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ABSTRACT

In this paper, we study statistical models for the phase of the short-
term Fourier transform (STFT) of audio signals. STFT phase glob-
ally appears as uniformly distributed, which has led researchers
in this field to model it as a uniform random variable. However,
some information about the phase can be obtained from a sinusoidal
model, which reveals its local structure. Therefore, we propose to
model the phase with a von Mises (VM) random variable, which
enables us to favor the sinusoidal model-based phase value. We
estimate the distribution parameters and we validate this model on
real audio data. In particular, we observe that both models (uniform
and VM) are relevant from a statistical perspective but they convey
different information about the phase (global vs. local). We also
apply this VM model to an audio source separation task, where it
outperforms previous approaches.

Index Terms— STFT phase, von Mises distribution, mixtures
of sinusoids, audio signal modeling, source separation

1. INTRODUCTION

Many audio signal processing techniques act on a time-frequency
(TF) representation of the data such as the short-term Fourier trans-
form (STFT), since the structure of such signals is more prominent in
that domain. Much research has focused on the processing of STFT
magnitude or power spectrograms in various applications such as
automatic music transcription [1] and source separation [2].

However, processing STFT spectrograms results in discarding
or not accounting for the phase information. For instance, in audio
source separation applications, it is common to model the sources
as circularly-symmetric random variables (e.g., Gaussian [3] or sta-
ble [4]), that is, not favoring any phase value. Alternatively, one can
model and process spectrogram-like quantities only [2]. As a final
processing stage, the phase of the isolated sources are retrieved by
applying a Wiener-like filter, which assigns the phase of the original
mixture to each extracted source. Those approaches are quite satis-
factory in practice [3, 2], but it has been pointed out [5] that when
sources overlap in the TF domain, it is responsible for residual in-
terference and artifacts in the separated signals. This highlights the
need for more refined phase models.

Even if the phase may appear as globally uniform [6], it holds
some underlying structure that can be exploited. For instance, the
sinusoidal model leads to explicit phase constraints in the TF do-
main [5]. These constraints have notably been exploited in speech
enhancement [7] and source separation [8]. However, in a prob-
abilistic framework, a uniform phase model does not allow us to
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exploit such a structure. To tackle this issue, some recent works pro-
posed to model the phase with the von Mises (VM) distribution [9].
The VM distribution enables one to promote the sinusoidal model
phase constraint, which has shown promising results in speech en-
hancement [10, 11, 12] and source separation [13, 14].

In this paper, we propose to analyze the distribution of the STFT
phase of audio signals from a statistical perspective. In particular, we
establish that these two models (uniform and VM) are not contradic-
tory, but rather complementary. Indeed, the uniform model origi-
nates from the underlying assumption that the phases across TF bins
are independent and identically distributed (iid). From this perspec-
tive, the uniform model is statistically relevant, but it only conveys a
global information. We show that a VM model that accounts for the
underlying sinusoidal structure of audio is also statistically relevant,
but it has the advantage of exploiting a local information about the
phase. We introduce a simple procedure to estimate the VM model
and we validate it experimentally on real audio data. We assess the
potential of this technique for a source separation task, and we show
that a proper choice of the VM distribution’s parameters improves
the separation quality over prior approaches.

The rest of this paper is structured as follows. In Section 2, we
investigate on the uniformity assumption of the phase. In Section 3
we introduce and estimate the VM model that exploits the sinusoidal
phase. Section 4 experimentally validates this model on real audio
data and Section 5 shows its usefulness for a source separation task.
Finally, Section 6 draws some concluding remarks.

2. IS THE PHASE REALLY UNIFORM?

Let X ∈ CF×T be the STFT of a single-channel audio signal, where
F and T are the number of frequency channels and time frames re-
spectively. Its coefficient in the bin indexed by f and t is xft, and
the phase is φft = ∠xft, where ∠ denotes the complex argument.

2.1. A simple example

Let us first empirically observe the distribution of the phase of au-
dio signals. As a toy example, we consider a piano piece from the
MAPS database [15]. The signal is sampled at 8 kHz, and we com-
pute its STFT with a 125 ms-long Hann window and 75 % over-
lap. We represent its spectrogram and phase in Fig. 1, as well as
the histogram of the phase. Note that the histogram of the phase is
only calculated from TF points corresponding to local maxima of the
magnitude spectrum, and their neighboring bins. Indeed, the phase
value in TF bins where there is no energy is not relevant.

From this histogram, we observe that the phase appears as
uniformly-distributed. Such an experiment can be reproduced with
many real data corresponding to various instruments, with the same
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Fig. 1. Piano piece: spectrogram (top), phase (bottom left) and his-
togram of the phase (bottom right).

conclusion. This motivates the use of a uniform model for the phase,
as frequently employed in the literature [6, 16].

2.2. Explicit phase constraint

The model of sum of sinusoids [17] is widely used to represent audio
data [5, 7], notably piano signals such as the one used as toy example
in the previous experiment. It notably permits us to obtain explicit
phase constraints in the STFT domain. Indeed, it can be shown [5]
that for such signals, the phase follows the phase unwrapping rela-
tionship:

φft ≈ φft−1 + 2πlνft, (1)

where l is the hop size of the STFT and νft is the normalized fre-
quency in channel f and time frame t. This relationship shows that if
the phase in the previous time frame φft−1 and the frequency νft are
known, then the phase φft in the current time frame is completely
determined (up to some error due to the frequency variation). This
means that the phase holds some local structure, which is not ac-
counted for in the uniform model, and is not revealed when globally
observing the phase as in the previous experiment.

2.3. Statistical interpretation

Empirically observing a uniformly-distributed phase may appear
contradictory with the fact that it holds some local structure. How-
ever, this uniform model is actually relevant from a statistical per-
spective. Indeed, in the toy example experiment conducted in
Section 2.1, we implicitly assumed that the phases φft were iid.
Plotting such a histogram reveals the underlying distribution of iid
samples of a random variable, therefore this experiment was al-
ready assuming the iid property of the data, even though we did not
formulate it explicitly.

Consequently, the uniform model is valid from a global perspec-
tive, provided an iid assumption of the phase. In order to account for
a local structure of the phase such as (1), it is necessary to model the
phases as non-uniform random variables, which also eliminates the
need for assuming that they phases are iid.
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Fig. 2. Probability density function of the von Mises distribution.

3. VON MISES PHASE MODEL

3.1. Von Mises distribution

Recent phase models using the VM distribution [9] have been pro-
posed, notably for speech enhancement [10, 11, 12] and source sep-
aration [13, 14]. This suggest that the VM distribution is an appro-
priate tool for modeling the STFT phase of audio signals. The VM
distribution, denoted VM(µ, κ), depends on a location parameter
µ ∈ [0; 2π[ and a concentration parameter κ ∈ [0; +∞[. Its proba-
bility density function is given by:

p(φ|µ, κ) =
eκ cos(φ−µ)

2πI0(κ)
, (2)

where Iq is the modified Bessel function of the first kind of order q.
The concentration parameter is analogous to the inverse of a variance
parameter, which means that it quantifies how concentrated about
the location parameter µ the distribution is. In particular, VM(µ, 0)
is the uniform distribution. Contrarily, if κ → +∞, it becomes
equivalent to a Dirac delta function centered at µ. It is illustrated in
Fig. 2.

To exploit the local structure of the phase, we propose to model
the STFT phase in each TF bin with a VM random variable φft ∼
VM(µft, κ), where the phase location parameter µ is given by the
sinusoidal model (1):

µft = µft−1 + 2πlνft. (3)

In particular, we remark that in such a model, the phases φft are no
longer identically distributed, and they cannot be assumed indepen-
dent.

3.2. Parameter estimation

To assess the validity of this model, we need to estimate its parame-
ters. First, the frequencies νft are estimated by means of a quadratic
interpolated FFT [18] performed on the peaks of the log-spectra of
the sources at each time frame, in order to account for slow varia-
tions of the frequencies [5]. Given those frequencies and the phase
in the previous time frame, we can obtain estimates µ̂ft of the lo-
cation parameters according to (3). Then, we define the centered
variables:

ψft = φft − µ̂ft. (4)

Those variables are independent given µ̂ft and identically dis-
tributed: ∀f, t, ψft ∼ VM(0, κ). We then propose to estimate the



Fig. 3. Centered phases for the same example as in Fig. 1: phase
(left) and histogram (right), where the solid line represents the fitted
VM distribution.

concentration parameter κ in a maximum likelihood sense [19]. The
log-likelihood is given by:

L(κ) =
∑

(f,t)∈Ω

log p(ψft|µ̂ft, κ)

=
∑

(f,t)∈Ω

κ cos(ψft)− log(2π)− log(I0(κ))

= −|Ω|(log(2π)− log(I0(κ))) + κ
∑

(f,t)∈Ω

cos(ψft).

where Ω is the set of TF bins corresponding to local maxima of the
magnitude spectrum and their neighboring bins, and |Ω| denotes the
cardinality of this set. Setting its derivative with respect to κ to 0
leads to:

I1(κ)

I0(κ)
=

1

|Ω|
∑

(f,t)∈Ω

cos(ψft), (5)

and solving the implicit equation (5) yields an estimate of κ. Since
the function κ → I1(κ)

I0(κ)
is monotonic and concave on [0,+∞[, this

equation can be efficiently solved with numerical methods (here, we
simply used the fzero Matlab function).

4. EXPERIMENTAL VALIDATION

In this section, we assess the validity of the VM model for represent-
ing real audio data.

4.1. Validation of the model

We consider 30 piano pieces from the MAPS database [15] and 6
guitar pieces from the IDMT-SMT-GUITAR database [20]. For each
dataset, we concatenate all the music excerpts into one long signal.
The signals are sampled at 8 kHz and the STFT is computed with a
125 ms-long Hann window and 75 % overlap. We estimate the cor-
responding VM distribution parameters accordingly to the procedure
presented in Section 3.

We illustrate the results on the piano piece used in Section 2.1.
We plot the centered variables ψft and their histogram in Fig. 3 (as
in Fig. 1, this histogram only uses TF points of significant energy).
We remark that the variables exhibit a VM trend, which confirms the
appropriateness of this distribution for modeling the phase of audio
signals in the STFT domain.

We obtain overall similar results for both databases. We note
that the concentration parameter is greater for piano sounds (κ ≈ 2),
which are known to be quite accurately represented with mixtures
of slowly-varying sinusoids [21], than for guitar signals (κ ≈ 1.7).
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Fig. 4. Influence of the window length on the concentration param-
eter κ for piano and guitar signals.

Since κ quantifies how close to the location parameter (given here by
a sinusoidal model) the phases are distributed on average, κ quanti-
fies the sinusoidality of the data.

4.2. Impact of the window length

The accuracy of the sinusoidal model does not only depend on the
nature of the data, but also on the STFT parameters, such as the
window length [5]. Indeed, the time and frequency resolutions of
the STFT strongly impact the local stationarity and slow-variation
assumptions used to derive (1). Therefore, we compute the concen-
tration κ for several lengths of the analysis window, ranging from 12
ms to 384 ms.

The results provided in Fig. 4 suggest that there exist an opti-
mal window length (which depends on the nature of the signals) for
which the sinusoidality of the data is maximized: the phase follows
the sinusoidal model more closely with this value than with another.

4.3. Discussion

The two models (uniform and VM) are both statistically relevant as
shown in Fig. 1 and 3. The difference is that the uniform model is
based on the iid assumption of the phases across time and frequency,
while in the VM model the iid variables are the centered phases con-
ditionally to an estimate of the sinusoidal location parameters.

Consequently, both models are adapted for representing the
STFT phase of audio signals, but they do not carry the same type of
information. The uniform model carries a global information on the
overall distribution of the phase. The VM model accounts for some
local property, and makes it possible to exploit a local phase model,
such as the sinusoidal phase constraint (1).

Therefore, the model should be chosen accordingly to the sce-
nario and target application. For instance, in audio source separation,
refined modeling of the phase is important if the sources are strongly
overlapping in the TF domain, but a uniform model can be sufficient
otherwise [13].

5. APPLICATION TO AUDIO SOURCE SEPARATION

Finally, we propose to apply this VM framework to an audio source
separation task. In [13], we introduced a VM-based probabilistic
source model in order to account for the sinusoidal local struc-
ture of the phase. It resulted in estimating the sources through
an anisotropic Wiener (AW) filtering technique, which optimally



Table 1. Source separation performance averaged over the DSD100 test dataset. Higher is better.
Bass Drums Other Vocals Average

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR
Wiener 7.0 15.7 7.7 8.9 19.2 9.5 7.0 17.1 7.6 11.3 24.4 11.6 8.5 19.1 9.1
AW-unif 8.3 17.7 8.9 9.6 22.4 9.9 8.1 19.2 8.6 12.2 27.1 12.3 9.5 21.6 9.9
AW-var 8.5 19.2 9.0 9.9 22.1 10.2 9.3 19.4 8.8 12.2 26.7 12.4 9.7 21.9 10.1

combines the mixture’s phase and the sinusoidal model, and outper-
formed the traditional phase-unaware Wiener filter [3]. However,
the concentration parameter was the same for all sources and it
was selected by maximizing a set of objective criteria, that is, the
signal-to-distortion, signal-to-interference, and signal-to-artifact ra-
tios (SDR, SIR, and SAR) [22]. Here, we rather propose to use a
different κ for each source, and to estimate it with the framework
introduced in this paper.

5.1. Setup

We consider 100 music song excerpts from the DSD100 database [23].
Each excerpt is 10 seconds-long and is made up of J = 4 sources:
bass, drums, vocals and other. The signals are sampled
at 44100 Hz and the STFT is computed with a 92 ms-long Hann
window and 75 % overlap. The dataset is split into two sets of 50
songs: the learning and test sets. The magnitudes of the sources are
assumed known, so we only investigate on the impact of the phase
model on source separation.

Source separation quality is measured with the SDR, SIR, and
SAR [22] expressed in dB, where only a rescaling (not a refiltering)
of the reference is allowed.

5.2. Learning the concentration parameters

Firstly, we estimate κ for each isolated source on the 50 songs that
form the learning set and we plot the results in Fig. 5. We observe
that there is a high variability of κ for the bass and other tracks.
This can be explained by a high variability of the sounds themselves
in these tracks: for instance, in the bass track, the instrument can
be acoustic, electric, fretless or electronic, and the playing technique
can be finger picking or slap. The lowest concentration parameters
are obtained for the drums tracks, which is consistent with the non
sinusoidal nature of those signals.

Interestingly, we remark that the value of the concentration
parameter averaged over all sources and over the dataset is 1.6,
which is very close to the value obtained with our previous learning
approach [13]. The resulting separation procedures are then ex-
pected to yield quite similar results, however they differ regarding
two aspects. Firstly, the approach presented in this paper allows us
to choose an optimal concentration parameter for each individual
instrument. Secondly, it is significantly less computationally de-
manding than the previous technique, which required performing
the whole separation for many values of κ before picking the best
value.

5.3. Comparison to other methods

As baseline methods, we test the phase-unaware Wiener filter [3] and
AW with a uniform concentration parameter for all sources, which is
learned as in [13], that is, such that is maximizes the average SDR,
SIR and SAR. This method will be referred to as AW-unif. The
method proposed here is the AW filter with a specific concentration
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Fig. 5. Estimated concentration parameter κ for each source of the
DSD100 learning dataset. Each box-plot is made up of a central line
indicating the median, upper and lower box edges indicating the 1st

and 3rd quartiles and whiskers indicating the extrema.

parameter for each source, which value is the median obtained at the
learning stage (cf. previous Section). This method will be referred
to as AW-var.

The results are reported in Table 1. The proposed AW-var ap-
proach improves all the metrics compared to AW-unif in the bass
and other tracks. It also reduces the artifacts and distortion in the
other tracks, but AW-unif yields more interference rejection in the
drums and vocals tracks. The proposed approach results in a
better overall separation, as attested by the increase in average SDR,
SIR and SAR compared to AW-unif.

It should be noted that the tracks for which improvement is not
observed for all the criteria (drums and vocals) are the tracks for
which κ has the lowest variability (cf. Fig. 5). Therefore, a potential
future research direction is to account for this intra-track variability
by modeling κ as a random variable in a hierarchical model [24].

6. CONCLUSION

In this paper, we have shown that both a uniform and a VM model
for the STFT phase of audio signals are statistically relevant, even
though they do not convey the same type of information. In par-
ticular, the VM distribution is an interesting tool for accounting for
local constraints of the phase, such as a property that arises from
a sinusoidal model. This model has been validated on real audio
data, from which we could interpret the concentration parameter of
the VM distribution as a measure of the sinusoidality of the data.
This model and the corresponding estimation technique has been
shown useful for audio source separation, and may further be ex-
ploited in more sophisticated separation techniques [14, 25]. Alter-
natively, measuring the sinusoidality of audio signals could be useful
for harmonic/percussive instrument recognition.
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