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Introduction

In this paper we deal with the Szlenk and the convex Szlenk index of Banach spaces. Let us first recall their definitions. Let X be a Banach space, K a weak * -compact subset of its dual X * and ε > 0. Then we define s ε (K) = {x * ∈ K, for any weak * -neighborhood U of x * , diam(K ∩ U ) ≥ ε} and inductively the sets s α ε (K) for α ordinal as follows: s α+1 ε (K) = s ε (s α ε (K)) and s α ε (K) = β<α s β ε (K) if α is a limit ordinal. Then Sz(K, ε) = inf{α, s α ε (K) = ∅} if it exists and we denote Sz(K, ε) = ∞ otherwise. Next we define Sz(K) = sup ε>0 Sz(K, ε). The closed unit ball of X * is denoted B X * and the Szlenk index of X is Sz(X) = Sz(B X * ). Let us also denote A 0 ε := K, A α+1 ε is the weak * -closed convex hull of s ε (A α ε ) and A α ε := β<α A β ε if α is a limit ordinal. Now we set Cz(K, ε) = inf{α, A α ε = ∅} if it exists and Cz(K, ε) = ∞ otherwise. Then Cz(K) = sup ε>0 Cz(K, ε) and the convex Szlenk index of X is Cz(X) = Cz(B X * ).

The Szlenk index was first introduced by W. Szlenk [START_REF] Szlenk | The non existence of a separable reflexive space universal for all separable reflexive Banach spaces[END_REF], in a slightly different form, in order to prove that there is no separable reflexive Banach space universal for the class of all separable reflexive Banach spaces. Another striking fact is that the isomorphic classification of a separable C(K) space is perfectly determined by the value of its Szlenk index. This is a consequence of some classical work by C. Bessaga and A. Pe lczyński [START_REF] Bessaga | Spaces of continuous functions (IV) (on isomorphical classification of spaces of continuous functions)[END_REF], D.E. Alspach and Y. Benyamini [START_REF] Alspach | C(K) quotients of separable L∞ spaces[END_REF], C. Samuel [START_REF] Samuel | Indice de Szlenk des C(K)[END_REF] and A.A. Milutin [START_REF] Milutin | Isomorphisms of spaces of continuous functions on compacts of power continuum[END_REF] (see also [START_REF] Rosenthal | The Banach spaces C(K)[END_REF] for a survey on C(K)-spaces).

One of the goals of this paper is to obtain a general renorming result for Banach spaces with a prescribed Szlenk index in the spirit of the following important theorem due to Knaust, Odell and Schlumprecht [START_REF] Knaust | On asymptotic structure, the Szlenk index and UKK properties in Banach spaces[END_REF]: if X is a separable Banach space and Sz(X) ≤ ω, where ω is the first infinite ordinal, then X admits an equivalent norm whose dual norm is such that for any ε > 0, there exists δ > 0 satisfying s ε (B) ⊂ (1 -δ)B, where B is the closed unit ball of this equivalent dual norm. Such a norm is said to be weak * -uniformly Kadets-Klee. This has been quantitatively improved in [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF] and extended to the non-separable case in [START_REF] Raja | On weak * uniformly Kadec-Klee renormings[END_REF]. We will prove a similar result for other values of the Szlenk index. More precisely, we show (Theorem 6.3) that a separable Banach space X satisfies Sz(X) ≤ ω α+1 with α countable if and only if X admits an equivalent norm whose dual norm is such that for any ε > 0, there exists δ > 0 satisfying s ω α ε (B) ⊂ (1-δ)B, where B is the closed unit ball of this equivalent dual norm. We say that such a norm is ω α -UKK * . It is worth recalling that Sz(X) is always of the form ω α (see Lemma 5.2 for a slightly more general statement, [START_REF] Sersouri | Lavrientiev index for Banach spaces[END_REF] for the original idea, or [START_REF] Lancien | A survey on the Szlenk index and some of its applications[END_REF]). Let us also mention that C. Samuel proved in [START_REF] Samuel | Indice de Szlenk des C(K)[END_REF] that Sz(C 0 ([0, ω ω α ))) = ω α+1 whenever α is a countable ordinal. A different proof of this computation is given in [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF] by showing that the natural norm of C 0 ([0, ω ω α )) is ω α -UKK * .

One of the inconveniences of the Szlenk derivation is that it does not preserve convexity. This explains why it is difficult to obtain renorming results related to this derivation. In contrast, a derivation based on peeling off slices (i.e. intersections with half spaces) preserves the convexity and allows to use distance functions to the derived sets in order to build a good equivalent norm (see [START_REF] Lancien | On uniformly convex and uniformly Kadec-Klee renormings[END_REF] for instance).

In order to overcome this difficulty, we will study the fragment and slice derivations associated with general measures of non-compactness as they were introduced in [START_REF] Raja | Dentability indices with respect to measures of non-compactness[END_REF].

In section 2, we recall these definitions and also introduce the ω-iterated measure η ω associated with a measure of non-compactness η. In section 3, we introduce the notions of convexifiable and homogeneous measure of non-compactness. Then we prove a crucial result (Proposition 3.4) on the properties of the slice derivation associated with a general convexifiable measure of non-compactness. In section 4 we explore the notion of sublinear measure of non-compactness and obtain a sharp comparison between the slice and fragment derivations for certain convexifiable sublinear measures of non-compactness. Section 5 is devoted to the applications of our general results to the Kuratowski measure of non-compactness, denoted σ. This measure is of special interest to us, as its fragment derivation is exactly the Szlenk derivation. The main result of this section is Theorem 5.9 which asserts that for any n ∈ N, the iterate σ ω n of σ is convexifiable. It is then a key ingredient for proving that Cz(K) = Sz(K) for any weak * -compact subset K of the dual of a separable Banach space such that Sz(K) ≤ ω n , for some integer n (Corollary 5.11). This together with some earlier work by P. Hájek and T. Schlumprecht [START_REF] Hájek | The Szlenk index of Lp(X)[END_REF] implies that for any separable Banach space X, Cz(X) = Sz(X). Finally, with all these ingredients, we state and prove our renorming result in section 6.

Measures of non-compactness and associated derivations

Definition 2.1. Let X be a Banach space. We call measure of non-compactness on X * , any map η defined on the weak * -compact subsets of X * with values in [0, ∞) and satisfying the following properties:

(i) η({x * }) = 0 for any x * ∈ X * . (ii) If A 1 , .., A n are weak * -compact subsets of X * , then η( n i=1 A i ) = max i η(A i ). (iii) There exists b > 0 such that for any weak * -compact subset A of X * and any

λ > 0, η(A + λB X * ) ≤ η(A) + λb.
Remark 2.2. Note that (ii) implies that a measure of non-compactness η on X * is monotone in the following sense: η(A) ≤ η(B), whenever A ⊂ B are weak * -compact subsets of X * . Note also that if η is a measure of non-compactness on X * , then η(A) = 0, for any norm-compact subset A of X * .

Example 2.3. Let A be a weak * -compact subset of X * . We call Kuratowski measure of non-compactness of A and denote σ(A), the infimum of all ε > 0 such that A can be covered by a finite family of closed balls of diameter equal to ε. Conditions (i), (ii) and (iii) are clearly satisfied. Note that (iii) is satisfied with b = 1.

Following [START_REF] Raja | Dentability indices with respect to measures of non-compactness[END_REF], we now define two set operations associated with a given measure of non-compactness η. Let us agree that if E is a subset of a dual Banach space X, then E * denotes the weak * -closure of E.

We start with the fragment derivation. Given ε > 0 and A a weak * -compact subset of X * , we set

[η] ε (A) = {x * ∈ A, for any weak * -neighborhood U of x * , η(A ∩ U * ) ≥ ε}.
For any ordinal γ, the sets

[η] γ ε (A) are defined by [η] γ+1 ε (A) = [η] ε ([η] γ ε (A)) and [η] γ ε (A) = β<γ [η] β ε (A) if γ is a limit ordinal.
Similarly we define the slice derivation by

η ε (A) = {x * ∈ A, for any weak * -open halfspace H containing x * , η(A ∩ H * ) ≥ ε}.
Then, for an ordinal γ, the set η γ ε (A) is defined in an obvious way as before. Note that we clearly have that [η] γ ε (A) ⊂ η γ ε (A). We begin with a very basic property of the fragment derivation associated with a measure of non-compactness. Lemma 2.4. Let X be a Banach space and η a measure of non-compactness on X * and let A be a weak * -compact subset of X * . Then for any B weak * -closed subset of A and any ε > 0 such that B ∩ [η] ε (A) = ∅, we have that η(B) < ε.

Proof. For any x * in B there exists a weak * -neighborhood U x * of x * so that η(A ∩ U x * * ) < ε. Then, since B is included in A and weak * -compact, there exist

x * 1 , .., x * n in B such that B ⊂ n k=1 (A ∩ U x * k * ).
The conclusion now follows from property (ii) of Definition 2.1.

We now define the iterates of a measure of non-compactness.

Definition 2.5. Let X be a Banach space and η a measure of non-compactness on X * . The ω-iterated measure of η is defined by

η ω (A) = inf{ε > 0 : [η] ω ε (A) = ∅}.
It will also be convenient to define η 1 = η ω 0 := η and then inductively η

ω n+1 := (η ω n ) ω . Lemma 2.6. If η is a measure of non-compactness on X * , then η ω is a measure of non-compactness on X * . Proof. Condition (i) of the definition is clearly satisfied by η ω . The condition (ii) for η yields that [η] ε ( n i=1 A i ) = n i=1 [η] ε (A i ) whenever A 1 , .
., A n are weak * -compact subsets of X * . After iterating, this implies that η ω satisfies condition (ii) of the definition. Property (iii) comes from the following observation. Let b > 0 be the constant given by condition (iii) for η. Then for any weak * -compact subset A of X * and any λ > 0,

(2.1) [η] ε+λb (A + λB X * ) ⊂ [η] ε (A) + λB X * .
Indeed, take any

x * ∈ A + λB X * \ ([η] ε (A) + λB X * ).
Then, there exists a weak * -neighborhood

U of x * such that U * is disjoint from [η] ε (A)+ λB X * . Then consider V = U * +λB X * . It is clear that V is a weak * -closed neighborhood of x * such that V is disjoint from [η] ε (A).
Then it follows from Lemma 2.4 that η(V ∩ A) < ε. By the definition of V we also have

U * ∩ (A + λB X * ) ⊂ (V ∩ A) + λB X * .
This yields the estimate η(U * ∩ (A + λB X * )) < ε + λb. Therefore x * does not belong to [η] ε+λb (A + λB X * ), which finishes the proof of (2.1). Finally, this implies by iteration that [η] ω ε+λb (A + λB X * ) = ∅ whenever [η] ω ε (A) = ∅, which yields property (iii) for η ω , with the same constant b as for η.

We will need the following elementary lemma. Lemma 2.7. Let X be a Banach space, η a measure of non-compactness on X * and let ε > ε > 0. Then, for any weak * -compact subset A of X * we have

[η ω ] ε (A) ⊂ [η] ω ε (A) ⊂ [η ω ] ε (A). Also, for any n ∈ N, we have [η ω n ] ε (A) ⊂ [η] ω n ε (A) ⊂ [η ω n ] ε (A). Proof. If x * ∈ A \ [η ω ] ε (A) then there is a weak * -neighborhood U of x * such that η ω (A ∩ U * ) < ε and therefore [η] ω ε (A ∩ U * ) = ∅. This implies that x * ∈ [η] ω ε (A). On the other hand, if x * ∈ A \ [η] ω ε (A) then there is n ∈ N such that x * ∈ [η] n ε (A). If U is a weak * -neighborhood of x * such that U * ∩ [η] n ε (A) = ∅, then [η] n ε (A ∩ U * ) = ∅ and so η ω (A ∩ U * ) ≤ ε < ε and x * ∈ A \ [η ω ] ε (A).
Let us assume now that it has been proved that for some n ∈ N, [η ω n ] ε (A) ⊂ [η] ω n ε (A) for all ε > ε and all weak * -compact A. Since η ω n is a measure of non-compactness, we infer from the first statement of Lemma 2.7 and this inductive hypothesis that

[η ω n+1 ] ε (A) ⊂ [η ω n ] ω ε (A) = ∞ m=1 [η ω n ] m ε (A) ⊂ ∞ m=1 [η] ω n •m ε (A) = [η] ω n+1 ε (A) for all ε > ε > ε and any weak * -compact subset A of X. Finally, when [η] ω n ε (A) ⊂ [η ω n ] ε (A) for every weak * -compact A has been proved for n ∈ N, we easily get that [η] ω n+1 ε (A) = ∞ m=1 [η] ω n •m ε (A) ⊂ ∞ m=1 [η ω n ] m ε (A) = [η ω n ] ω ε (A) ⊂ [η ω n+1 ] ε (A)
is true for every weak * -compact A. We end this section with a lemma describing the link between the slice derivation and the fragment derivation.

Lemma 2.8. Let X be a Banach space, η a measure of non-compactness on X * and ε > 0. Then, for any convex and weak * -compact subset K of X * , we have that

η ε (K) = conv * [η] ε (K). Proof. Since η ε (K) is convex, weak * -closed and contains [η] ε (K), it is clear that conv * [η] ε (K) ⊂ η ε (K). Consider now x * ∈ K \conv * [η] ε (K).
It follows from the Hahn-Banach theorem that we can find a weak * -open half space H containing x * and so that H

* ∩ conv * [η] ε (K) = ∅.
Let S = K ∩ H * . By Lemma 2.4, we have that η(S) < ε. Therefore x * does not belong to η ε (K), which concludes the proof of this lemma.

convexifiable and homogeneous measures of non-compactness

Definition 3.1. Let X be a Banach space. We say that a measure of non-compactness η on X * is convexifiable if there exists κ ≥ 1 such that for any weak * -compact subset A of X * , we have that η(conv * (A)) ≤ κη(A). The infimum of the set of all constants κ satisfying the above property (which also belongs to this set) is called the convexifiability constant of η.

Definition 3.2. Let X be a Banach space. A measure of non-compactness η on X * is homogeneous if for any weak * -compact subset A of X * and any λ in R, we have η(λA) = |λ| η(A).

The following lemma is straightforward.

Lemma 3.3. Let X be a Banach space and B a weak * -compact subset of X * . Assume that η is a homogeneous measure of non-compactness on X * . Then for any ε > 0 and any λ in (0, +∞), we have

[η] λε (λB) = λ[η] ε (B) and η λε (λB) = λ η ε (B).
The following proposition is crucial.

Proposition 3.4. Let X be a Banach space and η a homogeneous and convexifiable measure of non-compactness on X * with convexifiability constant κ. Assume that A is a weak * -compact subset of X * such that [η] ε (A) ⊂ λA for some λ ∈ (0, 1) and ε > 0.

Then ∀ ε > ε η ω κε (conv * (A)) = ∅. Proof. Let ε > ε, fix ζ ∈ (λ, 1
) and take some ξ ∈ (ζ, 1) whose precise value will be fixed later. Let us write B := conv * (A). The key step of the proof will be to show that η κε (B) ⊂ ξB for ξ close enough to 1. In order to do so we need to estimate the η-measure of weak * -slices of B which are disjoint from ξB. Once we observe that each such slice S lies in a small neighborhood of the weak * -closed convex hull D of a well chosen η-small slice K of A, we will be in a position to apply the property (iii) and the convexifiability of η.

Le us be more precise. Fix x ∈ X such that sup x * ∈B x * (x) = 1 and consider the weak

* -closed half space H = {x * ∈ X * , x * (x) ≥ ξ}. We denote S = H ∩ B. Let now D = conv * (K) where K = {x * ∈ A : x * (x) ≥ ζ}. Since K ∩ [η] ε (A) = ∅, it follows from the weak * -compactness of K and Lemma 2.4 that η(K) < ε. Since η is convexifiable, we have η(D) < κε. Note that B = conv * (A ∩ {x ≤ ζ}) ∪ (A ∩ {x ≥ ζ}) ⊂ conv(Q ∪ D), where Q = {x ≤ ζ} ∩ B.
In particular, any point x * ∈ S can be written

x * = tx * 1 + (1 -t)x * 2 with x * 1 ∈ D, x * 2 ∈ Q and t ∈ [0, 1]. If x * (x) > ξ, an elementary computation shows that t > t ξ = (ξ -ζ)(1 -ζ) -1 . Since B is bounded, there is β > 0 such that B ⊂ βB X * . Then we choose ξ ∈ (ζ, 1) such that 2b(1 -t ξ )β < κ(ε -ε)
, where b > 0 is the constant given by the property (iii) of the measure of non-compactness η. Note that ξ depends only on λ, b, β, κ and ε -ε.

We have shown that S ⊂ [t ξ , 1]D + [0, 1 -t ξ ]Q. Note that [t ξ , 1]D ⊂ D + β(1 -t ξ )B X * . Therefore, S ⊂ D + 2β(1 -t ξ )B X * . We deduce that η(S) ≤ η(D) + κ(ε -ε) < κε .
We have proved that under the assumptions of Proposition 3.4, the following holds: there exists ξ < 1 such that η κε (B) ⊂ {x * ∈ B, x * (x) ≤ ξ} whenever sup B x = 1. Therefore, using the Hahn-Banach theorem for the weak * topology, we deduce that η κε (B) ⊂ ξB. Finally, we combine an iteration of this argument with Lemma 3.3 to get that for any

n ∈ N, η n κε (B) ⊂ ξ n B. Therefore, for n ∈ N large enough, η n κε (B) ⊂ β -1 b -1 κεB ⊂ b -1 κεB X * . It follows that η( η n κε (B)) < κε and finally that η n+1 κε (B) = ∅.
4. Sublinear measures of non-compactness.

Property (iii) in Definition 2.1 provides a control of the increase of the measure of a set after adding a ball to it. Actually the Kuratowski measure of non-compactness and its ω-iterates have an even better behavior for general sums of sets. We shall introduce a definition. Definition 4.1. Let X be a Banach space. A measure of non-compactness η on X * is subadditive if for all weak * -compact subsets A and B of X * , η(A + B) ≤ η(A) + η(B). The measure of non-compactness η on X * is sublinear if it is homogeneous and subadditive.

Remark 4.2. Note that property (i) of Definition 2.1 implies that a sublinear measure of non-compactness is translation invariant and that the sublinearity implies property (iii) in Definition 2.1 with b = η(B X * ).

Example 4.3. It is easily checked that the Kuratowski measure σ on a dual Banach space X * is sublinear.

In order to show that the ω-iterates of σ are sublinear as well, we will prove first a few elementary facts. Consider two dual Banach spaces X * 1 and X * 2 and measures of non-compactness η 1 and η 2 in each of them. The product X * 1 × X * 2 is a dual Banach space endowed with the supremum norm. Consider the set function

η 1 × η 2 defined on X * 1 × X * 2 by (η 1 ×η 2 )(A) = inf{ε > 0, A ⊂ n i=1 A 1 i ×A 2 i with η j (A j i ) < ε; for all j ∈ {1, 2} and i ≤ n}.
Since η 1 and η 2 are measures of non-compactness, it follows from property (ii) in Definition 2.1 that we actually have

(η 1 × η 2 )(A) = inf{ε > 0, A ⊂ A 1 × A 2 with η j (A j ) < ε for j = 1, 2}.
Lemma 4.4. The function η 1 × η 2 defined above is a measure of non-compactness defined on X * 1 × X * 2 and the following properties are satisfied:

(1) [η 1 × η 2 ] ε (A 1 × A 2 ) ⊂ ([η 1 ] ε (A 1 ) × A 2 ) ∪ (A 1 × [η 2 ] ε (A 2 )). (2) If [η 1 ] ω ε (A 1 ) = ∅ and [η 2 ] ω ε (A 2 ) = ∅, then [η 1 × η 2 ] ω ε (A 1 × A 2 ) = ∅. Proof.
It is elementary to check the properties from Definition 2.1, as well as the first statement. The second one follows by iteration of the previous set inclusion. Lemma 4.5. Let T : X * 1 → X * 2 be a weak * -continuous linear operator. Suppose that there exists λ > 0 such that η 2 (T (A)) ≤ λη 1 (A) for any weak * -compact subset A of X * 1 . Then, the following holds:

(1) If A ⊂ X * 1 , then [η 2 ] λε (T (A)) ⊂ T ([η 1 ] ε (A)). (2) If [η 1 ] ω ε (A) = ∅, then [η 2 ] ω λε (T (A)) = ∅.
Proof. We will only prove the first statement which clearly implies the second. So, let

y * ∈ T (A) \ T ([η 1 ] ε (A)) and fix x * ∈ A such that T (x * ) = y * . Since T is weak * - continuous, T ([η 1 ] ε (A)) is weak * -compact and there exists a weak * -neighborhood U of y * such that U * is disjoint from T ([η 1 ] ε (A)). Thus V = T -1 (U * ) is weak * -closed and is a weak * -neighborhood of x * disjoint from [η 1 ] ε (A). Then Lemma 2.4 insures that η 1 (A ∩ V ) < ε. It follows that η 2 (T (A) ∩ U * ) = η 2 (T (A ∩ V )) < λε. Therefore, y * / ∈ [η 2 ] λε (T (A)
). This concludes our proof.

Proposition 4.6. Let η be a sublinear measure of non-compactness defined on a dual Banach space X * . Then η ω is also a sublinear measure of non-compactness.

Proof. By applying Lemma 4.5 to the operator T defined by T (x * ) = λx * for x * ∈ X * , we deduce immediately that η ω is homogeneous. Let now A, B ⊂ X * be weak * -compact and

ε 1 , ε 2 > 0 such that η ω (A) < ε 1 and η ω (B) < ε 2 . Let A = ε -1 1 A and B = ε -1 2 B. Since η ω is homogeneous, we have that [η] ω 1 (A ) = ∅ and [η] ω 1 (B ) = ∅. It follows from Lemma 4.4 that [η × η] ω 1 (A × B ) = ∅. Consider now the operator T : X * × X * → X * defined by T (x * , y * ) = ε 1 x * + ε 2 y * . Since η is sublinear, we may easily deduce that η(T (C)) ≤ (ε 1 + ε 2 )(η × η)(C) for any weak * -compact subset C of X * × X * .
In particular, we can apply Lemma 4.5 to get that

[η] ω ε 1 +ε 2 (A + B) = [η] ω ε 1 +ε 2 (T (A × B )) = ∅, that is, η ω (A + B) ≤ ε 1 + ε 2 .
Since ε 1 and ε 2 were arbitrary, we have proved the subadditivity of η ω .

As an immediate consequence we have.

Corollary 4.7. Let X be a Banach space and denote by σ the Kuratowski measure of non-compactness on X * . Then, for any n ∈ N, σ ω n is a sublinear measure of noncompactness on X * .

Let us recall the notation that we use for the slice derivation

η ε (A) = {x * ∈ A, for any weak * -open halfspace H containing x * , η(A ∩ H * ) ≥ ε}.
Along the remaining part of this section we shall only deal with weak * -compact convex sets, since the effect of the slice derivation on convex sets produces convex sets again. Also, we will assume that the measure of non-compactness η is sublinear. Thus we will be able to keep better constants in the formulas.

Lemma 4.8. Let η be a sublinear measure of non-compactness defined on a dual Banach space X * . If A and C are weak * -compact and convex then

η ε+η(C) (A + C) ⊂ η ε (A) + C Proof. Let x * ∈ (A + C) \ η ε (A) + C. Then there exist x ∈ X and a ∈ R such that x * (x) < a and S ∩ η ε (A) + C = ∅, where S = {y * ∈ X * , y * (x) ≤ a}. Consider now T = {y * ∈ X * , y * (x) ≤ a -inf u * ∈C u * (x)}.
Then T ∩ η ε (A) = ∅ and Lemma 2.4 yields that η(T ∩ A) < ε.

Finally, since S ∩ (A + C) ⊂ (T ∩ A) + C, we get that η(S ∩ (A + C)) < ε + η(C) and that x * / ∈ η ε+η(C) (A + C), which concludes our proof.

We will need a modification of the slice derivation. Given a convex weak * -compact set D consider

η ε (A| D ) = {x * ∈ A, ∀H weak * -open halfspace, x * ∈ H, H * ∩D = ∅ ⇒ η(A∩H * ) ≥ ε}.
Lemma 4.9. Let η be a sublinear measure of non-compactness defined on a dual Banach space X * . Suppose that C and D are convex weak * -compact subsets of X * so that η(D) ≤ 1 and η(C) ≤ ε with ε ∈ (0, 1). For δ ∈ (0, 1), the sequence

(A k ) ∞ k=1 defined recursively by A 1 = conv * (C ∪ D) and A k+1 = conv * ((C ∩ η ε+δ (A k | D )) ∪ D) satisfies ∀k ≥ 2 sup{f, A k } -sup{f, D} ≤ (1 -δ/2) k-1 (sup{f, A 1 } -sup{f, D})
for every functional f ∈ X such that sup{f, D} ≤ sup{f, C}.

Proof. With small modifications, it is essentially done in [START_REF] Raja | On weak * uniformly Kadec-Klee renormings[END_REF]. It is enough to prove the inequality for the first step

sup{f, A 2 } -sup{f, D} ≤ 1 - δ 2 (sup{f, A 1 } -sup{f, D}). Consider E = {(1 -λ)y * + λz * : y * ∈ C, z * ∈ D, λ ∈ δ 2 , 1 }
Note that E contains D and is weak * -closed and convex. If

x * ∈ A 1 \ E then x * = (1 -λ)y * + λz * with y * ∈ C, z * ∈ D and λ ∈ [0, δ 2 ]. Since x * -y * = λ(z * -y * ), we have A 1 \ E ⊂ C + λ∈[0, δ 2 ] λ(D -C).
Using the compactness of [0, δ 2 ], it follows that for every ν > 0, there exists a finite subset

F of [0, δ 2 ] such that A 1 \ E ⊂ C + λ∈F λ(D -C) + νB X * .
The set on the right hand side of the above inclusion is weak * -closed, so we deduce from the properties of η that for all ν > 0,

η(A 1 \ E * ) ≤ η(C) + δ + νη(B X * ) and therefore that η(A 1 \ E * ) ≤ ε + δ.
This implies that any weak * -closed slice of A 1 disjoint from E has η-measure less than ε + δ. Therefore we have

η ε+δ (A 1 | D ) ⊂ E and thus sup{f, A 2 } ≤ sup{f, E}. Moreover, we have sup{f, E} -sup{f, D} ≤ 1 - δ 2 sup{f, C} + δ 2 sup{f, D} -sup{f, D} = 1 - δ 2 sup{f, C} + δ 2 -1 sup{f, D} = 1 - δ 2 (sup{f, C} -sup{f, D}),
which concludes our proof.

Lemma 4.10. Let η be a sublinear measure of non-compactness defined on a dual Banach space X * . For every ε, δ > 0, every convex weak * -compact subset A of X * and every weak * -open halfspace H we have

η ω ε (H * ∩ A) = ∅ ⇒ η ω ε+δ (A) ⊂ A \ H. Proof.
Since the measure η is homogeneous, we may assume without loss of generality that η(A) ≤ 1. Then we can also assume that ε, δ are in (0, 1), since otherwise η ω ε+δ (A) = ∅. In fact, we are going to prove a more precise statement. Namely, for every ε, δ, ζ ∈ (0, 1) and n ∈ N, there exists

N = N (ε, δ, ζ, n) such that whenever A is convex weak * -compact with η(A) ≤ 1 and H is a weak * -open halfspace we have (4.2) η n ε (H * ∩ A) = ∅ ⇒ η N ε+δ (A) ⊂ (A \ H) + (ζ/2)(A -A). Let B = 1 2 (A -A), so η(B) ≤ 1.
We shall use an inductive argument on n ∈ N to prove the result. For n = 1 the result is true, even with δ = ζ = 0. Indeed, if η ε (H * ∩ A) = ∅, the usual compactness argument implies that η(H * ∩ A) < ε and therefore that η ε (A) ⊂ A \ H. Suppose now that it is true for some n ≥ 1 and let H be a weak * -open halfspace with

η n+1 ε (H * ∩ A) = ∅ and η n ε (H * ∩ A) = ∅. Fix p ∈ N such that (1 -δ/4) p-1 ≤ ζ/4
(this choice only depends on δ and ζ). We will use Lemma 4.9 with

C = η n ε (H * ∩ A), D = A \ H and δ/2 instead of δ. Then, if (A k ) ∞
k=1 is defined as in Lemma 4.9, we obtain that

(4.3) A p ⊂ (A \ H) + ζ 2 B.
Indeed, by the Hahn-Banach Theorem, it is enough to show that sup{g, A p } ≤ sup{g, A \ H} + ζ 2 for every g ∈ X \ {0} such that sup{g, B} = 1. Suppose that it is not the case. Then we have sup{g, A p } > sup{g, A\H} and so sup{g, C} > sup{g, D}. On the other hand, η(D) ≤ η(A) ≤ 1 and η ε (C) = ∅ implies that η(C) < ε. So, by Lemma 4.9, for our choice of p, we have

sup{g, A p } -sup{g, D} ≤ ζ 4 sup{g, A} -sup{g, A \ H} ≤ ζ 2 ,
which leads to a contradiction.

Set first A 0 = A. Assume 0 ≤ k ≤ p-1 and consider now G a weak * -open halfspace such that G * ∩A k+1 is empty. Since D ⊂ A k+1 we have G * ∩A k ∩D = ∅, so G * ∩A k ⊂ H * ∩A and thus η n ε (G * ∩ A k ) ⊂ C. In particular, η n ε (G * ∩ η ε+δ/2 (A k | D )) is a subset of C. So η n ε G * ∩ η ε+δ/2 (A k | D ) ⊂ G * ∩ C ∩ η ε+δ/2 (A k | D ) ⊂ G * ∩ A k+1 = ∅.
We can now deduce from our induction hypothesis that for any ξ ∈ (0, 1)

η 1+N (ε,δ/2,ξ,n) ε+δ/2 (A k ) ⊂ ( η ε+δ/2 (A k | D ) \ G) + ξB ⊂ (A k \ G) + ξB.
The above inclusion being true for any weak * -open halfspace such that G * ∩ A k+1 = ∅, it follows from the Hahn-Banach Theorem that ∀ξ ∈ (0, 1) η

1+N (ε,δ/2,ξ,n) ε+δ/2 (A k ) ⊂ A k+1 + ξB.
Pick now ξ ∈ (0, 1) so that 2pξ ≤ ζ and 2pξ ≤ δ and let m = 1 + N (ε, δ/2, ξ, n). Mixing the former inclusion with Lemma 4.8 gives

η m ε+δ (A k + kξB) ⊂ η m ε+ δ 2 +kξ (A k + kξB) ⊂ η m ε+ δ 2 (A k ) + kξB ⊂ A k+1 + (k + 1)ξB.
Chaining these inclusions from k = 0 to k = p -1 and using (4.3) we get that

η pm ε+δ (A) ⊂ A p + (ζ/2)B ⊂ A \ H + ζB.
This concludes the proof of (4.2).

The next proposition, which is a version of Lemma 2.7 for slice derivations, is a consequence of the previous results. We shall see later that it applies to the ω-iterates of the Kuratowski measure. Proposition 4.11. Let η be a sublinear measure of non-compactness defined on a dual Banach space X * . Assume that the measure η satisfies the following additional property: there exists a constant θ > 0 such that for any convex weak * -compact subset

A of X * , [η] ω ε (A) = ∅ implies that η ω θε (A) = ∅.
Then for any convex weak * -compact subset A of X * , any ε > 0, any λ > θ and every ordinal α we have

η ω.α λε (A) ⊂ η ω α ε (A). Proof. It is enough to show that η ω λε (A) ⊂ η ω ε (A) since the general statement follows easily by iteration. Fix 0 < δ < ε(λ -θ). For any weak * -open halfspace H such that H * ∩ η ω ε (A) = ∅ we have η ω ε (H * ∩ A) = ∅ and so [η] ω ε (H * ∩ A) = ∅.
By the assumption, η ω θε (H * ∩ A) = ∅ and by Lemma 4.10 we have η ω λε (A) ⊂ η ω θε+δ (A) ⊂ A \ H. Since H was arbitrary, we get that η ω λε (A) ⊂ η ω ε (A) as we wanted.

5. Application to the Kuratowski measure of non-compactness.

In this section we will show that σ ω n is convexifiable for every n ≥ 0 and then use it together with the sublinearity of σ ω n in order to compare the Szlenk index and the convex Szlenk index of a Banach space.

First, we wish to recall some definitions. Definition 5.1. Let X be a Banach space, K a weak * -compact subset of X * and ε > 0. We define Sz(K, ε) = inf{α, [σ] α ε (K) = ∅} if it exists and Sz(K, ε) = ∞ otherwise. Then Sz(K) := sup ε>0 Sz(K, ε). Further we define Kz(K, ε) = inf{α, σ α ε (K) = ∅} if it exists and Kz(K, ε) = ∞ otherwise. We put Kz(K) := sup ε>0 Kz(K, ε) Denote now

A 0 ε := K A β+1 ε := conv * [σ] ε (A β ε ) and A β ε := γ<β A γ ε if β is a limit ordinal.
We set Cz(K, ε) = inf{β, A β ε = ∅} if it exists and Cz(K, ε) = ∞ otherwise, and Cz(K) := sup ε>0 Cz(K, ε). Finally we denote Sz(X) = Sz(B X * ) and Cz(X) = Cz(B X * ). The ordinal Sz(X) is called the Szlenk index of X and Cz(X) is called the convex Szlenk index of X.

Note that for any ordinal α and all ε > 0

(5.4) [σ] α 2ε (K) ⊂ s α ε (K) ⊂ [σ] α ε/2 (K).
It follows that the above definitions of the Szlenk index and the convex Szlenk index of a Banach space actually coincide with those given in the introduction. Moreover, it follows from Lemma 2.8 that for any weak * -compact and convex subset K of X * , Cz(K) = Kz(K) and it is clear that Cz(K) = Kz(K) ≥ Sz(K).

Let us first state an elementary fact, well known for the case η = σ and K = B X * (see [START_REF] Sersouri | Lavrientiev index for Banach spaces[END_REF] for the original idea, or [START_REF] Lancien | A survey on the Szlenk index and some of its applications[END_REF]). Lemma 5.2. Let K be a convex weak * -compact subset of a dual Banach space X * and let η be a homogeneous and translation invariant measure of non-compactness on X * . Then (i) For any ε > 0 and any ordinal α,

1 2 [η] α ε (K) + 1 2 K ⊂ [η] α ε/2 (K). (ii) For any ε > 0, n ∈ N and any ordinal α, [η] α ε (K) ⊂ [η] α.2 n ε/2 n (K). (iii) If Sz(K) = ∞ and K = ∅,
then there exists an ordinal α such that Sz(K) = ω α .

Proof. (i) Since K is convex, the statement is clearly true for α = 0. It also passes easily to limit ordinals. So assume that it is satisfied for some ordinal α and consider

x * / ∈ [η] α+1 ε/2 (K)
. Assume, as we may, that x * belongs to 1 2 [η] α ε (K) + 1 2 K and thus by induction hypothesis to [η] α ε/2 (K). Then there exists a weak * -neighborhood U of

x * such that η([η] α ε/2 (K) ∩ U * ) < ε/2. For any u * ∈ [η] α ε (K) and v * ∈ K so that 2x * = u * + v * , we have that W = 2U -v * is a weak * -neighborhood of u * such that η(W * ∩ [η] α ε (K)) < ε.
Indeed, we have by the definition of W and the inductive hypothesis that 1 2

(W * ∩ [η] α ε (K)) + 1 2 v * ⊂ U * ∩ [η] α ε/2 (K)
, and η is homogeneous and translation invariant. This shows that

x * / ∈ 1 2 [η] α+1 ε (K) + 1 2 K. (ii) It is enough to show that [η] α ε (K) ⊂ [η] α.2 ε/2 (K). So let x * ∈ [η] α ε (K). It follows from (i) that 1 2 x * + 1 2 K ⊂ [η] α ε/2 (K). Since η is translation invariant we deduce that 1 2 x * + [η] α ε/2 ( 1 2 K) ⊂ [η] α.2 ε/2 (K).
Finally we use the homogeneity of η to get that 1 2 x * ∈ [η] α ε/2 ( 1 2 K) and therefore that x * ∈ [η] α.2 ε/2 (K). (iii) This is an easy consequence of property (ii) applied to the Kuratowski measure of non-compactness.

We will need to use special families of trees on N. Let us first recall the basic notation and definitions about trees on N. We denote N <ω = ∞ k=1 N k ∪ {∅}, where ∅ denotes the empty sequence. For a ∈ N <ω , we denote by |a| the length of a, which is defined by |a| = 0 if a = ∅ and |a| = k if a = (n 1 , .., n k ) ∈ N k . There is a natural order ≤ on N <ω defined as follows: for A subset T of N <ω is a tree on N if for any a in T and any b in N <ω such that b ≤ a, we have that b ∈ T . A subset B of a tree T is a branch of T if it is a maximal totally ordered subset of T . For any tree T on N, its derivative is T = T 1 = s ∈ T : s (n) ∈ T for some n ∈ N . Then T α is defined inductively for α ordinal as follows: T α+1 = (T α ) and T α = β<α T β if α is a limit ordinal. A tree T is said to be well founded if there exists an ordinal α such that T α = ∅, or equivalently if all its branches are finite. If T is a well founded tree on N, then its height is the infimum of all α so that T α = ∅ and is denoted o(T ). Note that the height of a non empty well founded tree on N is always a countable successor ordinal and that

a, b ∈ N <ω , a ≤ b if a = ∅ or b = (n 1 , .., n j ) ∈ N j with j ∈ N and a = (n 1 , .., n k ) with k ≤ j.
T α = {∅} if o(T ) = α + 1.
We are now ready to define our families of trees on N. Definition 5.3. For each ordinal α < ω 1 we define a family of trees T α as follows. We set T 0 := {{∅}}. Let now α be a countable ordinal such that α ≥ 1. If α = β + 1 is a successor ordinal we say that T ∈ T α if there exists an increasing sequence

(n k ) ∞ k=0 in N and a sequence (T k ) ∞ k=0 in T β such that T = {∅} ∪ ∞ k=0 (n k ) T k .
If α is a limit ordinal we say that T ∈ T α if there exists an increasing sequence

(n k ) ∞ k=0 in N, an increasing sequence (α k ) ∞ k=0 in [0, α) such that α k α and a sequence (T k ) ∞ k=0 such that T k ∈ T α k for all k and T = {∅} ∪ ∞ k=0 (n k ) T k .
Remark 5.4. One can easily verify that for all α < ω 1 , T α is indeed a family of trees on N and that for all T ∈ T α , o(T ) = α + 1.

Definition 5.5. Let T ∈ T α for some ordinal α < ω 1 . Note that for s ∈ T 1 , there exists an increasing sequence in N that we denote (n s k ) ∞ k=1 such that the set of successors of s in T is {s (n s k ), k ∈ N}. Note also that, if s ∈ T β+1 for some β ∈ [1, α), then there exists k 0 ∈ N such that s (n s k ) ∈ T β , for all k ≥ k 0 . Then, we say that a family (

x * s ) s∈T ⊂ X * is weak * -continuous if x * s (n s k ) w * -→ x * s as k → ∞ for all s ∈ T 1 . We say that it is ε-separated if x * s -x * s (n s k ) ≥ ε for all s ∈ T 1 and all k ∈ N.
Our first lemma follows from (5.4) and the classical characterization of the Szlenk index in the separable case (see Lemma 3.4 in [START_REF] Lancien | On the Szlenk index and the weak * dentability index[END_REF] for a non-separable version). Lemma 5.6. Let X be a separable Banach space, K a weak * -compact subset of X * , ε > 0 and α < ω 1 .

(i) If x * ∈ [σ] α ε (K), then for any ρ < ε 4 there is T ∈ T α and a family (x * s ) s∈T ⊂ K which is weak * -continuous and ρ-separated, such that x * ∅ = x * . (ii) If there exists T ∈ T α and a family (x * s ) s∈T ⊂ K which is weak * -continuous and ε-separated, then

x * ∅ ∈ [σ] α ε (K). Proof. (i) Let x * ∈ [σ] α ε (K)
. By (5.4), we have that x * ∈ s α ε/2 (K). Then it is easy to show by transfinite induction on α < ω 1 that if x * ∈ s α δ (K) for some δ > 0, then for any ρ < δ 2 there is T ∈ T α and a family (x * s ) s∈T ⊂ K which is weak * -continuous and ρ-separated, such that x * ∅ = x * . (ii) One can prove by induction on β ≤ α that if s ∈ T β , then x * s ∈ [σ] β ε (K). Alternatively, (ii) can also be proved directly by a transfinite induction on α.

We need the following property of weak * -continuous separated trees in X * . Lemma 5.7. Let X be a separable Banach space, α < ω 1 and T ∈ T α . Assume that (x * s ) s∈T is a weak * -continuous and ε-separated family in X * and that K is a weak *compact subset of X * such that, for some 0 < a ≤ b < ∞ we have:

∀s ∈ T ∃λ s ∈ [a, b] λ s x * s ∈ K. Then there exists λ ∈ [a, b] such that λx * ∅ ∈ [σ] α aε (K)
and for any ν > 0 there exists S ⊂ T so that S ∈ T α and |λ s -λ| < ν for all s ∈ S.

Proof. The proof is a transfinite induction on α < ω 1 . The statement is clearly true for α = 0. So let us assume that it is satisfied for all β < α. Assume first that α is a limit ordinal.

Then T = {∅} ∪ ∞ k=0 (n k ) T k where T k ∈ T α k for each k ∈ N, with n k
∞ and α k α. By our induction hypothesis, for all k ∈ N, there exists

λ k ∈ [a, b] such that λ k x * (n k ) ∈ [σ] α k aε (K)
and for any ν > 0 there exists

S k ⊂ T k so that S k ∈ T α k and for all s ∈ S k , |λ s -λ k | < ν 2 .
By taking a subsequence, we may assume that

λ k → λ ∈ [a, b] and for all k, |λ -λ k | < ν 2 . Then λ k x * (n k ) w * -→ λx * ∅ . Since the sets [σ] α k
aε (K) are weak * -closed, we get that λx * ∅ belongs to their intersection and therefore to

[σ] α aε (K). Moreover, S = {∅}∪ ∞ k=0 (n k ) S k is a subset of T belonging to T α such that for all s ∈ S, |λ -λ s | < ν. Assume now that α = β + 1. Then T = {∅} ∪ ∞ k=0 (n k ) T k where T k ∈ T β for each k ∈ N. By our induction hypothesis, for all k ∈ N, there exists λ k ∈ [a, b] such that λ k x * (n k ) ∈ [σ]
β aε (K) and for any ν > 0 there exists S k ⊂ T k so that S k ∈ T β and for all s ∈ S k , |λ -λ s | < ν 2 . By taking a subsequence, we may assume that

λ k → λ ∈ [a, b] and for all k, |λ -λ k | < ν 2 . Then λ k x * (n k ) w * -→ λx * ∅ and lim inf k λ k x * (n k ) -λx * ∅ ≥ aε. Therefore λx * ∅ ∈ [σ] β+1 aε (K) = [σ] α aε (K).
We also have that S = {∅} ∪ ∞ k=0 (n k ) S k is a subset of T belonging to T α such that for all s ∈ S, |λ -λ s | < ν. This finishes our induction.

We now deduce the following. Proposition 5.8. Let X be a separable Banach space and A be a weak * -compact subset of X * such that [σ ω n ] m ε (A) = ∅ for some integers n ≥ 0 and m ≥ 1. Then there is a symmetric radial weak * -compact set B containing A and such that

[σ ω n ] 7ε (B) ⊂ 1 - 1 32(m + 1) B.
Proof. Considering -A ∪ A instead of A and we may assume, without loss of generality, that A is symmetric. Fix r ∈ (0, 1) such that 3(r + r 2 ) > 4 (for instance r = 7/8). Now define the sets

B k = {λx * : x * ∈ [σ ω n ] k ε (A) ∪ rA, λ ∈ [0, 1]} for k = 0, . . . , m.
The sets B k are clearly symmetric and radial. Using the weak *compactness of rA and [σ ω n ] k ε (A) it is not difficult to see that they are also weak *compact. Therefore, we can define the Minkowski functional f k of B k which is weak * lower semi-continuous. Notice that f k ≤ f k+1 and f m = r -1 f 0 . We now define

f (x * ) = 1 2 f 0 (x * ) + r 2(m + 1) m k=0 f k (x * )
Clearly f ≤ f 0 and so A ⊂ B where B = {f ≤ 1}. By construction, B is symmetric and radial. It is also bounded. Then it follows from the weak * lower semi-continuity of f that B is weak * -compact. Take now x * ∈ [σ ω n ] 7ε (B) and assume as we may that f (x * ) > 1 2 . By Lemma 2.7 and Lemma 5.6 there exist T ∈ T ω n and (x * s ) s∈T a weak * -continuous and 3 2 ε-separated family in B such that x * ∅ = x * . Fix ν > 0. First, it follows from the weak * lower semicontinuity of f and the f k 's that we may assume, by considering a subtree of T belonging to T ω n , that for all s ∈ T , f (x * s ) > 1 2 and for all s ∈ T and all k,

f k (x * s ) ≥ f k (x * ) -ν. On the other hand, for all j, k ≤ m, f j ≥ f 0 ≥ rf k . It follows that for all k ≤ m, f ≥ r+r 2
2 f k and therefore for all y * ∈ B, f k (y * ) ≤ 2 r+r 2 . Then, we have that ∀s ∈ T ∀k ∈ {0, ..., m} :

2 3 ≤ r + r 2 2 ≤ f k (x * s ) -1 := λ s k ≤ 2. Notice that {λ s k x * s : s ∈ T } is included in [σ ω n ] k ε (A) ∪ rA.
Then it follows from Lemma 5.7 that for any k = 0, . . . , m -1, there exists

λ k ≥ r+r 2 2 such that λ k x * ∈ [σ] ω n ε ([σ ω n ] k ε (A) ∪ rA) ⊂ [σ ω n ] ε ([σ ω n ] k ε (A) ∪ rA) ⊂ [σ ω n ] k+1 ε (A) ∪ rA.
The last inclusion follows from the fact that σ ω n is a measure of non-compactness (Lemma 2.6) and the stability of the associated fragment derivation under finite unions.

Still by Lemma 5.7, we can find S ⊂ T such that S ∈ T ω n and (λ s k ) -1 -λ -1 k < ν for all s ∈ S and all k ≤ m -1. Now since λ k x * ∈ B k+1 , we obtain

f k+1 (x * ) ≤ λ -1 k ≤ (λ s k ) -1 + ν = f k (x * s )
+ ν for any k = 0, . . . , m -1 and any s ∈ S. We infer that for all s ∈ S f

(x * ) ≤ 1 2 f 0 (x * s ) + ν 2 + r 2(m + 1) f 0 (x * ) + r 2(m + 1) m k=1 f k (x * ) ≤ 1 2 f 0 (x * s ) + r 2(m + 1) m k=0 f k (x * s ) + r 2(m + 1) f 0 (x * s ) -f m (x * s ) + ν(r + 1) 2 = f (x * s ) - r 2(m + 1) 1 r -1 f m (x * s ) + ν(r + 1) 2 ≤ 1 - 1 -r 4(m + 1) + ν(r + 1) 2 .
Since ν > 0 was arbitrary, we obtain that f (x * ) ≤ 1 -1-r 4(m+1) . Applying this last inequality with r = 7 8 as we may, we conclude our proof. We now state and prove the main result of this section. Theorem 5.9. Let X be a separable Banach space and σ be the Kuratowski measure of non-compactness on X * . Then, for any n in N, σ ω n is convexifiable.

Proof. We can proceed by induction. The claim is true for n = 0. Indeed, it is easily checked that if a weak * -compact subset A of X * can be covered by finitely many balls of diameter at most ε, then for any δ > 0, conv * (A) can be covered by finitely many balls of diameter (1 + δ)ε. Assume now that σ ω n is convexifiable. Denote κ n the convexifiability constant of σ ω n . Let A be a weak * -compact subset of X * such that σ ω n+1 (A) < ε. Then [σ ω n ] m ε (A) = ∅ for some m ∈ N. Combining Propositions 5.8 and 3.4 gives that [σ [START_REF] Lancien | On the Szlenk index and the weak * dentability index[END_REF]. Notice that the constant of convexifiability increases in each step of the induction. It follows from our proof that κ n ≤ 2 • 8 n . We do not know if this method can be adapted beyond ω ω .

ω n ] ω 8κnε (conv * (A)) ⊂ σ ω n ω 8κnε (conv * (A)) = ∅. Therefore σ ω n+1 (conv * (A)) ≤ 8κ n ε. Remark 5.
We can now compare the Szlenk index and the convex Szlenk index.

Corollary 5.11. Let X be a separable Banach space.

(1) If K is a weak * -compact convex subset of X * such that Sz(K) ≤ ω n+1 for some non negative integer n, then Cz(K) = Sz(K).

(2) Cz(X) = Sz(X).

Proof.

(1) Note first that it follows from Proposition 5.8, Theorem 5.9 and Proposition 3.4 that σ ω n satisfies the assumptions of Proposition 4.11 with θ = 8κ n . Assume now that K is a weak * -compact convex subset of X * such that Sz(K) ≤ ω n+1 . By Lemma 5.2, it is enough to show that Cz(K) ≤ ω n+1 . It follows from Lemma 2.7 that for any ε > 0, [σ ω n ] ω ε (K) = ∅. Pick now λ n > 8κ n ,...,λ 0 > 8κ 0 . By our initial remark, we obtain that for any ε > 0, σ ω n ω λnε (K) = ∅. Then applying Proposition 4.11 to σ ω n-1 , ..., σ successively implies that for any ε > 0, σ ω n+1 αε (K) = ∅, with α = λ 0 ..λ n . We have proved that Kz(K) ≤ ω n+1 , or equivalently that Cz(K) ≤ ω n+1 .

(2) We may assume that Sz(X) < ∞ and, by Lemma 5.2 it is enough to show that Cz(X) = ω α whenever Sz(X) = ω α , with α countable ordinal.

Assume first that α ≥ ω. We need to introduce a new derivation. For a weak *compact convex subset K of X * and ε > 0, we define d ε (K) to be the set of all x * ∈ K such that for any weak * -open halfspace H of X * containing x * , the diameter of K ∩ H * is at least ε. Then d α ε (K) is defined inductively for α ordinal as usual, Dz(K, ε) = inf{α, d α ε (K) = ∅} if it exists (and = ∞ otherwise) and Dz(K) = sup ε>0 Dz(K, ε). Finally Dz(X) := Dz(B X * ). It is clear that for any weak * -compact convex subset K of X * and any ε > 0, s ε (K) ⊂ d ε (K). Since d ε (K) is weak * -compact and convex, we have that the weak * -closed convex hull of s ε (K) is included in d ε (K). Then an easy induction combined with (5.4) yields that Cz(K) ≤ Dz(K). We now need to recall an important recent result of P. Hájek and T. Schlumprecht who proved in [START_REF] Hájek | The Szlenk index of Lp(X)[END_REF] that if Sz(X) = ω α with α ∈ [ω, ω 1 ), then Sz(X) = Dz(X). Since we always have Sz(X) ≤ Cz(X) ≤ Dz(X), it follows that Cz(X) = Sz(X), whenever X is Banach space such that Sz(X) = ω α with α ∈ [ω, ω 1 ).

Assume now that Sz(X) = ω n , with n ∈ N. By applying (1) to K = B X * , we get that Sz(X) = Cz(X). Remark 5.12. Let us emphasize again the fact that the equality of the Szlenk index and the convex Szlenk index of a Banach space is a direct consequence of the work of Hájek and Schlumprecht, except for spaces with Szlenk index ω n with n finite. The main result of this section fills this gap.

It is worth mentioning that Hájek and Schlumprecht also proved in [START_REF] Hájek | The Szlenk index of Lp(X)[END_REF] that if Sz(X) = ω n with n finite, then Dz(X) ≤ ω n+1 and that this result is optimal (see [START_REF] Hájek | Weak * -dentability index of spaces C([0, α])[END_REF]).

Our comparison extends to the non-separable setting as follows.

Corollary 5.13. Let X be a Banach space such that Sz(X) < ω 1 , where ω 1 is the first uncountable ordinal. Then Cz(X) = Sz(X).

Proof. Let α = Sz(X) < ω 1 . Then for any separable subspace Y of X, Sz(Y ) ≤ α. Thus, Corollary 5.11 ensures that for any separable subspace Y of X, Cz(Y ) = Sz(Y ) ≤ α. Then, since α is countable, it follows from the techniques developed in [START_REF] Lancien | On the Szlenk index and the weak * dentability index[END_REF] to show the separable determination of such indices (see Propositions 3.1 and 3.2) that Cz(X) ≤ α = Sz(X), which concludes the proof.

Renorming spaces and Szlenk index

The aim of this section is to generalize the following theorem due to Knaust, Odell and Schlumprecht [START_REF] Knaust | On asymptotic structure, the Szlenk index and UKK properties in Banach spaces[END_REF] (see [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF] for quantitative improvements and [START_REF] Raja | On weak * uniformly Kadec-Klee renormings[END_REF] for the extension to the non-separable case). Theorem 6.1. Let X be a separable Banach space such that Sz(X) ≤ ω. Then X admits an equivalent norm, whose dual norm satisfies the following property: for any ε > 0 there exists δ > 0 such that

[σ] ε (B X * ) ⊂ (1 -δ)B X * .
Note, that an easy homogeneity argument shows that the converse of this statement is clearly true. A dual norm satisfying the conclusion of the above theorem is said to be weak * uniformly Kadets-Klee (in short UKK * ). We now introduce the following analogous definition. Definition 6.2. Let X be a Banach space and α ∈ [0, ω 1 ) an ordinal. The dual norm on X * is ω α -weak * uniformly Kadets-Klee (in short ω α -UKK * ) if for any ε > 0 there exists δ > 0 such that [σ] ω α ε (B X * ) ⊂ (1 -δ)B X * . Our main renorming result is the following. Theorem 6.3. Let X be a separable Banach space. Then Sz(X) ≤ ω α+1 if and only if X admits an equivalent norm whose dual norm is ω α -UKK * .

It is clear that a Banach space X with a dual ω α -UKK * norm satisfies Sz(X) ≤ ω α+1 . So we shall concentrate on the other implication. Before our proof we need a few technical lemmas and definitions. Proof. The proof goes by induction on α. The claim is clear when α = 0 so let us assume that we have proved our assertion for every β < α. Then, there is a sequence (α k ) of ordinals in [1, α) (with α k α if α is a limit ordinal, α k + 1 = α if α is a successor ordinal), and a sequence (n k ) in N such that

T = {∅} ∪ k∈N (n k ) s : s ∈ T k ,
where T k ∈ T α k for all k ∈ N. It follows from our induction hypothesis, that for each k ∈ N there exist a tree S k ∈ T α k , S k ⊂ T k , and a weak * -continuous and (b -2a)separated family that we denote (y * (n k ) s ) s∈S k ⊂ A such that the roots y * (n k ) of these families satisfy y * (n k ) -x * (n k ) ≤ a. By passing to a subsequence, we may assume that the roots y * (n k ) of these families are such that y *

(n k ) w * -→ y * ∅ . Then y * ∅ -x * ∅ ≤ a and y * (n k ) -y * ∅ ≥ b -2a. Finally, the tree S = {∅} ∪ k∈N (n k ) s : s ∈ S k ,
belongs to T α and (y * s ) s∈S satisfies the desired properties.

We shall now define inductively the class L α (T ) of "converging" real valued functions on a given tree T in T α and their "limit" along T . Definition 6.5. For T ∈ T 0 and r : T → R we put lim T r := lim s∈T r(s) := r(∅). We define L 0 (T ) = R T . Let now α ∈ [1, ω 1 ) and assume that the class L β (T ) has been defined for all β < α and all T ∈ T β . Assume also that for all T ∈ T β and all r ∈ L β (T ), lim s∈T r s has been defined. Consider now T ∈ T α and r : T → R. Then

T = {∅} ∪ (n k ) T k with α k α if α is a limit ordinal, α k + 1 = α if α is a successor ordinal and for all k ∈ N, T k ∈ T α k . We say that r ∈ L α (T ) if for all k ∈ N, r T k ∈ L α k (T k
) and lim k→∞ lim s∈T k r(s) exists. Then we set lim T r := lim s∈T r(s) := lim k→∞ lim s∈T k r(s)

Observe that the existence and the value of lim T r depends only on r T \T . The following observations rely on straightforward transfinite inductions similar to the one used in the proof of Lemma 5.7. Lemma 6.6. Let α ∈ [0, ω 1 ), T ∈ T α and r : T → R.

(i) Assume that r ∈ L α (T ) and that S ⊂ T with S ∈ T α . Then r S ∈ L α (S) and lim T r = lim S r.

(ii) Assume that r : T → R is bounded. Then there exists S ⊂ T such that S ∈ T α and r S ∈ L α (S).

(iii) Assume that r ∈ L α (T ). Then for each ε > 0 there exists S ⊂ T such that S ∈ T α and for all s ∈ S \ S 1 , we have |r(s) -lim T r| < ε.

We can now proceed with the proof of Theorem 6.3. We will adapt to this new situation a construction of uniformly convex norms given in [START_REF] Lancien | On uniformly convex and uniformly Kadec-Klee renormings[END_REF].

Proof of Theorem 6.3. So let us assume that Sz(X) ≤ ω α+1 . Then we get from Corollary 5.11 that Cz(X) ≤ ω α+1 . Fix k ∈ N. We define inductively for n ∈ N:

A 0 k := B X * , A n+1 k := conv * [σ] ω α 2 -k (A n k )
. The fact that Cz(X) ≤ ω α+1 implies that for all k ∈ N, there exists n ∈ N such that

A n k = ∅. Then denote N k := min{n ∈ N : A n k = ∅} -1. We define f (x * ) = x * + ∞ k=1 1 2 k N k N k n=1 dist(x * , A n k ).
It is easily checked that the sets A n k are symmetric and convex. We define | | on X * to be the Minkowski functional of the set 

C = {f ≤ 1}. Since x * ≤ f (x * ) ≤ 2 x * , we have that | | is an equivalent norm on X * satisfying x * ≤ |x * | ≤ 2 x * .
= x * . For k ∈ N and l ≤ N k , we define r l k : T → R by r l k (s) := dist(x * s , A l k ). Let k ≥ 1 such that ε 8 ≤ 2 -k < ε 4 , ξ = ε 64N k and k 0 > k such that ∞ i=k 0 2 -i < ξ 2 k N k
. By passing to a subtree, we may assume, using Lemma 6.6, that for all i < k 0 and all l ≤ N i , r l i ∈ L ω α (T ). So, for each i < k 0 and 1 ≤ l ≤ N i we denote d l i := lim s∈T dist(x * s , A l i ). Then by using Lemma 6.6 (iii) and passing to a further subtree, we may assume that for each i < k 0 and each 1 ≤ l ≤ N i we have d(x * s , A l i ) -d l i < ξ We now conclude the proof of Theorem 6.3. Take any s ∈ T \ T 1 . We recall that dist(x * s , A l j ) > d l j -ξ

2 k N k
for all 1 ≤ j < k 0 and 1 ≤ l ≤ N j . With another application of Lemma 6.6, we may also assume that for all s ∈ T \ T 1 we have that x * s ≥ lim t∈T x * t -ξ 2 k N k

. We now have by our choice of k 0 , ξ and γ, by Claim 6.7 and the weak * lower semi-continuity of all involved terms, that for all s ∈ T \ T 1

f (x * ) = x * + k 0 -1 j=1 1 2 j N j N j n=1 dist(x * , A n j ) + ∞ j=k 0 1 2 j N j N j n=1 dist(x * , A n j ) ≤ lim t∈T ω α x * t +   - γ 2 k N k + k 0 -1 j=1 1 2 j N j N j n=1 d n j   + ξ 2 k N k ≤ x * s + ξ 2 k N k +   - γ 2 k N k + k 0 -1 j=1 1 2 j N j N j n=1 (dist(x * s , A n j ) + ξ 2 k N k )   + ξ 2 k N k ≤ f (x * s ) - ξ 2 k N k ≤ 1 - ε 2 k 64N 2 k ≤ 1 - ε 2 2 9 N 2 k .
We have shown that for any ε > 0 there exists δ(ε) > 0 such that f (x * ) ≤ 1 -δ(ε), whenever x * ∈ s This proves that | | is a ω α -UKK * norm.

Remark 6.8. As we have already mentioned, the Szlenk index of a separable Banach space X is either ∞ (exactly when X * is non-separable) or of the form Sz(X) = ω α with α < ω 1 . If α < ω 1 is a successor ordinal, it is known since [START_REF] Samuel | Indice de Szlenk des C(K)[END_REF] that there exists a countable compact metric space K such that Sz(C(K)) = ω α . Let us now mention the complete description of the possible values of the Szlenk index recently obtained by R. Causey ([3], Theorem 1.4). The set of all α < ω 1 such that there exists a separable Banach space X satisfying Sz(X) = ω α is exactly:

[0, ω 1 ] \ {ω ξ , ξ < ω 1 and ξ is a limit ordinal}.

The case Sz(X) = ω α with α < ω 1 limit ordinal is not covered by our renorming theorem. There is a good reason for this. Indeed, in that case, for any β < ω α , β.ω < ω α . Then the usual homogeneity argument makes it impossible to have s β ε (B X * ) ⊂ (1 -δ)B X * for some δ > 0.

Aknowledgements. The authors are extremely grateful to the anonymous referee for his or her numerous valuable comments and corrections which lead to a considerable improvement of the presentation.

  For a, b ∈ N <ω , we say that b is a successor of a, or that a is the predecessor of b if a ≤ b and |b| = |a| + 1. If a = (n 1 , .., n k ) and b = (m 1 , .., m j ), we denote by a b the sequence (n 1 , .., n k , m 1 , .., m j ) (and a b = b if a = ∅, a b = a if b = ∅). For a ∈ N <ω and S a subset of N <ω , a S denotes the set {a b, b ∈ S}.

Lemma 6 . 4 .

 64 Let 0 ≤ α < ω 1 , 0 < 2a < b and T ∈ T α . Assume that A ⊂ B ⊂ X * are two weak * -compact sets and that (x * s ) s∈T ⊂ B is a b-separated, weak * -continuous family such that dist(x * s , A) < a for all s ∈ T . Then there exists S ∈ T α , S ⊂ T and a weak * -continuous and (b -2a)-separated family (y * s ) s∈S ⊂ A such that x * ∅ -y * ∅ ≤ a.

2 k N k for all s ∈ T \ T 1 .Claim 6 . 7 .

 167 By the weak * lower semi-continuity of the distance functions this implies that d(x * s , A l i ) ≤ d l i + ξ2 k N kfor all s ∈ T . Note also that we haved(x * , A l i ) ≤ d l i . Let now γ = ε 16N k = 4ξ. There exists l ∈ {1, . . . , N k } such that dist(x * , A l k ) ≤ d l k -γ. Proof of Claim 6.7. Otherwise for all l ∈ {1, . . . , N k } we have dist(x * , A l k ) > d l k -γ.Then we will show by induction that for alll ≤ N k , d l k < γl + ξ(l -1). For l = 1 we have that x * ∈ s ω α 2 -k (B | | ) ⊂ A 1 k . Therefore d 1 k < γ. If d l k < γl + ξ(l -1) has been proved for l ≤ N k -1, we can use Lemma 6.4 with the following valuesA = A l k , B = B | | , a = d l k + ξ, b = ε 2 and replacing α with ω α . Notice that a = d l k + ξ < (γ + ξ)l ≤ ε 8 = 1 4 b. So there exists S ∈ T ω α and (y * s ) s∈S in A l k which is weak * -continuous, ( ε 2 -2 ε 8 )-separated so that its root y * satisfies y * -x * ≤ d l k + ξ < (γ + ξ)l. Note that y * ∈ A l+1 k . It follows that d l+1 k -γ < dist(x * , A l+1 k ) < (γ + ξ)l and therefore d l+1 k < γ(l + 1) + ξl. Now applying Lemma 6.4 with A = A N k k , B = B | | , a = N k (γ + ξ) ≤ ε 8 , b = ε 2and replacing α with ω α , we produce a weak * -continuous ( ε 2 -2 ε 8 )-separated tree of height ω α in A N k k which implies that [σ] ω α 2 -k (A N k k ) = ∅. This contradiction proves our claim.

1 1 + δ(ε) 2 .

 12 ω α ε (B | | ). Note now that f is 2-Lipschitz for X * and that B | | ⊂ B X * . So, for any x * ∈ s ω α ε (B | | ) and any t ∈ [1, 1 + δ(ε) 2 ], we have that f (tx * ) ≤ f (x * ) + 2(t -1) ≤ 1. Therefore ∀x * ∈ s ω α ε (B | | ) |x * | ≤

  Moreover, the sets A n k are weak * -closed. Therefore f is weak * lower semi-continuous and | | is the dual norm of an equivalent norm on X, still denoted | |. Let now ε > 0 and x * ∈ s ω α ε (B | | ) (the distances and diameters are meant with the original norm ). Then there exist T ∈ T ω α and (x * s ) s∈T ⊂ B | | weak * -continuous and ε 2 -separated such that x * ∅
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