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Third-generation TiO2 photocatalysts were prepared by implantation of Cþ ions into 110 nm thick

TiO2 films. An accurate structural investigation was performed by Rutherford backscattering

spectrometry, secondary ion mass spectrometry, X-ray diffraction, Raman-luminescence spectros-

copy, and UV/VIS optical characterization. The C doping locally modified the TiO2 pure films,

lowering the band-gap energy from 3.3 eV to a value of 1.8 eV, making the material sensitive to

visible light. The synthesized materials are photocatalytically active in the degradation of organic

compounds in water under both UV and visible light irradiation, without the help of any additional

thermal treatment. These results increase the understanding of the C-doped titanium dioxide, help-

ful for future environmental applications. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4915111]

I. INTRODUCTION

In the recent years, a great effort has been devoted to

developing heterogeneous photocatalysts for environmental

applications, such as water purification and disinfection, air

purification, and hydrogen production from water split-

ting.1–4 Among various oxide semiconductor photocatalysts,

titanium dioxide, commonly called titania, has proven to be

the most suitable for widespread applications, for its biologi-

cal and chemical inertness, strong oxidation power, cost

effectiveness and long-term stability against photo and

chemical corrosion.5–8

The photocatalytic activity of semiconductors is due to

the production of excited electrons in their conduction band

along with the corresponding holes in their valence band by

the absorption of photons with energy higher than the band-

gap. The charge carriers can migrate to the surface, if they

do not recombine, and react with pollutants adsorbed on the

surface, decomposing them into innocuous substances.

Titania exists in two main crystallographic forms: ana-

tase and rutile with band-gaps of 3.15 eV and 3.05 eV,

respectively;9 thus, ultraviolet (UV) irradiation is necessary

in order to activate the photocatalyst material. Several

attempts have been made to lower the band-gap energy of

TiO2, in order to make the photocatalyst reactive under visi-

ble light (k> 380 nm) so to use the main part of the solar

spectrum and even the poor illumination of interior-lighting.

One approach was the doping of TiO2.

Metal-doped titania, the so-called “second-generation

photocatalyst”, has been widely studied for improved photo-

catalytic performance under visible light (VIS) irradia-

tion.2,6,10–13 Otherwise, it is known that metal-ions behave as

recombination centers, so that the electrons and holes

transfer to the interface is hindered.2 As a consequence, there

is an optimum of doped metal ion concentration, above

which the photocatalytic activity decreases due to the

increase in electrons/holes recombination.2 We recently

investigated the effect of Feþ ion-implantation on 100 nm

TiO2 films, demonstrating that the iron implantation is able

to lower the band-gap energy of titania, to a minimum value

of 1.6 eV.14 The measured band-gap was associated with the

presence of energy levels inside the energy band structure of

the titania, due to implantation-induced defects in the films.

The synthesized materials revealed a remarkable photocata-

lytic efficiency under VIS light irradiation (80% higher than

the one obtained for pure TiO2 films), without the help of

any additional thermal treatment.14 We demonstrated that

the photocatalytic activity in the degradation of organic com-

pounds strongly depends on the amount of defects induced

by the ion-implantation process.14

Non-metal doped TiO2 has been regarded as the “third-

generation photocatalyst”. Various non-metal dopants have

been widely studied for visible light photocatalytic activ-

ities.2,6 For example, Asahi and co-workers found that sput-

tered N-doped TiO2 presented a higher photocatalytic

activity in the degradation of methylene blue (MB) than

pure TiO2, in the visible light region.15 A noticeable photo-

catalytic activity on the decomposition of MB in the visible

region was demonstrated for C-doped TiO2, obtained from

oxidation of TiC powders.16 C-doped TiO2, synthesized

by flame pyrolysis of Ti sheets in a natural gas flame, dis-

played a lower band-gap than titania (2.32 versus

3.00 eV).17 Even if there are several works in the literature

focused on C-doped titania,17–20 and on doped TiO2 by the

ion-implantation process,2,6,10,11,14 there is not, to our

knowledge, any study on the effects of C doping by ion im-

plantation. The advantage of the ion-implantation process is

the outstanding control and repeatability of the implanted

fluence and energy.
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The aim of this experimental research was to investigate

the effect of Cþ implantation into TiO2 thin films (�110 nm

in thickness) in terms of damage induced by the ion-

implantation process into the polycrystalline matrix, optical

properties of the synthesised materials and photocatalytic ac-

tivity in the degradation of organic compounds in water

under UV or VIS light irradiation.

II. EXPERIMENTAL

Titanium films were prepared by sputtering Ti, at room

temperature, on quartz substrates. In order to induce the com-

plete oxidation of the titanium layers into TiO2, the samples

were annealed at 600 �C for 30 min in a conventional furnace

under a controlled O2 flux.21 The thickness and the composi-

tion of the TiO2 films were investigated by Rutherford

Backscattering Spectrometry (RBS), with a 3.5 MeV HVEE

Singletron accelerator, using a 2 MeV Heþ beam with 165�

scattering angle. The samples were then implanted with Cþ

ions at 20 keV, with a fluence of 1� 1015cm�2. During

implantation, the average current density was �0.02 lA/cm2,

and the substrates were held at room temperature. Afterwards

some samples were annealed at 450, 550, or 650 �C for 2 h in

an Ar atmosphere.

Secondary Ion Mass Spectrometry (SIMS) was used to

obtain the chemical profiles of carbon. The SIMS analyses

were performed with a CAMECA IMS-4f instrument, using

a 14.5 keV Csþ sputtering beam and collecting secondary

negative ions, while flooding the sample with an electron

gun in order to neutralize charging and maintain a fixed and

stable surface potential. Depth scales were calibrated by

evaluating the erosion rates in TiO2 and SiO2 (i.e., the under-

lying quartz) through a dedicated procedure based on meas-

urements of the crater depths with a profilometer after

sputtering in both materials. The overall accuracy was 10%.

The structure of the films was studied by X-Ray

Diffraction (XRD) analyses with a Bruker D-500 diffractom-

eter at several angles of incidence, from 0.8 to 1.0 �, and H-

2H from 20 to 60 �. The XRD spectra were analyzed by the

Bruker software suite, including ICSD structure database.

The vibrational and electronic properties of the films were

analyzed through their Raman and photoluminescence

responses, respectively, using an XploRA Horiba Jobin-

Yvon spectrometer.

The UV-VIS optical characterization was obtained by

extracting both the normal transmittance (T) and the 20� re-

flectance (R) spectra in the 200–800 nm wavelength range,

by using a Varian Cary 500 double beam scanning UV/VIS/

NIR spectrophotometer.

The photocatalytic activity of the investigated materials

was evaluated by the degradation of MB, following the ISO

protocol.22 As a first step, the samples (0.8 cm� 0.8 cm in

size) were irradiated by an UV lamp for 50 min in order to

remove the hydrocarbons localized on the sample surface.23

Then, the samples were immersed in a 2 ml solution contain-

ing MB and de-ionized water, with a starting concentration

of MB of 1.3� 10�5 M. The mixture was irradiated by an

UV lamp (350–400 nm wavelength range) with a power of

8 W, or by a VIS lamp (390–535 nm wavelength range) with

a power of 12 W, for a total time of 210 min. Both the UV

and VIS lamps used for the irradiation do not emit in the

region of absorption of the MB, as a consequence the meas-

ured degradation of the MB can be only ascribed to the pres-

ence of the photocatalysts. Every 30 min of irradiation the

absorption of the solutions was measured with a UV-VIS

spectrophotometer (Perkin-Elmer Lambda 35) in a wave-

length range between 500 and 800 nm. The degradation of

MB was evaluated by the absorbance of the MB peak at

664 nm, according to the Lambert-Beer law: A¼ E� l�C,

where A is the absorbance of the solution at 664 nm, E is the

extinction molar coefficient, l is the width of the cuvette, and

C is the concentration of the MB.24 The decomposition of

the MB in the absence of any photocatalyst material was also

checked as a reference. Control experiments in the dark were

conducted, providing evidence of any contribution of the

adsorption of the MB at the sample surface.

III. RESULTS AND DISCUSSION

The RBS analyses (not shown) of the films obtained af-

ter the oxidation process of the sputtered Ti films gave as a

result the stoichiometry of the TiO2 and a thickness of

�110 nm (in detail, 104 nm considering the density of the ru-

tile phase, 114 nm considering the density of the anatase

phase25).

Figure 1 reports the simulated distribution profile of car-

bon ions implanted in TiO2 at 20 keV (dotted line, right

axis).26 The energy was obtained by the SRIM code26 so that

the implanted profile was fully contained in the TiO2 layers

(C projected range �50 nm). On the left axis the C profiles

(in counts/s), obtained by SIMS analyses for the as-

implanted (continuous line) and 650 �C annealed sample

(dashed line), are reported. The layer thickness resulted to be

110 6 10 nm which, if compared with the TiO2 areal density

estimated by RBS gives a TiO2 molecular density of

9.0� 1022 atoms/cm3. This density is in agreement, within

6%, with the density of TiO2 reported in literature25 and

used by the SRIM code,26 thus confirming there is no signifi-

cant porosity in the layer. The C profile clearly shows a pe-

culiar, outside the experimental errors, redistribution just

FIG. 1. Carbon chemical profiles just after the implantation (1� 1015 cm�2

at 20 keV, straight line) and after annealing at 650 �C for 2 h (dashed line).

The simulation26 of the implanted profile is also reported on the right verti-

cal axis (dotted line).
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during the implant, indicating that C migration takes place at

room temperature upon implantation, while non C loss is

observed up to the temperature of 650 �C (i.e., the highest

temperature used for this work).

The XRD patterns of the starting TiO2 film, as-

implanted and after the thermal treatments are shown in

Fig. 2. The XRD analyses only detected the presence of ana-

tase and rutile crystalline phases (marked by “A” and “R”,

respectively, in the figure). Un-doped films were found to

crystallize at 600 �C into anatase and rutile phases. The ion

implantation induced a slight reduction of the peak inten-

sities, which can be ascribed to a weak damaging process,

typical of ion-implantation for this low fluence.27 The ther-

mal treatments induced a damage recover, as expected.

The low frequency Raman spectra (below 700 cm�1) for

the TiO2 film, as-implanted and after the thermal treatments,

are reported in Fig. 3. The analyses were performed with an

excitation wavelength of 532 nm (i.e., 2.33 eV). The strong-

est Raman lines at �150, 400, 517, and 648 cm�1 can be

assigned as Eg, B1g, A1g, and Eg modes of the anatase

phase,28 respectively (they are marked by “A” in the figure).

The analyses also reveled two weak peaks near 462 and

628 cm�1, that correspond to Eg and A1g modes of the rutile

phase,28 respectively (they are marked by “R” in the figure).

The signal originating from the quartz substrate was sub-

tracted, the intensities were normalized to the highest anatase

mode (near 150 cm�1) and the spectra were up-shifted, for

an easier comparison. We estimated that the ratio between

the amount of anatase phase versus the rutile one, in the

TiO2 starting layers was �2.29 In addition, the Raman spec-

tra of the titania layers were not generally modified by the

ion implantation and post-annealing processes: the crystal-

line quality and composition are rather well preserved during

these processes and totally recovered after annealing at the

higher temperature of 650 �C.

Figure 4 reports the high frequency Raman spectra

(Stokes shift above 1100 cm�1, i.e., absolute photon energy

below 2.2 eV). These spectra were also arbitrarily shifted for

a better comparison. In the annealed samples, the D and G

features (corresponding to a Raman shift of 1450 and

1590 cm�1, respectively) are characteristic signatures of

“disorder” and graphite C¼C bands. Their presence testifies

to some clustering of C atoms. At the same time in these

samples a broad "luminescence" band is observed around

4000 cm�1. This is indeed a luminescence band because its

absolute position (1.83 eV or 676 nm) remains unchanged

when the laser excitation wavelength is changed from 532 to

638 nm (not shown). We tentatively attribute it to in-gap lev-

els created by the implantation process that act as recombi-

nation centers upon annealing.

The optical properties of the investigated samples were

analysed by UV-VIS optical characterization. Figure 5

reports the absorbance for pure TiO2 film, C-implanted and

C-implanted after the thermal treatments. The absorbance

(A) was obtained by the transmittance (T) and reflectance

(R) measured spectra, in accordance with the following

equation: A%¼ 100 – T% - R%. The pure titania film shows

the typical optical absorption in the UV part of the spectrum,

for wavelengths shorter than �390 nm (line plus closed

circles in Fig. 5). Otherwise, the C-doped films exhibit an

FIG. 2. XRD patterns of pure TiO2 film, C-implanted (1� 1015 cm�2 at

20 keV) and after the thermal treatments. “A” refers to the anatase phase,

“R” to the rutile phase.

FIG. 3. Raman spectra for the TiO2 film, C-implanted (1� 1015 cm�2 at

20 keV) and after the thermal treatments. “A” indicates the modes relative to

the anatase phase, “R” the modes relative to the rutile phase. The excitation

wavelength was 532 nm.

FIG. 4. Luminescence spectra of the same samples as in Fig. 3. The C¼C in-

dication refers to Raman scattering by disordered graphitic carbon modes.
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absorbance increase in the UV range (below 350 nm) and a

new absorption band in the VIS part of the spectrum, in the

form of a bump around 430 nm (“blue” range). In detail, the

as-implanted samples show in this range an absorbance of

�6% (dotted line in Fig. 5). With thermal treatments higher

than 450 �C, the absorption band increases with the tempera-

ture: �11% for the temperature of 550 �C, �27% for 650 �C
(dashed line and line plus closed squares, respectively, in

Fig. 5). Moreover, these measurements indicate the forma-

tion of a large absorption tail above 650 nm (“red” range)

which may be correlated with the luminescence spectra (see

Fig. 4) and the presence of deep levels in the titania gap.

Optical spectra were analysed by the Tauc model, which

describes the light absorption process in amorphous semi-

conductors.30 For indirect transitions (that is the case of

TiO2) the Tauc law can be written as follows:31

a ¼ B

h�
h� � Egð Þ2; (1)

where B is the Tauc constant,32 h� is the incoming photon

energy, Eg is the optical band-gap of the material, a is the

absorption coefficient that were extracted from the transmit-

tance (T), and reflectance (R) measurements performed on

each sample by using the following equation:

a ¼ 1

d
ln

TQ 1� RSð Þ
TS

; (2)

where d is the thickness of the film; the subscripts Q and S

refer to the quartz or the sample, respectively. Another condi-

tion of the Tauc law is that a is higher than 1� 104 cm�1.30 By

plotting (a� h�)1/2 versus h� (i.e., Tauc plot) and using a lin-

ear fit, Eg can be extracted for all the samples (Eg is the inter-

cept of the linear fit with the abscissa axis). The Tauc plot of

the pure TiO2 film (not shown) gave an energy gap of 3.3 eV

(�370 nm). Assuming an error of �10% in the determination

of the band-gap, the value of 3.3 eV is in good agreement with

the values reported in the literature for bulk anatase and rutile

TiO2 (3.15 eV and 3.05 eV for anatase and rutile phase, respec-

tively).9 In Fig. 6, the Tauc plot of the TiO2 film implanted

with carbon and annealed at 650 �C is reported. The linear fit

(dotted lines in Fig. 6) reveal the presence of two optical band-

gaps: one at 3.3 eV, that can be assigned to the titania, and

another one at 1.8 eV (�680 nm), which can be correlated to

the carbon doping. This latter value is equal within the error to

the value of 1.83 eV determined above by the luminescence

measurements. Therefore, the significant absorption obtained

in the VIS part of the spectra probably originates from in-gap

levels created by the implantation process.

MB degradation measurements were performed in order

to investigate the photocatalytic activity of the C-doped films

in the degradation of organic compounds in water under UV

and VIS irradiation. According to the Langmuir-Hinshelwood

model, the photocatalytic reaction rate, k, of water contami-

nants is given by the following reaction:

ln
C

C0

� �
¼ �kt; (3)

where C is the concentration of organic species, C0 is the start-

ing concentration of organic species, and t is the time.3 We

report in Fig. 7 the photodegradation rate of the MB, normal-

ized to the value obtained for the MB decomposition in the ab-

sence of any catalyst materials, for the different samples, both

under UV (Fig. 7(a)) and VIS light irradiation (Fig. 7(b)). In

the abscissa axis, MB indicates the MB decomposition in the

absence of any catalyst, normalized to 1 (i.e., k/kMB);

TiO2 refers to the MB decomposition due to the pure TiO2

film; as-implanted indicates the MB decomposition due to the

C-doped TiO2 films; 450 �C refers to the MB decomposition

due to the TiO2 films implanted with C and annealed at

450 �C, etc. The best response in terms of photodegradation of

MB was displayed by the C-implanted TiO2 films, under both

UV and VIS irradiation (Figs. 7(a) and 7(b), respectively). The

results showed an increase of �40% for the UV irradiation

and �25% for the VIS (“blue” range) irradiation with respect

to the pure titania films. The photocatalytic efficiency

decreased, with respect to the as-implanted layers, with the

annealing. In addition, we can observe that the photocatalytic

trend is almost similar under both the UV and VIS irradiation.

In particular, the photocatalytic efficiency under VIS irradia-

tion is higher in the as-implanted layer than in pure and

FIG. 5. Absorbance spectra of the pure TiO2 film, C-implanted

(1� 1015 cm�2 at 20 keV) and after the thermal treatments.

FIG. 6. Tauc plot for the TiO2 film implanted with Cþ 1� 1015 cm�2 at

20 keV and annealed at 650 �C (continuous line), together with the linear fit

(dotted line).
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annealed TiO2. This drop of the photocatalytic efficiency as a

function of the thermal treatments can be correlated to the

C¼C bands observed by the Raman analyses, which appear

upon annealing. Therefore, we can speculate that the occur-

rence of carbon clustering works against the photodegradation

of organic pollutants. The above results point to the following

scenario: dynamic annealing of point defects and C migration

phenomena, taking place during Cþ ion implantation, are re-

sponsible for an effective carbon incorporation into TiO2 with

little accumulated lattice damage. This damage induce the

reduction of the TiO2 energy gap, through the formation of in-

gap levels, that increase the photocatalytic efficiency of the

material. Further annealing induces a carbon clustering which

has a detrimental effect on the photocatalytic efficiency, since

carbon clusters play as efficient recombination centers for

charge carriers.

These experimental results clearly demonstrate that a

small band-gap (�1.8 eV) can be achieved by Cþ doping of

TiO2 films, and a significant photocatalytic efficiency can be

obtained under VIS light irradiation, without the help of any

thermal treatments.

IV. CONCLUSIONS

In conclusion, we presented a detailed study concerning

the effect of Cþ ion-implantation (1� 1015 cm�2 at 20 keV)

on a thin TiO2 pure film (110 nm thick), eventually annealed

up to 650 �C, so as to realize an efficient third-generation

photocatalyst. The reported results confirmed that ion im-

plantation is able to modify the TiO2 pure film, lowering its

band-gap energy to a minimum value of �1.8 eV, so as to

absorb visible light. The synthesized materials revealed a

substantial photodegradation efficiency under UV and VIS

light irradiation: �40% and �25% higher than that obtained

for pure titania films, without the help of any additional ther-

mal treatment.

The synthesized materials can be attractive for a wide

range of applications for water purification, air purification

but also for the production of hydrogen fuel by water

splitting.
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