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Abstract This work presents an interacting multiple pedes-
trian tracking method for monocular systems that incorpo-
rates a prior knowledge about the environment and about
interactions between targets. Pedestrian motion being ruled
by both environment and social aspects, we model these
complex behaviors by considering 4 cases of motion: go-
ing straight; finding one’s way; walking around and stand-
ing still. They are combined within an Interacting Multi-
ple Model Particle Filter strategy. We model targets inter-
actions with social forces, included as potential functions in
the weighting process of the Particle Filter. We use differ-
ent social force setups within each motion model to han-
dle high level behaviors (collision avoidance, flocking...).
We evaluate our algorithm on challenging datasets and show
that such semantic information improves the tracker perfor-
mance compared to the literature.

Keywords Pedestrian visual tracking - Particle filter -
Social forces - Semantic based tracking

1 Introduction

Multi-object tracking (MOT) has been a very active research
area in recent years. The techniques developed for MOT
have found applications in the automatization of processes
in areas such as robotics or video surveillance, among oth-
ers. The main two ingredients of most MOT techniques are
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(1) the modeling of the target visual appearance, and (2) the
modeling of the prior knowledge about the targets motion. In
this work, we focus on the latter, i.e., the use of probabilistic
models for explaining the observed motions and the inter-
actions between pedestrians in a scene captured by a video-
surveillance camera. Although, at first sight, the nature of
pedestrian motion may look quite chaotic, studies [12,19]
have shown that pedestrian behavior is strongly influenced
by the context, namely the other pedestrians in his surround-
ings and, beyond, the environment configuration and its clut-
ter. This has been the starting point for cornerstone research
in the modeling of group behaviors, i.e., for the design of
escape routes in public spaces. As an example, consider the
persons present in Fig. 1. The couple at the center of the
image is standing in place, while other pedestrians are mov-
ing around, in groups or alone, with different velocities. All
agents velocities are clearly influenced by other agents in-
tentions and proximity: They may want to avoid the obsta-
cle made by the couple, or enter into conversation. To model
this behavioral context, global positions, orientations, and
velocities of the targets are natural variables to be used. For
instance, pedestrians in the same group should have simi-
lar orientations, whereas two nearby people talking to each
other should be oriented in an opposite way. This kind of se-
mantic interactions are not used in most tracking approaches.
However, our claim is that the inference of the pedestri-
ans interactions based on semantic dynamic models could
improve the tracking performance by producing better pre-
dictions in stochastic filtering. In this paper, we consider a
simplified model of four cases of motions (one probabilistic
model per motion), obtained by the analysis of the pedes-
trians in a mall [19]. For each of these motion models, we
include the modeling of target interactions through potential
functions, encoding the concept of social forces. Finally, our
motion models are integrated in one single framework with
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Fig. 1 Pedestrians with multiple motion dynamics. The interaction of
the person in the middle of the image with others depends on the region
that they occupy. From proxemic theory, these regions can be divided
in four: Intimate (Red), Personal (Yellow), Social (Blue) and Public
(Green) space.

the Interacting Multiple Model scheme under a Particle Fil-
ter methodology [6], coined as IMM-PF.

In the work presented here, the motion models are de-
veloped with semantic information modeled as in [19], that
allows to handle in a more natural way the human walking
in sparsely crowded scenes.

We propose a decentralized tracking framework, i.e., one
filter dedicated to each target. Even if the trackers are essen-
tially individual, they share semantic information through a
prior knowledge about the expected social behavior in each
motion model among a set of competing models. Our mod-
eling considers the body pose of each target (in the same
vein as [8]) as a feature to control these interactions. We

demonstrate that our proposal outperforms existing approaches

thanks to large scale comparative evaluations. The Fig. 2
provides an overview of our proposal.

The structure of the paper is as follows: Section 2 dis-
cusses related work. The general formulation of our pro-
posed IMM-PF is presented in Section 3. The Section 4 de-
scribes our contribution in the modeling of the pedestrian
behavior (motion and interaction). Results are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2 Related work

Most of the time, naive dynamic models are used as priors
in MOT frameworks, i.e., the constant velocity model [8, 5],
random walks [15], target detector output [5], among others.

Unfortunately, those models are rough approximations
of the real dynamic of the targets and they lack semantic in-
formation that could improve tracking performance by iden-
tifying common group walking patterns, for example. [15]
proposes a technique to model a simple kind of interaction
between individual trackers. They use a potential function to
give more weight to those particles of a particle filter that are
far from other trackers, helping to keep the trackers apart.

However, this method can not be extended very well to mul-
tiple behaviors since the interaction models may contradict
each other. In [5], the authors present a framework to track
individuals and groups of pedestrians at the same time, using
semantic information about the group formation. However,
no motion prior information is used. On the other hand, [10]
makes use of semantic information to identify groups from
independent trackers. [18] introduces a multi-camera track-
ing system with non-overlapping field of view. It uses a so-
cial force model to generate multiple hypothesis about the
movements of a non-observed target who has left the field
of view of a camera. Those hypothesis are considered for
target re-identification. [23] solves the tracklet data associ-
ation problem as a directed graph, by weighting the edges
according to some social conditions. In [20], the targets in-
teract in such a way that they choose a free collision trajec-
tory. To this end, this work finds the optimal next position of
all trackers based on an energy function that considers the
targets future position, desired speed and final destination.
Other MOT systems consider trackers interactions only dur-
ing the detector association stage [7], or only when targets
touch each other, or when one is occluded in one camera.
The objective in that case is to avoid the coalescence phe-
nomenon and to solve the data association problem.

Capturing the complex behavior of targets like pedes-
trians can be really challenging. An elegant solution is to
rely on a mixture of motion models through the Interact-
ing Multiple Model (IMM) methodology. IMM maintains
a pool of distinct, competing models and weights each of
them according to its importance in the posterior distribu-
tion [6, 13]. In [13], target tracking is simulated with a bank
of Kalman Filters, where each filter is associated to a dis-
tinct linear motion model, within the IMM methodology.
This proposal is fast and suitable for a large number of tar-
gets. In [22], a similar bank of filters was employed in a
hybrid foreground subtraction and pedestrian tracking algo-
rithm. It uses the tracking result as a feedback to improve
the foreground subtraction. [14] proposes another Kalman-
based IMM for pedestrian tracking which is similar to ours,
with two classic motion models: constant position and con-
stant velocity, to track a few targets.

However, the Kalman filter cannot use non-linear mod-
els and the IMM schemes based on it can not recover when
one filter of the bank fails. [6] proposes an IMM implemen-
tation with Particle Filter (that we will refer to as IMM-PF).
They associate a fixed number of particles to each model
and weight the models according to their importance in the
filter. This proposal suffers from a waste of computational
resources when processing many particles with low impor-
tance models. In [16], each particle motion model has the
possibility of evolving over time, passing from a moving to
a stopped state. Those changes are handled with a transition
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matrix of fixed probability values. However, those fixed val-
ues can not represent faithfully how the real model changes.
Contributions. To overcome the limitations of the common
naive dynamic models (widely used in MOT [21, 14,15]),
we propose a decentralized tracking system with a motion
model that considers semantic information to improve pedes-
trian tracking. We model this high level pedestrian behav-
ior at two levels: motion and interaction. We emulate the
complex pedestrian motion with Interactive Multiple Mod-
els IMM), developed from observation analysis [19]. We
expand the work of Khan et al. [15] to multiple pedestrian
tracking and include more realistic interaction between track-
ers coming from the simulation community, known as so-
cial forces. We demonstrate, in several challenging video
sequences through both qualitative and quantitative evalua-
tions, that such semantic information improves the tracking
performance compared to conventional approaches in the lit-
erature.

3 Particle Filter-Interacting Multiple Models

We formulate the tracking problem in a Bayesian frame-
work, where we infer the target state X at time ¢ (X;) given

the set of observations Z;.; = {Z; ...Z;}. Under the Markov
assumption, the posterior is estimated recursively:

{P(thzufl) = [ p(Xe|Xt—1)p(Xt—1]Z1:4—1)dX¢—1, )

p(X¢|Z1:t) p(Z¢|Xt)p(X¢|Z1:¢—1).

The Bayes filter of Eq. 1 includes prediction (first row)
and correction (second row) steps. Following the IMM strat-
egy [6], our motion model p(X;|X;_1) is a mixture of M
distributions as:

M
p(X¢|Xi—1) = Z i p™ (Xt | Xi—1), )

m=1

where the terms 7" weigh each model contribution in the
mixture. Thus, the posterior of Eq. 1 is reformulated as:

{P(Xt\zl:t—l) = [SM_ wrp™(Xe|Xe—1)p(Xe—1]Z1ie—1)dX—1,
p(thzl:t) X P(Zt\xt)l)(xt\zlzt—l)~

3)

Since the contribution weight does not depend on the pre-
vious state X;_1, we move this term out of the mixture dis-
tribution. Hence, the filter of Eq. 3 is rewritten as:

P(X¢|Z14) o Z%:l 70 p(Ze| X )p™ (X2t —1)s €]

with p™ (X|Z1.0—1) = [ p™(Xe|Xe—1)p(Xt—1|Z1:4—1)dXs—1. The

terms ;" are updated in function of their respective likeli-
hoods [6]: n* = 7™ | [ p(Z¢|X¢)p™(X¢|Z1:t—1)dX;¢. The par-
ticle filter approximates the posterior in Eq. 4 by a set of
N weighted samples or particles. The multi-modality is im-
plemented by assigning one motion model to each particle,
indicated by a label [ € {1...M}. Thereby, a particle n at
time ¢ is represented by (X{™, w(™ 1(m).

In the IMM-PF methodology, the model m = {1... M}
contributes to the posterior estimation according to its im-
portance, which is defined by a weight 7{". Each model
m has N, particles associated to it, with a total of ¥ =

M_ N, particles. The posterior is represented by consider-

m=1

ing both particles weights (w{™) and models weights ("):

P(XelZ1) = XM w S ey w§">5xgn> (Xe),

' 5
s.t. Z%zl mt=1and 3 . wt(") =1,

where ¢, = {n € {1...N} : 10" = m} represents the
indices of the particles that belong to model m.

3.1 Sampling and dynamic model

We use an importance proposal distribution ¢(-), that ap-
proximates p(X|X;—_1, Z1.+), and from which we can draw
samples. In the multiple motion model case, we have M
proposals, such as: XI* ~ ¢™(X|X:—1,Z1.¢). Here, we sam-
ple a new state for each particle from the motion model
corresponding to its label {(™). This model is supposed to
be a Gaussian distribution A/(Xy; trym (X{™)), Zyn)), where
tr;ny (+) 18 the deterministic form of the motion model (which
will be detailed in the next section). The index [(™ indicates
the model the particle n follows.

3.2 Observation model and correction step

We implement a probabilistic observation model p(Z;|X;)
inspired from [21,8]. [21] relies on HSV-space color and
motion histograms. We define a reference histogram h,.. ¢
anytime we create a new tracker. The likelihood is evalu-
ated between h,.r and the current histogram h(™) (corre-
sponding to X{™) through the Bhattacharya distance. We
include spatial information with the color observation by us-
ing multiple-region reference models (two histograms per
target, one for the top part of the person and another for the
bottom part) as it has been shown to be more robust [21].
Following [8], we also include observations related to
the target orientation, because, as it will be explained, ori-
entation is part of our state, as an angle 6;. It is discretized
into eight directions. The body pose angle is evaluated with
a set of multiple-level Histogram of Oriented Gradients fea-
tures (HOG) f(") extracted from the image inside each X,E”) .
They are decomposed into a linear combination of O train-
ingsamples F = {f1,..., fo}: f™ =~ a1 fi+- - 4aofo =
Fa, where a = {aq,...,a0} is the weights vector subject
to non-negative constraints (a, > 0 for o € [1,0]). Each
sample has associated a label I/ € {1...8} corresponding
to its orientation. The idea is to find an optimal decomposi-
tion of the detected features in terms of the training samples,
i.e., to determine a set of positive weights (a*) such that:

a® = argmin|| f") — Fal3 + Alal,
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Fig. 2 Workflow of our proposal. (a) Initial stage: the tracker system at a given time ¢. (b) Input image is used to detect pedestrian blob candidates.
(c) A new tracker is created for each isolated blob candidate. The circles represent the particles, and their color and diameter depict the motion
model id and weight, respectively. The left bar shows the number of particles that each model has. (d) IMM-PF prediction step: a resampling (per
model or over all particles) is applied if needed; the particles are moved according to its model. (e¢) IMM-PF correction step: particles weights are
updated from color, motion and orientation cues; the social force model is applied to each interacting trackers. (f) Final tracker estimation.

where A controls the regularization. Then, the orientation

likelihood pg(Z¢|X ™) is calculated as the normalized sum
of the weights of a*:

SD DR
a
lla*{l2 7
o€p (0

po(ZeX{™) =

where p:(6™) is the set of indexes o of the images from

the training database whose labels I/ have the same (dis-
cretized) orientation 6™ as the particle n. Assuming inde-
pendence between the observation components (color cue,
motion cue, orientation cue), the likelihood of the observa-
tion Z; evaluated at the state of particle n is defined as the
combination of the three models:

P(ZeX{™) = pe(Za| X ) pm (2| X )po (24X (™),

where p.(z:|X{™) and p,,(Z:|X{™) are the color and mo-

tion cues[21], respectively, and pg(Zt\X,E”)) is the orienta-
tion likelihood described above. Thus, particles weights are
updated by:

l(")

(n) _ “vin) ~(n) _ wgﬁ)lp(zt\xﬁn))p

x{mx{m)
IS (Xin) ngf)l VZ1:t)

(6)

By assuming that the proposal and prior distribution are
the same, we have:

" =" p(ZaX(), ™
B 5 (s
= Zi\itl ;%:15)27 wit = 2j6¢7n wt<J>- (8)

Thus, Egs. 6 and 8 ensure that the constraints on Eq. 5 are
always satisfied.

3.3 Resampling

We implement the resampling process as in [17] (Fig. 2-d).
It performs the sampling, if needed, in one of two ways:

1. A sampling over all particles, following a common Cu-
mulative Distribution Function built with the weights of
particles w{™ and models 7. The best particles from
the best models are sampled more often, leaving more
particles with models fitting better the target motion.

2. A sampling on a per model basis. Each model keeps
a minimum of -y £ 01%xN particles to preserve di-
versity. If the model has less particles than a threshold
(N, < ), we draw new samples from a Gaussian dis-
tribution: NV'(X;_1,S¢_1), where X;_; and S;_; are the
weighted mean and covariance of all particles of the pre-
vious distribution. We take less samples from the models
with more particles, to leave the total number of parti-
cles N unchanged. This resampling manages the model
transition implicitly, so no prior transition information is
required.

The resampling over all particles is applied every 4 frames
and the one over models is applied every 5 frames.

4 Models for pedestrian semantic behavior

This section describes our main contribution with more de-
tails. We propose a multiple-motion model that improves the
tracking performance by fitting better to different pedestrian
dynamics (Fig. 2-e). Also, it incorporates semantic informa-
tion about the interaction of the targets, with a set of ex-
pected behavioral rules relying on the concept of interper-
sonal space between targets (illustrated by Fig. 1).

The target state is defined as a bounding box, including
its position in the image plane (z,y), its global shoulders
orientation 6, and its linear and angular velocities (v, vg).
Hence, the state X stands as (x,,0,v;,v9)". The bound-
ing box dimensions (h, w) around the pedestrians are fixed
according to the average size of an adult person, given the
camera projection matrix, at the specified image location
(see [17]). As we have already mentioned it, the reason why
we also include the orientation is that target interactions are
common in MOT, and that the orientation is strongly cor-
related to the pedestrian’s “intentionality” (characterized by
the shoulders orientation), i.e., pedestrians from the same
group share similar orientations.



Improving multiple pedestrians tracking with semantic information

4.1 Priors on pedestrian dynamics

According to [19], four pedestrian motions can be consid-
ered in human-centered environment:

— Going straight. The pedestrians go directly to their goal,
as fast as possible, with small variations in the trajectory.

— Finding one’s way. The pedestrians have an approxi-
mate idea of their destination (i.e., an address over a
route). They walk at a regular speed, with more varia-
tions in their trajectories.

— Walking around. The pedestrians don’t have a specific
goal. They walk at slow speed and tend to change their
trajectories more often.

— Stand still. The pedestrians remain at the same position,
occasionally changing their body orientation. They may
be interacting with other persons.

We build 4 motion models to emulate those behaviors.
The first three cases (k = 1,2, 3) are associated to the fol-
lowing generic transition model:

x 4 vy * cos(6) N(0,0z)
y + v * sin(0) N(0,04)
trp(X) = 0+ ve + | N(O,a(v)xag) |, ©
1% N(()?o"”l,k)
vg N0, a(vy) * oy )

where o,, 0, and oy are predefined constant values and
represent a variance of 0.2m, 0.2m and 5 degrees respec-
tively. The new position is updated as a constant velocity
non-holonomic motion model. Normally, a pedestrian who
walks fast has a rather constant orientation. Following this
idea, we calculate the new orientation and angular veloc-
ity by considering an adapting level of noise, controlled by
a(v) = exp(—v?/04). Hence, the higher the linear velocity vy,
the smaller the variance of the Gaussian noise. The u and
0., values depend on the model to be used, allowing to con-
trol the behavior of the aforementioned categories 1, 2 and
3. These parameters are estimated following the algorithm
of section 4.2. The stand still case is simpler:

| I3x3 O3x2
t?"4(Xt)— |:02><3 02X2:|Xt+l/, (10)
where v is a realization of a Gaussian noise. Pedestrians
are also influenced by a set of external rules known as social
forces (SF) [12]. Those SF depend on the dynamics of the
people. They will be detailed in Section 4.3.

4.2 Tuning of the free parameters

In section 4.1, we described a transition model (Eq. 9) that
incorporates semantic information about the pedestrian mo-
tions. This model is controlled by three parameters: the mean

s and the variance o, 1 of the target speed, and the vari-

ance in the pedestrian orientation o, . For the three pre-

sented cases, we estimate those parameters as follows. Ini-

tially, we set them with the values proposed in [19] for pedes-

trians in a shopping mall. To make our framework more

adaptable to other scenarios, we estimate those parameters

by using the Particle Marginal Metropolis-Hastings (PMMH)
algorithm [4]. This algorithm is a Markov Chain Monte Carlo
(MCMC) algorithm that recovers jointly the state X; and

the model parameters 3 £ {1tk Ov, k> Ovg i |- In @ Bayesian

context, the parameters follow a prior distribution 5 ~ N (p13,
o), where 15 is set according to the parameter values pre-

sented in [19] and og = 0.5. The idea is to estimate their

posterior p(5|Z1.;) following the Metropolis-Hastings strat-

egy. At an iteration g, a candidate ¢ is generated from a pro-

posal distribution ¢g(5°|8y—1) ~ N(B% Bg—1,0.5). Then,

we apply the filter from section 3 with the parameters 3¢.

This candidate is accepted with probability:

win {1, PEAT) 15001}
(el By1) 5By 05518y )

where p(Z1.4|5) = + Zg @,5") is the particle filter unbi-
ased estimate of the marginal likelihood. Note that this quan-
tity is estimated with the particle weights of Eq. 7.

4.3 Social behaviors for trackers interaction

The social forces (SF) model makes possible to model the
interaction between trackers. We associate a set of SFs to
each motion model according to the behavior expected in
each case. These behaviors are selected from the proxemic
theory [11] and depends on the space occupied by the inter-
acting trackers. In Fig. 1, we depict an example, where the
central pedestrian (labeled as 2) interacts with his neighbors
according to their relative position (circles of colors). The
state X, is projected into the world plane to control the ef-
fect of each force in real coordinates. We use two SFs: (1) A
repulsion force, keeping the trackers apart from each other,
and preventing identity switching or collisions; (2) An at-
traction force, keeping the targets close to each other, and
modeling social groups. By setting both forces with differ-

ent values, we can model many kinds of behaviors.

Interactions are modeled with pairwise potential func-
tions [15]. We define one such potential, for each of the M
models, SF,,(X;,X;) which can be easily included in the
prior motion model of Eq. 2:

M
P(XeilXe-1,0) = Y 70" (XeilXe-1,4) ] SFm(Xeis Xe ),
m=1 JEP;

where ¢; &£ {j € {1...N} : i # j}. As in Eq. 3, the inter-
action term SF,, () does not depend on the previous state
X_1, so, this term is moved out of the mixture distribution
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with 7{*. This way, the posterior of Eq. 4 for a target ¢ is
reformulated as:

p(Xp,ilZ1ie) o M

JEP;

i p(Ze| Xy 5)-
SFm(Xe,i, Xt,5)p™ (Xt,i|Z1:6—1).

Since the interaction term is out of the mixture distribu-
tion, we can treat it as an additional factor in the importance
weight. Thus, we weight the samples of Eq. 7 according to:

o =wi™ ez X)) ] SFm)(X“ ,Xej),

J€pi

where X, = {m 9,0, 01, @9] tT is the state projected on the ground
plane through the homography (which let us measure the tar-
gets real positions), and # = [z, §]” is the position. The term
SF,m)(-,-) is the social force model the particle n is associ-
ated to. We measure the distance between two trackers (4, 4)
through the L2 norm as d; ; = ||#:,; — #;.¢]- All the distance
considerations in the rest of the paper come from the study
of nonverbal communication known as proxemics and try to
emulate the notion of personal space depicted in Fig. 1. We
define the social forces for each motion models as:

1. Going straight. The pedestrians who walk fast are aware
of the obstacles present in their public space (green cir-
cle in Fig. 1) and decide with enough anticipation their
direction for a comfortable free-collision path. In that
case, we use a repulsion function over any tracker un-
der a public distance, i.e., Jij < PD, depicted as green
circles in Fig. 1. The social force for case 1 (sec. 4.1) is:

SRR Xie) = [[ esX7. %), ap
JEwi
d2 .
R
GS(Xi,Xj) _ ) 1—exp < ‘7?1> if d;; < 3.5m,
1 otherwise.

We have used PD = 3.5m and oy, = 2m.

2. Finding one’s way. The pedestrian walks at middle/high
speed, moving alone, inside a group or merges/splits from
a group. At this speed, groups are not too close, pre-
serving a social distance S D. We consider that two tar-
gets with a?m» < SD, ||41,; — 15| < e, and orientation
16; — 6, < eo belong to a same group. They are depicted
as blue circles in Fig. 1. We model this as:

d; i — SD)?
FW arr (X4, X)) = exp (—(]2)> ; (12)

s

where SD = 2.5m and oy, = 20cm is the standard de-
viation on distances. Otherwise, the target i evades tar-
gets j and this is modeled by:

d2 .
FWiep(Xi, X)) =1 —exp (— ;J> , (13)
g
f3

with oy, = 1m. Thus, the social force for case 2 is:
SEEX! X)) = [[ FWw &Y. X)), (14)

JEPi

FW aver (X4, X;) if di; < PD and
”?l,i _Ai)l’j” < €y and
[10: — 051l < <o,
FWrep(Xi,X;) if dij < PD,
1 otherwise.

FW(X;,X;) =

. Walking around. Pedestrians tend to walk at comfort-

able speeds, in groups. Targets belong to the same group
if they satisfy cz, ; < 8D, depicted as the yellow region
in Fig. 1, keeping a personal distance of )D, a similar
velocity ||9;,; — 9 ;]| < e, and almost the same orientation
16; — 6, < eo. This flock behavior is modeled as:

(di; — QD)?
vmm&&bw%—]ﬁ,(m
f2
where QD = 1.5m. Otherwise, it avoids the obstacles:
d2 .
WA ep(Xi, X;) =1 —exp —JZQ’J , (16)
fa
with ¢, = 1m. The SF influence over a particle is:
SE(X[Y, X p) = T] WAKEY, X0 y), (17
J€pi
WAaeer (Xi, X;) if d;; < SD and
H'L:Ilﬂ‘ _Af)l,j” < €y and
WA(X;, X)) = 1165 = 0511 < €q,
WArep(Xi,Xj) if d;; <SD,
1 otherwise.

. Stand still. The person remains in the same position,

maybe interacting with other people, i.e., talking, with
an interpersonal distance of I D = 1m,. This is the case
in Fig. 1, where the target 2 speaks with target 3. We
model this behavior with an attraction function between
two close trackers (a@, j < @D) with opposite orienta-
tions (é@j = ||é1 — éjH > 600)1

o (dij — ID)?
CPattr(Xiaxj) = exp —T .

2

(18)

A static pedestrian can move apart, letting others to pass.
This behavior is modeled with a repulsion effect:

2,
Cprep(Xi7Xj) =1- €Xp _727 y (19)

9

with oy, = 1m. Note that a particle can be in both situ-
ations at the same time. Only one social force is applied
at a time. The SF for this motion model is:

tz)’Xt:@z‘) = H CP(XEZ)ath)> (20)

JEPi

SFi(X
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Fig. 3 Example of tracking (central couple only). The top and bottom rows depict the results of our proposal without and with social forces,
respectively. We use the view 5 of PETS09 S2-L1 scenario. The rectangles at the left of each bounding box represent the contribution weight of
each model. Red for Stand still, green for Going straight, blue for Finding one’s way and yellow for Walking around.

CPattr(Xi,Xj) if Cii,j < @D and
HM < 60°,
CPTep(Xi,X]‘) if di’j < @D,
1 otherwise.

CP(X;,X;) =

5 Experimental setup, results and evaluation

We have tested our proposal on 6 realistic video sequences
to evaluate our results both qualitatively and quantitatively.
We have compared our algorithm performance against other
proposals from the current state of the art and we show how
the social forces model can boost the tracking results.

5.1 Experimental setup

We have used several videos, from three datasets: PETS09 [3],
PETSO06 [2] and CAVIAR [1]. All datasets give challenging
benchmarks to test and evaluate the performance of pedes-
trian tracking algorithms. The PETS09 dataset consists of a
set of 8 camera video sequences of an outdoor scene. We
apply our proposal in the sparse crowd scenario S2-L1 (795
frames). The PETS06 dataset is a set of video sequences
of an indoor scene from 4 distinct cameras. We use the S6
scenario (2800 frames). Those scenes present challenging
situations of pedestrian tracking. Finally, we have also used
three sequences from the CAVIAR dataset: EnterExitCross-
ingPaths1cor (EECP1cor), TwoEnterShoplcor (TES1cor) and
TwoLeaveShop2cor (TLS2cor). Those sequences are com-
plementary and cover the situations that can be encountered
in this application (occlusion, crowds, interaction, erratic
motion, etc.)

We have manually generated a Ground-Truth (GT) dataset,

for each pedestrian in the scene over all frames of the views
1 and 2 of the PETS09 S2-L1 scenario and view 4 of the
PETSO06 S6 scenario. The CAVIAR project provides the GT
data. We measure the performance of our algorithm with
five standard tracking evaluation metrics [9]: (1) Sequence

Frame Detection Accuracy (SFDA) penalizes missed detec-
tions and false positive; (2) Average Tracking Accuracy
(ATA) penalizes shorter or longer trajectories, missed tra-
jectories and false positive; (3) Multiple Object Tracking
Precision (MOTP) and (4) Multiple Object Detection Preci-
sion (MODP) measure the tracks spatio-temporal precision
and spatial precision, respectively; (5) Multiple Object De-
tection Accuracy measures the detection accuracy, missed
detections and false positives. All those metrics set scores
between 0 (worst) and 1 (perfect).

The creation and destruction of the trackers is automatic:
From a binary image, coming from a foreground detector al-
gorithm, we initialize new trackers from the detected fore-
ground blobs (regions with motion, see Fig. 2-b), whenever
they have the expected dimensions of an adult (with the help
of the camera projection matrix, see Fig. 2-c). The tracker
is suppressed when its linearized likelihood stays under a
threshold for a given time, i.e., 10 frames. The number of
particles is fixed initially to 100 for each of the 4 models,
so that N = 400. This is a compromise between precision
(more particles for more precision) and efficiency (more par-
ticles mean more computational times). The orientation cue
presented in section 3.2 is implemented as in [8], using the
same annotated training dataset with 16 image for each one
of the 8 discretized directions.

We implemented our algorithm in C++ and we tested it
in a PC with an Intel Core i7 processor. Our algorithm allows
to process around 5-10 frames per second without special
parallelization. This time depends on the number of trackers
and on how many of them get into interaction (see Fig. 6),
the worst case scenario being when all trackers interact with
each other. In this worst case, the SFs have to be computed
for all the T trackers with N particles which complexity is
N -T2 Inour implementation, the orientation estimation is
the most time-consuming part since it involves a recurrent
computation of HOG feature vectors.
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Fig. 4 Example of tracking. Each row depicts the results with the
IMM-PF and IMM-PF-SF proposals respectively, using the view 3 of
the PETS06 S6 scenario. In the IMM-PF implementation, the tracker
3 switches from one target to another meanwhile in IMM-PF-SF, the
identity is preserved. The bounding boxes are the output of our frame-
work where the left rectangles depict the contribution weight of each
model. Red for Stand still, green for Going straight, blue for Finding
one’s way and yellow for Walking around.

[ Sequence |  Method [ SFDA [ ATA [ N-MODP | MOTP | MODA |
CV 0.67 0.36 0.75 0.73 0.80
PETS09 IMM-PF 0.63 0.50 0.77 0.63 0.60
View 1 IMM-PF SF | 0.70 0.60 0.82 0.70 0.74
CV 0.51 0.40 0.57 0.56 0.60
PETS09 IMM-PF 0.62 0.51 0.85 0.67 0.54
View 2 IMM-PF SF | 0.74 0.63 0.91 0.68 0.65
CV 033 0.48 0.58 0.50 0.33
PETS06 IMM-PF 0.33 0.53 0.66 0.54 0.29
View 4 IMM-PFSF | 0.37 0.57 0.73 0.65 0.31
CV 0.66 0.35 0.88 0.64 0.54
CAVIAR IMM-PF 0.74 0.63 0.88 0.78 0.68
EECPlcor | IMM-PFSF | 0.75 0.67 0.89 0.81 0.68
CV 0.54 0.45 0.77 0.70 0.47
CAVIAR IMM-PF 0.51 0.57 0.78 0.68 0.30
TESIcor | IMM-PFSF | 0.55 0.59 0.79 0.72 0.40
CV 0.41 0.29 0.40 0.94 0.34
CAVIAR IMM-PF 0.54 0.49 0.52 0.82 0.42
TLS2cor | IMM-PFSF | 0.53 0.54 0.51 0.87 0.45

Table 1 Results for the six sequences (PETS’09, view 1 and 2,
PETS06 and CAVIAR sequences) using: A constant velocity model
(CV), our proposal with (IMM-PF SF) and without (IMM-PF) social
forces. The median over 30 experiments is shown, with variance infe-
rior to 0.001 in all cases. This proves the approach repeatability, despite
the stochastic nature of the particle filter. The best results are in red.

5.2 Results and comparison with other methods

The Figs. 3 and 4 show some qualitative results. The bound-
ing boxes depict the filter output. The rectangles at the left
of each bounding box represent the contribution weight of
each model, i.e., the dominant color indicates the model that
fits best to the dynamic of the target. In these two images,
we observe the switch of the motion model. When the target
remains in the same position, the dominant color in the left
rectangle is red which means that the Stand still model is
the one who contributes most to the state estimation. When
the target moves, the dominant color changes to the associ-
ated model whose motion fits best to target speeds.

In Fig. 3, we track only the couple at the center of the
image. The top and bottom rows show the tracking results

Fig. 5 Tracker trajectories. The lines represent the tracker trajectory
for the last 50 frames. The color indicates the model that contributes
most to the state estimation. Red is for Stand still, green for Going
straight, blue for Finding one’s way and yellow for Walking around.

with our IMM-PF proposal without and with social forces,
respectively. Both targets have similar appearance, hence the
trackers on the top (without SF) end following the same tar-
get, meanwhile in the bottom row the trackers keep their
respective targets. This is due to the repulsion/attraction ef-
fect of the Stand Still social force model which gives the
mayor contribution (i.e., left bar is mostly red in central im-
ages). This SF model prevents other tracker particles to fol-
low the same target (repulsion) but also try to keep them at a
given distance with opposite orientation (attraction). In this
sequence, multiple pedestrians cross in front of the tracked
couple. However, our proposed motion model including SFs
is robust enough to overcome short partial or total occlu-
sions. The same situation is observed in Fig. 4: the talking
couple is correctly tracked meanwhile a tracked pedestrian
passes in front and occludes them. The target appearance
is kind of similar, especially between tracker 1 and 3, and
the pedestrians are moving slowly. In the top row, all track-
ers end in the same position (one pedestrian is partially oc-
cluded by the other) due to the lack of information (appear-
ance/motion). In the bottom row, the couple trackers keep
apart by the same phenomenon as in Fig. 3, i.e., the repul-
sion effect of all SF models aids to preserve the identity of
tracker 3. The Fig. 5 depicts the trajectories of the tracker at
foot level of the last 50 frames where the color represents the
model that contributes more at each frame. One can note that
the model switches when there is a change in the trajectory.

In Fig. 6, we depict a representation of the social forces
existing between four trackers. The left image is the out-
put of the IMM-PF SF proposal and the right image is the
projection of the tracker position in the world plane. In this
image, the edges are estimated by the normalized sum of the
social forces SF(-) presented in section 4.3. The line thick-
ness is adjusted according to this normalized sum. Thus, the
edges only connect those trackers that interact and a thicker
line indicates a major influence from that tracker. In this ex-
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Fig. 6 Social forces representation. In the left image, we depict the output of our framework with IMM-PF SF. The four trackers are projected to
the world plane through camera calibration (right image). The (directed) edges connect the trackers which interact with each other. Edges of same

color correspond to the same tracker.
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Fig. 7 Results for all sequences (PETS’09, PETS’06 and CAVIAR) using as a motion model: a classic constant velocity model (CV), our proposal
with and without including social forces, both with parameter estimations. Median over 30 experiments, with variance inferior to 0.001 in all cases.

ample, tracker 3 is influenced by trackers 1, 2 and 4, while
the tracker O is far enough not to affect tracker 3.

The table 1 presents quantitative results over the sequence
S2-L1 view 1 and 2 of PETS09, view 4 of PETS06 S6 sce-
nario, and the sequences from the CAVIAR dataset. The
Fig. 7 depicts a graphical representation of this table. Those
are low-density videos with multiple pedestrian interactions
(talking people, couple walking). We tested 3 models: a clas-
sic constant velocity model (CV), our proposal alone (IMM-
PF) and our proposal including the social forces IMM-PF
SF). The rest of the implementation (observation model, ini-

tialization, termination, etcetera) remains the same. The SFDA,

MODP and MOTP metrics measure the detection precision.
In this case, the results show no significant changes for se-
quences PETS09 View 1, PETS06 View 4 and CAVIAR
TES1cor, indicating that our tracking system is robust enough
to detect the targets most of the time, under different tech-
niques. On the other hand, we can observe an improvement
for the PETS09 View 2 sequence, because the video has
multiple occlusions between pedestrians. The MODA met-
ric shows that we can handle correctly the initialization and
termination of the trackers. The ATA metric measures the
tracking performance. We observe that it is significantly im-
proved with our proposal, meaning that our algorithm can
follow a target with the same tracker for more time.

The Fig. 8 compares our best performance (last diagram)
against other approaches which were extracted from [9,17].
Once again, our proposal ATA stands out. So, our proposal,
with the aide of the SF, can track the same target longer than
other techniques that fail preserving the identity of targets
with similar appearance. The closest ones are the methods
labeled as Yang and Horesh, but it is important to notice that
these two approaches perform multi-camera tracking, while
our system is monocular. The SFDA measure (blue column)
for Horesh and ours are similar, meaning that both are good
enough to detect the pedestrian, minimizing the false posi-
tives and missed detections. In this case, Horesh relies on a
target detector employed in each frame and we, on the other
hand, initialize the tracker by a simple blob detector.

5.3 Discussion

The experimental results show that our method performs
well both on indoor and outdoor sequences. The 4 motion
cases allow to handle most of the pedestrian dynamics for
medium and low dense scenarios. However, our proposal,
and more generally any form of tracking with Bayes fil-
ters, is not adapted to high-density crowd scenarios, since
occlusions may be much longer in that case and most tar-
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Fig. 8 Evaluation in view 1 of PETS09 S2-L1 sequence. The last di-
agram shows the performance of our best approach, IMM-PF SF. The
others results come from [9,17]. The results labeled Conte, Breiten-
stein and Shama are monocular tracking system, meanwhile Yang,
BerclazKSP and Horesh are multi-view.

gets are barely distinguishable. Also, our proposal may fail
more frequently when targets move in completely abnormal
ways, i.e., with multiple changes of velocity or direction. Fi-
nally, from the PETS results of table 1, we observe that the
use of the social forces incorporates the intentionality of the
pedestrians in such a way that the trackers interact as people
would do, improving the tracking performances. From the
CAVIAR results of the same table, we can note that the use
of SF does not enhance significantly the score, which is be-
cause in these sequences, interactions are rather scarce and
short in time.

In fact, ideally, our approach should outperform others
in sequences for which the context influences the human
trajectories. Given this insight, we have shown results on
sequences corresponding to several contexts: outdoor, un-
derground hall, etc.. In environments where the targets have
erratic motion or no group interaction but passing by, our
approach is less suited. To sum it up, we would expect per-
formances depending on the nature of the sequence and its
underlying context.

6 Conclusions and perspectives

We have presented a context-based tracker system with a
multiple motion model that includes semantic information
of pedestrian behavior for monocular multiple target visual
tracking. The IMM-PF allows to handle models with dif-
ferent social content, such as grouping or reactive motion
for collision avoidance. The social forces model is a simple
and at the same time efficient way to deal with semantic in-
formation. The combination of multiple interaction allows
our proposal to model high-level behaviors in low-density
scenes. The experiments depict how our approach manages
efficiently challenging situations that could generate identity
switching or target loss.
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