the controller is following the trajectory Tm, an obstacle moves and invalidates the ini-
tial trajectory. Then the system provides the controller with a new trajectory T ′m begin-
ning at time t1 in the future. The controller anticipates the switch, and when the robot
reaches Pt1 at time t1, the robot switches to the new trajectory T ′m. Because the new
trajectory T ′m is calculated using the state of the robot at time t1 as its initial condition,
the trajectory is switched without problem. The controller keeps the possibility of path
re-planning. In some cases, a new path is needed to accomplish the task.
In this paper, we essentially solved the problem of the task of grasping a moving object
held by the human counterpart. For other tasks, like picking an object, giving an object
to human or putting an object on the table, the same functionalities can also be used. For
example, putting an object on a moving platform would require the end segment of the
main trajectory to be controlled in the frame of the platform, which moves in the robot
frame. Likewise giving an object to a moving human hand will require the manipulator
to track the exchange point, normally planned by a human-aware motion planner till
the detection that human grasps the object successfully. Although a general algorithm
to decompose the tasks into control primitives is still to develop, the basic HRI tasks
can all be controlled by the control modes discussed above.

4 Manipulation Results

We focus on some results of how the controller is integrated in a HRI manipulator. For
the performance of the trajectory generator, readers may refer to [6] and [4].

The controller has been implemented on the robot Jido at LAAS-CNRS. Jido is a mo-
bile manipulator built up with a Neobotix mobile platform MP-L655 and a Kuka LWR-IV
arm. Jido is equipped with one pair of stereo cameras and an ASUS Xtion depth sensor.

A Trajectory Controller for Object Manipulation 13

The software architecture that we used for Jido is presented in 1.1. Note that the pan-tilt
stereo head may move during manipulations, then the transformation matrix from robot
frame to camera frame is updated at the same frequency as the controller. The stereo-
vision system uses marks glued on manipulated objects for localization. Unfortunately,
the localization of these marks is highly sensible to lighting conditions and the esti-
mated position of the object O in the robot frame Fr is very noisy and unstable. Figure
10 shows the results returned by the 3D-vision system in poor lighting conditions and
the result given by a Kalman filter. Even when raw data oscillates, this filter is capable
to reduce the offset at the price of an acceptable delay. This reduces the oscillations of
the robot arm too.

Fig. 10: Instability of the 3D vision in poor lighting condition. The green curve shows axis z of
the localization result of an object in the robot frame over 10 seconds and the red one shows the
filtered result. The object was held by a human that intended to move the object accordingly to
the black dashed curve.

Figure 11 shows the results of the target tracking by the trajectory controller, as in
Case 2, over 25 seconds. For simplicity, only axis X is shown. The black dashed line is
the position of the target, generated by the 3D vision system. The red line is the position
of the robot. The two bottom diagrams show the velocity and acceleration of the robot
in the same period. Firstly, we can see that the controller produces robust behavior to
the noise in the visual system. Secondly, the velocity and acceleration of the robot are
saturated as type V trajectories and calculated.

Finally, we show the behavior of the controller for a complete manipulation task.
Figure 12 shows the scenario of the manipulation and Figure 13 shows the real position
of the robot end effector in the robot frame (see figure 2 for the axes assignment of the
robot base). The high-level task planner plans a task to receive the object. When the
robot sees the object held by the human, the grasp planner calculates a valid grasp and
the path planner with the trajectory generator plans the main trajectory for the robot to
take the object.

The trajectory is divided into three segments by the controller, and different control
modes are chosen. As we as seen above, each control primitive is associated to a tra-
jectory segment. In this case, we obtain three segments, the first one is controlled in the
robot frame, the second is defined as the tracking of the entry point of the third segment
and the third segment is a trajectory defined in the object frame.

14 A trajectory Controller for Object Manipulation

Fig. 11: Results of robot tracking a target: position (in m), velocity (in m/s) and acceleration (in
m/s2) during the tracking for 25 seconds. The black dashed line is the target position, with noise
of the 3D vision, and the red line is the position of the robot, which tracks the target with a delay.
The positions of the robot are calculated from measured joint values and the kinematic model,
while velocity and acceleration are estimated. The velocity, acceleration and jerk are always lim-
ited, maintaining a smooth tracking process.

Fig. 12: (1): The controller is given the task of receiving the object from human. It tracks the first
segment in the robot frame. (2): The object is moving and the robot tracks a target. (3): Human
is distracted by another human and the task is suspended. (4): Human returns to the task, and the
robot resumes the task and grasps the object.

During the target tracking, human is distracted because a second human arrives
and gives an object to him. High-level software detects this event by monitoring the

A Trajectory Controller for Object Manipulation 15

time in s
0 20 40 60

Ax
is

 x
 in

Ax

is
 y

 in

Ax
is

 z
 in

1.0

-0.2

0.0

0.6

10 30 50

0.2

0.4

0.6

0.8

0.4

0.2

0.0

0.2

0.4

(m
)

(m
)

(m
) 0.8

Fig. 13: Real position of the robot arm end effector in the robot frame. The motion starts at time
a; Between a and b: the controller tracks the first trajectory segment T1 in Fr; From b to c and d
to e: target tracking; From c to d: the task is suspended; From e to end: the grasping movement
controlled in Fo.

visibility cost map of the human. Because of the event, the controller suspends the
task. It resumes the tracking when the human look again at the robot and the object to
exchange come back in the reachable zone. Then, the grasping movement is finished.
Note the performance of the target tracking process in the time intervals: between b to c,
and between d to e. The controller finished the task reactively without the need of task
or path replanning. The results shows that a reactive controller can be built based on
Online Trajectory Generation, and as it is more responsive for the human, the robot is
easier to interact with. Before the implementation of the reactive controller, the human
needs to hold the object and stay still until the robot grasps it successfully.

5 Conclusion

A controller based on online trajectory generation has been presented with some results
of robot grasping an object held by a human. The first results presented in the paper
illustrate the versatility of the controller. In the example shown here, the controller
switches between frames and suspends the control task when the human is distracted.

The trajectory controller employs different control modes for different situations.
The control modes are all based on a trajectory generator. It is easy to use and to imple-
ment and gives an efficient solution to follow trajectories and track moving objects in
the HRI context. More precisely, it can adapt kinematic limits to the changing state of
the scene and switch between trajectories and control modes.

The future work is to extend the trajectory controller to manage forces and to han-
dle force events. Furthermore, the possibility to apply this type of trajectory control
and the concept of control primitives to dual arm manipulations opens also interesting
perspectives.

16 A trajectory Controller for Object Manipulation

References

1. B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469 – 483, 2009.

2. L. Biagiotti and C. Melchiorri. Trajectory Planning for Automatic Machines and Robots.
Springer, 2008.

3. B. Bounab, D. Sidobre, and A. Zaatri. Central axis approach for computing n-finger force-
closure grasps. Proc. of the IEEE International Conference on Robotics and Automation,
pages 1169–1174, May 2008.

4. X. Broquère. Planification de trajectoire pour la manipulation d’objets et l’interaction
Homme-robot. PhD thesis, LAAS-CNRS and Université de Toulouse, Paul Sabatier, 2011.

5. X. Broquère and D. Sidobre. From motion planning to trajectory control with bounded jerk
for service manipulator robots. In IEEE Intenational Conference of Robotics And Automa-
tion, 2010.

6. X. Broquère, D. Sidobre, and I. Herrera-Aguilar. Soft motion trajectory planner for service
manipulator robot. Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-
tional Conference on, pages 2808–2813, Sept. 2008.

7. G. Buttazzo, B. Allotta, and F. Fanizza. Mousebuster: A robot for real-time catching. IEEE
Control Systems Magazine, 14(1), 1994.

8. S. Calinon and A. Billard. Stochastic gesture production and recognition model for a hu-
manoid robot. In Intelligent Robots and Systems, 2004. (IROS 2004), volume 3, pages 2769
– 2774, sept. 2004.

9. F. Chaumette and S. Hutchinson. Visual servo control. part i: Basic approaches. IEEE
Robotics and Automation Magazine, 4(13), December 2006.

10. F. Chaumette and S. Hutchinson. Visual servo control. part ii: Advanced approaches. IEEE
Robotics and Automation Magazine, 1(14), March 2007.

11. A. De Luca and L. Ferrajoli. Exploiting robot redundancy in collision detection and reaction.
In IROS 2008, pages 3299 –3305, sept. 2008.

12. A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi. An atlas of physical human–robot
interaction. Mechanism and Machine Theory, 43(3):253–270, 2008.

13. J.-S. Farrokh, D. Lingfeng, and J. William. Comparison of basic visual servoing methods.
IEEE/ASME Transactions on Mechatronics, 16(5), October 2011.

14. S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for the specification and the implemen-
tation of operating modules in a distributed robot architecture. In IEEE/RSJ Int. Conf. on
Intel. Rob. And Sys., 1997.

15. G. Gosselin, J. Cote, and D. Laurendeau. Inverse kinematic functions for approach and
catching operations. IEEE Trans. Systems, Man, and Cybernetics, 23(3), 1993.

16. R. Haschke, E. Weitnauer, and H. Ritter. On-Line Planning of Time-Optimal, Jerk-Limited
Trajectories. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.
IROS 2008, pages 3248–3253, 2008.

17. T. Kröger. On-Line Trajectory Generation in Robotic Systems, volume 58 of Springer Tracts
in Advanced Robotics. Springer, Berlin, Heidelberg, Germany, first edition, jan 2010.

18. T. Kröger, B. Finkemeyer, and F. Wahl. Manipulation Primitives A Universal Interface be-
tween Sensor-Based Motion Control and Robot Programming, volume 67 of Springer Tracts
in Advanced Robotics. Springer Berlin Heidelberg, 2011.

19. T. Kröger and J. Padial. Simple and Robust Visual Servo Control of Robot Arms Using an
On-Line Trajectory Generator. IEEE International Conference on Robotics and Automation,
2012.

20. T. Kröger, A. Tomiczek, and F. Wahl. Towards on-line trajectory computation. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China. Citeseer, 2006.

A Trajectory Controller for Object Manipulation 17

21. E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with swept sphere
volumes. 1999.

22. S. Liu. An on-line reference-trajectory generator for smooth motion of impulse-controlled
industrial manipulators. In 7th International Workshop on Advanced Motion Control, pages
365–370, 2002.

23. J. Mainprice, E. Sisbot, L. Jaillet, J. Cortés, T. Siméon, and R. Alami. Planning Human-
aware motions using a sampling-based costmap planner. In IEEE Int. Conf. Robot. And
Autom., 2011.

24. J. Mainprice, E. Sisbot, T. Siméon, and R. Alami. Planning Safe and Legible Hand-over
Motions for Human-Robot Interaction. 2010.

25. J.-P. Saut and D. Sidobre. Efficient models for grasp planning with a multi-fingered hand.
Robotics and Autonomous Systems, 60, March 2012.

26. D. Sidobre, X. Broquère, J. Mainprice, E. Burattini, A. Finzi, S. Rossi, and M. Staffa.
Human–robot interaction. Advanced Bimanual Manipulation, pages 123–172, 2012.

27. E. Sisbot, R. Ros, and R. Alami. Situation assessment for human-robot interactive object
manipulation. 20th IEEE International Symposium on Robot and Human Interactive Com-
munication, July-August 2011.

28. E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Siméon. Spatial reasoning for human-robot
interaction. In IEEE/RSJ Int. Conf. on Intel. Rob. And Sys., San Diego, CA, USA, November
2007.

29. E. A. Sisbot, L. F. M. Urias, R. Alami, and T. Siméon. Spatial reasoning for human-robot
interaction. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
San Diego, CA, USA, November 2007.

30. K. W. Strabala, M. K. Lee, A. D. Dragan, J. L. Forlizzi, S. Srinivasa, M. Cakmak, and
V. Micelli. Towards seamless human-robot handovers. Journal of Human-Robot Interac-
tion, 2(1):112–132, 2013.

31. A. Vakanski, I. Mantegh, A. Irish, and F. Janabi-Sharifi. Trajectory learning for robot pro-
gramming by demonstration using hidden markov model and dynamic time warping. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(4):1039 –1052,
aug. 2012.

