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Abstract 

Composite materials and their related manufacturing processes involve many modeling and 

simulation issues, mainly related to their multi-physics and multi-scale nature, to the strong 

couplings and the complex geometries. In our former works we developed a new paradigm for 

addressing the solution of such complex models, the so-called Proper Generalized 

Decomposition based model order reduction. In this work we are summarizing the most 

outstanding capabilities of such methodology and then all these capabilities will be put together 

for addressing efficiently the simulation of a challenging composites manufacturing process, the 

automated tape placement.  

Keywords: composites; automated tape placement; numerical simulation; model order 

reduction; PGD. 

1. Introduction

The production of large pieces made of thermoplastic composites is a challenging issue 

for today’s industry. Thermoplastic composites still represents a niche market because 

of the difficulties associated to their processing. Several reliable manufacturing 

processes are now available for building-up thermoplastic laminated structures. Among 

them, the automated tape placement (ATP) appears to be an appealing process. In this 

process a tape is placed and progressively welded on the substrate consisting in the 

tapes previously placed. By laying additional layers in different directions, a part with 

desired properties and geometry can be produced. However, the welding of two 

thermoplastic layers requires specific physical conditions: a permanent contact, also 
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called intimate contact, and a temperature that has to be high enough during a time large 

enough to ensure the diffusion of macromolecules, without significant material 

degradation. Due to the low thermal conductivity of thermoplastics, a high temperature 

at the interface can be reached with a local heating. ATP uses a laser (or sometimes hot 

gas torches) and a cylindrical consolidation roller to ensure both conditions required for 

the proper welding, as depicted on Fig. 1. 

 
 

Figure 1. Sketch of automated tape placement 

The numerical simulation of such a process is the subject on an intensive research work. 

Indeed, because of the successive heating and cooling of the structure during the 

addition of new tapes, residual stresses appear in the formed part. The evaluation of 

these residual stresses is crucial because they have a significant impact on both the 

mechanical properties and the geometry of the manufactured plate or shell due to the 

springback. They can in particular lead to a distortion of the part, inter-ply delamination 

or matrix cracking. High-levels of stress may arise because of two reasons. First, the 

large differences in the thermal expansion coefficients of the matrix and the fibers lead 

to an important deformation at the matrix/fiber interface. Stresses also appear when two 

consecutive plies do not have the same reinforcement orientations. In that case, the 

different thermal expansion coefficients induce again stresses at the plies interfaces.   

Experimentally, it is quite difficult to measure residual stresses. Destructive methods 

use the release of stress and its associated strain when performing a cutting of the 

structure. Non-destructive methods like X-ray diffraction or neutron diffraction are 

more accurate but still very expensive. The numerical simulation turns out therefore to 

be one of the cheapest and most promising alternative to model and optimize such 

processes but several issues related to the process itself make the task quite complicated 

as we are going to expose throughout this work. 

Several models were proposed since the early 90's. We can mention in particular the 

numerical analysis made by Sonnez et al. [1] and the work by Pitchumani et al. [2] 
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interested in the study of interfacial bonding. In the latter, the domain considered is only 

2D and strong assumptions were introduced in the thermal model, in particular 

concerning the boundary conditions. Moreover, in order to simplify the geometry of the 

domain, an incoming tow was assumed instantaneously laid down all along the 

substrate, which is far from being the case in the real process. Finally, the 

thermal/mechanical contact was assumed to be perfect at the inter-ply interfaces, which 

again seems to be also a crude assumption. First attempts of the modeling and 

simulations of this process can be found in [3,4].   

In what follows the domain we consider is 3D and the material, the carbon reinforced 

PolyEther Ether Ketone (PEEK), is anisotropic. The thermal and mechanical properties 

of this material are detailed in Tables 1 and 2. In these tables, the index 1 refers to the 

longitudinal or fiber direction, the index 2 corresponds to the transverse direction and 

the index 3 stands for the ''through the thickness'' direction. 

 

Thermal diffusivity (10-6 m2/s) K11=1.89 K22=0.189 K33=0.189 

Thermal expansion (10-6 /°K) α11=0.2 α22=60 α33=60 

Table 1. Thermal properties of carbon reinforced PEEK  (AS4/APC2) 

Young modulus (GPa) E11=137 E22=9.4 E33=9.1 

Poisson ratio ν12=0.33 ν13=0.32 ν23=0.40 

Shear modulus (GPa) G12=5.1 G13=4.7 G23=3.2 

Table 2. Mechanical properties of carbon reinforced PEEK (AS4/APC2) 

 

In this work we propose some improvements to existing models. First of all, the domain 

we consider is 3D and the material anisotropic. In order to take into account the 

imperfect adhesion at the inter-ply interface, thermal contact resistances are introduced. 

Regarding the mechanical problem, the incoming tow is progressively laid down on the 

substrate and is subjected to a tension force in order to reproduce the pre-tension applied 

in the real process. But actually, beyond the model itself, the numerical method 

employed for the solution of the thermal and mechanical problems associated to the 

ATP process is novel. This work represents a first step towards a global thermo-

mechanical process modeling using robust and efficient numerical tools. The numerical 
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strategy we propose is based on the Proper Generalized Decomposition (PGD) [5,6]. 

This method uses a separated representation of the unknown field, in that case 

temperature or displacements, and results in a tremendous reduction of the 

computational complexity of the model solution. Moreover, it entails the ability to 

introduce any type of parameters (geometrical, material …) as extra-coordinates into the 

model, to obtain by solving only once the resulting multidimensional model the whole 

envelope containing all possible solutions [7,8], a sort of numerical virtual chart or 

metamodel, that can be then exploited on-line even on light computing platforms like 

smartphones of tablets [9,10].  

2. Building-up parametric solution 

In what follows we are illustrating the construction of the Proper Generalized 

Decomposition by considering a quite simple problem, the parametric heat transfer 

equation governing the evolution of u(x,t,k) : 

  
∂u
∂t

− kΔu − f = 0  (1) 

where    (x,t,k) ∈Ω× I × ℑ  and for the sake of simplicity the source term is assumed 

constant, i.e. f = cst . Because we are interested in knowing the temperature field u(x,t)

for any value of the thermal conductivity k ∈ℑ , the conductivity will be assumed as a 

new coordinate, like space x  or time t . Thus, instead of solving the thermal model for 

different values of the conductivity parameter we prefer introducing it as a new 

coordinate looking directly for    u(x,t,k) . The price to be paid is the increase of the 

model dimensionality; however, as the complexity of the PGD scales linearly with the 

space dimension the introduction of the conductivity as a new coordinate allows for 

faster and cheaper solutions.  

Within the PGD framework the solution of Eq. (1) is searched under the separated form:   

   
u x,t,k( ) ≈ Xi x( )

i=1

i=N

∑ ⋅Ti t( ) ⋅ Ki k( )  (2) 

 

In what follows we are assuming that the approximation at iteration n is already known: 

   
un x,t,k( ) = Xi x( )

i=1

i=n

∑ ⋅Ti t( ) ⋅ Ki k( )  (3) 

and at present iteration we look for the next functional product 

   
Xn+1 x( ) ⋅Tn+1 t( ) ⋅ Kn+1 k( )  that for alleviating the notation will be denoted by 
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. In order to solve the resulting non-linear problem, some 

linearization strategy is compulsory. The simplest choice consists in using an alternating 

directions fixed-point algorithm. It proceeds by assuming  and  given at the 

previous iteration of the non-linear solver and then computing . From the just 

updated  and  we can update , and finally from the just computed 

 and  we compute . The procedure continues until reaching 

convergence. The converged functions ,  and  allow defining the 

searched functions: 
   
Xn+1 x( ) = R x( ) , 

  
Tn+1 t( ) = S t( )  and 

  
Kn+1 k( ) =W k( )  and then we 

can move to the next enrichment. The interested reader can refer to [9,10] and the 

references therein for additional details on the PGD constructor. 

3. ATP thermal model 

Our objective is to obtain the steady state temperature in a coordinate system attached to 

the placement head, which is assumed to move with a constant velocity. For a given 

number of plies, this temperature field can be used to reconstruct the thermal history in 

any material point far enough from the edges, as will be illustrated later. In these 

conditions each material point experiences the same thermal history during the process. 

It is progressively heated when approaching the laser, it reaches its maximum 

temperature when the laser applies directly on it and it cools down relatively fast when 

getting far from the heat source, reaching the ambient temperature before the laser 

comes back again when placing the next layer. Therefore, instead of considering a 

problem where the domain is fixed and the boundary conditions are time dependent, we 

can explicitly introduce the line speed v = (v,0,0)  (when the heating device moves in 

the x -direction) in the heat transfer equation by adding a convection term. In other 

words, the laser and the roller are kept fixed and the material is assumed moving with a 

speed v  in the opposite direction to the one in which laser and roller move, as shown on 

Fig. 2. In this figure we have emphasized the fact that after applying the heat source the 

incoming layer adheres to the substrate (continuous line), being this adhesion more or 

less perfect depending on the molecular diffusion as discussed later. On the other hand, 

before experiencing the bonding the interface between the incoming layer and the 

substrate, represented by a broken line in Fig. 2, is assumed adiabatic, that is, the 

incoming layer and the substrate cannot exchange heat trough it. 
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Figure 2. Thermal model 

 

Hence the equation to be solved writes 

  
ρ ⋅Cp ⋅ v ⋅∇T = ∇ ⋅ K ⋅∇T( )  (4) 
where ρ  is the density, Cp  is the specific heat and K  is the conductivity tensor. In this 

reference frame, the boundary conditions are not time dependent anymore. The solution 

of Eq. (4) corresponds to the steady state temperature field in the coordinate system 

attached to the roller and the laser. The material domain, consisting of the substrate 

(plies already placed) and the incoming layer, in which equation (4) is solved is noted 

by Ω = 0,Lx[ ]× 0,Ly⎡⎣ ⎤⎦ × 0,Lz⎡⎣ ⎤⎦ . 

The incoming ply and the substrate are assumed having the ambient temperature. Thus, 

on the upstream boundary the ambient temperature will be enforced and on the 

downstream boundary the heat flux is assumed vanishing. Convection boundary 

conditions are enforced on the upper surface, except in the regions in which the laser 

and the roller apply and finally a conduction transmission condition is enforced in the 

contact between the composite and the work plane. All the transmission conditions (at 

the inter-plies, at the roller-composite contact and on the composite-work-plane 

interface) are affected by a contact thermal resistance h  accounting for the non-perfect 

contacts. These resistances depend on the applied pressure and also on the inter-plies 

bonding. Thus, the temperature field becomes discontinuous at the plies interfaces and 

also on the composite-work-plane and roller-composite contacts. On the interface 

between the incoming ply and the substrate that has not already experienced the 

molecular bonding (broken line in Fig. 2) an infinite value of the contact thermal 

resistance is assumed ensuring the absence of heat transfer between the incoming ply 

and the substrate. As soon as the bonding occurs (continuous line in Fig. 2) a thermal 

resistance applies, whose value depends on the quality of such bonding, vanishing when 
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the adhesion can be considered perfect.  A parameter quantifying the quality of the 

bonding will be introduced later.  

As the different contact thermal resistances are unknown “a priori” they should be 

identified from experiments by solving the corresponding inverse problem, that is, 

looking for the values of the different contact thermal resistances allowing reproducing 

the experimental measurements. In order to perform this identification we must define a 

cost function to be minimized by assuming any optimization strategy. The natural 

choice for such a cost function is the gap between the computed temperatures at some 

locations and the temperature measured at such positions. The main drawback is that for 

each tentative choice of the different thermal resistances Eq. (4) must be solved, the cost 

function evaluated and if its value is not small enough, the value of the thermal 

resistances must be updated trying to minimize the cost function, that is the gaps, and 

then the thermal model (4) must be solved again, and so on until reaching a value of the 

cost function small enough allowing to fix the value of the thermal resistances to be 

considered from now on in the thermal model of the process. 

In order to solve a single problem instead of one for each choice of the thermal 

resistances, one could imagine introducing the thermal resistances as extra-coordinates 

into the thermal model. We distinguish three thermal resistances, the one related to the 

contact between the roller and the laminate, the one applying at the inter-plies interfaces 

and finally the one existing between the laminate and the work-plane. The inverse of 

three resistances will be denoted by h1 , h2  and h3 . Thus, we could imagine that the best 

representation of the temperature field in the roller-laser frame consists of 

T (x,h1,h2 ,h3) . Such a representation has as main drawback the fact to be defined in a 

space of dimension 6, the three space coordinates and the three extra-coordinates 

representing the contact resistances. The difficulties related to the model’s multi-

dimensionality can be circumvented thanks to the separated representation involved by 

the PGD constructor that writes: 

   
T x,h1,h2 ,h3( ) ≈ Xi x( )

i=1

i=N

∑ ⋅ Hi
1 h1( ) ⋅ Hi

2 h2( ) ⋅ Hi
3 h3( ) = Xi x( )

i=1

i=N

∑ ⋅ Hi
j hj( )

j=1

j=3

∏  (5) 

whose solution involves the solution of a sequence of 3D problems (of the order of N ) 

related to the computation of functions Xi x( )  and the same number multiplied by 3 of 

one-dimensional problems for computing functions 
  
Hi

1 h1( ) , 
  
Hi

2 h2( )  and 
  
Hi

3 h3( ) . 

Because the computing time for solving the local one-dimensional problems can be 
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neglected with respect to the one needed for solving the 3D problems, we can conclude 

that the complexity associated with the 6D solution (5) scales with the one related to the 

solution of a standard 3D steady state thermal problem. 

Obviously, if the number of iterations required for minimizing the gap in the inverse 

identification is of the same order as N  there is no apparent benefit in computing the 

parametric solution (5). However, there is a noticeable benefit that we are trying to 

highlight. As soon as the process parameters change (laser power, line velocity or roller 

pressure) the contact resistances will change, and they should be identified again, by 

solving again many 3D problems for attaining an acceptable value of the temperature 

gap at the locations where the temperature is measured. Thus, each choice of the process 

parameters will imply a new inverse analysis and then the solution of many direct 

problems. One could imagine that by computing the parametric solution (5) a single 

calculation suffices, but this is not totally true. For computing a general enough 

parametric solution encompassing any choice of the process parameters and the contact 

thermal resistances, the process parameters should be also included as extra-coordinates. 

If we denote by p  the laser power, by v , as previously used, the line velocity, and 

neglecting in first approximation the influence of the roller contact pressure, the 

parametric temperature writes T (x,h1,h2h3, p,v) . It can be searched under the separated 

form: 

   
T x,h1,h2 ,h3, p,v( ) ≈ Xi x( )

i=1

i=N

∑ ⋅ Hi
1 h1( ) ⋅ Hi

2 h2( ) ⋅ Hi
3 h3( ) ⋅ Pi p( ) ⋅Vi v( )  (6) 

with a moderate impact on the computational complexity because the two new 

coordinates only involve the solution of some local one-dimensional problems within 

the PGD constructor methodology. It must be noticed that the solution (6) is calculated 

off-line, and then particularized on-line in the process simulation or within the inverse 

identification procedure.   

Moreover, because the hexahedral geometry of the tape, one could prefer performing a 

full space decomposition by writing the approximation (7) instead of (6):    

  

T x, y, z,h1,h2 ,h3, p,v( ) ≈
≈ Xi x( )

i=1

i=N

∑ ⋅Yi y( ) ⋅ Zi z( ) ⋅ Hi
1 h1( ) ⋅ Hi

2 h2( ) ⋅ Hi
3 h3( ) ⋅ Pi p( ) ⋅Vi v( )  (7) 

that only involves the solution of a sequence of one-dimensional problems, some of 

them, the ones concerning the space functions  
Xi x( ) ,  

Yi y( )  and  
Zi z( ) , defining 
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standard boundary value problems –BVP- and the ones related to all the extra-

coordinates defining local one-dimensional problems that do not need the solution of 

any linear system of equations, allowing consequently very fast calculations. Other 

intermediate alternatives exist. The one we will consider later in this work consists of 

the in-plane-out-of-plane separated representation in which the coordinates x, y( )  are 

separated from the one related to the laminate thickness z( )  in the approximation of 

functions of space. 

The solution (7) is computed off-line for a given tape geometry and the material thermal 

parameters ρ ,  
Cp  and the components of the thermal conductivity  K . All these 

parameters could be also included as extra-coordinates, but that in the simulation below 

were not. Then the solution (7) is particularized for obtaining the temperature field for 

any choice of the process parameters T (x;h1,h2h3, p,v) . This particularization can be 

performed on-line, in real time and even on light computation platforms like 

smartphones or tablets. Fig. 3 depicts one application on a tablet in which the process 

parameters (the three contact resistances, the line velocity and the laser power) can be 

selected from the sliders, visualizing in real time the resulting temperature field. 

  

Figure 3. Particularizing online on a tablet the general parametric thermal solution  

Obviously such a numerical tool has numerous interests. First of all it allows identifying 

contact thermal resistances such that the numerical solution fits at the best experimental 

measurements. Moreover, as soon as the thermal history is known we can evaluate both 

the inter-plies bonding and the material degradation. The first can be calculated by 

defining an indicator C  taking into account the molecular reptation, as was proposed in 

[11]: 

   
C(M,t) = dτ

tr T (M,τ )( )0

t

∫  (8) 
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where M  represents a material point located at the plies interface and tr  is the reptation 

time that depends on the temperature and that represents the time required for a 

molecule to escape from its initial tube (the one existing before the beginning of the 

thermal process at time t = 0 ) at a certain temperature. This time can be characterized 

for each material experimentally and in general follows an Arrhenius’s law. We can 

notice that C M,t( ) ≥ 1  implies a perfect bonding that ensures that the properties at the 

interface and the ones of the bulk are the same when neglecting interface porosity. 

The kinetics (8) is local and can therefore be calculated on-line. The only tricky point is 

the relation between points x  in the thermal model (4), considered in the laser-roller 

frame, and the material point M . We come back to this issue later. Now, we are 

focusing in the other phenomenon, the one related to the material degradation due to  

thermal induced molecular breaking. Following again [11] we consider the damage 

indicator D  given by the kinetics: 

   
D(M,t) = d T (M,τ )( ) ⋅ dτ

0

t

∫  (9) 

where again the temperature dependent damage function 
   
d T (M,τ )( )  follows an 

Arrhenius’s law that can be for each material easily identified experimentally.  

We come back to the question concerning the relation between T x( )  coming from the 

solution of Eq. (4) and T M,τ( ) . We consider the situation depicted in Fig. 5 (bottom 

schema). First of all, we are discussing the value of length of the domain of study Lx . 

This value should be compatible with the boundary conditions enforced on the 

boundaries x = 0  and x = Lx : the ambient temperature at x = Lx , i.e. T x = Lx( ) = Tamb  

and a null heat flux at x = 0 . Thus referring to Fig. 5 (bottom schema) the length must 

ensure that the resulting heat flux x = Lx  vanishes, i.e. ∂T
∂x x=Lx

≈ 0 , and that at x = 0  

the temperature approach again the ambient temperature, i.e. T x = 0( ) ≈ Tamb . Now, 

with the dimensions of the representative domain defined, we can notice by comparing 

the real process depicted in the upper scheme of Fig. 5 with the steady state analysis 

performed in the laser-roller frame (bottom schema), that: 
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T M,t1( ) = T x1( )
T M,t2( ) = T x2( )

!
T M,tM( ) = T x M( )

!

"

#
##

$

#
#
#

 (10) 

result that can be generalized as follows: 

   
T M,t( ) = T x1 ! v " t( )  (11) 
Thus, from the solution of the steady state model (4) we can easily determine the 

thermal history of any material point, allowing the computation of the accumulated 

bonding or damage. 

 

   Figure 5. Relation between moving and fixed frames 

However, the thermal model presented until now is not fully satisfactory despite its 

richness because as soon as the sequence of plies change, the thermal model must be 

solved again because the thermal conductivities are changing throughout the thickness. 

As it can be noticed in Fig. 1 (right) the orientation of the reinforcement could change 

from one ply to the subsequent. Thus, if for example we are interested in pre-computing 

all the possible stacking sequences, with 4 possible orientations and 10 plies the number 

of possible configurations reaches  410 ! 106 , even when considering all the other 

process parameters (line velocity, laser power and all the contact thermal resistances) 

given and fixed. By considering that the solution of the thermal model (4) for each 

configuration requires one minute, the calculation of all possible laminates ( ! 106 ) 

needs 2 years of computation. Moreover, after computing this million of solutions they 

must be stored in order to be used online when needed. It is obvious that such a storage 

of information is a tricky point, and some kind of data compression procedure seems 
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compulsory in order to obtain a useful virtual chart or metamodel to be considered 

efficiently for online purposes (identification, process control …). 

In order to calculate a more general parametric solution the orientation of the 

reinforcement of each ply through the thickness should be added as new extra-

coordinates [10]. Doing so, we obtain a solution valid for any orientation sequencing. 

The separated representation related to the PGD allows circumventing the resulting 

curse of dimensionality.  If we denote by θ j  the orientation of ply number j , the 

separated representation of the temperature field including these new conformational 

extra-coordinates θ j  reads: 

   

T x, y, z,h1,h2 ,h3, p,v,θ1,,θN p( ) ≈
≈ Xi x( )

i=1

i=N

∑ ⋅Yi y( ) ⋅ Zi z( ) ⋅ Hi
1 h1( ) ⋅ Hi

2 h2( ) ⋅ Hi
3 h3( ) ⋅ Pi p( ) ⋅Vi v( ) ⋅ Θi

j θ j( )
j=1

j=N p

∏
 (12) 

where Np  denotes the number of plies in the considered laminate. 

Now, after these developments regarding the thermal aspects we can move one step 

forward in order to determine the residual stresses induced distortions of the conformed 

part due to springback. We start describing the solution procedure of the mechanical 

problem defined in a plate-like domain, before considering in the last section of the 

present paper the calculations of the residual stresses installed in the part by solving a 

more complex thermoelastic model.  

4. Mechanical structural analysis 

When computing elastic responses of plates, two dimensional plate theories are usually 

preferred to the numerically expensive solution of the full three-dimensional elastic 

problem. Going from a 3D elastic problem to a 2D plate theory model usually involves 

some kinematical and mechanical hypotheses on the evolution of the solution through 

the thickness of the plate. 

Despite the quality of existing plate theories, their solution close to the plate edges is 

usually wrong as the displacement fields are truly 3D in those regions and do not satisfy 

the kinematic hypothesis. Moreover, kinematic hypothesis fail where Saint-Venant's 

principle does not apply. It is well known that some heterogeneous complex plates do 

not verify the Saint Venant's principle anywhere. In that case the solution of the three-

dimensional model is mandatory even if its computational complexity could be out of 

nowadays calculation capabilities. 
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Most commercial codes for structural mechanics calculations propose different type of 

plate and shell finite elements, even in the case of multilayered composites plates or 

shells. However, in composites manufacturing processes the physics encountered in 

such multilayered plate or shell domains is much richer, because it usually involves 

chemical reactions, crystallization and strongly coupled non-linear thermo-mechanical 

behaviors. The complexity of the involved physics makes impossible the introduction of 

pertinent assumptions for reducing a priori the dimensionality of the model from 3D to 

2D. In that case a fully 3D modeling is compulsory, and because of the richness of the 

thickness description (many coupled physics and many plies with different physical 

states and directions of anisotropy) the approximation of the fields involved in the 

models needs thousands of nodes distributed along the thickness direction. Thus, fully 

3D descriptions may involve millions of degrees of freedom that should be solved many 

times because of the history dependent thermo-mechanical behavior. Moreover, when 

we are considering optimization or inverse identification, many direct problems have to 

be solved in order to reach the minimum of a certain cost function.  

Even if in what follows we are only addressing thermo-elastic behaviors in quite simple 

configurations whose behavior could be captured accurately by using existing plate 

models, we prefer to address a new approach that having the same computational 

complexity as plate models, calculates the real 3D fields. The main ideas of this 

numerical technique that was described in detail in [10], are here summarized and then 

applied to calculate the residual stresses induced springback of some ATP laminates. 

When we consider the elastic behaviour defined in a plate-like domain Ξ , it suffices 

considering an in-plane-out-of-plane separated representation of each component of the 

displacement vector: 

   

u x, y, z( ) =
u x, y, z( )
v x, y, z( )
w x, y, z( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

≈

uxy
i x, y( ) ⋅uz

i z( )
vxy

i x, y( ) ⋅ vz
i z( )

wxy
i x, y( ) ⋅wz

i z( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i=1

i=N

∑   (13) 

where x, y( )∈Ω⊂ ℜ2  and z ∈I ⊂ ℜ . 

In order to highlight the interest of such a decomposition we are comparing the 

complexity of PGD-based solvers with respect to the standard finite element method. 

For the sake of simplicity we will consider a hexahedral domain discretized using a 

regular structured grid with ,  and  nodes in the ,  and  directions 
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respectively. Even if the domain thickness is much lower than the other characteristic 

in-plane dimensions, the physics in the thickness direction could be quite rich, mainly 

when we consider composites plates composed of hundreds of anisotropic plies in 

which the complex physics involved requires fully 3D descriptions. In that case 

thousands of nodes in the thickness direction could be required to represent accurately 

the solution behaviour in that direction. In usual mesh-based discretization strategies 

this fact induces a challenging issue because the number of nodes involved in the model 

scales with  
Nx × N y × Nz , however, if one applies a PGD based discretization, and the 

separated representation of the solution involves  modes (terms in the finite sum 

decomposition), one should solve  2D problems related to the functions involving the 

in-plane coordinates and  1D problems related to the functions involving the 

thickness coordinate. The computing time related to the solution of the one-dimensional 

problems can be neglected with respect to the one required for solving the two-

dimensional ones. Thus, the PGD complexity scales as  
N × Nx × N y , N  being the 

number of terms in the decomposition and Nx × Ny the number of nodes for describing 

each function involving the in-plane coordinates x, y( ) . The amount of information in 

the PGD solution is 
 
N × Nx × N y + Nz( ) , taking into account both the representation of 

2D functions defined in Ω  and 1D functions defined in I , with Ξ = Ω× I . 

By comparing both complexities,  
Nx × N y × Nz  and  

N × Nx × N y , we can notice that 

as soon as  the use of PGD-based discretization leads to impressive computing 

time savings, making possible the solution of models never until now solved, even using 

low performance computing platforms. In our numerical experiments we realized that 

 N  is in general of the order of few tens. 

Making a step forward, we could also consider the reinforcement of each ply as an 

extra-coordinate of the model according to 
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 (14) 

The only constraint to the effectiveness of such a separated representation is the 

possibility of expressing each component of the fourth order elasticity tensor Cijkl in a 

similar separated form. For laminates it is quite straightforward as proven in [10].  

An additional advantage of expression (14) is the storage simplicity because this 

expression represents a kind of metamodel where the compressed data were obtained 

on-the-fly, i.e. during the separated representation construction. Thus, its storage is quite 

simple and cheap, and then, it can be post-processed on line, in real time, even using 

very light computing platforms, like smartphones or tablets. Fig. 6 illustrates a 

thermoelastic application on a smartphone, where the displacement field is depicted at 

different z -coordinates (selected from the horizontal slider) and for different 

orientations of two plies of the laminate, the ones located at the top and at the bottom, 

whose reinforcement orientation is selected from the two vertical sliders.   

 

   Figure 6. Post-processing the thermo-elastic parametric solution on a smartphone 
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Obviously when the laminate is equilibrated there is no noticeable deformations and the 

plate remains plane, but as soon as we simulate an unbalanced laminate by acting on 

both vertical sliders, the plate deforms. Fig. 7 shows the envelope of all possible plate 

deformation for any combination of these two plies orientations. 

 

   Figure 7. Deformation envelope generated by all combinations of the reinforcement 

orientations of the top and bottom plies 

Until now we have described a new numerical procedure able to address complex 

laminates considering only thermo-elastic behaviors, but that could be generalized for 

addressing more complex behaviors. In this case classical plate theories fail, and the 

PGD separated representation is an appealing alternative for solving such complex 

models in the degenerated domains in which they are defined (plate or shell-like 

domains), where 3D solutions or enriched ones when parameters are added as extra-

coordinates, can be computed with a complexity that scales with the one of 2D models 

characteristic of standard plate or shell models. 

Thus, as soon as a loading is applied on a laminate (mechanical, thermal or the one 

associated with a residual stress field) we can compute very fast the deformation of the 

part; building-up in many cases a sort of metamodel by introducing the desired 

parameters as extra-coordinates.  

In the ATP manufacturing process the conformed parts deform because of the residual 

stresses that were installed in the part due to thermoelastic loads applied during the tape 

placement (laser heating, roller pressure and the tension applied on the incoming tape), 

as sketched in Fig. 8. 
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Figure 8. Sketch of the thermo-mechanical loading during the ATP 

5. Evaluating the residual stresses generated by the ATP process 

Even if the thermo-mechanical problem could be formulated in the laser-roller frame, as 

it was the case in the thermal model previously considered, in what follows we consider 

the frame related to the substrate that is assumed at rest. Thus, we can apply directly the 

PGD-based solver proposed in [10] and summarized in the previous section, but 

because of the time dependence on the temperature field in that frame we must solve the 

thermo-elastic problem at different instants that correspond to different positions of the 

couple laser-roller, as illustrated in Fig. 9. 

 

Figure 9. Incremental thermo-mechanical coupling strategy 

As previously described, the temperature field is accessible for any position of the 

thermal source. However, the mechanical model deserves more comments. First of all, it 

is important to notice that the geometry is changing with the interface welding after 

acting the laser-roller as illustrated in Fig. 10. 
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Figure 10. Evolution of the geometry during the interface welding 

In Fig. 10 we can notice that the interface tip at time t  is located at position r(t) = v ! t . 

We perform a sequence of PGD solutions of the thermo-elastic problem in the different 

geometries associated with different time instants uniformly distributed in the interval 

t ! 0, Lx
v

"
#$

%
&'

, with a time step !t . 

In order to compute the accumulated stresses at a certain cross-section, representative in 

first approximation of the ones installed at any location in the plate, we are computing 

the stresses at the central section 
Lx
2

 when the couple laser-roller moves from x = 0  to 

x = Lx . When it reaches the right border x = Lx  the stress state at the central cross-

section x = Lx
2

 is frozen and it will be applied everywhere on the substrate when the 

next tape will be placed, in order to determine the accumulated residual stresses induced 

by the whole process that involve the placement of the Np  plies composing the 

laminate. 

The thermo-elastic problem to be solved at time t  during the placement of ply number 

n  is defined in the domain ! = 0,Lx[ ]" 0,Ly#$ %& " 0,Lz#$ %&  where 

Lz = n ! e = (n "1) ! e + e , being e  the tape thickness and (n !1) " e  the substrate 

thickness consisting of the n !1  tapes already placed. An interface !(t)  of length 

Lx ! v " t , located at z = (n !1) " e  and whose tip is located at r(t) = v ! t  guarantees the 
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possible discontinuity of the displacement field across it. The geometry and that 

interface are represented in figure 11. 

 

Figure 11. Placement of tape number n  

When placing the n  ply, we perform at the first configuration (the one at t = 0  with the 

thermal source located on the left border of the representative volume and the interface  

!(t = 0)  crossing all the domain length because its tip is located at x = 0 ) the small 

transformations linear thermo-elastic calculation: 

   

! "# = 0
# = C : $ %& " T M,t = 0( ) % Tref( )( ) +# 0 (M)

$ =
!u + !u( )T

2

'

(

)
))

*

)
)
)

 (15) 

where !  is the Cauchy’s stress tensor, !  the linearized deformation tensor, !  the 

thermal expansion tensor, Tref  a reference temperature that in what follows will be 

assumed to be the ambient temperature Tamb , C  the fourth order elasticity tensor, u  the 

displacement field and ! 0 (M)  the accumulated residual stress field installed in the 

substrate because of the previous tape placements. The temperature at each position 

M !"  and time t  can be obtained as previously described from the steady state 

temperature field obtained in the laser-roller frame. 

As shown in Fig. 8 the substrate and the incoming tape are assumed clamped on its left 

border as well as in the bottom one in contact with the work-plane. In the remaining part 

of the domain boundary tractions are assumed known, being null everywhere except at 

the right border of the incoming tape, as Fig. 11 illustrates, where a traction F  applies.  

Then, at the subsequents configurations, as the intermediate one depicted in Fig. 11, the 

stresses evolve because of the heating combined with the interface welding that prevents 

a stress-free cooling process. The stress evolution is calculated from the solution of 
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∇ ⋅ Δσ( ) = 0

Δσ = C : Δε −α ⋅ T M,t( ) − T M,t − Δt( )( )( )
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∇ Δu( ) + ∇ Δu( )( )T

2

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (16) 

where Δ •( )   refers to the variation of the variable •( )  between two consecutive time 

steps: t − Δt  and t.  

In the previous thermo-mechanical problems (15-16), as it was also the case when the 

thermal model was addressed, the effects related to the changes of phase (solidification, 

crystallization …) are in first approximation neglected, as well as their associated 

inelastic behaviors (viscoelasticity, plasticity …). 

The solution of those models was performed by applying a PGD strategy based on an 

in-plane-out-of-plane separated representation of the displacement field: 
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Moreover, to ensure the eventual discontinuity of the displacement field across the 

interface Γ(t) , we defined the functions χ x, y( )  and ξ(z) , expressed by: 

  
χ(x, y) =

0         if  x ≤ r(t)   
x − r(t) if  x > r(t)   

⎧
⎨
⎪

⎩⎪
  (18) 

and  

  
ξ(z) =

0 if  z ≤ (n −1) ⋅ e   
1 if  z > (n −1) ⋅ e   

⎧
⎨
⎪

⎩⎪
  (19) 

from which we can rewrite the separated representation (16) as:  
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that ensures the displacement discontinuity across the interface Γ(t)  and the required 

continuity elsewhere. This kind of discontinuous enrichment constitutes the so-called 

dPGD, where “d” refers to its discontinuous character. 

When applying this procedure (thermal calculation – discussed in section 3 - and the 

associated induced stresses just described) we can obtain the final stress distribution 

along a representative cross-section of a laminate, as shown in Fig. 12 that compares the 

residual stresses σ xx along the laminate thickness for a laminate composed of two plies 

(where for the sake of simplicity we considered the placement of the upper ply on a 

stress-free substrate composed of a single ply) both having the same reinforcement 

orientations (left figure) or being perpendicular orientations (right figure). Fig. 13 shows 

similar results for the shear component of the residual stress σ xz . 

 

 

  

 

Figure 12. Residual stress σ xx  along the laminate thickness: (left) the reinforcement 

orientation of both plies is the same; (right) both orientations are orthogonal 
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Figure 13. Residual shear stress σ xz  along the laminate thickness: (left) the 

reinforcement orientation of both plies is the same; (right) both orientations are 

orthogonal 

As it can be noticed in Figs. 12 and 13 the first configuration, equal reinforcement 

orientations does not imply significant residual stresses so the distortion of the part will 

be inappreciable. However, in the case of an unbalanced laminate the residual stresses 

become more significant and a noticeable springback is obtained after demoulding as 

shown in Fig. 14. 

 

Figure 14. Springback induced by the ATP residual stresses 
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6. Conclusions 

The evaluation of residual stresses induced by the automated tape placement process 

requires three distinct steps. The temperature field in the laminate has to be first 

calculated. Several approaches are conceivable. Here, we solve the thermal problem in 

the coordinate system attached to the heating device. The line speed is therefore 

explicitly introduced in the formulation of the problem by adding a convection term. 

The Proper Generalized Decomposition proceeds by decoupling the space coordinates 

by performing an in-plane/out-of-plane decomposition that allows solving the 3D 

problem with the computational complexity characteristic of 2D solutions. Moreover, 

the fiber orientation of each ply can be introduced as an extra-coordinate of the model 

and a parametric solution valid for a large range of laminates (sequencing of plies) can 

then be computed. Other extra-coordinates can be also introduced allowing efficient 

material and process identification and/or optimization. 

The mechanical problem is solved incrementally in a representative volume. The laser 

moves progressively along the placement direction. For a given position, a thermo-

mechanical problem is solved, making use of the temperature field already computed. 

The residual stress is obtained by considering the evolution of the stress on the central 

cross-section of the representative volume.  

Finally, with the residual stresses just obtained, the part can be demoulded and the 

induced distortion can be calculated by solving the associated elastic problem at the 

structure level again by invoking the in-plane-out-of-plane PGD decomposition of the 

associated elastic problem. 

Nevertheless, very simple configurations were analyzed and this work has still to be 

validated with more complex simulations and experiments that constitute a work in 

progress.  
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