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The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science

with its unique combination of a large collecting area and aperture efficiency (effective area

∼7500 m2), system temperature (T < 20K), high slew speeds (1-2 deg/s), large bandwidths (770

MHz at 20cm wavelengths), southern hemisphere location (latitude ∼ −30◦) and ability to form

up to four sub-arrays. The MeerTime project is a five-year program on the MeerKAT array by

an international consortium that will regularly time over 1000 radio pulsars to perform tests of

relativistic gravity, search for the gravitational wave signature induced by supermassive black

hole binaries in the timing residuals of millisecond pulsars, explore the interiors of neutron stars

through a pulsar glitch monitoring programme, explore the origin and evolution of binary pul-

sars, monitor the swarms of pulsars that inhabit globular clusters and monitor radio magnetars.

MeerTime will complement the TRAPUM project and time pulsars TRAPUM discovers in sur-

veys of the galactic plane, globular clusters and the galactic centre. In addition to these primary

programmes, over 1000 pulsars will have their arrival times monitored and the data made imme-

diately public. The MeerTime pulsar backend comprises two server-class machines each of which

possess four Graphics Processing Units. Up to four pulsars can be coherently dedispersed simul-

taneously up to dispersion measures of over 1000 pc cm−3. All data will be provided in psrfits

format. The MeerTime backend will be capable of producing coherently dedispersed filterbank

data for timing multiple pulsars in the cores of globular clusters that is useful for pulsar searches

of tied array beams. The first real-time pulsar profiles have been obtained as part of the MeerKAT

commissioning process, and useful scientific data will start to come online through 2017. All

MeerTime data will ultimately be made available for public use, and any published results will

include the arrival times and profiles used in the results.

MeerKAT Science: On the Pathway to the SKA

25-27 May, 2016

Stellenbosch, South Africa
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1. Introduction

Fifty years after their discovery[1], radio pulsars remain a fertile area of astronomical re-

search. In the standard model[2], radio pulsars are highly-magnetised neutron stars with magnetic

field strengths of 108-1014G, some 10 km in radius and with masses of between ∼ 1.2-2 M⊙. Mag-

netic dipole radiation removes energy from the pulsar, and a light-house beam of radio emission

sweeps through space and results in a train of regular pulses that can be routinely detected by radio

telescopes of sufficient aperture. The energy loss results in a slow spin-down of the pulsar, and

by accurately measuring pulse times of arrival at the observatory, a large number of observable

parameters become available to pulsar astronomers.

The MeerKAT Key Science Project on Pulsar Timing originated in 2010 when a strong science

case was put to an international time allocation committee based upon the then draft sensitivity for

the MeerKAT telescope of 220 m2/K and bandwidth of 850 MHz. The project received a draft

allocation of 7800h and the Key Science Project is now referred to as “MeerTime”.

1.1 Background

Up until 1974 all known pulsars were solitary objects with spin periods P > 33 ms with lim-

ited astrophysical applications. Two major discoveries rocked the pulsar community when im-

proved pulsar survey instrumentation enabled the discovery of faster pulsars. In 1974 the binary

PSR B1913+16 was found using the Arecibo telescope[3]. It was a 59 ms pulsar orbiting another

neutron star every 7.75 hours. Its timing ultimately led to the Nobel prize in physics for verifying

the existence of gravitational waves. Then in 1981 the celebrated 1.55 millisecond pulsar, PSR

B1937+21 was discovered [4] . Today the pulsar catalogue[5] lists over 250 binary pulsars (almost

10% of the population) and 350 millisecond pulsars. These pulsars are ideal relativistic laborato-

ries and probes of stellar evolution. Their inherent stability give them applications in the search for

gravitational waves. The majority of known pulsars reside in the southern hemisphere and 95% of

all pulsars are accessible to MeerKAT with its Southern location and 75 degree elevation limit.

1.2 MeerTime Science Themes

MeerTime has three high-priority science themes:

• Relativistic and Binary Pulsars: Pulsars that possess compact binary companions in tight

relativistic orbits allow tests of General Relativity and its alternatives that are impossible to

perform elsewhere. Binary pulsars are also fossil records of stellar evolution and accretion

physics. In addition General Relativity can be used to determine the masses of millisecond

pulsars that inform us about the equation of state of nuclear matter.

• Millisecond Pulsar Timing and Gravitational Wave Detection: Millisecond pulsars can

be used to search for the signatures of gravitational waves generated by supermassive black

hole binaries and/or cosmic strings in the early Universe.

• Globular Cluster Pulsar Timing: Globular clusters are breeding grounds for millisecond

pulsars and via partner exchange in their dense cores produce exotic systems that permit

experiments otherwise impossible to perform that inform us about General Relativity and

also the equation of state of nuclear matter via neutron star spins and masses.
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MeerKAT’s design (comprising of 64 independent elements) means that it is possible to form

up to four sub-arrays, allowing for some novel approaches to pulsar timing. This permits sub-array

modes that enable the simultaneous production of pulse arrival times from four different pulsars in

different regions of the sky.

The MeerKAT system design originally forecast a sensitivity of some 220 m2/K, but it now

appears that the aperture efficiency and system temperature may enable a remarkable sensitivity in

excess of 400 m2/K, virtually quadrupling its efficiency for pulsar timing. For reference the other

Southern hemisphere radio telescopes are all less than 70 m2/K, although the new ultra-wideband

receiver (700 MHz-4 GHz) for the Parkes 64 m radio telescope still make it a highly-effective pulsar

telescope, particularly for dispersion measure determinations.

Further classes of pulsar were part of the original science case:

• Young, Glitching and Highly-magnetised pulsars: These objects allow probes of neutron

star interiors where physics is at its most extreme.

• The Thousand Pulsar Array: Most pulsars are not timed regularly because of the time

commitment required on otherwise over-subscribed instruments. It can be demonstrated that

MeerKAT can time over 1000 pulsars a day, and that for a modest increase in MeerTime’s

time request a legacy dataset could be created that monitored most of the known pulsar

population. This would answer questions like, do “normal” pulsars also glitch? Are the

period derivatives stable? What are the proper motions of pulsars? Are pulsar pulse profiles

really stable? If we monitor a thousand years of pulsar rotation history every year, what

unexpected phenomena will we see?

• RRATs (Rotating RAdio Transients): In 2010 the newly discovered population of “RRATs”

was a topic of much interest. These objects appeared to be pulsars that only pulsed sporad-

ically. Their birthrate appeared extremely high, yet little was known about the population.

This population was the final science theme of the original proposal.

The construction of the MeerKAT telescope is a great opportunity to advance radio pulsar

science. The vast majority of pulsars (> 95%) are visible from the MeerKAT and its combination

of a large collecting area, cool receivers, rapid slew speed and wide bandwidth makes it a powerful

facility for the great plethora of pulsar science.

In this paper we describe the MeerTime pulsar timing experiment. In section 2 we take the

telescope’s technical specifications and determine the speed with which it can time the radio pulsar

population before discussing the pulsar backend subsystem in section 3. Finally, in section 4, we

discuss the main science cases for the telescope.

2. The MeerKAT as a pulsar telescope

Although individual pulses from a pulsar are irregular in their amplitude, shape and polari-

sation, their mean profile is often remarkably stable. This fact permits extremely accurate pulse

arrival times (ToAs) to be derived by integrating a pulsar’s pulses for many 100s-thousands of peri-

ods and comparing the time-tagged profile against a standard. The error in a pulse ToA σ depends
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upon the time derivative of the profile and the signal-to-noise ratio snr. A good rule of thumb is

that the error in a ToA σ can be approximated by

σ ∼ w/(2× snr) (2.1)

where w is the half width of the profile. In reality, this relation is only an approximation and

assumes that every pulse is identical. A more correct approach would use the derivative of the

pulse profile, and make some allowance for the fact that not every pulse is identical.

The radiometer equation for a radio telescope describes the snr expected from a source of flux

density S as

snr =
SG

√

(BNpt)

Trec +Tsky

√

P−w

w
(2.2)

where G is the gain of the telescope in K Jy−1, B is the processed bandwidth (in Hz), Np is the

number of orthogonal polarisations (maximum of 2), t is the integration time in seconds, Trec and

Tsky are the receiver and system temperature respectively (in K), P is the pulse period and w is the

width of the pulse.

The first determination of the MeerKAT’s technical specifications are extremely encouraging.

The dishes are an offset gregorian and have an effective diameter of 13.965 m and an aperture

efficiency of 0.71-0.81. If we adopt 0.76 as a mean efficiency this gives each dish a gain G0 of

G0 = 0.76π
(13.965/2)2

2k
= 0.042KJy−1 (2.3)

where k is Boltzmann’s constant. If added coherently, the 64-dish instrument has a total gain of

G = 64G0 = 2.7 K Jy−1.

In array release 3, the telescope will possess a total usable bandwidth of 770 MHz of bandwidth

in two orthogonal polarisations. Early tests of the receivers suggests that Trec will be less than 20K,

possibly as low as ∼15K.

If MeerKAT observes the 2 mJy millisecond pulsar PSR J1909-3744, which has a pulse width

of 40 µs for just 15m, the expected snr ∼2700 (pessimistically assuming Trec = 20K) and the

ToA error just ∼8 ns (in reality there is likely to be pulse jitter that limits such accuracies being

obtained).

Rather than slewing all over the sky looking for MSPs that are currently experiencing scintil-

lation maxima with cumbersome 64-100m-class telescopes, the MeerKAT will be able to split off

a sub-array and quickly determine which MSPs are in a “bright state” to further improve observing

efficiency with its impressive slew speeds of 1-2 deg/s.

3. The MeerKAT pulsar backend system

In the mid-late 1990s pulsar astronomers recognised the increases in timing precision that

could be achieved by coherently dedispersing the voltages induced in the receiver of a single dish

by the deconvolution of the signal with an appropriate filter. Coherent dedispersion used to repre-

sent a major challenge to pulsar astronomy, requiring custom boards to digitise the voltages at the

requisite rate (1/B) where B is the bandwidth of the backend and capture them in clusters of comput-

ers. It was originally thought that a computing cluster might require a large cluster of workstations
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to achieve the necessary signal processing to coherently dedisperse the radio frequency signals

from MeerKAT, but since 2010 there have been several important developments in the creation of

coherent dedispersion pulsar processors or “backends”.

• The community has developed open-source software that has been largely adopted providing

increased rigour and testing. Most of the pulsar community now uses and contributes to the

psrchive suite of tools to process and manipulate folded pulsar profile data [6] .

• A software library (psrdada) that both captures data from UDP streams and moves it to

computer’s memory (RAM) is available from sourceforge.com that permits the quick de-

velopment of capture engines. A library (dspsr) that transforms voltage data to coherently-

dedispersed folded profiles is also available as an open-source software library [7] These

open-source libraries greatly facilitate the creation of pulsar processing backends.

• Large-N Fourier transforms used to be extremely expensive to compute, requiring vast arrays

of CPUs and multiplexing of the data because of the time taken to compute each one. The

technological breakthrough of the graphics processing unit (GPU) in consumer games cards

has reduced the cost of the necessary computations by more than an order of magnitude since

2010. Almost all pulsar processors now utilise GPUs as the Fourier transform engine.

• Back in 2010, 10-Gb ethernet represented the peak performance one could aspire to when

trying to perform lossless data capture. This meant that with 8-bit sampling, several O(4)

computers would be required to capture a single stream from MeerKAT’s tied array beams.

Now it is possible to have a single machine capture over 54 Gb/s of data without loss using

dual 40 Gb Network Interface Cards (NICs).

• The use of interferometers for pulsar timing has been steadily increasing. The Westerbork

array has been joined by the LEAP project that ties the major European VLBI telescopes

into a single coherent beam, and the Very Large Array, LOFAR and the UTMOST project in

Australia are all examples of interferometers observing pulsars.

MeerKAT’s pulsar timing hardware comprises two machines that were used to prototype the

pulsar processor for the SKA at Swinburne University of Technology. These machines can co-

herently dedisperse two parallel 850 MHz dual-polarisation streams simultaneously and one is

currently at the MeerKAT site.

Progress towards regular pulsar timing is continuing. A major breakthrough occurred in Q2

2016 when the first pulsar profile from the Vela pulsar (PSR J0835-4510) was produced from a

single beam with data written to disk. This observation confirmed that MeerKAT single dishes

were producing very high quality data with system temperatures near the published specification

(<20K). Shortly afterwards, the first tied array beam was created on the bright millisecond pulsar

PSR J0437–4715 and processed in software from voltages recorded to disk. Although satellite

transmissions are present in the band, over 75% of it is “useable”. In October the first real-time

pulsar profiles were produced validating that the pulsar processor can capture data at the requisite

rate and process them. Currently the polyphase filterbank data cannot be correctly coherently

dedispersed because of digitally-induced artefacts in the polyphase filterbank frequency channels.

4
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Coherent dedispersion will be required to achieve the ultimate timing precision promised by the

system and should be possible when the beam-former and polyphase filterbanks are moved to the

SKARAB boards in mid 2017.

3.1 The Max Planck Institute 1.7-3.5 GHz receiver upgrade

High dispersion pulsars suffer from multi-path propagation effects that limit their use in pulsar

timing experiments. The effects scale as the wavelength to the power 4.4, and hence some pulsars

demand the use of the highest frequencies to perform the best science. Much beyond 3 GHz there

are relatively few pulsars that still retain enough flux to make this worthwhile, as many pulsars

have steep spectral indices (usually between –1 and –3).

Professor Michael Kramer (MPIfR) has been leading a project to upgrade MeerKAT to operate

beyond 1.7 GHz with the deployment of 64×1.7-3.5 GHz receivers. This project will enable both

wider bandwidths and reduced scattering on many of our higher dispersion measure pulsars. It

was recently demonstrated [8] that some pulsars (e.g. PSR J1909–3744) produce arrival times of

exceptional accuracy at these frequencies that are critical for the direct detection of gravitational

waves.

By sub-arraying, it will be possible for us to observe pulsars all the way from 0.9 to 3.5 GHz,

albeit with reduced gain because the telescope will have to be “sub-arrayed”. This will provide an

exceptional lever arm to define the variable dispersion measures (a pulsar timing pollutant). When

the UHF receivers are in place this can extend all the way from 0.5-3.5 GHz.

4. The MeerTime Science Case

4.1 Millisecond Pulsar Timing

In MeerTime’s original 2010 science case it was anticipated that MeerKAT could indepen-

dently detect a gravitational wave background after 5 years if the dimensional amplitude exceeded

2×10−15 based upon limits in vogue at the time [9]. The current best millisecond pulsar for timing

accuracy (PSR J1909–3744) already suggests that an amplitude of this magnitude is ruled out[8]

and that gravitational wave detection from pulsars will require international coordination and co-

operation. MeerKAT can dramatically increase the pool of MSPs from which a gravitational wave

background or individual binaries can be searched for with its unique combination of sensitivity,

geographical location, ability to sub-array and the speed at which it can traverse the sky. Reardon

et al. (2016) [10] recently reported on the timing of 20 MSPs from Parkes and based upon his

residuals and the relative sensitivity of the two telescopes, the MeerKAT should increase the num-

ber of pulsars with sub-us residuals from 5 to 16 objects if sensitivity was the only improvement

factor, but MeerKAT’s ability to subarray and seek out those MSPs that are experiencing scintilla-

tion maxima gives us hope that it can do much better than a simple scaling of sensitivities might

suggest.

Several studies [11,12,13,14] have demonstrated that pulsar timing precision is ultimately lim-

ited by the stochastic wideband impulse-modulated self-noise (SWIMS, also known as jitter and

single-pulse variability) that is intrinsic to the pulsar emission. Consequently, optimal use of full

array sensitivity requires the ability to divide it into sub-arrays; furthermore, because it is impera-

tive to account for this noise in high-precision pulsar timing data analysis, the instrumentation for
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pulsar timing must be updated to produce additional statistical information. It has been demon-

strated[12,13] that arrival time estimation bias can be mitigated by measuring the periodic correla-

tions of the Stokes parameters and Shannon et al. (2014) [14] have described how jitter noise can

be characterised and incorporated in estimates of arrival time precision. Ongoing research by our

team will combine these approaches using generalised least squares estimation to simultaneously

reduce bias, accurately estimate uncertainty, and increase the sensitivity of experiments such as

pulsar timing arrays.

Gravitational waves are just one of the exciting science cases to be realised by timing an array

of millisecond pulsars. Timing residuals also contain a wealth of information about the parameters

of the parent binary, useful for studies of stellar evolution, the IGM and even our own planetary

ephemerides. Since our original proposal the Fermi satellite has unveiled a tremendous population

of millisecond pulsars (now up to 350) waiting for an instrument capable of producing accurate

arrival times to capitalise on them. MeerKAT is such an instrument.

4.2 Relativistic and Binary Pulsar Timing

Pulsars are remarkable laboratories for the study of gravitation. In both the highly relativis-

tic interior and the vicinity of a pulsar (and its binary companion, in case of double neutron-star

systems or potential pulsar-black hole system) space-time may significantly deviate from the pre-

dictions of General Relativity (GR) [15]. Pulsar timing therefore provides a unique tool for probing

gravity in the strong field regime, enabling high-precision tests of GR or other theories of gravity.

Double-neutron-star systems such as the Double Pulsar [16] provide unrivalled probes for testing

most aspects of GR. Binary pulsars with a white dwarf companion and hence large mass dipole can

set interesting constraints on alternative theories that predict, for instance, the existence of gravita-

tional dipole radiation [17]. Resolving tight binary orbits to investigate effects such as the Shapiro

delay requires short-spaced observations with high sensitivity. Meanwhile, identifying the weak

signatures of subtle relativistic effects needs long-term monitoring with good cadence. MeerKAT’s

excellent sensitivity (surpassing even our high expectations in 2010) and good frequency coverage

will make it the premier telescope for studying Southern-sky pulsars. This will not only improve

existing GR tests but will allow us to measure new effects to probe new physics. This is best

demonstrated with the unique Double Pulsar, where the precision of tests of gravity will go beyond

the current best weak-field tests in the solar system. As has been shown (Kehl 2015, Masters the-

sis, University of Bonn), we expect to measure the moment-of-inertia of the J0737-3039A in the

Double Pulsar for the first time, providing a handle on the equation-of-state of super-dense matter.

With the sensitivity provided by MeerTime, we will also determine masses for both pulsars

and their companions. These can be used to test theories of binary evolution [18] and to investi-

gate the distribution of neutron-star masses. In particular, the discovery of massive neutron stars

[19,17] suggests that high-mass population of neutron stars exists, even possibly resulting from

birth [20,21]. As mass statistics improve, we will get closer to identifying the maximum mass

possible for a neutron star, itself a constraint on the equation of state.

MeerTime will furthermore provide astrometry (distances, proper motions and hence veloc-

ities) for millisecond and binary pulsars, allowing us to infer their birth velocities and constrain

asymmetric supernova kicks, particularly in double-neutron-star systems[22].

6



MeerTime

4.3 Globular Cluster Pulsar Timing

Globular clusters are treasure troves of exotic millisecond pulsars, for a recent scientific overview

see reference [23]. The cores of globular clusters have stellar densities 103 - 104 times greater than

in the Galactic field; this promotes the formation of binary systems in which a neutron star can

be recycled to millisecond rotation rates via the transfer of matter and angular momentum from

a Roche-lobe-filling companion. This extreme stellar density can also lead to exchange interac-

tions, which create bizarre pulsar systems, unlike anything so-far seen in the Galactic field. Cur-

rently there are 146 pulsars known in 28 globular clusters - including the fastest-spinning pulsar

known[24], exotic eccentric binaries suitable for neutron star mass measurements [25] and a unique

triple system with a planetary companion [26]..

Literally all of these 146 pulsars are visible to MeerKAT and MeerTime plans a sensitive, and

comprehensive globular cluster pulsar timing campaign. Combining MeerKAT timing data with up

to three decades of archival measurements from GBT, Arecibo, and Parkes, MeerTime will probe

the spin, orbital, and proper motions of these pulsars in unprecedented detail and measure previ-

ously inaccessible system parameters that will allow us to probe accretion physics, dense matter,

gravitational theories, and the evolution and properties of the clusters themselves in exquisite de-

tail. From a practical point of view, timing globular cluster pulsars also provides a great efficency

because in some cases (e.g. M28, 47 Tucanae and Terzan 5) dozens of millisecond pulsars can

be observed simultaneously. MeerKAT will revolutionize searches of southern globular clusters

via TRAPUM and the long-term timing of these and existing pulsars via MeerTime. To achieve

sensitivity to 10 µJy pulsars in these clusters, MeerTime plans typically 1-hr timing sessions for

these clusters.

4.4 The Thousand Pulsar Array

Not all pulsars pulse regularly. Since the connection between pulsar radio emission and timing

properties in the so-called intermittent pulsars was first pointed out [27] more pulsars exhibiting

these properties have been discovered, as well as, e.g., multi-wavelength moding pulsars where the

pulse profile changes significantly between two states having different radio and X-ray properties

[28]. Secular variations in previously thought stable pulse profiles were also seen for a large sample

of ordinary pulsars [29] with a clear connection between timing irregularities/noise and emission

properties/profiles. In this context, progress is being made on understanding pulsar interiors and

how/if the observed pulse profile variations could be ascribed to long term free precession. Finally,

the LOFAR telescope is revealing the complex imprints of the ISM on pulsar data [30]. The Thou-

sand Pulsar Timing Array will provide an opportunity to study the breadth of pulsar phenomenol-

ogy. That will result in new breakthroughs relating to the interiors, to the magnetosphere and to

the environment of pulsars, to ISM and Galactic magnetic field studies, and will lead to improved

pulsar timing. MeerKAT is an exceptionally sensitive telescope for this purpose. We estimate that,

with the current full MeerKAT sensitivity, we can obtain a high signal to noise (>20) profile of a

pulsar with a duty cycle of 5% and a flux density of 0.30 mJy (of which more than 1000 are visible

from Meerkat) within a minute of observation. From a sensitivity perspective therefore, it is easy to

accommodate regular observations of 1000 pulsars within the requested 16 h per observing epoch.
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4.5 The Timing of Young and Energetic Pulsars

Young and energetic pulsars are often associated with supernova remnants (SNRs), pulsar wind

nebulae (PWNe), and/or high-energy X-ray/gamma-ray point sources [31]. Timing of young pul-

sars provides their spin-down rate, which then sets the energy budget powering the PWN and other

high-energy emission [32]. Long-term timing provides the proper motion, which is a key ingredi-

ent for deciphering the morphology of SNRs and PWNe (including bow shocks). In some cases, it

is also possible to measure the neutron star’s braking index, revealing the multi-pole nature of the

magnetic field and perhaps also its evolution in time [33]. Many young pulsars also show glitches,

which probe the neutron star interior in a unique way [34]. With MeerKAT’s large sensitivity, it

may also be possible to probe the nebulae surrounding some young pulsars through precise char-

acterization of their scattering/dispersion/rotation measure with time or other propagation effects

[35].

4.6 Magnetar Pulsar Timing

To date, 4 of 23 known magnetars have been detected at radio wavelengths [36]. They share

some characteristics distinct from those of the normal pulsar population, such as flat radio spectra.

They are also extremely variable; 2 of the 4 are currently no longer radio emitters [37] although

this could change, and new ones could be discovered. Through frequent timing observations of

the active radio magnetars we aim to obtain a continuous record of their torque, which illuminates

the continued release of magnetic energy in the neutron star. Our broader aims are to develop a

better understanding of the dynamical behaviour of magnetar magnetospheres, and to establish the

conditions under which radio emission takes place therein. Very frequent observations are needed

because the torque on a magnetar can change by 10% on weekly timescales.

4.7 The Rotating Radio Transients

These objects are no longer being observed as part of our timing project. Their poor positions

are not well-mapped to the small tied array beam of MeerTime and they don’t appear to be anything

except an extension of nulling pulsars.

5. Observing strategy and data products

To detect the stochastic gravitational wave background or individual sources requires the high-

est precision possible. This calls for regular observing cadence, preferably of order 20 times per

year. These observations will make MeerKAT a critical contributor to the broader International

Pulsar Timing Array (IPTA) effort. MeerKAT has a unique opportunity to contribute to the direct

detection of gravitational waves. It will be the most sensitive telescope in the Southern hemisphere,

and as mentioned before its ability to sub-array means it can employ novel techniques to fully ex-

ploit MSP scintillation. It will be possible for sub-arrays to be searching for MSPs to time that are

at scintillation maxima, whilst the majority of the antennas are conducting routine timing.

The best observing strategy for binary and millisecond pulsars is to observe entire orbits where

practical (this prevents unfortunate covariances between binary and other parameters) and to have

occasional “campaigns” when the cusps in Shapiro delays are visible. MeerTime’s immediate focus
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is on systems in which gravitational wave emission is implied by monitoring their orbital period

derivatives and on those binaries where pulsar masses can be achieved with MeerKAT’s increased

sensitivity over existing facilities. Currently, orbital decays have been detected for 8 binary pulsar

systems while detections for a further 4-6 (some unpublished pulsars) systems can be expected with

MeerKAT. In addition, mass measurements of binary neutron stars should be possible for at least

10 more systems [38]. Full orbits on these systems are possible with MeerKAT but not telescopes

like Arecibo or FAST.

Most pulsars in globular clusters are very stable timers. As one of the aimed measurables is the

proper motion of clusters, many sessions throughout the year are necessary. Since globular cluster

MSPs are in average fainter sources than the Galactic ones, long integrations are a necessity.

To enable science it is essential that the pulse profiles produced by the backend are created

in a format accessible via public domain packages such as psrchive. The pulsar processor will

create FITS-format folded archives and coherent filterbanks at a nominal dispersion measure, also

in FITS. The arrival times will be in reference to the observatory clock, which will ultimately be

referenced to UTC-NIST.

The dimension of the scientific data products is manageable (60 TB over five years). Software

pipelines will be made open access and available on the project website, as will clock correction

files.

Once the data are calibrated they can be fit with the standard pulsar timing packages tempo,

tempo2 and PINT.

It is rare that a single epoch of pulsar timing results in a publishable outcome. Instead pulsar

parameters slowly become scientifically interesting as the time span increases. Pulsar positions

rapidly increase their precision once a year of data is obtained, proper motions usually take a

few years to manifest themselves in timing residuals and the discovery of the gravitational wave

background is likely to take a decade or so. MeerTime’s data release policy is as follows: Data

from the 1000 pulsar array will be available immediately. The MSP, relativistic binary and globular

pulsar data will be released 18 months after they are recorded. We intend to publish all times of

arrival on something like a annual basis in scheduled “data releases”. All publications will provide

the arrival times and raw data from the observations that led to any claimed results.
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