
HAL Id: hal-01763794
https://hal.science/hal-01763794

Submitted on 11 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trajectory Smoothing using Jerk Bounded Shortcuts for
Service Manipulator Robots

Ran Zhao, Daniel Sidobre

To cite this version:
Ran Zhao, Daniel Sidobre. Trajectory Smoothing using Jerk Bounded Shortcuts for Service Manipu-
lator Robots. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sep 2015, Hamburg, Germany. pp.4929-4934, �10.1109/IROS.2015.7354070�. �hal-01763794�

https://hal.science/hal-01763794
https://hal.archives-ouvertes.fr

Trajectory Smoothing using Jerk Bounded Shortcuts for Service
Manipulator Robots

Ran Zhao1,2 and Daniel Sidobre1,2

Abstract— This paper aims to smooth jerky trajectories for
high-DOF manipulators with Soft Motion [1] shortcuts which
are bounded in velocity, acceleration and jerk. The algorithm
presented here iteratively picks two points on the trajectory and
attempts to replace the intermediate trajectory with a shorter
and collision-free segment. The objective of this algorithm
is to shorten the execution time of an input trajectory as
much as possible while retaining the feasibility. Simulation and
real-world experimental results on reaching tasks in human
environments show that this technique can generate smooth
and collision-free motions for a KUKA Light-Weight Robot.

I. INTRODUCTION

To achieve a large variety of tasks in interaction with
human or human environments, autonomous robots must
have the capability to quickly generate safe and natural-
looking motions. Classical approaches, such as sample-based
planners (e.g. RRT [2], PRM [3]) define the motion by
collision-free paths, which are expected to follow by a robot.
Despite the high speed, these approaches often deliver a path
as piecewise polygonal lines, which constrain the motion to
stop at each vertex. As a result, this motion is slow and
unnatural. Thus, trajectory smoothing is always performed
before execution so as to produce feasible motions.

Moreover, arm manipulators for human interaction should
be intrinsically safe [4]. In a human interaction context,
safety is directly linked with the velocity bound while
comfort is linked with the acceleration and jerk bounds. This
paper presents a fast and simple smoothing algorithm for
generating dynamic trajectories from paths. This algorithm
respects the velocity, acceleration and jerk bounds and avoids
collision.

We apply a variant of a shortcutting heuristic, which is
commonly used in robotics and animation. The heuristic
randomly selects two points along the existing path, then con-
structs a segment between them in the configuration space,
and checks the occurrence of collision. If it is collision-free,
the segment replaces the subpath between the two points.
Then third-degree polynomial functions are used to de-
scribe the trajectories. These functions bring about sufficient
flexibility in terms of providing higher-order smoothness,
i.e., computing trajectories that are C2. In the first stage,
we suppose that a motion planner produces a polygonal

*This work has been supported by the European Community’s Seventh
Framework Program FP7/2007-2013 “SAPHARI” under grant agreement
no. 287513 and by the French National Research Agency project ANR-10-
CORD-0025 “ICARO”.

1,2R. Zhao and D. Sidbore are with CNRS, LAAS, 7 avenue
du colonel Roche, F-31400 Toulouse, France; and Univ de Toulouse;
UPS, LAAS; F-31400 Toulouse, France. ran.zhao@laas.fr,
daniel.sidobre@laas.fr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.015

-0.01

-0.005

0

0.005

0.01

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

-0.015

-0.01

-0.005

0

0.005

0.01

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

-0.015

-0.01

-0.005

0

0.005

0.01

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

-0.015

-0.01

-0.005

0

0.005

0.01

a planned jerky path

Kinematic constraints

Vmax-Vmax

Amax

-Amax

Smoothed
collision-free

trajectory
Smoothing
algorithm

Robot
manipulator

t

Fig. 1. Overview: Building a smooth trajectory that respects colli-
sion,velocity, acceleration and jerk constraints for robot manipulators

collision-free path. From this polygonal path, we build a
feasible trajectory composed of piecewise straight-lines that
are bounded in jerk, acceleration and velocity. This trajectory
corresponds to type V in the classification proposed by
Kröger [5]. Then we smooth the trajectory by removing some
unnecessary turns. As this operation modifies the initial free
path, the new smoothed path must be checked for collision.
The output of the algorithm is a smooth trajectory that
respects the collision and kinematic motion bounds (velocity,
acceleration and jerk), as shown in Fig. 1.

The main contributions of this work are listed below.
1) We propose a simple and fast algorithm that operates

in the configuration/velocity/acceleration state space.
2) We make an analytical derivation of time-optimal,

velocity-bounded, acceleration-bounded and jerk-
bounded trajectories that interpolate between endpoints
with specified velocity and acceleration. For a single
joint, the time-optimal interpolant can be derived in
the closed form. We interpolate multiple joints by
detecting the joint with the longest execution time,
and then interpolate the remaining joints by finding
the jerk-bounded, acceleration-bounded and velocity-
bounded interpolants with fixed duration.

3) We also present a method for fast collision checking of
third-order polynomial trajectories based on a reported
technique [6].

II. RELATED WORK

High-quality motion generation is a topic of interest in
the field of robotics, especially related to the domain of
Human-Robot Interactions (HRI), which requires safe and
human-like motions. A solution [1] was proposed to compute

a time-optimal trajectory bounded in jerk, acceleration and
velocity for an axis joining any pairs of states defined by
a position, a velocity and an acceleration. For a point-to-
point movement in a n-dimensional space, the time-optimal
straight-line motion is obtained by projecting the bounds
onto the line [7]. It should be noted that all these methods
only build time evolution functions along the paths, and thus
generate unnatural motions as outputs.

Many techniques have been proposed in literatures to
generate smooth motions. Optimization approaches have
long been pursued with the establishment of various methods.
An optimal motion can be defined based on a cost function,
including obstacle potential fields [8] [9] or physical criteria
such as execution time, torque, or energy consumption [10]–
[12] of the overall robot. Then the optimality criteria is
minimized using iterative numerical techniques such as gra-
dient descent. These techniques are typically computationally
expensive owing to the high dimension of the optimization
problem and the large number of bounds. Thus, these tech-
niques are too slow for real-time use.

The shortcut technique is fast, easily implemented, and
often produces high-quality paths quickly in practice. It uses
heuristics to iteratively replace some portions of a path with
shorter linear or parabolic segments [13] [14]. Then simple
velocity and acceleration bounds were imposed over these
parabolic segments [15]. A variant shortcut method was
proposed by connecting two fixed points on two adjacent
trajectories respectively [16]. The output trajectory deviates
very slightly from the original one since the two points are
close to the vertex of each trajectory. As a result, even the
smoothed path is sometimes jerky and cannot satisfy the
kinematic bounds.

In this paper we propose a solution to generate a trajectory
from a jerky path. The objective of the method is to quickly
build a smooth trajectory that respects collision, velocity,
acceleration and jerk constraints. Meanwhile, our approach
can be used by a large variety of robot manipulators.

III. NOTATIONS AND REPRESENTATIONS

In this section, we introduce the notations and present the
underlying Soft Motion representations used in computation
of the trajectories.

A. Notations

Let C = Rn denote the n-dimensional configuration space,
and let Cfree denote the subset of configurations that are
collision-free and respect joint limits. A trajectory T can be
a direct function of time or the composition P(u(t)) of a
path P(u) and a function u(t) describing the time evolution
along this path. The background trajectory materials are
summarized in the books from Biagiotti [17] and Kröger
[5]. A trajectory T is then defined as:

T : [tI , tF] −→ Rn (1)
t 7−→ T (t) (2)

QI

(a) (b)

(c) (d)

(e) (f)

QF

QI

QI QI

QI

QF

QF

QF

QF QF

QI

Fig. 2. Smooth algorithm. (a) A jerky path as a list of waypoints. (b)
Converting into a trajectory that halts at each waypoints. (c) Performing a
shortcut that fails in collision check. (d),(e) Two more successful shortcuts
(f) The final trajectory.

where T (t) = Q(t) = (1Q(t), 2Q(t), · · · , nQ(t))
T in joint

space from the time interval [tI , tF] to Rn. T (t) is collision-
free if all the configurations on T (t) lay in Cfree:

T (t) ∈ Cfree ∀t ∈ [tI , tF] (3)

B. Soft Motion Trajectories

We choose a particular series of 3rd degree polynomial
trajectories and name them as Soft Motion trajectories. A
Soft Motion trajectory is a type V trajectory defined by
Kröger, which satisfies:

V (t) ∈ Rn |V (t)| ≤ Vmax

A(t) ∈ Rn |A(t)| ≤ Amax (4)
Q(t) ∈ Rn |J(t)| ≤ Jmax

where Q, V , A and J represent the position, velocity,
acceleration and jerk, respectively. Jmax, Amax and Vmax

are the kinematic constraints. Therefore, at a discrete instant,
the trajectory can transfer the motion states while not exceed-
ing the given motion bounds. The continuity class of the
trajectory is C2. T (t) is considered as feasible if it satisfies
both Constraints (3) and (4). Our objective is to shorten the
execution time of an input trajectory as much as possible
while retaining the feasibility.

A trajectory is able to make the system transfer from the
current state to a target state at any time instant. For the
discussion of the next sections, a state of motion at an instant
ti is denoted as Mi = (Qi, Vi, Ai). Once the trajectory
is calculated, the function Mt = getMotionState(T , t)
returns the motion state on trajectory T at time t.

IV. SHORTCUTTING ALGORITHMS

Figure 2 illustrates the smoothing algorithm that performs
four iterations of shortcutting on a polygonal path. Collision
check fails during the first shortcut, and after three more
attempts, a feasible trajectory is generated.

Algorithm 1 Shortcutting algorithm
Input: a path as a list of waypoints, iteration count N
Output: a smoothed collision-free trajectory

1: Plan a time-optimal trajectory Tptp that stops at each
waypoints

2: Initialize the smooth trajectory Tsmooth = Tptp
3: for iteration = 0 to N do
4: Pick ts and te randomly from [0, tF]
5: Ms=getMotionState(Tsmooth, ts)=(Qs, Vs, As)

Me=getMotionState(Tsmooth, te)=(Qe, Ve, Ae)
6: Tsc = ComputeShortcutTraj(Ms,Me)
7: if Tsc → CollisionFree() then
8: Replace TMsMe

by Tsc in Tsmooth

9: end if
10: end for
11: return Tsmooth

A. Generation of Time-optimal Phase Synchronized Trajec-
tory

The first step is to convert a piecewise linear path to
a time-optimal trajectory that stops at each waypoint. The
trajectory along a straight-line path should be a phase-
synchronized motion [18]. Phase synchronization refers to
the synchronization in the position, velocity, acceleration and
jerk spaces. In other words, with any given time instant,
all variables must complete the same percentage of their
trajectories. The phase synchronization in an n-dimensional
space is defined as follows [19]:

iQ(t)− iQ(tI)

jQ(t)− jQ(tI)
= λ ∀i, j ∈ [1, n], t ∈ [tI , tF] (5)

where λ is a constant.
To achieve that, we compute the final time for each

dimension. Considering the largest motion time, we readjust
the other dimension motions to this time. Time adjusting is
done by decreasing linearly Jmax, Amax and Vmax. For each
segment of the trajectory, one of the velocity, acceleration,
or jerk functions of the n initial joints is saturated, while the
others are inside their validity domain. In other words, the
motion consumes minimum time for one direction. At other
directions, the motions are conditioned by the minimum one.
Repeating this strategy for each straight segment, we build
the time optimal trajectory Tptp that stops at each waypoint.

B. Soft Motion Interpolation

In the second step of this algorithm, we start the iterations.
The point-to-point (straight-line) trajectory Tptp obtained in
the first step is feasible, but is not satisfactory because the
velocity varies greatly at each waypoint, which stops the

motion. These stops can be avoided by drawing shortcuts
between random points on the trajectory.

Since each joint variable is assumed to be independent,
the minimum execution time between Ms and Me is de-
termined by the slowest single-joint trajectory. Then the
motion on the rest of the joints must be interpolated to
this imposed time which is called Timp. More precisely,
f(Ms,Me, Jmax, Amax, Vmax) is used to compute the time
of the time-optimal interpolant between motion states Ms
and Me under the kinematic bounds Jmax, Amax and Vmax.
Thus,

Timp = max(f(M j
s ,M

j
e , J

j
max, A

j
max, V

j
max)) j ∈ [1, n] (6)

The interpolation problem becomes one of building a
motion with predefined time. We propose three methods by
computing different parameters of the trajectory.

1) Three-Segment Interpolants: If we consider states Ms

and Me defined by a starting instant ts and an ending instant
te, the starting and ending situations to be connected are:
(Qs, Vs, As) and (Qe, Ve, Ae). An interesting solution to
connect this portion of trajectories is to define a sequence
of three trajectory segments with constant jerk that bring the
motion from the initial situation to the final one within time
Timp. We choose three segments because we need a small
number of segments and there is not always a solution with
one or two segments.

The system to be solved is then defined by 13 constraints:
the initial and final situations (6 constraints), the continuity
in position velocity and acceleration for the two switching
situations and time. Each segment of a trajectory is defined
by four parameters and time. If we fix the three durations
T1 = T2 = T3 =

Timp

3 , we obtain a system with 13
parameters where only the three jerks are unknown [16].
As the final control system is periodic with period T , the
time Timp/3 must be a multiple of the period T , and in this
study, Timp is chosen to be a multiple of 3T .

2) Three-Segment Interpolants With Bounded Jerk: The
three-segment interpolants solves the problem of trajectory
generation with fixed duration for each segment. However,
it cannot be guaranteed that the computed jerk is always
bounded. Here, we introduce a variant three-segment method
with defined jerk.

Same as the three-segment method, the system is also
defined by 13 constraints. With the variant method, however,
we fix the jerks on the first and third segments as |J1| =
|J3|, which have the value bounded within the kinematic
constraints. Then, the unknown parameters in the system are
J2 and the three time durations. Thus we obtain a system of
four equations with four parameters (J2, T1, T2 and T3):

Ae = J3T3 +A2 (7)

Ve = J3
T 2
3

2
+A2T3 + V2 (8)

Qe = J3
T 3
3

6
+A2

T 2
3

2
+ V2T3 +Q2 (9)

Timp = T1 + T2 + T3 (10)

where

A2 =J2T2 + J1T1 +As

V2 =J2
T 2
2

2
+ (J1T1 +As)T2 + J1

T 2
1

2
+AsT1 + Vs

Q2 =J2
T 3
2

6
+ (J1T1 +As)

T 2
2

2
+ (J1

T 2
1

2
+AsT1 + Vs)T2

+ J1
T 3
1

6
+As

T 2
1

2
+ VsT1 +Qs

To choose the values of jerks on each dimension, we resort to
the velocities Vs and Ve. The jerks are fixed by J1 = −J3 =
Jmax when Vs−Ve > 0, and by J1 = −J3 = −Jmax when
Vs − Ve < 0. If Vs − Ve = 0, we compare the values of As

and Ae instead.
3) Jerk-Bounded, Acceleration-Bounded, Velocity-

Bounded Interpolants: Now we derive the all-bounded
trajectory given a fixed duration Timp. The method in
section IV-B.2 can directly bound the jerk, but have to
readjust the jerk values by a predefined resolution to
bound the velocity and acceleration. As we detect the
longest execution time Timp by computing the time-optimal
trajectory on each joint, the jerk is saturated and the
acceleration and velocity may be saturated, depending on
different cases. Thus, we can extend the duration of all
joints (except the one with the longest duration) to Timp by
unsaturated interpolants while maintaining the number of
segments Nj on each joint. We name it a Slowing Down
Motion. Algorithm 2 shows the pseudocode.

Algorithm 2 All-Bounded Interpolants Generation
Input: Motion states: Ms, Me; number of DOFs: n;

Kinematic constraints
Output: All-Bounded Interpolants

1: Compute Timp using Eq. 6
2: for j = 1 to n do
3: Compute the time-optimal interpolants between Ms

and Me, then get the execution time Tj
4: Get Nj and the execution time on each segment TNj
5: if Nj = 0 then
6: No motion on this joint, maintain the time-optimal

interpolants
7: else
8: Enlarge TNj by TNj = TNj + Timp−Tj

Nj

9: Compute the new Jerk on each segment JNj
10: end if
11: Generate the interpolants with JNj and TNj
12: end for

C. Trajectory Collision Checking

Collision checking is a basic operation in any robot
motion planning and smoothing algorithm. This operation is
commonly realized by discretizing the curve at a predefined
constant resolution ε and statically testing each sampled
configuration. However, this approach is inexact and cannot
detect all collision that occurs. If ε is too small, the collision

obstacle

Q2

Q1

obstacle

joint2joint1

r1

dobst

(a) (b)

r2

Fig. 3. (a) A collision-free C-space path covered by free bubbles. (b) 2D
robot manipulator showing the maximum distance r1, r2 and the minimum
obstacle distance dobst. The circle at the axis of joint 1 of radius r1 (the
red dashed line) contains the entire manipulator. The circle at joint 2 of
radius r2 (the blue dashed line) contains link 2.

checker will be unnecessarily slow. On the other hand,
choosing it too large might result in missing some obstacles.

In order to overcome this problem, we use an alternative
local trajectory checking algorithm based on the divide and
conquer algorithm [20] and the concept of bubbles of free
configuration space, introduced in [6]. This algorithm recur-
sively splits the path in two sub-paths, and then calculates
bubbles of free space around a configuration and therefore
can guarantee the collision-free status of a trajectory segment
by overlapping these bubbles along each segment (Fig. 3(a)).
The bubble B(Q) at the current configuration Q is an upper
bound computed using a distance dobst, where dobst defines
the minimum distance between the robot in configuration Q
and the obstacles. For the robots with n revolute joints, the
bubble will be diamond shaped [6]:

B(Q) =

{
X ∈ C :

n∑
i=1

ri|Xi −Qi| ≤ dobst

}
(11)

where ri is the radius of the cylinder that is centered along
the axis of the i-th joint and contains all the subsequent
links of the manipulator. Figure. 3(b) gives an example of a
two-degree-of-freedom planar robot showing the maximum
distance of each joint and the minimum obstacle distance
dobst. Algorithm 3 shows the overall pseudocode of exact
collision check.

Algorithm 3 Exact collision check
Input: A trajectory T in time interval [ts, te]

1: Compute the free bubbles B(Qs) and B(Qe)
2: if OVERLAP(B(Qs), B(Qe)) then
3: return collision-free
4: else
5: Bisect the trajectory at ts+te

2
6: repeat
7: Recurse on the two halves
8: until collisionDetected or B(Q) ≤ threshold
9: return collision or collision-free

10: end if

(a) (b)

Fig. 4. (a) A manipulator reaches under a shelf on a table from the zero
position. (b) The blue curve depicts the original end effector path. The red
curve depicts the smoothed path after 200 random shortcuts.

Given a trajectory segment {T (t)|ts ≤ t ≤ te}, the
algorithm computes the free bubbles B(Qs) and B(Qe)
at Qs and Qe, respectively. If they overlap, the algorithm
terminates and reports a collision-free path. Otherwise, the
segment is bisected at ts+te

2 and the algorithm recurses on
the two halves. We break the recursion when a collision
is detected, or the largest segment, uncovered by bubbles,
becomes smaller than the predefined threshold. As this
method calculates a lower bound for the free bubble radius
based on the minimum obstacle distance, the radius tends
to get very small at a configuration with a low obstacle
distance. Numerous distance and collision calculations are
required in this situation, which slows down the collision
check procedure. For real applications, as it is not desirable
that the robot passes near the obstacles this trajectories can
be discarded.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation
Simulation was performed on a reaching task for a 7-

DOF robot arm in human environment (Fig. 4). Totally 10
initial paths were generated with the same start and end
configurations by a sample-based planner. Then these paths
were converted into trajectories using both generation of
phase-synchronized trajectory (see section IV-A) and our
smooth algorithm. The maximum joint velocity is decided by
the physical properties of the motor. The numerical values
of the velocity constraint for each joint were cited from [21].
Thus, Vmax can be defined by a vector:

Vmax = [v1 v2 v3 v4 v5 v6 v7]
T

= [1.75 1.92 1.75 2.26 2.26 3.14 3.14]T rad/s

Then, the kinematic motion bounds are defined in Table I.
The numeric values are:

TABLE I
ROBOT MOTION IS LIMITED IN JERK, ACCELERATION, AND VELOCITY

Jerk Acceleration Velocity
5*Amax rad/s3 2.5*Vmax rad/s2 Vmax rad/s

Amax = [4.38 4.80 4.38 5.65 5.65 7.85 7.85]T rad/s2

Jmax = [21.9 24.0 21.9 28.3 38.3 39.3 39.3]T rad/s3

Fig. 5. The execution time of trajectories postproessed the smoothing
algorithm for 10 different initial paths, on the task of Fig. 4.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

 (r
ad

)

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6
Joint 7

0 1 2 3 4 5

−1

0

1

Time (s)

V
e

lo
ci

ty
 (

ra
d

/s
)

0 1 2 3 4 5
−4

−2

0

2

4

Time (s)

A
cc

e
le

ra
tio

n
 (

ra
d

/s
2
)

0 1 2 3 4 5

−10

0

10

20

Time (s)

Je
rk

 (
ra

d
/s

3
)

Fig. 6. The position, velocity, acceleration and jerk profile of the calculated
trajectory in the robot reaching task

Figure 4 shows that the smoothed path of the end-effector
during the reaching task is much shorter and more natural-
looking compared to the unprocessed path directly given by
the motion planner. Figure 5 illustrates that the execution
time is largely reduced by 36.77% on average after 200 short-
cutting iterations. Figure 6 illustrates the position, velocity,
acceleration and jerk profile on each joint. All the trajectories
variables were also checked successfully for the kinematic
bounds.

The computation for these smooth trajectories consumes
an average time of 4.8 s on an Intel Core(TM)2 Quad CPU
2.66GHz machine. Because of our analytical construction,
the time in construction of the shortcuts is negligible. Colli-
sion checking takes most of the smoothing time. As expected,

(a) (b)

Fig. 7. The planning setup of the ICARO industrial scenario. Left: a global
view of the setup. Right: the start configuration.

the collision checker runs the most slowly when the robot
passes under the shelf in this experiment.

B. Robot Experiments

The smoothing algorithm was also applied to a real KUKA
light-weight robot IV, which was controlled through the
Fast Research Interface [22]. We use a real-world industrial
scenario for evaluation. Figure 7 shows the planning setup.
The control software was developed using Open Robots
tools: GenoM3 [23]. The sampling time was fixed to 10 ms.

In the timing experiments, 50 iterations of shortcutting
were finished with a computation time of 1.1 s and a reduced
execution time of 2.8 s on average. Results demonstrate
that our smoothing algorithm can generate natural-looking
motions in clustered environment.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a fast trajectory smoothing algorithm
using third-degree polynomial functions for high-DOF robot
manipulators. This algorithm uses a shortcutting heuristic
to compute C2 trajectories that are bounded in velocity,
acceleration and jerk. We also present a continuous colli-
sion detection algorithm along Soft Motion trajectories. The
experimental results with a KUKA arm validate the effec-
tiveness of this algorithm in cluttered human environments.

In future works, we will implement the algorithm on-line
to smooth the trajectory during execution. It would also be
interesting to consider the dynamic bounds. Moreover, we
could attempt to shorten the computation time with faster
collision detection algorithms.

REFERENCES

[1] Xavier Broquere, Daniel Sidobre, and Ignacio Herrera-Aguilar. Soft
motion trajectory planner for service manipulator robot. Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, pages 2808–2813, Sept. 2008.

[2] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5):378–
400, 2001.

[3] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. Robotics and Automation, IEEE Transactions on, 12(4):566–
580, Aug 1996.

[4] A. Bicchi and G. Tonietti. Fast and soft arm tactics: Dealing with the
safety-performance trade-off in robot arms design and control. IEEE
Robotics and Automation Magazine, 11(2):22–33, 2004.

[5] T. Kröger. On-Line Trajectory Generation in Robotic Systems, vol-
ume 58 of Springer Tracts in Advanced Robotics. Springer, Berlin,
Heidelberg, Germany, first edition, jan 2010.

[6] Sean Quinlan. Real-time modification of collision-free paths. Techni-
cal report, Stanford, CA, USA, 1995.

[7] Daniel Sidobre and Wuwei He. Online task space trajectory genera-
tion. In Workshop on Robot Motion Planning Online, Reactive, and
in Real-time, 2012.

[8] Oliver Brock and Oussama Khatib. Elastic strips: A framework for
motion generation in human environments. The International Journal
of Robotics Research, 21(12):1031–1052, 2002.

[9] M. Toussaint, M. Gienger, and C. Goerick. Optimization of sequential
attractor-based movement for compact behaviour generation. In
Humanoid Robots, 2007 7th IEEE-RAS International Conference on,
pages 122–129, Nov 2007.

[10] Z. Shiller and S. Dubowsky. Global time optimal motions of robotic
manipulators in the presence of obstacles. In Robotics and Automation,
1988. Proceedings., 1988 IEEE International Conference on, pages
370–375 vol.1, Apr 1988.

[11] J.E. Bobrow. Optimal robot plant planning using the minimum-time
criterion. Robotics and Automation, IEEE Journal of, 4(4):443–450,
Aug 1988.

[12] Sbastien Lengagne, Joris Vaillant, Eiichi Yoshida, and Abderrahmane
Kheddar. Generation of whole-body optimal dynamic multi-contact
motions. The International Journal of Robotics Research, 32(9-
10):1104–1119, 2013.

[13] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. Robotics and Automation, IEEE Transactions on, 12(4):566–
580, Aug 1996.

[14] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning
collision-free reaching motions for interactive object manipulation and
grasping. In Computer Graphics Forum, volume 22 of Comput. Graph.
Forum (UK), pages 313–22. Blackwell Publishers for Eurographics
Assoc, 2003. Robotics Res. Lab., Univ. of Southern California, Los
Angeles, CA, USA.

[15] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on,
pages 2493–2498, May 2010.

[16] X. Broquère and D. Sidobre. From motion planning to trajectory
control with bounded jerk for service manipulator robots. In IEEE
Int. Conf. Robot. And Autom., 2010.

[17] L. Biagiotti and C. Melchiorri. Trajectory Planning for Automatic
Machines and Robots. Springer, November 2008.

[18] T. Kröger. Online trajectory generation: Straight-line trajectories. IEEE
Transactions on Robotic, 27(5):1010–1016, 2011.

[19] A.Frisoli, C.Loconsole, R.Bartalucci, and M.Bergamasco. A new
bounded jerk on-line trajectory planning for mimicking human move-
ments in robot-aided neurorehabilitation. Robotics and Autonomous
Systems, 2013.

[20] Fabian Schwarzer, Mitul Saha, and Jean-Claude Latombe. Exact
collision checking of robot paths. In Jean-Daniel Boissonnat, Joel
Burdick, Ken Goldberg, and Seth Hutchinson, editors, Algorithmic
Foundations of Robotics V, volume 7 of Springer Tracts in Advanced
Robotics, pages 25–41. Springer Berlin Heidelberg, 2004.

[21] KUKA Roboter GmbH. Lightweight Robot 4 Operating Instructions,
2008.

[22] G. Schreiber, A. Stemmer, and R. Bischoff. The fast research interface
for the kuka lightweight robot. In Proc. of the IEEE ICRA 2010
Workshop on ICRA 2010 Workshop on Innovative Robot Control
Architectures for Demanding (Research) Applications - How to Modify
and Enhance Commercial Controllers, pages 15–21, 2010.

[23] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaignan,
and Félix Ingrand. Genom3: Building middleware-independent robotic
components. In Robotics and Automation (ICRA), 2010 IEEE Inter-
national Conference on, pages 4627–4632. IEEE, 2010.

	INTRODUCTION
	RELATED WORK
	Notations and Representations
	Notations
	Soft Motion Trajectories

	ShortCutting algorithms
	Generation of Time-optimal Phase Synchronized Trajectory
	Soft Motion Interpolation
	Three-Segment Interpolants
	Three-Segment Interpolants With Bounded Jerk
	Jerk-Bounded, Acceleration-Bounded, Velocity-Bounded Interpolants

	Trajectory Collision Checking

	Simulation and Experimental Results
	Simulation
	Robot Experiments

	Conclusions and Future works
	References

