A Dalet 
  
G Lancien 
email: gilles.lancien@univ-fcomte.fr
  
SOME PROPERTIES OF COARSE LIPSCHITZ MAPS BETWEEN BANACH SPACES

Keywords: 2010 Mathematics Subject Classification. Primary 46B80; Secondary 46B03, 46B20. Key words and phrases. coarse Lipschitz maps and equivalences, asymptotically uniformly smooth norms

We study the structure of the space of coarse Lipschitz maps between Banach spaces. In particular we introduce the notion of norm attaining coarse Lipschitz maps. We extend to the case of norm attaining coarse Lipschitz equivalences, a result of G. Godefroy on Lipschitz equivalences. This leads us to include the non separable versions of classical results on the stability of the existence of asymptotically uniformly smooth norms under Lipschitz or coarse Lipschitz equivalences.

Introduction

In a recent paper [START_REF] Godefroy | On norm attaining Lipschitz maps between Banach spaces[END_REF] G. Godefroy studied various notions of norm attaining Lipschitz functions. If (M, d) and (N, δ) are two metric spaces and f : M → N is Lipschitz, it is natural to say that f attains its norm at the pair (x, y) in M × M with x = y if δ(f (x), f (y)) d(x, y) = Lip (f ),

where Lip (f ) denotes the Lipschitz constant of f . In [START_REF] Godefroy | On norm attaining Lipschitz maps between Banach spaces[END_REF], G. Godefroy introduced the following weaker form of norm attaining vector valued Lipschitz functions. Let (M, d) be a metric space, (Y, Y ) a Banach space and f : M → Y a Lipschitz map. We say that f attains its norm in the direction y ∈ S Y , where S Y denotes the unit sphere of Y , if there exists a sequence (s n , t n ) ∞ n=0 in M × M with s n = t n and such that lim

n→∞ f (s n ) -f (t n ) d(s n , t n ) = y Lip (f ).
One of the main results of [START_REF] Godefroy | On norm attaining Lipschitz maps between Banach spaces[END_REF] is that if a Lipschitz isomorphism f between two Banach spaces X and Y attains its norm in the direction y ∈ S Y , then there exists a constant c > 0 such that ρ Y (y, ct) ≤ 2ρ X (t), where ρ denotes the modulus of asymptotic uniform smoothness (see definitions in section 6). Then, noticing that this is impossible if one of the spaces is asymptotically uniformly flat and the other has a norm with the Kadets-Klee property, he provides examples of pairs of Banach spaces (X, Y ) for which the set of norm attaining Lipschitz maps, in this weaker sense, is not dense.

The starting point of this work was to notice that this argument could be adapted to the setting of coarse Lipschitz maps between Banach spaces X and Y . This space of functions is a vector space on which a natural semi-norm is given by the Lipschitz constant at infinity of a coarse Lipschitz map. It is then natural to work with the corresponding quotient space that we shall denote CL(X, Y ).

In section 2 we introduce these basics definitions as well as the analogue of Godefroy's definition for norm attaining coarse Lipschitz maps.

In section 3 we define the notion of coarse Lipschitz equivalent Banach spaces, or quasi-isometric Banach spaces in the terminology introduced by M. Gromov in [START_REF] Gromov | Hyperbolic groups, Essays in group theory[END_REF]. In Proposition 3.3, we gather some characterizations of the coarse Lipschitz equivalence that were essentially known. In particular we describe the link with the notion of net equivalence of Banach spaces. We also insist on the existence of continuous representative of coarse Lipschitz equivalences. This will be crucial in our further use of the Gorelik principle.

In section 4 we address the question of the completeness of our normed quotient space CL(X, Y ). In Proposition 4.5 we give a sufficient condition for CL(X, Y ) to be complete. We also describe situations when the coarse Lipschitz equivalences can be viewed as an open subset of our quotient space.

In section 5 we gather the necessary background on the so-called Gorelik principle. First, we recall its classical version for uniform homeomorphisms and Lipschitz isomorphisms. Then we prove in Theorem 5.3 a version of the Gorelik principle which is a variant of Theorem 3.8 in [START_REF] Godefroy | The non linear geometry of Banach spaces after Nigel Kalton[END_REF] stated in terms of coarse Lipschitz equivalences instead of net equivalences of Banach spaces.

Section 6 is devoted to the study of the preservation of the asymptotic uniform smoothness under Lipschitz isomorphisms and coarse Lipschitz equivalences. First we recall the definitions of the relevant moduli and their relationships. The stability of the existence of an equivalent asymptotically uniformly smooth norm was proved in [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF] in the separable case. We take in Theorem 6.3 the opportunity to detail its proof in the non separable case that we have not found in the literature. In Theorem 6.5 we detail a precise quantitative version of the stability of asymptotically uniformly smooth renormings under coarse Lipschitz equivalences, again in the general case. This result was mentioned in [START_REF] Godefroy | The non linear geometry of Banach spaces after Nigel Kalton[END_REF] with only a very brief outline of the proof. Moreover the details of this proof will be used in our last section.

Finally, in section 7 (Theorem 7.1), we extend Godefroy's result to our setting of norm attaining coarse Lipschitz equivalences and we give examples of situations when it can be properly stated that the set of norm attaining coarse Lipschitz maps between two Banach spaces X and Y is not dense in the quotient space CL(X, Y ).

Norm attaining coarse Lipschitz maps

Definition 2.1. Let (M, d) and (N, δ) be two metric spaces and a map f :

M → N . If (M, d) is unbounded, we define ∀s > 0, Lip s (f ) = sup δ((f (x), f (y)) d(x, y) , d(x, y) ≥ s and Lip ∞ (f ) = inf s>0 Lip s (f ). Then f is said to be coarse Lipschitz if Lip ∞ (f ) < ∞.
The set of coarse Lipschitz maps from M to N is denoted CL(M, N ).

The following equivalent formulations are easy to verify.

Proposition 2.2. Let (M, d) and (N, δ) be two metric spaces, with (M, d) unbounded and let f : M → N be a mapping. Then the following assertions are equivalent.

(i) The map f is coarse Lipschitz.

(ii) There exist A and θ in [0, +∞) such that

∀x, y ∈ M d(x, y) ≥ θ ⇒ δ(f (x), f (y)) ≤ Ad(x,

y).

(iii) There exist A and B in [0, +∞) such that

∀x, y ∈ M δ(f (x), f (y)) ≤ Ad(x, y) + B.
Note that in the above statement, Lip ∞ (f ) coincide with the infimum of all A ≥ 0 such that (ii) is satisfied for some θ ≥ 0 and also with the infimum of all A ≥ 0 such that (iii) is satisfied for some B ≥ 0. Suppose now that (M, d) is an unbounded metric space and (Y, Y ) is a Banach space. Then it is easy to see that CL(M, Y ) is a vector space on which Lip ∞ is a semi-norm that we shall also denote CL(M,Y ) or simply CL if no confusion is possible. Then we denote N (M, Y ) = {f ∈ CL(M, Y ), Lip ∞ (f ) = 0} and CL(M, Y ) the quotient space CL(M, Y )/N (M, Y ). The semi-norm Lip ∞ induces a norm on CL(M, Y ) that will also be denoted Lip ∞ , CL(M,Y ) or CL . We shall try to avoid as much as possible the confusion between elements of CL(M, Y ) and elements of CL(M, Y ).

We now introduce the notion of norm attaining coarse Lipschitz maps. Definition 2.3. Let (M, d) be an unbounded metric space and (Y, Y ) a Banach space. Assume that f : M → Y is coarse Lipschitz. We say that f attains its norm in the direction y ∈ S Y if there exist a sequence of pairs of distinct points (s

n , t n ) in M such that lim n→∞ d(s n , t n ) = +∞ and lim n→∞ f (t n ) -f (s n ) d(s n , t n ) = y Lip ∞ (f ).
Remark. Note that the above definition is only interesting when Lip ∞ (f ) = 0, that is when f = 0 in the quotient space CL(M, Y ). Note also that if f ∈ CL(M, Y ) attains its norm in the direction y ∈ S Y and g : M → Y is such that Lip ∞ (f -g) = 0, then g also attains its norm in the direction y. Therefore, this notion is well defined for an element f of the quotient space CL(M, Y ). This notion of coarse Lipschitz equivalent metric spaces is exactly the same as the notion of quasi-isometric metric spaces introduced by Gromov in [START_REF] Gromov | Hyperbolic groups, Essays in group theory[END_REF] (see also the book [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF] by E. Ghys and P. de la Harpe).

Remark. It is easy to check, for instance using the characterization (iii) in Proposition 2.2, that CL ∼ is an equivalence relation.

We now turn to the notion of net in a metric space.

Definition 3.2. Let 0 < a ≤ b. An (a, b)-net in the metric space (M, d) is a subset M of M such that for every z = z in M, d(z, z ) ≥ a and for every x in M , d(x, M) < b. Then a subset M of M is a net in M if it is an (a, b)-net for some 0 < a ≤ b.
Let us now give two technical equivalent formulations of the notion of coarse equivalence between Banach spaces, that we shall use later. The main result, which is the fact that (ii) implies (iii) is essentially contained in the proof of Theorem 3.8 in [START_REF] Godefroy | The non linear geometry of Banach spaces after Nigel Kalton[END_REF].

Proposition 3.3. Let X and Y be two Banach spaces and f : X → Y . The following assertions are equivalent.

(i) The map f belongs to CLE(X, Y ) (ii) There exist A 0 > 0 and K ≥ 1 such that for all A ≥ A 0 and all maximal

A-separated subset M of X, N = f (M) is a net in Y and ∀x, x ∈ M 1 K x -x ≤ f (x) -f (x ) ≤ K x -x .
(iii) There exist two continuous coarse Lipschitz maps ϕ :

X → Y and ψ : Y → X and a constant C ≥ 0 such that ϕ(x) -f (x) ≤ C for all x in X and ∀x ∈ X (ψ • ϕ)(x) -x ≤ C and ∀y ∈ Y (ϕ • ψ)(y) -y ≤ C. Proof. (i) ⇒ (ii). Assume that there exist g : Y → X and constants C, D, M > 0 such that ∀x ∈ X (g • f )(x) -x ≤ C, ∀y ∈ Y (f • g)(y) -y ≤ C. and ∀x, x ∈ X f (x) -f (x ) ≤ D + M x -x ,
∀y, y ∈ Y g(y) -g(y ) ≤ D + M y -y . Let A 0 = (2C + D)(M + 1), A ≥ A 0 and M be a maximal A-separated subset of X. Note that M is a (A, A)-net of X. Let now x = x ∈ M, y = f (x) and y = f (x ). Then

f (x) -f (x ) ≤ D + M x -x ≤ A + M x -x ≤ (M + 1) x -x .
On the other hand g(y) -x ≤ C and g(y ) -x ≤ C, which implies that g(y) -g(y ) ≥ x -x -2C and therefore

x -x ≤ 2C + D + M y -y ≤ A M + 1 + M y -y ≤ x -x M + 1 + M y -y .
It follows that x -x ≤ (M + 1) y -y . So f is a Lipschitz isomorphism from M onto N = f (M) and K = M + 1 satisfies the required inequalities. In particular N is a-separated, with a = A(M + 1) -1 .

Finally let z ∈ Y . There exists x ∈ M such that x -g(z) ≤ A. Then

f (x) -z ≤ f (x) -f (g(z)) + C ≤ D + M A + C = b.
We have shown that N is an (a, b)-net in Y , which finishes the proof of this implication.

(ii) ⇒ (iii) For A ≥ A 0 , we pick (x i ) i∈I a maximal A-separated subset of X. Note that (x i ) i∈I is an (A, A)-net in X. For i ∈ I, let y i = f (x i ). Then, by assumption, (y i ) i∈I is an (a, b)-net in Y , for some 0 < a ≤ b, and we have ∀i, j ∈ I 1 K x i -x j ≤ y i -y j ≤ K x i -x j .
Then we can find a continuous partition of unity (f i ) i∈I subordinated to the open cover (B X (x i , A)) i∈I of X and a continuous partition of unity

(g i ) i∈I subordinated to the open cover (B Y (y i , b)) i∈I of Y and we set ∀x ∈ X ϕ(x) = i∈I f i (x) y i and ∀y ∈ Y ψ(y) = i∈I g i (y) x i .
Note first that ϕ and ψ are continuous. Let x ∈ X and pick i ∈ I such that x -

x i ≤ A. Now, if f j (x) = 0, then x -x j ≤ A and x i -x j ≤ 2A. It follows that ϕ(x) -y i = j,f j (x) =0 f j (x) (y j -y i ) ≤ 2AK.
Let now x ∈ X and j ∈ I so that x -x j ≤ A. Then we have

ϕ(x) -ϕ(x ) ≤ 4AK + y i -y j ≤ 4AK + K x i -x j ≤ 6AK + K x -x .
This shows that ϕ is coarse Lipschitz and Lip ∞ (ϕ) ≤ K and a similar proof yields that the same is true for ψ.

For x ∈ X, pick again i ∈ I such that x -x i ≤ A. If g j (ϕ(x)) = 0, then ϕ(x) -y j ≤ b and y i -y j ≤ ϕ(x) -y i + ϕ(x) -y j ≤ 2AK + b. Therefore ψ(ϕ(x)) -x i = j,g j (f (x)) =0 g j (ϕ(x)) (x j -x i ) ≤ K(2AK + b).
Finally, we get that

ψ(ϕ(x)) -x ≤ ψ(ϕ(x)) -x i + x -x i ≤ K(2AK + b) + A = C 1 .
Similarly, we get that there exists C 2 ≥ 0 such that for all y ∈ Y , ϕ(ψ(y))-y ≤ C 2 . Finally, recall that f is coarse Lipschitz. So, there exist D, E ≥ 0 such that for all

x, x ∈ X, f (x) -f (x ) ≤ D x -x + E. Since ∀x ∈ X ϕ(x) -f (x) = j,f j (x) =0 f j (x) (f (x j ) -f (x)),
and

x j -x ≤ A, whenever f j (x) = 0, we obtain that ∀x ∈ X, ϕ(x) -f (x) ≤ DA + E = C 3 .
We conclude the proof of this implication by taking

C = max{C 1 , C 2 , C 3 }. (iii) ⇒ (i) is clear.
Remark. The main information of Proposition 3.3 is that for any f in CLE(X, Y ), there exists ϕ which is a continuous representative of the equivalence class of f in CL(X, Y ) and also a coarse Lipschitz equivalence with a continuous "coarse Lipschitz inverse" ψ. This will be crucial when we shall apply the Gorelik principle whose proof is based on Brouwer's fixed point theorem.

Let us notice that, using for instance the characterization (ii) of Proposition 3.3, the following is immediate.

Corollary 3.4. Let X, Y be two Banach spaces and f ∈ CLE(X, Y ). Then, for any λ = 0, λf ∈ CLE(X, Y ).

On the completeness of CL(X,Y)

Definition 4.1. Let X and Y be two Banach spaces and M be a net in X. We say that (M, X, Y ) has the Lipschitz extension property if any Lipschitz function from M to Y admits a Lipschitz extension from X to Y . We say that the pair (X, Y ) has the net extension property (in short NEP) if there exists a net M in X such that (M, X, Y ) has the Lipschitz extension property Lemma 4.2. Assume that X and Y are Banach spaces and M is a net in X such that (M, X, Y ) has the Lipschitz extension property, then there exists λ ≥ 1 such that any Lipschitz function f : M → Y admits an extension g : X → Y with Lip (g) ≤ λLip (f ).

Proof. We may and do assume that 0 ∈ M and f (0) = 0. Then the conclusion follows from a straightforward application of the open mapping theorem to the restriction operator to M defined from Lip 0 (X, Y ) onto Lip 0 (M, Y ), where Lip 0 (X, Y ) is the Banach space of all Lipschitz functions from X to Y that vanish at 0 equipped with the norm f L = Lip (f ). Definition 4.3. Let X and Y be two Banach spaces and let µ ≥ 1. We say that (X, Y ) has the µ-Lipschitz representation property if (in short µ-LRP) if for any f ∈ CL(X, Y ) and any c > Lip ∞ (f ), there exists g ∈ Lip 0 (X, Y ) so that Lip (g) < µc and f -g is bounded.

Proposition 4.4. Assume that X and Y are Banach spaces such that (X, Y ) has the net extension property. Then there exists µ ≥ 1 such that (X, Y ) has the µ-LRP.

Proof. Let f ∈ CL(X, Y ) such that Lip ∞ (f ) < c.
Pick M be a net in X and λ ≥ 1 such that the conclusion of Lemma 4.2 is satisfied. It follows from an easy change of variable argument that for any A ≥ 1, the net AM also satisfies the conclusion of Lemma 4.2 with the same constant λ. Then for A large enough, the restriction of f to AM is c-Lipschitz. So it admits an extension g : X → Y such that g is λc-Lipschitz. Since f and g are both coarse Lipschitz and coincide on a net, it is not difficult to see that f -g is bounded. By adding a constant to g, we may also assume that g(0) = 0, which concludes the proof.

Remark. We do not know if the converse of this last proposition is true. However, it is not difficult to check that the existence of µ ≥ 1 such that (X, Y ) has the µ-LRP is equivalent to the existence of λ ≥ 1 such that (X, Y ) has the λ-ANEP.

Here, λ-ANEP stands for λ-almost net extension property, which is formally weaker than NEP and has the following ad'hoc meaning: there exists a net M in X such that for any Lipschitz function f : M → Y , there exists g : X → Y Lipschitz so that Lip (g) ≤ λLip (f ) and f -g is bounded on M. Proposition 4.5. Assume that X and Y are Banach spaces such that (X, Y ) has the µ-LRP for some µ ≥ 1.

Then (CL(X, Y ), CL ) is a Banach space Proof. Let (f n ) ∞ n=1 be a sequence in CL(X, Y ) such that ∞ n=1 f n CL < ∞.
Then for any n in N, there exists g n ∈ Lip 0 (X, Y ) such that g n belongs to the equivalence class of f n and Lip (g n ) ≤ µ f n CL + 2 -n . Then using the completeness of (Lip 0 (X, Y ), L ) we get that there exists g ∈ Lip 0 (X, Y ) such that lim

N →∞ g - N n=1 g n L = 0. It follows that lim N →∞ g -N n=1 f n CL = 0, which concludes our proof. Remark. We do not know if (CL(X, Y ),
CL ) is a Banach space without any assumption on the Banach spaces X and Y . We conjecture that it is not the case, but a counterexample still has to be constructed. Proposition 4.6. Assume that X and Y are Banach spaces such that (X, Y ) and (Y, X) have the µ-LRP for some µ ≥ 1. Then for any f ∈ CLE(X, Y ), there exists

ε > 0 such that f -u ∈ CLE(X, Y ), whenever u : X → Y is such that Lip ∞ (u) < ε. Proof. Since f ∈ CLE(X, Y ), there exists C ≥ 1 and g ∈ CLE(Y, X) so that Lip ∞ (f ) < C, Lip ∞ (g) < C and ∀x ∈ X (g • f )(x) -x ≤ C and ∀y ∈ Y (f • g)(y) -y ≤ C. Let us now fix u ∈ CL(X, Y ) such that Lip ∞ (u) < (µ 2 C) -1 .
It follows from our assumptions that there exist ϕ ∈ Lip 0 (X, Y ), ψ ∈ Lip 0 (Y, X) and v ∈ Lip 0 (X, Y ) so that Lip (ϕ) < µC, Lip (ψ) < µC, Lip (v) < (µC) -1 and such that f -ϕ, g -ψ and u -v are bounded. Note first that it is not difficult to deduce from our assumptions that ψ

• ϕ -I X is bounded on X and ϕ • ψ -Id Y is bounded on Y . Consider now G = ∞ n=0 ψ • (v • ψ) n = ψ • ∞ n=0 (v • ψ) n = ∞ n=0 (ψ • v) n • ψ.
Since Lip 0 (Y, X), Lip 0 (Y, Y ) and Lip 0 (X, X) are complete and since Lip (v • ψ) < 1 and Lip (ψ • v) < 1, the above expressions converge in the Lipschitz norm (and thus also pointwise) to a common function G belonging to Lip 0 (Y, X). Then we can write

(ϕ -v) • G -Id Y = (ϕ • ψ -Id Y ) • ∞ n=0 (v • ψ) n .

The series involved in the above equation is absolutely convergent in

Lip 0 (Y, Y ) which is complete. It then follows that (ϕ -v) • G -Id Y is bounded on Y . On the other hand G • (ϕ -v) -Id X = ∞ n=0 (ψ • v) n • (ψ • ϕ -I X ).
Here, by completeness of Lip 0 (X, X), the series ∞ n=0 (ψ•v) n converges to a function F ∈ Lip 0 (X, X). since (ψ • ϕ -I X ) is bounded and F is Lipschitz, we have that

G • (ϕ -v) -Id X is bounded on X. Recall now that h = (f -u) -(ϕ -v) is bounded and write (f -u) • G -Id Y = (ϕ -v) • G -Id Y + h • G. It is then clear that (f -u) • G -Id Y is bounded on Y . Finally G • (f -u) -Id X = G • (ϕ -v) -Id X + [G • (f -u) -G • (ϕ -v)]. Since G • (ϕ -v) -Id X and (f -u) -(ϕ -v) are bounded and G is Lipschitz, we deduce that G • (f -u) -Id X is bounded on X. We have proved that f -u ∈ CLE(X, Y ).

Remarks.

In the particular situation described in Proposition 4.6, we could denote CLE(X, Y ) the set of equivalent classes of elements of CLE(X, Y ) and state that it is open in the quotient space CL(X, Y ).

In this work we have chosen to follow Gromov's definition for the invertible elements of CL(X, Y ). On of the advantages of this definition is to coincide with the notion of net equivalence for Banach spaces. However, in pursuing the study of our normed quotient space, it would be more natural to say that

f ∈ CL(X, Y ) is "invertible" if there exists g ∈ CL(Y, X) such that Lip ∞ (f • g) -Id Y = Lip ∞ (g • f ) -Id X = 0.

Background on the Gorelik principle.

The tool that we shall now describe is the Gorelik principle. It was initially devised by Gorelik in [START_REF] Gorelik | The uniform nonequivalence of Lp and lp[END_REF] to prove that p is not uniformly homeomorphic to L p , for 1 < p < ∞. Then it was developed by Johnson, Lindenstrauss and Schechtman [START_REF] Johnson | Banach spaces determined by their uniform structures[END_REF] to prove that for 1 < p < ∞, p has a unique uniform structure. We now recall the crucial ingredient in the proof of the Gorelik Principle (see step (i) in the proof of Theorem 10.12 in [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF]). This statement relies on Brouwer's fixed point theorem and on the existence of Bartle-Graves continuous selectors. We refer the reader to [START_REF] Albiac | Topics in Banach space theory -Second Edition[END_REF] or [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF] for its proof.

Proposition 5.1. Let X 0 be a finite-codimensional subspace of a Banach space X and let 0 < c < d. Then, there exists a compact subset A of dB X such that for every continuous map φ : A → X satisfying φ(a) -a ≤ c for all a ∈ A, we have that φ(A) ∩ X 0 = ∅.

Let us now state the Gorelik principle as it can be found in [START_REF] Albiac | Topics in Banach space theory -Second Edition[END_REF], [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF] or [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF].

Theorem 5.2. Let X and Y be two Banach spaces and let f be a homeomorphism from X onto Y whose inverse is uniformly continuous. Let b, d > 0 so that ω(f -1 , b) < d, where ω(f -1 , .) is the modulus of uniform continuity of f -1 . Assume that X 0 is a closed finite codimensional subspace of X. Then there exists a compact subset K of Y so that bB Y ⊂ K + f (2dB X 0 ). In particular, if f is a Lipschitz isomorphism such that Lip(f ) ≤ 1 and Lip(f -1 ) ≤ M , the condition ω(f -1 , b) < d is satisfied when M b < d.

We will now state a version of the Gorelik principle that will be used to study coarse equivalent Banach spaces. For the sake of completeness we shall reproduce the proof that can be found in [START_REF] Godefroy | The non linear geometry of Banach spaces after Nigel Kalton[END_REF] (Theorem 3.8) with more attention given on keeping optimal estimates and with slightly weaker assumptions. Theorem 5.3. Let X and Y be two Banach spaces. Assume that f : X → Y and g : Y → X are continuous, and that there exist constants C, D, M > 0 such that ∀y, y ∈ Y g(y) -g(y

) ≤ D + M y -y and ∀x ∈ X (g • f )(x) -x ≤ C and ∀y ∈ Y (f • g)(y) -y ≤ C. Let λ < 1. Then for all α ≥ α 0 = 2(C + D)(1 -λ) -1 and all finite codimensional subspace X 0 of X, there is a compact subset K of Y so that λα M B Y ⊂ K + CB Y + f (2αB X 0 ). Proof. Let µ = 1+λ 2 , α 0 = C+D µ-λ = 2(C+D)
1-λ and α ≥ α 0 . Let also X 0 be a finite codimensional subspace of X. It follows from Proposition 5.1 that there exists a compact subset A of αB X such that for every continuous map φ : A → X satisfying φ(a) -a ≤ µα for all a ∈ A, we have that φ(A) ∩ X 0 = ∅.

Consider now y ∈ λα

M B Y and define φ : A → X by φ(a) = g(y + f (a)). Then φ is clearly continuous and ∀a ∈ A, φ(a)-a ≤ C+ g(y+f (a))-g(f (a)) ≤ C+D+M y ≤ C+D+λα ≤ µα.

Hence, there exists a ∈ A so that φ(a) ∈ X 0 . Since a ≤ α and φ(a) -a ≤ µα, we have that φ(a) ∈ 2αB X 0 . Finally, we use the fact that (f

• g)(y + f (a)) -(y + f (a)) ≤ C to conclude that y ∈ K + CB Y + f (2αB X 0 ), where K = -f (A) is a compact subset of Y .
Remark. Note that in the above result we have not assumed that f is coarse Lipschitz.

Asymptotic uniform smoothness and coarse Lipschitz equivalence

We now recall the definitions of the modulus of asymptotic uniform smoothness of a norm and the modulus of weak * asymptotic uniform convexity of a dual norm. They are due to V. Milman [START_REF] Milman | Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk[END_REF] and we follow the notation from [START_REF] Johnson | Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces[END_REF]. So let (X, ) be a Banach space. For t > 0, and x ∈ S X we define

ρ X (x, t) = inf Y sup y∈S Y ( x + ty -1),
where Y runs through all closed subspaces of X of finite codimension. Then

ρ X (t) = sup x∈S X ρ X (x, t).
The norm is said to be asymptotically uniformly smooth (in short AUS) if

lim t→0 ρ X (t) t = 0.
We say that the norm is asymptotically uniformly flat if

∃t 0 ∈ (0, +∞) ∀t ∈ [0, t 0 ] ρ X (t) = 0.
Now, for t > 0, and x * ∈ S X * we define

θ X (x * , t) = sup E inf y * ∈S E ⊥ ( x * + ty * -1),
where E runs through all finite dimensional subspaces of X. Then

θ X (t) = inf x * ∈S X * θ X (x * , t).
The norm of X * is said to be weak * asymptotically uniformly convex (in short w * -AUC) if ∀t > 0 θ X (t) > 0. The duality between these two moduli is now well understood. The following complete and precise statement is taken from [START_REF] Dilworth | Equivalent norms with the property β of Rolewicz[END_REF] Proposition 2.1. Proposition 6.1. Let X be a Banach space and 0 < σ, τ < 1.

(a) If ρ X (σ) < στ 6 , then θ X (τ ) > στ 6 . (b) If θ X (τ ) > στ , then ρ X (σ) < στ
As an immediate consequence we have that X is AUS if and only if X * is w * -AUC.

Let us also detail a few other classical consequences. First we recall that for a function f which is continuous monotone non decreasing on [0, 1] and such that f (0) = 0, its dual Young function is denoted f * and defined by

∀s ∈ [0, 1] f * (s) = sup{st -f (t), t ∈ [0, 1]}.
As a corollary of the previous proposition we obtain. Corollary 6.2. Let X be a Banach space. Then

∀s ∈ [0, 1] (θ X ) * (s) ≥ ρ X s 2 and (θ X ) * s 6 ≤ ρ X (s).
Proof.

Consider first t = 2 s ρ X ( s 2 ) ∈ [0, 1]. Then ρ X ( s 2 ) = s 2 t. So it follows from Proposition 6.1 (b) that θ X (t) ≤ s 2 t. Therefore (θ X ) * (s) ≥ st -θ X (t) ≥ s 2 t = ρ X ( s 2 ). Assume now that (θ X ) * ( s 6 ) > ρ X (s). Then there exists t ∈ [0, 1] such that s 6 t -θ X (t) > ρ X (s). Thus θ X (t) < s 6 t -ρ X (s) < s 6 t.
It now follows from Proposition 6.1 (a) that ρ X (s) ≥ s 6 t. But this implies that θ X (t) < 0, which is impossible. The following theorem states that the existence of an asymptotically uniformly smooth norm is stable under Lipschitz isomorphisms and appeared first in [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF], in a separable setting. Its proof can also be found in the recent textbook [START_REF] Albiac | Topics in Banach space theory -Second Edition[END_REF] (see paragraph 14.6). The general case can be deduced by routine arguments of separable saturation and separable determination of the moduli. However, we shall detail here the direct proof in the general case. The only modification is that we deal with the definition of the asymptotic moduli instead of using weak * -null or weakly null sequences. Theorem 6.3. Let X and Y be two Banach spaces and assume that f : X → Y is a bijection such that Lip(f ) ≤ 1 and Lip(f -1 ) ≤ M . Then there exists an equivalent

norm | | on Y such that Y ≤ | | ≤ M Y and ∀t ∈ [0, 1], θ | | (t) ≥ θ X t 4M . Proof. Let C = conv f (x) -f (x ) x -x , x = x ∈ X . Clearly, C is closed convex symmetric and C ⊂ B Y . Let now y ∈ Y such that y = 1 M . For t ∈ [0, +∞), denote x t = f -1 (ty). We have that x 1 -x 0 ≤ 1 and x M -x 0 ≥ 1. So, there exists t ∈ [1, M ] such that x t -x 0 = 1. It follows that ty ∈ C. Since C is convex and symmetric, we deduce that 1 M B Y ⊂ C. So, if we denote | | the Minkowski functional of C, we have that | | is an equivalent norm on Y such that Y ≤ | | ≤ M Y .
Its dual norm is given by

∀y * ∈ Y * |y * | = sup y * , f (x) -f (x ) x -x x = x .
Let t ∈ (0, 1] and assume as we may that θ X t 4M > 0. So let y * ∈ Y * such that |y * | = 1 and η > 0. We can pick x = x ∈ X such that

y * , f (x) -f (x ) ≥ (1 -η) x -x .
We may assume that x = -x and f (x ) = -f (x), so that we have

(1) y * , f (x) ≥ (1 -η) x .
Pick 0 < δ < θ X ( t 4M ). It follows from statement (b) in Proposition 6.1 that ρ X ( 4M δ t ) < δ. So, there exists a finite codimensional subspace X 0 of X such that

(2) ∀z ∈ 4M δ x t B X 0 , x + z ≤ (1 + δ) x .
Pick b < 4δ x t . It now follows from the Gorelik principle (Theorem 5.2) that there exists a compact subset K of Y such that

(3) bB Y ⊂ K + f 8M δ x t B X 0 .
Fix now ε > 0, consider a finite ε-net F of K and denote E the finite dimensional subspace of Y spanned by F ∪ {f (x)}. For any z * ∈ E ⊥ that |z * | = t, we have z * ≥ t and, if ε > 0 was initially chosen small enough, by (3) we deduce that

(4) ∃z ∈ 8M δ x t B X 0 z * , -f (z) ≥ (b -η)t.
It now follows from the fact that |y * | = 1 and (2) that

y * , f (x) + f (z) = y * , f (z) -f (x ) ≤ x -z ≤ (1 + δ) x .
Then (1) implies that y * , f (z) ≤ (δ + η) x . Combining this last inequality with the fact that z * , f (x) = 0 and (1), ( 2) and (3), we obtain that

y * + z * , f (x) -f (z) ≥ (1 -η) x -(δ + η) x + (b -η)t.
Using again the definition of | | and (2) we get

|y * + z * | ≥ (1 -η) x -(δ + η) x + (b -η)t (1 + δ) x -1
.

Letting b tend to 4δ x t and η tend to 0, we deduce that

θ | | (y * , t) ≥ 1 + 3δ 1 + δ -1 ≥ δ.
In the above estimate, which does not depend on y * in the unit sphere of | |, we let δ tend to θ X ( t 4M ) to conclude our proof.

Corollary 6.4. Let X and Y be two Banach spaces and assume that f : X → Y is a bijection such that Lip (f ) ≤ 1 and Lip (f -1 ) ≤ M . Then there exists an equivalent norm

| | on Y such that Y ≤ | | ≤ M Y and ∀t ∈ [0, 1] ρ | | t 48M ≤ ρ X (t).
Proof. Let f, g be continuous monotone non decreasing on [0, 1] with f (0) = g(0) = 0. If there exists a constant C ≥ 1 such that for all t ∈ [0, 1], f (t) ≥ g(t/C), then it is clear that for all t ∈ [0, 1], f * (t/C) ≤ g * (t). Since the norm | | given by Theorem 6.3 satisfies

∀t ∈ [0, 1] θ | | (t) ≥ θ X t 4M ),
the conclusion of the proof follows now directly from Corollary 6.2.

We now turn to the study of the preservation of the modulus of weak * asymptotic uniform convexity, up to renorming, under coarse Lipschitz equivalence. The following precise quantitative statement is a slight modification of Theorem 3.12 in [START_REF] Godefroy | The non linear geometry of Banach spaces after Nigel Kalton[END_REF], in which the proof is only very briefly outlined. It will also be crucial for us to use the details of the construction of this equivalent norm in our last section. Theorem 6.5. Let X and Y be two Banach spaces and

M > 1. Assume that f : X → Y and g : Y → X are continuous with Lip ∞ (f ) ≤ 1, Lip ∞ (g) < M and that there exists a constant C ≥ 0 such that ∀x ∈ X (g • f )(x) -x ≤ C and ∀y ∈ Y (f • g)(y) -y ≤ C.
Then for any ε in (0, 1), there exists an equivalent norm | | on Y such that

1 1 + ε Y ≤ | | ≤ M Y and ∀t ∈ [0, 1] θ | | (t) ≥ θ X t 48 M 2 -ε.
Proof. We will adapt the proof of Theorem 5.3 in [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF]. For k ∈ N, we define

C k = conv f (x) -f (x ) x -x , x -x ≥ 2 k . Then (C k ) ∞ k=1 is a decreasing sequence of closed convex and symmetric subsets of Y . Since Lip ∞ (f ) ≤ 1, we have that C k ⊂ (1 + ε k )B Y , where (ε k ) ∞
k=1 is a sequence of positive numbers tending to 0. In particular there exists k 0 ∈ N such that

∀k ≥ k 0 C k ⊂ (1 + ε 16M )B Y ⊂ (1 + ε)B Y ⊂ 2B Y .
Fix now k ∈ N, y ∈ S Y and denote y 0 = f (0). It follows easily from our assumptions that lim t→∞ g(ty) = ∞. Recall also that f (g(ty)) = ty + u t , with u t ≤ C. So, for t large enough f (g(ty)) -y 0 g(ty) = ty g(ty)

+ u t -y 0 g(ty) ∈ C k .
It follows from the assumption that Lip ∞ (g) < M that there exist α ≥ 1 M and a sequence (t n ) n tending to +∞ such that tn g(tny) tends to α. Since C k is closed, we obtain that αy ∈ C k . Finally, we use the fact that C k is convex and symmetric to deduce that 1 M y ∈ C k and thus that 1

M B Y ⊂ C k . So, if we denote | | k the Minkowski functional of C k , we have that for all k ≥ k 0 , | | k is an equivalent norm on Y such that (1 + ε 16M ) -1 Y ≤ | | k ≤ M Y . It will be useful to describe the dual norm of | | k , also denoted | | k , as follows ∀y * ∈ Y * |y * | k = sup y * , f (x) -f (x ) x -x , x, x ∈ X, x -x ≥ 2 k .
Note that our assumptions also imply the existence of D ≥ 0 such that (5) ∀y, y ∈ Y g(y) -g(y ) ≤ D + M y -y .

This will enable us to apply the Gorelik principle as it is stated in Theorem 5.3.

The key lemma is the following.

Lemma 6.6. Let t ∈ (0, 1) and assume that θ X t

48M 2 > 0. Let y * ∈ Y * such that y * ≤ M , ε > 0 and k 1 ∈ N such that k 1 ≥ k 0 , 24M 2 θ X t 48M 2 2 k 1 > 4(C + D)t and 2 -k 1 (CM + 1) ≤ ε 4 .
Then there exists a finite dimensional subspace E of Y so that for all k ≥ k 1 and all z * ∈ E ⊥ such that t 2 ≤ z * ≤ tM , we have

(6) |y * + z * | k ≥ 2|y * | k+1 -|y * | k + θ X t 48M 2 - ε 2 . Proof. Let η = ε 16M and pick 0 < δ < θ X ( t 48M 2 ) such that (7) 24M 2 δ2 k 1 > 4(C + D)t.
Let k ≥ k 1 and choose x = x ∈ X such that x -x ≥ 2 k+1 and

y * , f (x) -f (x ) ≥ (1 -η)|y * | k+1 x -x .
We may assume that x = -x and f (x ) = -f (x), so that we have

(8) y * , f (x) ≥ (1 -η)|y * | k+1 x .
Since 0 < δ < θ X ( t 48M 2 ). It follows from statement (b) in Proposition 6.1 that ρ X ( 48M 2 δ t ) < δ. So, there exists a finite codimensional subspace X 0 of X such that

(9) ∀z ∈ 48M 2 δ x t B X 0 x + z ≤ (1 + δ) x and x + z ≥ x ≥ 2 k .
From ( 5), ( 7) and Theorem 5.3, applied with λ = 1 2 and α = t -1 24M 2 δ x , we infer the existence of a compact subset

K of Y such that 12M δ x t B Y ⊂ K + CB Y + f 48M 2 δ x t B X 0 .
As in the previous proof, fix η > 0, pick a finite η -net F of K and let E be the linear span of

F ∪ {f (x)}. Let now z * ∈ E ⊥ such that t 2 ≤ z * ≤ tM . Then, ( 10 
) ∃z ∈ 48M 2 δ x t B X 0 z * , -f (z) ≥ 6M δ x -(CM + 1),
if η was initially chosen small enough.

We then deduce from ( 9) that ( 11)

y * , f (x) + f (z) = y * , f (z) -f (x ) ≤ |y * | k x -z ≤ (1 + δ)|y * | k x .
Thus, combining the above informations we get

y * + z * , f (x) -f (z) ≥ 2(1 -η)|y * | k+1 -(1 + δ)|y * | k + 6M δ x -(CM + 1).
Using again [START_REF] Gorelik | The uniform nonequivalence of Lp and lp[END_REF] we then have

|y * + z * | k ≥ 1 1 + δ 2(1 -η)|y * | k+1 -(1 + δ)|y * | k + 6M δ -2 -k 1 (CM + 1) .
So, it follows from our initial choice of k 1 and the fact that δ ≤ 1 and M ≥ 1 that

|y * + z * | k ≥ 2(1 -η)(1 -δ)|y * | k+1 -|y * | k + (2M + 1)δ - ε 4 .
Note that y * ≤ M implies that |y * | k+1 ≤ (1 + ε 16M )M and recall that η = ε 16M . So we obtain that

|y * + z * | k ≥ 2(1 -η)|y * | k+1 -|y * | k -2M δ + (2M + 1)δ - ε 4 .
Then with our choice of η implies that

|y * + z * | k ≥ 2|y * | k+1 -|y * | k + δ - ε 2 .
Letting δ tend to θ X ( t 48M 2 ), we obtain

|y * + z * | k ≥ 2|y * | k+1 -|y * | k + θ X t 48M 2 - 2 .
End of proof of Theorem 6.5. Note that a simple convexity argument shows that for any space Z, the function

t → t -1 θ Z (t) is increasing on (0, 1]. Assume first that θ X 1 48M 2 ≤ ε 2 .
Then for any t ∈ (0, 1] we have that 

θ Y (t) ≥ 0 > θ X 1 48M 2 -ε ≥ θ X t 48M 2 -
|y * + z * | k ≥ 2|y * | k+1 -|y * | k + θ X t 48M 2 - ε 2 ,
which implies that

|y * + z * | ≥ |y * | + 2 N |y * | k 1 +N +1 -|y * | k 1 +1 + θ X t 48M 2 - ε 2 .
Since |y * | = 1, we have that y * ≤ M and |y * | k+1 ≤ 2M . So 

|y * + z * | ≥ |y * | + θ X t 48M 2 - ε 2 - 8M N ≥ |y * | + θ X t 48M 2 -ε. This shows that for all t ∈ [t 0 , 1], θ | | (t) ≥ θ X t 48M 2 -
(f ) ≤ 1, Lip ∞ (g) < M and that there exists a constant C ≥ 0 such that ∀x ∈ X (g • f )(x) -x ≤ C and ∀y ∈ Y (f • g)(y) -y ≤ C.
Then for any ε in (0, 1), there exists an equivalent norm | | on Y such that

1 1 + ε Y ≤ | | ≤ M Y and ∀t ∈ [0, 1] ρ | | t 576 M 2 ≤ ρ X (t) + ε.
Proof. Let ϕ, ψ be continuous monotone non decreasing on [0, 1] with ϕ(0) = ψ(0) = 0. If there exists D ≥ 1 and ε > 0 such that for all t ∈ [0, 1], ϕ(t) ≥ ψ(t/D) -ε, then it is clear that for all t ∈ [0, 1], ϕ * (t/D) ≤ ψ * (t) + ε. Then we can apply Corollary 6.2 to get that if | | is the norm given by Theorem 6.5, then for all t ∈ [0, 1]:

ρ | | t 576 M 2 ≤ (θ | | ) * t 288 M 2 ≤ (θ X ) * t 6 + ε ≤ ρ X (t) + ε.

Application to norm attaining coarse Lipschitz maps

In this section, we will extend to the setting of coarse Lipschitz maps and equivalences, the results obtained by G. Godefroy in [START_REF] Godefroy | On norm attaining Lipschitz maps between Banach spaces[END_REF] on norm attaining Lipschitz maps. Our first result is the analogue of Theorem 3.2 of [START_REF] Godefroy | On norm attaining Lipschitz maps between Banach spaces[END_REF]. Since ε > 0 is arbitrary in the above inequality, this concludes our proof.

Let us now recall that a Banach space X has the Kadets-Klee property if the norm and weak topologies coincide on the unit sphere of X. The following corollaries are the coarse Lipschitz analogues of Corollary 3.5 in [START_REF] Godefroy | On norm attaining Lipschitz maps between Banach spaces[END_REF].

Corollary 7.2. Let X and Y be two infinite dimensional Banach spaces such that X is asymptotically uniformly flat and Y has the Kadets-Klee property and assume that f : X → Y is a coarse Lipschitz equivalence. Then f does not attain its norm in any direction in S Y .

Proof. Assume on the contrary that f : X → Y is a coarse Lipschitz equivalence and that f attains its norm in the direction y ∈ S Y . Assume also, as we may by Corollary 3.4, that f CL = 1. Since X is asymptotically uniformly flat, it follows from Theorem 7.1 that there exits t 0 > 0 so that for all t ∈ [0, t 0 ], ρ Y (y, t) = 0. Consider now a weakly null net (y α ) α∈A in Y such that y α = t 0 for all α in A. Then ( y + y α ) α∈A tends to 1, which contradicts the assumption that Y has the Kadets-Klee property.

Corollary 7.3. There exists a pair of Banach spaces (X, Y ) such that the norm attaining coarse Lipschitz maps are not dense in CL(X, Y ).

Proof. Consider X = (c 0 , ∞ ) and Y = (c 0 , Y ), where Y is an equivalent norm on c 0 with the Kadets-Klee property. We recall that such an equivalent norm exits on any separable Banach space (see for instance the book [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF] and references therein). Moreover X is clearly asymptotically uniformly flat. Since X is an absolute retract (see Chapter 1 in [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF]), we have in particular that (X, Y ) and (Y, X) have the net extension property. Therefore, by Propositions 4.4 and 4.6, CLE(X, Y ) can be viewed as an open subset of CL(X, Y ). Since it contains the identity map on c 0 , it is a non empty open subset of CL(X, Y ). Combining this with Corollary 7.2 finishes our proof.

Aknowledgements. The authors wish to thank G. Godefroy, A. Procházka and A. Valette for fruitful discussions on the subject of this paper.
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 3 Coarse Lipschitz equivalence of metric spaces Definition 3.1. Let (M, d) and (N, δ) be two unbounded metric spaces and f : M → N be a coarse Lipschitz map. We say that f is a coarse Lipschitz equivalence from M to N , if there exists a coarse Lipschitz map g : N → M and a constant C ≥ 0 such that ∀x ∈ M d (g • f )(x), x ≤ C and ∀y ∈ N δ (f • g)(y), y ≤ C. We denote CLE(M, N ) the set of coarse Lipschitz equivalences from M to N . If CLE(M, N ) is non empty, we say that M and N are coarse Lipschitz equivalent and denote M CL ∼ N .

Theorem 7 . 1 .

 71 Let X and Y be two Banach spaces andM > 1. Assume that f : X → Y and g : Y → X are continuous with Lip ∞ (f ) = 1, Lip ∞ (g) < M and that there exists a constant C ≥ 0 such that ∀x ∈ X (g • f )(x) -x ≤ C and ∀y ∈ Y (f • g)(y) -y ≤ C.Assume also that f attains its norm f CL = 1 in the direction y ∈ S Y . Then ∀t ∈ (0, 1] ρ Y y, t 576M 3 ≤ ρ X (t).

Proof.

  Let us fix ε in (0, 1) and denote | | the norm constructed in Theorem 6.5. There exists sequences (x n ) ∞ n=1 , (x n ) ∞ n=1 in X such that lim n→∞ x n -x n = ∞ and lim n→∞ f (x n ) -f (x n ) x n -x n = y.Note that for any k in N,f (xn)-f (x n ) xn-x n ∈ C kfor n large enough. So y ∈ C k and |y| k ≤ 1. Therefore, |y| ≤ 1. On the other hand |y| ≥ (1 + ε)

  As above, we easily have that for any equivalent norm N on Y and any t ∈ (0, t 0 ], θ N (t) ≥ 0 ≥ θ X t 48M 2 -ε. So we only have to treat the problem for t ∈ [t 0 , 1]. Let us pick k 1 ∈ N satisfying the assumptions of Lemma 6.6 for t 0 . It then follows from the monotonicity of t → t -1 θ X (t) that the conclusion of Lemma 6.6 applies for any t ∈ [t 0 , 1] and any k ≥ k 1 . , with |y * | = 1. It follows from Lemma 6.6 that for any t ∈ [t 0 , 1], there exists a finite dimensional subspace E of Y so that for all k ∈ [k 1 , k 1 + N ] and all z

				ε,
	and the original norm on Y works.			
	Assume now that θ X so that θ X t 0 48M 2 = ε 2 . Pick now N ∈ N such that 8M 1 48M 2 > ε 2 . Since θ X is continuous, there exists t 0 ∈ (0, 1) N < ε 2 and define
	|y * | =	1 N	k=k 1 +N k=k 1 +1	|y

* | k which is a dual norm on Y * with M -1 y * ≤ |y * | ≤ (1 + ε 16M ) y * ≤ (1 + ε) y * ≤ 2 y * .

Let y * ∈ Y * * ∈ E ⊥ such that |z * | = t, we have

  ε and concludes our proof. Corollary 6.7. Let X and Y be two Banach spaces and M > 1. Assume that f : X → Y and g : Y → X are continuous with Lip ∞

  -1 ≥ 1 -ε. Denote u = y |y| . It follows from Corollary 6.7 that ρ | | u, t 576M 2 ≤ ρ X (t) + ε. Then there exists a finite codimensional subspace E of Y such that for all v ∈ E with |v| ≤ t 576M 2 , we have |u + v| ≤ 1 + ρ X (t) + 2ε. It follows that for all v ∈ E with v ≤ t 576M 3 , y + v ≤ (1 + ε)(|y -u| + |u + v|) ≤ (1 + ε)(1 + ρ X (t) + 3ε).