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Classification of Point Cloud for Road Scene Understanding with
Multiscale Voxel Deep Network

Xavier Roynard1 and Jean-Emmanuel Deschaud1 and François Goulette1

Abstract— In this article we describe a new convolutional
neural network (CNN) to classify 3D point clouds of urban
scenes. Solutions are given to the problems encountered working
on scene point clouds, and a network is described that allows for
point classification using only the position of points in a multi-
scale neighborhood. This network enables the classification of
3D point clouds of road scenes necessary for the creation of
maps for autonomous vehicles such as HD-Maps.

On the reduced-8 Semantic3D benchmark [1], this network,
ranked second, beats the state of the art of point classification
methods (those not using an additional regularization step as
CRF). Our network has also been tested on a new dataset of
labeled urban 3D point clouds for semantic segmentation.

I. INTRODUCTION
The majority of autonomous vehicles use 3D maps of the

world for localization, perception and navigation tasks. As
these maps improve the robustness of autonomous systems,
we believe that almost all roads will be scanned in the future,
representing for example 8 million km in North America
and 4 million in Europe. Moreover, they must be updated
regularly to take into account changes in the network. This
is why it is important to set up the most automated processes
possible to create and update these maps.

These point clouds must be processed after acquisition
to extract the relevant information for autonomous driving:
moving objects and parked vehicles must be removed, traffic
signs, traffic lights and drivable areas detected. For example,
for the localization task, the classified point cloud can be
used as a map and moving objects can be detected with
differences between the map and the current lidar frame as
shown in figure 1.

To do so, the automatic classification of the data is
necessary and is still challenging, regards to the number of
objects present in an urban scene.

For the object classification task, deep-learning methods
work very well on 2D images. The easiest way to transfer
these methods to 3D is to use 3D grids. It works well when
the data is just one single object [2].

But it is much more complicated for the task of point
classification of a complete scene (e. g. an urban cloud)
made up of many objects of very different sizes and poten-
tially interwoven with each other (e. g. a lamppost passing
through vegetation). Moreover, in this kind of scene, there
are classes more represented (floor and buildings) than others
(pedestrians, traffic signs ...).

This article proposes both a training method that balances
the number of points per class during each epoch, and to

1All authors are with Mines ParisTech, PSL Research University, Centre
for Robotics. xavier.roynard@mines-paristech.fr

Fig. 1. Application of our classified point cloud for map based localization
of an autonomous vehicle (in white, the map point cloud, in color the current
velodyne frame of the autonomous vehicle from blue/close to the map to
red/far to the map)

our knowledge the first multi-scale 3D convolutional neural
network applied to the semantic segmentation of 3D point
clouds via multi-scale occupancy grids. These contributions
significantly improve the state of the art of semantic segmen-
tation methods without regularization of 3D point clouds of
urban scenes.

II. STATE OF THE ART

The focus here is on the semantic segmentation methods
applied to dense registered point clouds used to create maps
as HD-Maps, unlike the very sparse KITTI dataset clouds
which require real-time processing methods.

A. Shallow and Multi-Scale Learning for 3D point cloud
classification

There is a great variety of work for classifying 3D point
cloud scenes by shallow learning methods or without learn-
ing. Methods can generally be classified into one of the two
approaches: classify each point, then group them into objects,
or conversely, divide the cloud into objects and classify each
object.

The first approach is followed by [3] which classifies each
point by calculating multi-scale features, computing the same
kind of features at different scales to capture both context and
local shape around the point. After classifying each point,
the points can be grouped into objects by CRF [4] or by
regularization methods [5].

The segmentation step of the second approach is usually
heuristic-based and contains no learning. [6] segments the



cloud using super-voxels, [7] uses mathematical morphology
operators and [8] makes a region growth to extract the
soil, then groups the points by connected components. After
segmentation, objects are classified by computing global
descriptors that can be simple geometrical descriptors [7],
or mixture of bag-of-words [9].

B. Deep-Learning for 3D point cloud classification

Over the past three years, there has been a growing body
of work that attempts to adapt deep learning methods or
introduces new "deep" approaches to classifying 3D point
clouds.

This is well illustrated by the ShapeNet Core55 challenge
[10], which involved 10 research teams and resulted in the
design of new network architectures on both voxel grids and
point cloud. The best architectures have beaten the state of
the art on the two proposed tasks: part-level segmentation of
3D shapes and 3D reconstruction from single view image.

1) on 2D Views of the cloud:
The most direct approach is to apply 2D networks to

images obtained from the point cloud. Among other things,
we can think of the following projections:
• RGB image rendered from a virtual camera,
• depth-map, from a virtual camera,
• range image, directly from the sensor,
• panorama image[11],
• elevation-map.

These methods can be improved by taking multiple views
of the same object or scene, and then voting or fusing the
results [12] (ranked 5th on reduced-8 Semantic benchmark).
In addition, these methods greatly benefit from existing 2D
expertise and pre-trained networks on image datasets [13],
[14] that contain much more data than point cloud datasets.

2) on Voxel Grid:
The first deep networks used to classify 3D point clouds

date from 2015 with VoxNet [15], this network transforms
an object instance by filling in an occupancy or density grid
and then applies a Convolutional Neural Network (CNN).
Later [16] applied the same type of network to classify
urban point clouds, the network then predicts the class
of a point from the occupancy grid of its neighborhood.
However, we cannot compare with this architecture because
the experimental data has not been published. Best results
on ModelNet benchmarks are obtained using deeper CNNs
[17] based on the architecture of Inception-ResNet [18] and
voting on multiple 3D view of objects.

There are also significantly different approaches on voxel
grids. OctNet [19] uses a hybrid Grid-Octree structure that
allows CNNs to be used on resolved grids of higher reolution.
VoxelNet [20] instead of increasing grid resolution, increases
the size of voxels and the information contained in each voxel
through a network similar to PointNet [21] (called Voxel
Feature Encoding).

3) on Graph:
Another approach is to use graphs, indeed the raw point

cloud having no structure, it is very difficult to derive general
information from it. Whereas a graph gives relations of

neighborhoods and distances between points and allows for
example to make convolutions as in SPGraph [22] or to apply
graph-cut methods on CRF as in SEGCloud [23].

4) on Point Cloud:
For the time being, there are still quite a few methods

that take the point cloud directly as input. These methods
have the advantage of working as close as possible to the
raw data, so we can imagine that they will be the most
efficient in the future. The first method of this type is
PointNet [21] which gets fairly good results on ModelNet
for object instance classification. PointNet is based on the
observation that a point cloud is a set and therefore verifies
some symmetries (point switching, point addition already in
the set...) and is therefore based on the use of operators
respecting these symmetries like the global Pooling, but these
architectures lose the hierarchical aspect of the calculations
that make the strength of the CNN. This gap has been filled
with PointNet++ [24] which extracts neighborhoods in the
cloud, applies PoinNet and groups the points hierarchically to
gradually aggregate the information as in a CNN. Two other
approaches are proposed by [25] to further account for the
context. The first uses PointNet on multiscale neighborhoods,
the second uses PointNet on clouds extracted from a 2D grid
and uses recurrent networks to share information between
grid boxes.

III. APPROACH

A. Learning on fully annotated registered point clouds

Training on scenes point cloud leads to some difficulties
not faced when the point cloud is a single object. For
the point classification task, each point is a sample, so
the number of samples per class is very unbalanced (from
thousands of points for the class "pedestrian" to tens of
millions for the class "ground"). The classic training method
by epoch would be to go through all the points of the training
cloud at each epoch, making the classes with few samples
anecdotal for the network.

We propose a training method that solves this problem.
We randomly select N (for example N = 1000) points in
each class, then we train on these points shuffled randomly
between classes, and we repeat this process at the beginning
of each Epoch.

Once a point p to classify is chosen, we compute a grid
of voxels given to the convolutional network by building an
occupancy grid centered on p whose empty voxels contain
0 and occupied voxels contain 1. We only use n× n× n
cubic grids where n is even, and we only use isotropic space
discretization steps ∆. To reduce neighborhood search time,
we can also sub-sample point clouds from the training set
with a scale less than ∆.

B. Data Augmentation and Training

Some classic data augmentation steps are performed be-
fore projecting the 3D point clouds into the voxels grid:
• Flip x and y axis, with probability 0.5
• Random rotation around z-axis
• Random scale, between 95% and 105%



Fig. 2. Our Multi-Scale Voxel Network architecture: MS3_DeepVoxScene (all tensors are represented as 2D tensors instead of 3D for simplicity).

• Random occlusions (randomly removing points), up to
5%

• Random artefacts (randomly inserting points), up to 5%
• Random noise in position of points, the noise follows a

normal distribution centered in 0 with standard deviation
0.01m

The cost function used is cross-entropy, and the optimizer
used is ADAM [26] with a learning rate of 0.001 and
ε = 10−8, which are the default settings in most deep-
learning libraries. To reduce neighborhood search time, we
can also sub-sample point clouds from the training set with
a scale less than ∆. In our experiments, all point clouds are
subsampled at 2cm. No study has been carried out on the
influence of subsampling on classification quality, but it is
estimated that as long as the subsampling is performed at
a scale below the discretization step of the voxel grid, the
impact is negligible.

C. Test

To label a complete point cloud scene, the naive method is
to go through all the points of the cloud, and for each point:
• look for all the neighboring points that fit into the

occupation grid,
• create this grid,
• infer the class of the point via the pre-trained network.

However, two points very close to each other will have
the same neighborhood occupancy grid and therefore the
network will predict the same class. A faster test method
is therefore to sub-sample the cloud to be tested. This has
two beneficial effects: reduce the number of inferences and
neighborhood searches, and each neighborhood search takes
less time. To infer the point class of the initial cloud, we give
each point the class of the nearest point in the subsampled

cloud, which can be done efficiently if the subsampling
method used retains the correct information.

IV. NETWORK ARCHITECTURE

The choosen network architecture is inspired from [28]
that works well in 2D. Our network follows the architecture:
Conv(32,3,1,0) → Conv(32,3,1,0) → MaxPool(2) →
Conv(64,3,1,0) → Conv(64,3,1,0) → MaxPool(2) →
FC(1024)→ FC(Nc)

1 where Nc is the number of classes,
and each Convolutionnal (Conv) and Fully-Connected (FC)
layer is followed by a Batch Normalization, a Parametric
ReLU and a Squeeze-and-Excitation block [29] except
the last FC layer that is followed by a So f tMax layer.
This network takes as input a 3D occupancy grid of size
32×32×32, where each voxel of the grid contains 0 (empty)
or 1 (occupied) and has a size of 10cm×10cm×10cm.

This type of method is very dependent on the space
discretization step ∆ selected. Indeed, a small ∆ allows to
understand the object finely around the point and its texture
(for example to differentiate the natural ground from the
ground made by man) but a large ∆ allows to understand
the context of the object (for example if it is locally flat and
horizontal around the point there can be ambiguity between
the ground and the ceiling, but there is no more ambiguity
if we add context).

Since a 3D scene contains objects at several scales,
this type of network can have difficulty classifying certain
objects. So we also propose a multiscale version of our
network called MSK_DeepVoxScene for the K-scales version
(or abbreviated in MSK_DVS).

1we denote Conv(n,k,s, p) a convolutional layer that transforms feature
maps from previous layer into n new feature maps, with a kernel of size
k× k× k and stride s and pads p on each side of the grid.



Name LiDAR type Covered Area Number of points (subsampled) Number of classes

Paris-Lille-3D [27] multi-fiber MLS 55000m2 143.1M (44.0M) 9
Semantic3D [1] static LiDAR 110000m2 1660M (79.5M) 8

TABLE I
COMPARISON OF 3D POINT CLOUD SCENES DATASETS. PARIS-LILLE-3D CONTAINS 50 CLASSES BUT FOR OUR EXPERIMENTATIONS WE KEEP ONLY 9

COARSER CLASSES. IN BRACKETS IS INDICATED THE NUMBER OF POINTS AFTER SUBSAMPLING AT 2 cm.

Fig. 3. Example of classified point cloud on Semantic3D test set (blue:
man-made terrain, cerulean blue: natural terrain, green: high vegetation,
light green: low vegetation, chartreuse green: buildings, yellow: hard scape,
orange: scanning artefacts, red: cars).

We take several versions of the previous network without
the fully-connected layer. The input of each version is given
a grid of the same size 32×32×32, but with different sizes
of voxels (for example 5 cm, 10 cm and 15 cm). We then
retrieve a vector of 1024 characteristics from each version,
which we concatenate before giving to a fully-connected
classifier layer. See figure 2 for a graphical representation
of MS3_DeepVoxScene.

V. EXPERIMENTS

A. Datasets

To carry out our experiments we have chosen the 2
datasets of 3D scenes which seem to us the most relevant
to train methods of deep-learning, Paris-Lille-3D [27] and
Semantic3D [1]. Among the 3D point cloud scenes datasets,
these are those with the most area covered and the most
variability (see table I). The covered area is obtained by
projecting each cloud on an horizontal plane in pixels of
size 10cm× 10cm, then summing the area of all occupied
pixels.

1) Paris-Lille-3D:
The Paris-Lille-3D dataset consists of 2 km of 3D point

clouds acquired by Mobile Laser Scanning using with a
Velodyne HDL-32e mounted on a van. Clouds are georef-
erenced using IMU and GPS-RTK only, no registration or
SLAM methods are used, resulting in a slight noise. Because
the scene is scanned at approximately constant speed, the
point density is roughly uniform. The dataset consists of
3 files, one acquired in Paris and two acquired in Lille
including Lille1.ply much larger than Lille2.ply.
To validate our architectures by K-fold method, we cut
spatially Lille1.ply into two folds containing the same

number of points. Cross-validation is thus performed on 4
folds of similar sizes In addition, this dataset contains 50
classes, some of which only appear in some folds and with
very few points. We therefore decide to delete and group
together some classes to keep only 9 coarser classes:

ground buildings poles
bollards trash cans barriers

pedestrians cars natural

Some qualitative results on Paris-Lille-3D dataset are shown
in figure 4. We can observe that some trunks of trees are
classified as poles. It may means that the context is not
sufficiently taken into account (even so the 15 cm grid is
4.8 m large) In addition, the ground around objects (except
cars) is classified as belonging to the object. One can imagine
that cars are not affected by this phenomenon because this
class is very present in the dataset.

2) Semantic3D:
The Semantic3D dataset was acquired by static laser

scanners, it is therefore more dense than a dataset acquired
by MLS as Paris-Lille-3D, but the density of points varies
considerably depending on the distance to the sensor. And
there are occlusions due to the fact that sensors do not
turn around the objects. Even by registering several clouds
acquired from different viewpoints, there are still a lot of
occlusions. To minimize the problem of very variable density,
we subsample the training clouds at 2 cm. This results in a
more uniform density at least close to the sensor and avoids
redundant points. After subsampling, the dataset contains
79.5M points. The training set contains 15 point clouds
which after sub-sampling are of similar sizes, each cloud is
used as a separate fold for cross-validation. Some qualitative
results on Semantic3D dataset are shown in Figure 3.

B. Evaluation Protocol

To confirm the interest of multi-scale CNNs, we compare
the performance of our two architectures on these three
datasets. And on Semantic3D we compare our results with
those of the literature. The metrics used to evaluate perfor-
mance are the following:

F1c =
2T Pc

2T Pc +FPc +FNc

IoUc =
T Pc

T Pc +FPc +FNc

Where F1c and IoUc represent respectively F1-score and
Intersection-over-Union score of class c. And T Pc, T Nc, FPc
and FNc are respectively the number of True-Positives, True-
Negatives, False-Positives and False-Negatives in class c.



Fig. 4. Example of classified point cloud on Paris-Lille-3D dataset. Left: classified with MS3_DVS, right: ground truth (blue: ground, cerulean blue:
buildings, dark green: poles, green: bollards, light green: trash cans, yellow: barriers, dark yellow: pedestrians, orange: cars, red: natural).

Rank Method Averaged Overall

Per class IoU

IoU Accuracy m
an

-m
ad

e
te

rr
ai

n

na
tu

ra
l

te
rr

ai
n

hi
gh

ve
ge

ta
tio

n

lo
w

ve
ge

ta
tio

n

bu
ild

in
gs

ha
rd

sc
ap

e

sc
an

ni
ng

ar
te

fa
ct

s

ca
rs

1 SPGraph[22] 73.2% 94.0% 97.4% 92.6% 87.9% 44.0% 93.2% 31.0% 63.5% 76.2%
2 MS3_DVS(Ours) 65.3% 88.4% 83.0% 67.2% 83.8% 36.7% 92.4% 31.3% 50.0% 78.2%
3 RF_MSSF 62.7% 90.3% 87.6% 80.3% 81.8% 36.4% 92.2% 24.1% 42.6% 56.6%
4 SegCloud[23] 61.3% 88.1% 83.9% 66.0% 86.0% 40.5% 91.1% 30.9% 27.5% 64.3%
5 SnapNet_[12] 59.1% 88.6% 82.0% 77.3% 79.7% 22.9% 91.1% 18.4% 37.3% 64.4%

9 MS1_DVS(Ours) 57.1% 84.8% 82.7% 53.1% 83.8% 28.7% 89.9% 23.6% 29.8% 65.0%

TABLE II
TOP-5 RESULTS ON SEMANTIC3D REDUCED-8 TESTING SET. MS3_DVS IS OUR MS3_DEEPVOXSCENE WITH VOXEL SIZES OF 5 cm, 10 cm

AND 15 cm AND MS1_DVS IS OUR MS1_DEEPVOXSCENE WITH VOXEL SIZE OF 10 cm (ADDED FOR COMPARISON WITH NON MULTI-SCALE DEEP

NETWORK).

Except for Semantic3D benchmark, all results are obtained
by cross-validation by training on all folds except one and
testing on the remaining fold. All our networks are trained
for 100 epochs with 1000 points per class on each fold. No
validation sets are used.

C. Comparison with the state of the art

For a comparison with the state-of-the-art methods
on reduced-8 Semantic3D benchmark see table II. For
MS1_DeepVoxScene several resolutions have been tested,
and by cross-validation on the Semantic3D training set the 10
cm resolution is the one that maximizes validation accuracy.
DeepVoxScene’s choice of MS3_DeepVoxScene resolution
results from this observation, we keep a resolution that
obtains good performance in general, and we add a finer
resolution of 5 cm to better capture the local surface near the
point, and a coarser resolution of 15 cm to better understand
the context of the object to which the point belongs. Our
method achieves better results than all methods that classify
cloud by points (i. e. without regularization).The inference
time of the 23.5 million points of the reduced8 test set sub-
sampled at 2 cm is approximately 32 h. And the propagation
of classes to the nearest points on the original cloud (not
subsampled) takes approximately an hour.

Dataset \ Method MS3_DVS MS1_DVS VoxNet [15]

Paris-Lille-3D 89.29% 88.23% 86.59%
Semantic3D 79.36% 74.05% 71.66%

TABLE III
COMPARISON OF MEAN F1 SCORES OF MS3_DVS, MS1_DVS AND

VOXNET [15]. FOR EACH DATASET, THE F1 SCORE IS AVERAGED ON

ALL FOLDS.

D. Study of the different architectures

To evaluate our architecture choices, we tested this classi-
fication task by one of the first 3D convolutional networks:
VoxNet [15]. This allows us both to validate the choices
made for the generic architecture of the MS1_DeepVoxScene
network and to validate the interest of the multi-scale net-
work. We reimplemented VoxNet using the deep-learning
library Pytorch. See table III for a comparison between
VoxNet [15], MS1_DeepVoxScene and MS3_DeepVoxScene
on the 3 datasets.

See table IV for a comparison per class between
MS1_DeepVoxScene and MS3_DeepVoxScene on Paris-
Lille-3D dataset. This shows that the use of multi-scale
networks improves the results on some classes, in particular



Class
Precision Recall

MS3_DVS MS1_DVS MS3_DVS MS1_DVS

ground 97.74% 97.08% 98.70% 98.28%
buildings 85.50% 84.28% 95.27% 90.65%

poles 93.30% 92.27% 92.69% 94.16%
bollards 98.60% 98.61% 93.93% 94.16%

trash cans 95.31% 93.52% 79.60% 80.91%
barriers 85.70% 81.56% 77.08% 73.85%

pedestrians 98.53% 93.62% 95.42% 92.89%
cars 93.51% 96.41% 98.38% 97.71%

natural 89.51% 88.23% 92.52% 91.53%

TABLE IV
PER CLASS PRECISION AND RECALL AVERAGED ON THE 4 FOLDS OF

PARIS-LILLE-3D DATASET.

the buildings, barriers and pedestrians classes are greatly
improved (especially in Recall), while the car class loses
a lot of Precision.

VI. CONCLUSIONS

We have proposed both a training method that balances the
number of points per class seen during each epoch, as well
as a multi-scale CNN that is capable of learning to classify
point cloud scenes. This is achieved by both focusing on the
local shape of the object around a point and by taking into
account the context of the object in a multi-scale fashion.

We validated the use of our multi-scale network for 3D
scene classification by ranking second on Semantic3D bench-
mark and by ranking significantly better than state-of-the-art
point classification methods (those without regularization).
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