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Lipschitz-Killing curvatures of excursion sets for two dimensional

random fields

Hermine Biermé, Elena Di Bernardino, Céline Duval and Anne Estrade

Abstract

In the present paper we study three geometrical characteristics for the excursion sets of a two
dimensional stationary isotropic random field. First, we show that these characteristics can be esti-
mated without bias if the considered field satisfies a kinematic formula, this is for instance the case
of fields given by a function of smooth Gaussian fields or of some shot noise fields. By using the
proposed estimators of these geometric characteristics, we describe some inference procedures for the
estimation of the parameters of the field. An extensive simulation study illustrates the performances
of each estimator. Then, we use the Euler characteristic estimator to build a test to determine
whether a given field is Gaussian or not, when compared to various alternatives. The test is based on
a sparse information, i.e., the excursion sets for two different levels of the field to be tested. Finally,
the proposed test is adapted to an applied case, synthesized 2D digital mammograms.

Keywords: 60G60, 62F12, 62F03, 60G10
Test of Gaussianity, Gaussian and shot-noise fields, Excursion sets, Level sets, Euler characteristic, Cross-
ings

1 Introduction

In this paper we are interested in using simple geometrical objects to build inference and testing proce-
dures to recover global characteristics of a two dimensional stationary isotropic random field by using a
sparse information. Assume that we only have access to the excursion set of one realization of a field
over one (or two) level, namely we observe a black-and-white image depicting where the field is above
or below some level u (see, e.g., the second and third images of the first row of Figures 1, 3, 5, 7 and
8). From this image, it is possible to compute several Lipschitz-Killing (LK) curvatures of the given
excursion set. In our bivariate framework, there are three LK curvatures available. Roughly speaking,
they are the following quantities: surface area, half perimeter and Euler characteristic. Each of these
three functionals carries a different information on the geometry and the topology of the excursion set.
Intuitively, the surface area is related to its occupation density, the perimeter to its regularity and the
Euler characteristic to its connectivity. In the present paper we have multiple objectives. Firstly, we aim
at proposing a unified definition of these quantities for a large class of stationary and isotropic random
fields that can be either smooth or present discontinuities. We jointly use these quantities to build unbi-
ased estimators for the expected values of the LK curvatures of the excursion sets by solving a triangular
system. In the whole paper, the use of the term unbiased means that our estimators take into account
the observation bias due to the fact that the excursion set is observed on some finite (large) window and
not on the whole plane. Moreover, we construct a test procedure to determine whether the excursion sets
of a given field come from the realization of a Gaussian field.

The Lipschitz-Killing curvatures, depending on the scientific domain under consideration, are also called
intrinsic volumes or Minkowski functionals, they can also be assimilated to genus types. Considering
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real-life data as a realization of a random field and analyzing them with the help of LK curvatures is an
effective approach that has already been successfully applied in various disciplines in the past decades. For
instance, in cosmology, the question of Gaussianity and anisotropy of the Cosmic Microwave Background
(CMB) radiation has been tackled in a huge amount of publications (see [10] for a recent overview) and
part of them are explicitly based on Minkowski functionals (see, e.g., [31] or [17]). The methodology of
these studies is often the following: choose a specific parametric model for the CMB signal and fit the
parameters so that the observed Minkowski functional matches the theoretical one. A similar method-
ology is also applied for analyzing the distribution of galaxies (see, for instance [18]), where again the
best-fitting model is the target. Another domain where the LK curvatures are used as methodological
tools is in brain imaging (see [2], Section 5, and references therein). In this context, the main purpose is
to find the locations of high brain activity assuming the brain is a manifold with very complex geometry.
The tools that are involved concern both the LK curvatures of high level excursions of the signal and the
LK curvatures of the brain itself.

As seen in the aforementioned domains of application, the field of interest can be either a smooth (e.g.
Gaussian or transformations of Gaussian fields) or a discontinuous object (e.g. shot noise fields). A
shot noise field is a multidimensional extension of one dimensional models such as compound Poisson
processes. It is obtained by throwing random shapes at random locations and counting how many shapes
cover each point of the space with eventually random weights. Those models are very popular since
explicit computations can (sometimes) be performed and simulations are rather simple. They are natural
alternatives to Gaussian fields both for theoretical and applicative purposes. This underlines the need for
a framework that remains robust if the nature of the field changes. That is why we focus our study on
providing tools and methods that can be applied to both Gaussian or transformations of Gaussian and
shot noise fields. The same objective can be found in [6] and [7], which have also inspired the present
study. Note that all the random fields that we will consider are defined on the continuous space R2.

There is clearly an abundant literature on parameter estimation and tests for multidimensional station-
ary random fields. Inference methods and tests usually rely on the estimation of the covariance function
and/or on the estimation of the finite dimensional distributions of the field (see [14], [28] or [27] among
others). This usually requires the observation of the entire field and/or independent copies of the field.
In the present paper, we have a completely different approach based on the observation of the geometry
of a single excursion set above a fixed level, considering the random field as a random surface. Let us
mention some famous precursors, for instance [25], [37] or [24], who mainly worked on the modeling of
sea waves considering them as realizations of a two dimensional random field. Let us also mention two
major books on this topics, [1] and [3].

In the mathematical domain, the LK curvatures are the subject of several works studying their probabilis-
tic and statistical properties. We mainly refer to [32] and [35] for a precise definition of these geometrical
and topological objects. They have been applied to the excursion sets of random fields in many situations.
For instance, in [9], [6] and [5], the length of the level sets (i.e. the perimeter of the excursion sets) is
taken into account, while several limit theorems are obtained for the area in [8] and [33]. In [12] and [16],
the Euler characteristic of excursion sets is used to test Gaussianity or isotropy. In the second reference,
looking simultaneously at the intersections of excursion sets with rectangles and segments is a way to
get additional information. Although the studies often focus on one of the LK curvatures, considering
all the LK curvatures of the excursion sets at the same time is the purpose of recent papers such as
[19], [20], [26] or [7]. With the same objective -joint study of all Minkowski functionals-, but in another
context -excursion sets of random fields defined on a discrete space-, one can also quote the recent papers
[29] and [13]. The present paper lies within the same scope since we provide three unbiased estimators,
one for each LK curvature, valid for a wide class of stationary isotropic random fields. The estimator of
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the LK curvature corresponding to the Euler characteristic allows us to construct a test to determine if
two observed excursion sets result from a Gaussian field or not. The strength of this test is that it is
independent of a specific choice of the correlation function of the considered random field, in particular
it does not depend on its second spectral moment. Since this function is unknown in many applications,
it is an important and very useful property of the proposed test. In this sense, it can be considered as
more efficient than the Gaussianity test introduced in [12].

To summarize, the originality of the present study is threefold. First, we use a very sparse information on
the field, namely excursion sets above one or two levels, to recover global characteristics of the considered
random field. Our second asset is to gather in the same study smooth Gaussian type fields and shot noise
fields, which are archetypes of non continuous fields. The third key point of our paper is the joint use of
several LK curvatures for a given excursion set.

Outline of the paper. The paper is organized as follows. In the remaining of this section we define the
three objects of interest, i.e., the Lipschitz-Killing densities for the excursion set of a two dimensional
random field. Section 2 is devoted to the study of unbiased estimators with edge correction of these LK
densities from the observation of one excursion set. We examine a wide range of random fields, namely
fields of Gaussian type and shot noise fields. Moreover, we show how the knowledge of the LK densities
permits to recover and to infer on parameters of the considered fields. The problem of the consistency of
the proposed estimators is studied, when it is possible. Furthermore, their performances are numerically
analyzed. In Section 3 we build a test to detect whether a given field is Gaussian or not based on
the knowledge of two excursion sets corresponding to two different levels. A variant of this test is put
into practice in Section 4 on synthesized 2D digital mammograms provided by GE Healthcare France
(department Mammography). Finally, Appendix section gathers the proofs of the technical results.

1.1 Lipschitz-Killing densities of excursion sets

There are three additive functionals, Lj for j = 0, 1, 2, defined on subsets of Borelians in R2 that are
extensively used in the literature. Depending on the mathematical domain, they are called either intrinsic
volumes, Minkowski functionals or Lipschitz-Killing curvatures. Roughly speaking, for A a Borelian set
in R2, L0(A) stands for the Euler characteristic of A, L1(A) for the half perimeter of the boundary of A
and L2(A) is equal to the area of A, i.e. the two-dimensional Lebesgue measure.
All over the paper, we will denote by | · | the two-dimensional Lebesgue measure of any Borelian set in
R2 and by | · |1 its one-dimensional Hausdorff measure. In particular, when T is a bounded rectangle in
R2 with non empty interior,

L0(T ) = 1, L1(T ) =
1

2
|∂T |1, L2(T ) = |T |, (1)

where ∂T stands for the frontier of the set T . The rest of this section is dedicated to precisely define the
Lipschitz-Killing (LK) curvatures of excursion sets as well as the associated LK densities.

Let T be a bounded rectangle in R2 with non empty interior and u be a real number. For X a real-valued
stationary random field defined on R2, we consider the excursion set within T above level u:

{t ∈ T : X(t) ≥ u} = T ∩ EX(u), where EX(u) := X−1([u,+∞)).

We are interested in the mean of the three LK curvatures of the excursion set, assuming they are well
defined. The case of the area L2 is particularly easy to handle with. Actually, since X is stationary,
Fubini’s Theorem gives immediately

E [ |T ∩ EX(u)| ] = |T |P(X(0) ≥ u).
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This formula is valid without any further assumption on X, whereas the existence and the exact value of
the two other LK curvatures is more involving. In particular it is often needed to make strong regularity
assumptions on the field in order that one can consider the LK curvatures of its excursion sets.

In the following definitions, we introduce positive reach sets and curvature measures for those sets (see
[35], based on the seminal work of Federer [15]).

Definition 1.1 (Positive reach sets). For a set A ⊂ R2 and r a positive real number, let Ar = {x ∈ R2 :
dist(A, x) ≤ r}, with dist the Euclidean distance. Then, the reach of A is defined as

reach(A) := sup{r ≥ 0 : ∀ y ∈ Ar, ∃ a unique x ∈ A nearest to y}.
The set A is said to have positive reach, if reach(A) > 0.

Intuitively, A is a positive reach set if one can roll a ball of positive radius along the exterior boundary of
A keeping in touch with A. Let us remark that positive reach sets are necessarily closed sets. Moreover,
convex sets in R2 and compact C2 submanifolds of R2 have positive reach, see e.g., Proposition 14 in
[35]).

Definition 1.2 (Curvature measures). Let A be a positive reach set. Its curvature measures Φi(A, ·), for
i = 0, 1, 2, are defined for any Borel set U ⊂ R2 by

Φ0(A,U) =
1

2π
TC(∂A,U), Φ1(A,U) =

1

2
|∂A ∩ U |1 and Φ2(A,U) = |A ∩ U |,

where TC(∂A,U) denotes the integral over U of the curvature along the positively oriented curve ∂A.

For a compact positive reach set A such that A ⊂ U , with U an open set, let us note that Φ0(A,U)
coincides with the Euler characteristic of A. For more details on the total curvature TC, we refer to
Definition 9 and Theorem 31 in [35] or to Definition 1 and Theorem 1 in [7].
Since the curvature measures Φi(A, ·) are additive functionals with respect to A, it is natural to deal with
unions of positive reach sets. Therefore, we introduce the next definition (see [35] again).

Definition 1.3 (UPR class). Let UPR be the class of locally finite unions of sets with positive reach.

In the sequel, we are interested in the curvature measures of the excursions above the level u of the
random field X, namely we consider A = T ∩ EX(u). Note that the random set T ∩ EX(u) belongs to
the UPR class a.s. when, for instance, the random field X is of class C2 a.s., (actually, in this case the
random set T ∩ EX(u) has positive reach, as EX(u) is a C2 submanifold of R2 and its intersection with
the rectangle T provides compactness and positive reach property), or when EX(u) is locally given by a
finite union of disks.

Definition 1.4 (LK curvatures and associated densities for UPR excursion sets). Let X be a stationary
random field defined on R2 and let T be a bounded rectangle in R2 with non empty interior. Assuming
that T ∩ EX(u) is a UPR set, define the LK curvatures of the excursion set EX(u) within T by

Ci(X,u, T ) := Φi(T ∩ EX(u), T ), for i = 0, 1, 2.

Define the normalized LK curvatures by

C
/T
i (X,u) :=

Ci(X,u, T )

|T | , for i = 0, 1, 2, (2)

and, assuming the limits exist, the associated LK densities are

C∗i (X,u) := lim
T↗R2

E[C
/T
i (X,u)], for i = 0, 1, 2, (3)

where lim
T↗R2

stands for the limit along any sequence of bounded rectangles that grows to R2.
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As already noticed, the case i = 2 in the above definition boils down to

C∗2 (X,u) = E[C
/T
2 (X,u)] = P(X(0) ≥ u). (4)

2 Kinematic formulas and inference

From now on, all the rectangles T in R2 are bounded with non empty interior. Notation T ↗ R2 stands

for the limit along any sequence of bounded rectangles that grows to R2. Then, |∂T |1|T | always goes to 0

as T ↗ R2.

In this section, we build unbiased estimators of the LK densities in (3), for i ∈ {0, 1}. The problem is
more involved than it appears. Actually, a naive approach is to consider (2), that can be easily computed
from T ∩ EX(u), as an estimator of (3). But, the main difference between theses quantities comes from
the boundary terms. Indeed, we can write

Ci(X,T, u) = Φi(T ∩ EX(u), T ) = Φi(EX(u), T̊ ) + Φi(T ∩ EX(u), ∂T ),

where, loosely speaking, |T |−1E
(
Φi(EX(u), T̊ )

)
contains all the information on C∗i (X,u) and boundary

terms involving ∂T is blurring the estimation for fixed |T |. However, as |∂T |1/|T | → 0 when T ↗ R2,
this bias term vanishes. Hereafter, we derive the exact relations between (2) and (3) which are valid for
a wide range of fields, that are called standard in the sequel, and permit to build unbiased estimators
of C∗i (X,u), i ∈ {0, 1} with an edge correction. Starting from those estimators, we are able to infer on
some parameters of the random field X.

2.1 Kinematic formulas

We use kinematic formulas to get unbiased estimators of C∗i (X,u), i ∈ {0, 1} as it is usual to proceed in
convex geometry. To this aim, we first introduce the definition of a standard random field. We borrow
the adjective standard to [32] because the fields we call standard have excursion sets that are standard
in the sense of Definition 9.2.1 in [32].

Definition 2.1 (Standard random field). Let X be a stationary isotropic random field defined on R2.
We say that X is standard at level u ∈ R if T ∩ EX(u) is UPR for any rectangle T in R2, if C∗i (X,u),
for i = 0, 1 in (3) exist, and if

E[C
/T
0 (X,u)] = C∗0 (X,u) +

1

π
C∗1 (X,u)

|∂T |1
|T | + C∗2 (X,u)

1

|T | ,

E[C
/T
1 (X,u)] = C∗1 (X,u) +

1

2
C∗2 (X,u)

|∂T |1
|T | .

By using (4), no edge correction is necessary for estimating C∗2 (X,u) whatever the field X is. It explains
why we do not include a third constraint in the definition of a standard field. The first example of a
standard field is given by the large class of fields of Gaussian type defined below.

Definition 2.2 (Fields of Gaussian type). We call field of Gaussian type any random field X = F (G),
where for some k ∈ N∗, F : Rk → R is a C2 function and G = (G1, . . . , Gk) is a family of i.i.d. Gaussian
random fields defined on R2 that are C3, stationary, isotropic, centered, with unit variance, and such that
VarG′i(0) = λI2 with some λ > 0 and I2 the 2× 2 identity matrix.

Proposition 2.3. Let X be a field of Gaussian type as in Definition 2.2, then X is standard at any level
u ∈ R.
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Proof. Following Definition 2.2, we write X = F (G) and we denote by λ the second spectral moment
of the Gaussian vectorial field G. The Gaussian kinematic formula provides the mean LK curvatures of
excursion sets of X within a rectangle T (see e.g. Theorem 15.9.5 in [1] or Theorem 4.8.1 in [2]), for
u ∈ R and i = 0, 1, 2,

E [Ci(X,T, u)] =

2−i∑
l=0

[
i+ l
l

]
(2π)−l/2 λl/2Ml(X,u)Li+l(T ) (5)

where Lj(T ), j = 0, 1, 2 are defined in (1),

[
i+ l
l

]
=

(
i+ l

l

)
ωl+i
ωlωi

with ωk the Lebesgue measure of

the k-dimensional unit ball (w0 = 1, w1 = 2 and w2 = π), and, following Formula (3.5.2) in [2], the
coefficients Ml(X,u), l = 0, 1, 2 are obtained having an expansion in ρ at order 2 of the probability that
G(0) belongs to

Tube(F, ρ) := {x ∈ Rk such that dist(x, F−1([u,∞))) ≤ ρ},
as ρ→ 0+ . Namely, the expansion is given by

P
(
G(0) ∈ Tube(F, ρ)

)
=M0(X,u) + ρM1(X,u) +

1

2
ρ2M2(X,u) +O(ρ3). (6)

Dividing Equation (5) by |T | and letting T grow to R2 imply the existence of the LK densities and

C∗0 (X,u) = (2π)−1 λM2(X,u), C∗1 (X,u) =
1

2
(π/2)1/2 λ1/2M1(X,u), C∗2 (X,u) =M0(X,u). (7)

Injecting these in (5) and dividing by |T | we obtain that X is standard at level u.

Another way to get standard fields relies on convex geometry tools especially developed for Boolean fields
with convex grains.

Proposition 2.4. Let X be a stationary isotropic random field defined on R2 such that for u ∈ R, its
excursion set EX(u) satisfies:

• a.s. T ∩ EX(u) is the union of a finite number N(T ∩ EX(u)) of compact convex sets with non
empty interior,

• E
(
2N(T∩EX(u))

)
< +∞.

Then, X is standard at level u.

Proof. First let us note that by stationarity and isotropy of X we have that EX(u) is a stationary and
isotropic random set and the assumptions imply that EX(u) is a standard random set in the sense of
Definition 9.2.1 of [32]. Following the notations of this book, Ci(X,u, T ) = Vi(T ∩ EX(u)) with Vi the
so-called intrinsic volume and C∗i (X,u) = Vi(EX(u)) with Vi the intrinsic density. It holds according to
Theorem 9.4.1 of [32], for i ∈ {0, 1, 2},

E(Ci(X,u, T )) =

2∑
k=i

ck,2−k+i
i C∗k(X,u)L2−k+i(T ),

where, by Equation (5.5) of [32], c0,20 = c2,00 = c2,11 = c1,21 = 1 and c1,10 = 2
π . We deduce that X is standard

at level u.

When X is a random field that is standard at level u, we are now able to build unbiased estimators of
C∗i (X,u), for i = 0, 1, 2.
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Proposition 2.5 (Unbiased estimators for LK densities). Let u ∈ R and let X be a stationary isotropic
random field defined on R2 that is standard at level u. Assume we observe T ∩ EX(u) for T a rectangle
in R2. The following quantities are unbiased estimator of C∗i (X,u), i = 0, 1, 2,

Ĉ0,T (X,u) = C
/T
0 (X,u)− |∂T |1

π|T | C
/T
1 (X,u) +

(
1

2π

( |∂T |1
|T |

)2

− 1

|T |

)
C
/T
2 (X,u), (8)

Ĉ1,T (X,u) = C
/T
1 (X,u)− |∂T |1

2|T | C
/T
2 (X,u), (9)

Ĉ2,T (X,u) = C
/T
2 (X,u). (10)

We highlight that the term unbiased in Proposition 2.5 does not refer to the pixelization error that arise
numerically due to the discretized representation of images. Here, the use of the term unbiased means
that our estimation of the LK densities takes into account the observation bias due to the intersection
of the excursion set with the observation window T . Other common edge correction methods include for
instance the toroidal correction, where the edge on one side can be thought of as being wrapped around
to the opposite edge. Numerically for large data sets, the minus-sampling methods are often used (see
e.g., [34]; [11]), where the points near the edges are ignored for the estimation but are still considered
as neighbours for interior points. However, it is statistically inefficient because it discards a substantial
amount of data.

In the following two sections we analyse how the unbiased estimators in Proposition 2.5 for standard
fields can be used for parameter inference purposes. Section 2.2 is devoted to fields of Gaussian type
whereas Section 2.3 concerns shot-noise fields.

2.2 Fields of Gaussian type

2.2.1 Gaussian field

We start by considering the simplest case of Gaussian type field, i.e. with notation of Definition 2.2,
k = 1 and F : x 7→ x, then X = G1 := G. To compute the LK densities, we use expansion (6) to write
out

P
(
G(0) ≥ u− ρ

)
= ψ(u− ρ) = ψ(u)− ρψ′(u) +

1

2
ρ2ψ′′(u) +O(ρ3),

with ψ being the Gaussian tail distribution with zero mean and unit variance. Hence, one easily gets

C∗0 (G, u) = (2π)−3/2 λu e−u
2/2, C∗1 (G, u) =

1

4
λ1/2 e−u

2/2, C∗2 (G, u) = ψ(u), (11)

where λ denotes the second spectral moment of G as in Definition 2.2.

Parameter estimation. Suppose we observe T ∩ EG(u) for a given level u and a given bounded
rectangle T in R2. Then we can use the unbiased estimators of Proposition 2.5 to propose a consistent
estimator for the second spectral moment of the Gaussian field G. Each of the quantities Ci(G, u, T )
satisfies a Central Limit Theorem (CLT) with normalizing term equals to |T |1/2 (see, e.g., [20] or [26]).
Concerning various levels and/or various disjoint domains, a joint CLT for the Euler characteristic is
proved in [12]. To get the asymptotic normality of the estimator of λ, we moreover assume that the
Gaussian field G satisfies the following condition.

(A) For any fixed x in R2, the covariance matrix of the random vector (G(x), G
′
(x), G

′′
(x)) has full

rank and r, the covariance function of G, is such that,

Mr(x)→ 0 when ‖x‖ → +∞ and Mr ∈ L1(R2) ,
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where Mr(x) = max
(∣∣∣ ∂kr
∂xk (x)

∣∣∣ ; k = (k1, k2) ∈ N2, k1 + k2 ≤ 4
)
.

Proposition 2.6 (CLT for the spectral moment estimator). Assume that G satisfies condition (A).

Consider Ĉ0,T (G, u) the estimator defined in (8) built on the observation T ∩ EG(u), u 6= 0 being fixed.
By using (11), we define the estimator of λ as

λ̂T (u) :=
(2π)3/2

u
eu

2/2 Ĉ0,T (G, u), for u 6= 0.

Then, it holds that √
|T |
(
λ̂T (u)− λ

)
d−−−−→

T↗R2
N (0,Σ(u)), for some Σ(u) < +∞, (12)

where
d−→ stands for the convergence in distribution.

Remark that for u = 0, the Euler density in (11) always vanishes, independently of λ. The estimator is
therefore not defined for u = 0 in Proposition 2.6.

Proof. It is sufficient to show that
√
|T |
(
Ĉ0,T (G, u)−C∗0 (G, u)

) d−−−−→
T↗R2

N (0, V (u)) for some V (u) < +∞.

Decompose this quantity as follows√
|T |
(
Ĉ0,T (G, u)− C∗0 (G, u)

)
=
√
|T |
(
C
/T
0 (G, u)− E[C

/T
0 (G, u)]

)
− 1

π

√
|T |
(
C
/T
1 (G, u)− E[C

/T
1 (G, u)]

) |∂T |1
|T |

+
√
|T |
(
C
/T
2 (G, u)− E[C

/T
2 (G, u)]

)( 1

2π

|∂T |21
|T |2 −

1

|T |
)

:= I0(T ) + I1(T ) + I2(T ).

Theorem 4 in [12] leads to I0(T )
d−−−−→

T↗R2
N (0, V (u)) with a finite asymptotic variance V (u) given by

Equation (9) in [12]. Furthermore, the CLT in [20] gives that
√
|T |
(
C
/T
1 (G, u) − E[C

/T
1 (G, u)]

)
admits

a Gaussian centered limit distribution and therefore I1(T )
P−−−−→

T↗R2
0. Similar arguments hold for I2(T ).

Finally the convergence of λ̂T (u) is established with Σ(u) = V (u)(2π)3 eu
2

u2 .

Numerical illustration. Figure 1 displays a realization of a Gaussian random field, two excursion sets
and an illustration for the performance of the three estimators Ĉ0,T (G, u), Ĉ1,T (G, u) and Ĉ2,T (G, u) in

Proposition 2.5, for G with covariance function r(x) = e−κ
2‖x‖2 and second spectral moment λ = 2κ2.

Let us remark that the parameter κ is chosen such that |T |κ2 remains bounded, which explains small

values of κ and λ in Figure 1. The quantities C
/T
0 (G, u), C

/T
1 (G, u) and C

/T
2 (G, u) are computed with

the Matlab functions bweuler, bwperim and bwarea, respectively. When it is required to specify the
connectivity, we average between the 4th and the 8th connectivity. Since C∗1 is defined as the average
half perimeter, we divide by 2 the output derived from bwperim.
From a numerical point of view, bweuler and bwarea functions seem very precise contrary to the bwperim
function which performs less well. It was expected due to the pixelisation effect. This behavior will be
observed also in other random field cases (see, for instance, Figures 7 and 8 in some shot-noise cases).

Figure 1 (center) illustrates that C
/T
1 (G, u) (green dashed line) does not well approximate C∗1 (G, u) (blue

plain line), especially for small levels u and that the correction induced by (9) (red stars) improves the
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Figure 1: Gaussian random field as in Section 2.2.1 with covariance r(x) = e−κ
2‖x‖2 , for κ = 100/210 in a domain of

size 210×210 pixels. First row: A realization of a Gaussian random field (left) and two excursion sets for u = 0 (center) and

u = 1 (right). Second row: Ĉ0,T (G, u) (left), Ĉ1,T (G, u) (center) and Ĉ2,T (G, u) (right) as a function of the level u. We
display the averaged values on M = 100 sample simulations (red stars) and the associated empirical intervals (vertical red

lines). Theoretical u 7→ C∗0 (G, u), C∗1 (G, u) and C∗2 (G, u) in (11) are drawn in blue lines. We also present u 7→ C
/T
0 (G, u)

and C
/T
1 (G, u) in green dashed lines. These samples have been obtained with Matlab using circulant embedding matrix.

approximation. In Figure 1 (left), we provide an analogous bias correction for the Euler characteristic by
using (8). However in this case, the discrepancy is less evident than in the perimeter case.

In Figure 2 (left), we observe the unbiased estimator λ̂T (u) for different values of u. The asymptotic
variance Σ(u) in Proposition 2.6 is empirically estimated on M = 100 sample simulations (Figure 2,
right). This allows us to identify some choices of levels u where the variance is minimum. Furthermore,
we remark that for small and large values of u, less statistics is available than for intermediate values of
|u|.

2.2.2 Chi-square field

We consider a chi-square random field with k degrees of freedom Zk defined with Zk = F (G) for F : x ∈
Rk → ‖x‖2, with notations of Definition 2.2. In order to deal with a random field with zero mean and

unit variance, we also introduce Z̃k as

Z̃k(t) :=
1√
2k

(Zk(t)− k), t ∈ R2.

Hence, Z̃k is C3(R2), stationary, isotropic, centered, with unit variance and Var Z̃ ′k(0) = 2λI2.

We assume that Z̃k is observed on a rectangle T ⊂ R2 through its excursion set above a fixed level u;
T ∩ EZ̃k(u) = T ∩ EZk(k + u

√
2k). Let us remark that the above excursion is a proper subset only for a

9
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Figure 2: Gaussian random field with covariance r(x) = e−κ
2‖x‖2 , for κ = 100/210 in a domain of size 210×210 pixels.

Estimate λ̂T (u) with associated confidence intervals for M = 100 sample simulations as prescribed by the CLT in (12), for
different values of u (left). Theoretical value λ = 0.019 is represented by the horizontal line. The empirically estimated

variance Σ̂(u) is displayed for different values of u in the right panel.

level u such that u > −
√
k/2. Moreover, the LK densities satisfy

C∗j (Z̃k, u) = C∗j (Zk, k + u
√

2k), for j = 0, 1, 2.

The C∗j (Zk, ·) can be computed using (7) in the framework of Gaussian type fields described previously.

Indeed, we have Zk = F (G) with G = (G1, . . . , Gk) and F : x ∈ Rk 7→ ||x||2. Hence, F−1([u,+∞)) =
{x ∈ Rk; ||x|| ≥ √u} and Tube(F, ρ) = {x ∈ Rk; ||x|| ≥ √u − ρ}, so that expansion in (6) has to be
written with

P
(
G(0) ∈ Tube(F, ρ)

)
= P

(√
χ2
k ≥
√
u− ρ

)
,

where χ2
k stands for a chi-square random variable with k degrees of freedom. We recover the following

formulas that can be found, for instance, in Theorem 15.10.1 in [1] or in Section 5.2.1 in [2]:

C∗0 (Z̃k, u) =
λ

π2k/2Γ(k/2)

(
k + u

√
2k
)(k−2)/2 (

u
√

2k + 1
)

exp

(
−k + u

√
2k

2

)
, (13)

C∗1 (Z̃k, u) =

√
πλ

2(k+1)/2Γ(k/2)

(
k + u

√
2k
)(k−1)/2

exp

(
−k + u

√
2k

2

)
,

C∗2 (Z̃k, u) = P
(
χ2
k ≥ k + u

√
2k
)
.

These formulas were originally established in [36]. Figure 3 displays a realization of a normalized chi-

square random field Z̃k with k = 2 degrees of freedom, two excursion sets and an illustration of the
performance of the three estimators Ĉ0,T (Z̃k, u), Ĉ1,T (Z̃k, u) and Ĉ2,T (Z̃k, u).

Parameter estimation. Suppose we observe T ∩ EZ̃(u), the excursion of a centered chi-square field

Z̃ with unit variance, unknown degree of freedom K and unknown Gaussian second spectral moment
λ. Using that for a centered chi-square field with unit variance and k degrees of freedom C∗2 (Z̃, u) only
depends on k, we propose the following estimator of K:

K̂(u) = arg min
k∈ [1, kmax]

∣∣∣C∗2 (Z̃k, u)− Ĉ2,T (Z̃, u)
∣∣∣ , (14)
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Figure 3: Chi-square field as in Section 2.2.2 with 2 degrees of freedom and λ = 0.019 in a domain of size 210 × 210

pixels. First row: A realization of a normalized chi-square random field (left) and two excursion sets for u = 0 (center) and

u = 1 (right). Second row: Ĉ0,T (Z̃k, u) (left), Ĉ1,T (Z̃k, u) (center) and Ĉ2,T (Z̃k, u) (right) as a function of the level u.
We display the averaged values on M = 100 sample simulations (red stars) and the associated empirical intervals (vertical

red lines). Theoretical u 7→ C∗0 (Z̃k, u), C∗1 (Z̃k, u) and C∗2 (Z̃k, u) are draw in blue lines.

with Ĉ2,T as in (10) and kmax a large positive integer. This estimator can be plugged in C∗0 (Z̃, u) to

derive an estimator of the Gaussian second spectral moment of Z̃:

λ̂T,K̂(u)(u) =
Ĉ0,T (Z̃, u)

M2,Z̃(K̂(u), u)
, (15)

with Ĉ0,T given by (8), K̂(u) as in (14) and where M2,Z̃(k, u) does not depend on λ and is derived

from (13)

M2,Z̃(k, u) =
1

π2k/2Γ(k/2)

(
k + u

√
2k
)(k−2)/2 (

u
√

2k + 1
)

exp

(
−k + u

√
2k

2

)
.

An illustration of this inference procedure is provided in Figure 4 for a centered chi-square field with
K = 2 degrees of freedom.

2.2.3 Student field

Following Definition 2.2, let k ≥ 3 be an integer and consider F : Rk+1 → R as follows, x = (x1, y) ∈
R × Rk 7→ F (x) := x1/

√
‖y‖2/k, then Tk = F (G) is a Student random field with k degrees of freedom.

Assumption k ≥ 3 ensures that all the Gi(t), for i = 1, . . . , k, cannot vanish at some point t ∈ R2

11
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Figure 4: Chi-square field as in Section 2.2.2 with K = 2 degrees of freedom and λ = 0.019, kmax = 15. Estimated

K̂(u) as in Equation (14) (left) and associated λ̂
T,K̂(u)

(u) (right) as in Equation (15). Theoretical values represented by

horizontal lines.

with positive probability. Then, Tk is C3(R2), stationary, isotropic, centered and Var Tk(0) = k/(k − 2).
Furthermore, Tk and −Tk have the same distribution. In order to deal with a centered and unit variance
field, we introduce

T̃k(t) :=
√

(k − 2)/k Tk(t) , t ∈ R2.

We again assume that T̃k is observed on a rectangle T ⊂ R2 through its excursion set above a fixed
level u, i.e., T ∩ ET̃k(u) = T ∩ ETk(u

√
k/(k − 2)). Let us remark that the symmetry property of the

distribution of Tk allows us to only consider levels u that are non-negative. Moreover

C∗j (T̃k, u) = C∗j (Tk, u
√
k/(k − 2)), j = 0, 1, 2,

and the LK densities are given in the following result.

Proposition 2.7 (Student LK densities). Let k ≥ 3 and T̃k be a centered Student random field with unit
variance and k degrees of freedom. Then, it holds that

C∗0 (T̃k, u) =
λ(k − 1)

4π
3
2

u√
k − 2

Γ
(
k−1

2

)
Γ
(
k
2

) (
1 +

u2

k − 2

) 1−k
2

,

C∗1 (T̃k, u) =

√
λ

4

(
1 +

u2

k − 2

) 1−k
2

and C∗2 (T̃k, u) = P(Student(k) ≥ u
√
k/(k − 2)).

The proof of Proposition 2.7 is postponed to Appendix (see Section A.1) as well as the proof of the
following Lemma.

Lemma 2.8. If k ≥ 5, the second spectral moment λStu(k) of Tk is finite and

λStu(k) =

λ
k
k−2 if k is even,

λ k

(
1

k−2 +
√
π

2k−3

(k−5)!

( k−5
2 )!Γ

(
k
2

)) else,
(16)

where λ is the spectral moment of the underlying Gaussian fields. Note that λStu(k)→ λ as k →∞.

Figure 5 displays a realization of a normalized Student random field T̃k with k = 4 degrees of freedom,
two excursion sets and an illustration for the performance of the three estimators Ĉ0,T (T̃k, u), Ĉ1,T (T̃k, u)

and Ĉ2,T (T̃k, u).
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Figure 5: Student field as in Section 2.2.3 with 4 degrees of freedom and λ = 0.019 in a domain of size 210 × 210 pixels.
First row: A realization of a normalized Student random field (left) and two excursion sets for u = 0 (center) and u = 1

(right). Second row: Ĉ0,T (T̃k, u) (left), Ĉ1,T (T̃k, u) (center) and Ĉ2,T (T̃k, u) (right) as a function of the level u. We
display the averaged values on M = 100 sample simulations (red stars) and the associated empirical intervals (vertical red

lines). Theoretical u 7→ C∗0 (T̃k, u), C∗1 (T̃k, u) and C∗2 (T̃k, u) are draw in blue lines.

Parameter estimation. Suppose we observe T∩ET̃ (u) the excursion at level u of T̃ a centered Student
field with unit variance, unknown degree of freedom K and unknown second spectral moment λ of the
underlying Gaussian fields. As in Section 2.2.2, using that for a centered Student field with unit variance
with k degrees of freedom C∗2 (T̃k, u) only depends on k, we propose the following estimator of K:

K̂(u) = arg min
k∈ [3, kmax]

∣∣∣C∗2 (T̃k, u)− Ĉ2,T (T̃ , u)
∣∣∣ , (17)

with Ĉ2,T as in (10) and C∗2 (T̃k, u) given by Proposition 2.7. Furthermore, the Gaussian second spectral
moment of the considered Student field can be estimated by

λ̂T,K̂(u)(u) =
Ĉ0,T (T̃ , u)

M2,T̃k(K̂(u), u)
,

with Ĉ0,T as in (8), K̂(u) as in (17) and where M2,T̃k(k, u) does not depend on λ and is given by

M2,T̃k(k, u) =
(k − 1)

4π
3
2

u√
k − 2

Γ
(
k−1

2

)
Γ
(
k
2

) (
1 +

u2

k − 2

) 1−k
2

.

An illustration of the performance of this inference procedure is given in Figure 6 for a centered Student
field with K = 4 degrees of freedom.
Moreover by using Lemma 2.8 and the two previous estimators one can derive an estimator for λStu(k).
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Figure 6: Student field as in Section 2.2.3 with K = 4 degrees of freedom, λ = 0.019 and kmax = 20. Estimated K̂(u)

as in Equation (17) (left) and associated λ̂
T,K̂(u)

(u) (right). Theoretical values are represented by horizontal lines.

2.3 Shot-noise field

In this section, we consider a shot-noise field SΦ : R2 → R defined as in [6] and [7]. It is prescribed by

SΦ(t) =
∑

(xi,bi,ri)∈Φ

bi1riD(t− xi) , for t ∈ R2,

where Φ is a stationary Poisson point process on R2×R∗×R+ with intensity measure ν LebR2⊗dFB⊗dFR
where ν > 0, FB is a probability measure on R∗, FR is a probability measure on R+ and D is the unit
disc in R2. Under the condition∫

R2×R∗×R+

|b|1rD(x) dxFB(db)FR(dr) = π E[|B|] E[R2] < +∞,

with B and R two random variables with respective distributions FB and FR, the field SΦ is well-defined,
stationary and isotropic. It is moreover integrable and, for any t ∈ R2,

E[SΦ(t)] = ν ā E[B],

with ā = π E[R2]. Furthermore, if E[B2] < +∞, SΦ is square integrable and Var(SΦ(t)) = ν ā E[B2]. We
also introduce p̄ = 2πE(R).

In the case B = 1 a.s., the marginals of SΦ are Poisson distributed with parameter νā. In the case
where B is uniformly distributed in {−1,+1}, the field SΦ is symmetric and its marginals have a Skellam
distribution with both parameters equal to νā/2 (see [30]), that is to say that they coincide with the
difference of two independent Poisson random variables with parameter νā/2. In that case, the marginal
distribution of SΦ is given by k ∈ Z 7→ e−νāI|k|(νā), where I. denotes the modified Bessel function of the

first kind, defined as follows: In(x) =
∑∞
m=0

(x/2)2m+n

m!Γ(m+n+1) , for any n ∈ Z+ and any x ∈ R.

When B is positive a.s., we prove in the following result that the considered shot-noise field SΦ is standard
as in Definition 2.1.

Proposition 2.9. Let Rmax > 0. If B > 0 and R ≤ Rmax a.s., the random field SΦ is standard at any
level u ∈ R.

Proof. Since B > 0 a.s., T ∩ ESΦ
(u) = T , for any u ≤ 0. Hence we may assume that u > 0. Since

R ≤ Rmax a.s. the number of discs intercepting T is bounded by NΦ(T ) := #{xi; d(xi, T ) ≤ Rmax} that

14



is a Poisson random variable of finite intensity. It follows that T ∩ ESΦ
(u) must be given by the union

of a finite number N(T ∩ ESΦ(u)) ≤ NΦ(T ) of some finite intersections of discs that are convex bodies.
Since NΦ(T ) is a Poisson random variable, we clearly have E(2N(T∩ESΦ

(u))) < +∞ so that Proposition
2.4 allows us to conclude that SΦ is standard at level u.

If B changes sign, excursion sets T ∩ESΦ
(u) are no more a.s. closed, nor locally convex, nor necessarily

of positive reach, however they are elementary sets in the sense of Definition 1 in [7], with boundaries
included in the discontinuity set of SΦ so that one can compute length and total curvature. Therefore,
we still define Φi and Ci as in Definitions 1.2 and 1.4. We state the following lemma, in the same vein as
Theorem 6 in [7].

Lemma 2.10. Let B be a discrete random variable with values in Z \ {0}. Then, for any level u, the LK
densities C∗1 (SΦ, u) and C∗0 (SΦ, u) are well defined and their Fourier transforms are given, for t 6= 0, by∫

R
eiutC∗1 (SΦ, u)du =

1

2
νp̄ ϕS(0)(t)

1

it
(ϕB+(t)− ϕB−(t)) , (18)∫

R
eiutC∗0 (SΦ, u)du = ν ϕS(0)(t)

1

it

(
ϕB(t)− 1 +

νp̄2

4π
(ϕB+(t)− ϕB−(t))2

)
, (19)

where ϕZ(t) stands for the characteristic function E[eitZ ] of a random variable Z, B+ = max(B, 0) and
B− = min(B, 0).

The proof of Lemma 2.10 is established in the Appendix Section A.3. Turning back to the special
cases where B = 1, a.s. or B uniformly distributed in {−1,+1} and following the same inverse Fourier
procedure as Theorem 6 in [7], we obtain the explicit formulas below.

Proposition 2.11. If B = 1 and u ∈ R+ \ Z+, it holds that

C∗0 (SΦ, u) = e−νā
(νā)buc

buc! ν

(
1− ν p̄

2

4π
+ buc p̄

2

4πā

)
,

C∗1 (SΦ, u) = e−νā
(νā)buc

2buc! νp̄ and C∗2 (SΦ, u) = e−νā
∑
k>u

(νā)k

k!
.

If B is uniformly distributed in {−1,+1} and u ∈ R \ Z, it holds that

C∗0 (SΦ, u) =
ν

2
e−νā

(
(I|buc| − I|buc+1|)(νā) +

νp̄2

8π
(I|buc−1| + I|buc| − I|buc+1| − I|buc+2|)(νā)

)
,

C∗1 (SΦ, u) =
νp̄

4
e−νā (I|buc| + I|buc+1|)(νā) and C∗2 (SΦ, u) = e−νā

∑
k>u

I|k|(νā),

where b·c denotes the greatest integer less than u.

Figure 7 (resp. Figure 8) displays two excursion sets and an illustration of the shape of C∗i (SΦ, u), for
i ∈ {0, 1, 2} when B = 1, a.s. (resp. when B is uniformly distributed in {−1,+1}). Remark that if B
is uniformly distributed in {−1,+1} we do not know if SΦ is a standard random field in the sense of
Definition 2.1. Therefore in Figure 8, we do not apply the unbiased formulas of Proposition 2.5 and we

use C
/T
i (SΦ, u), for i ∈ {0, 1, 2}.

Let us quote general results of [21] that can be used to obtain CLT for the volume, the perimeter and
the Euler characteristic of shot noise excursion sets (see especially Proposition 4.1 in [21]). In particular,
in our setting, by Theorem 2.4 of [21], one can get for R ≤ Rmax and B ∈ R∗ that√

|T |
(
Ĉ2,T (SΦ, u)− C∗2 (SΦ, u)

)
d−−−−→

T↗R2
N (0, σ2

2(u)), with 0 < σ2
2(u) <∞.
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Figure 7: Shot-noise field as in Section 2.3 with B = 1, a.s., ν = 5 × 10−4 with random disks of radius R = 50 or
R = 100 (each with probability 0.5) in a domain of size 210 × 210 pixels. First row: Shot-noise field random field (left)

and two excursion sets for u = 7.5 (center) and u = 14.5 (right). Second row Ĉ0,T (SΦ, u) (left), Ĉ1,T (SΦ, u) (center) and

Ĉ2,T (SΦ, u) (right) as a function of the level u. We display the averaged values on M = 100 iterations (red stars) and the
associated empirical intervals (vertical red lines). Theoretical u 7→ C∗0 (SΦ, u), C∗1 (SΦ, u) and C∗2 (SΦ, u) are draw with blue
dots.

A similar question is the purpose of [19] where a joint CLT is established for all the intrinsic volumes of
a Boolean model. Note that the occupied domain of a Boolean model is nothing but the excursion set
above level 1 of a shot-noise field with B = 1, a.s.

In our framework, we provide a non-asymptotic result to control the variance on a finite domain T and
prove consistency of Ĉi,T (SΦ, u), for i = 0, 1, 2.

Theorem 2.12. If B takes values in Z \ {0} and R ≤ Rmax a.s., there exists a constant C, depending
on ν, p, a and Rmax only, such that, for i = 0, 1, 2,(

E
[(
Ĉi,T (SΦ, u)− C∗i (SΦ, u)

)2])1/2

≤ C
(

1

|T |1/2 +
|∂T |1
|T |

)
.

We recover that choosing T such that |T | → +∞ and |∂T |1|T | → 0, leads to the consistency of Ĉi,T (SΦ, u).

The proof of Theorem 2.12 is postponed to Section A.4. To establish this result we first derive variance
bounds for the weak versions of the perimeter and the total curvature (see Proposition A.1, Section A.2)
which present interest on its own and is related to the framework of [21].

16



200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

Levels u
-10 -8 -6 -4 -2 0 2 4 6 8 10

×10-5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

×10
-3

0

2

4

6

8

10

Levels u
-8 -6 -4 -2 0 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: Shot-noise field as in Section 2.3 with B uniformly distributed in {−1,+1}, ν = 3× 10−5 and random disks
of radius R = 150 or R = 100 (each with probability 0.5) in a domain of size 210 × 210 pixels. First row: Shot-noise

field random field (left) and two excursion sets for u = −0.5 (center) and u = 1.5 (right). Second row C
/T
0 (SΦ, u) (left),

C
/T
1 (SΦ, u) (center) and C

/T
2 (SΦ, u) (right) as a function of the level u. We display the averaged values on M = 100

iterations (red stars) and the associated empirical intervals (vertical red lines). Theoretical u 7→ C∗0 (SΦ, u), C∗1 (SΦ, u) and
C∗2 (SΦ, u) are draw with blue dots.

Parameter estimation. Suppose we observe T ∩ESΦ
(u) for SΦ a shot-noise with B = 1, a.s. and for

u in R+ \ Z+ with unknown parameters ν, ā and p̄. Define the estimator of νā, for some positive A,

ν̂ a(u) = arg min
ν a∈ (0, A]

∣∣∣C∗2 (SΦ, u)− Ĉ2,T (SΦ, u)
∣∣∣ , (20)

with Ĉ2,T as in (10) and νā 7→ C∗2 (SΦ, u) given by Proposition 2.11. In the same spirit, an estimator of
νp̄ is obtained using Proposition 2.11

ν̂ p(u) = Ĉ1,T (SΦ, u)

(
e−ν̂ a(u) (ν̂ a(u))buc

2buc!

)−1

, (21)

with Ĉ1,T as in (9) and ν̂ a(u) as in (20). Then, we define the following estimator for ν

ν̂(u) =
Ĉ0,T (SΦ, u)

e−ν̂ a(u) (ν̂ a(u))buc

buc!

+

(
(ν̂ p(u))2

4π

)
−
(
buc(ν̂ p(u))2

4π ν̂ a(u)

)
, (22)

where Ĉ0,T (SΦ, u) is as in Equation (8), ν̂ a(u) as in (20) and ν̂ p(u) as in (21). Finally, the obtained

ν̂(u) can be used to isolate â(u) and p̂(u) in Equations (20) and (21), respectively. An illustration of this
inference procedure is provided in Figure 9 (first row).
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As mentioned earlier, the unsatisfactory quality of the Matlab function bwperim for the estimation of
C∗1 (SΦ, u) strongly impacts the final performance of the estimation of ν̂ p(u) (see Figure 9, center panel).
For this reason, we also present here the simplified case where R is constant. In this particular case

νa = νp2

4π . Then, we estimate ν̂ a(u) as in (20) and ν̂(u) by using the simplified version of (22), i.e.,

ν̂(u) =

(
1

1 + buc − ν̂ a(u)

) Ĉ0,T (SΦ, u)

e−ν̂ a(u) (ν̂ a(u))buc

buc!

 . (23)

An illustration of the performance of these inference procedures is provided in Figure 9 (second row).
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Figure 9: First row: Shot-noise field as in Section 2.3 with B = 1, a.s., ν = 5×10−4 with random disks of radius R = 50

or R = 100 (each with probability 0.5) in a domain of size 210×210 pixels. Estimated ν̂ a(u) as in Equation (20) for A = 40

(left), ν̂ p(u) as in Equation (21) (center) and ν̂(u) as in (22) (right). Theoretical values are represented by horizontal lines.

Second row: Shot-noise field with B = 1, a.s., ν = 5 × 10−4 and R = 100 a.s., in a domain of size 210 × 210 pixels.

Estimated ν̂ a(u) as in Equation (20) with A = 40 (left) and ν̂(u) as in (23) (right). Theoretical values are represented by

horizontal lines.

3 Using LK densities for testing Gaussianity

Let X be a stationary, isotropic, centered with unit variance random field. We observe an excursion of X
above some levels u on the domain T , namely T ∩EX(u) and we aim at testing whether X is Gaussian.
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3.1 Testing against a Student field

In this section we are interested in testing

H0 : X is Gaussian versus

H1 : ∃ k ≥ 3, X is Student with k degrees of freedom and unit variance,

where under H0 and H1 the fields are defined through Definition 2.2, where F : x ∈ R 7→ x, under H0

and F : (x1, y) ∈ Rk+1 7→
√

(k − 2)/k
(
x1/
√
‖y‖2/k

)
, under H1.

Under H0 and H1 the field X is symmetric and then centered. Suppose that for 1 ≤ u1 < u2 we observe
T ∩ EX(u), for u ∈ {u1, u2}. Notice that the fact that under H0 and H1 the fields have unit variance
enables the comparison of the LK densities of their excursions at the same meaningful levels. Assuming
u1 and u2 are positive and greater than 1 is not necessary. Indeed the test can be easily modified for
negative values of u1 or u2 by using the symmetry of X under H0 and H1. Furthermore, under H1 we
do not assume that k is known. Unsurprisingly, the performance of the test will depend on the unknown
k. Moreover, we underline that under H0 and H1 we do not impose any constraint on the shape of the
covariance function nor on the spectral moment other than (A). In particular, the spectral moments of
X under H0 and H1 can be different.

A test statistic. Our test statistics is built from the previously studied LK densities. As the perimeter

C
/T
1 is hard to evaluate in practice (see the earlier comment on the Matlab function bwperim), we do

not use it to build a test. Moreover, Gaussian and Student distributions differ in the tails, which would
lead to consider large values for u2. But for large levels we do not observe many excursion sets which
deteriorates the estimation of C∗2 . Therefore to work with intermediate values of u1 and u2, we consider
C∗0 to build our test statistic: it is well evaluated in practice at these levels. Finally, in order to get
statistic free in λ, we take the ratio of C∗0 between to different levels u1 and u2. This is why we need to
observe two distinct excursion sets.

Without loss of generality assume that u2 = γ u1, for some γ > 1. For the following empirically accessible
ratios, we derive from Equation (11) and from Proposition 2.7 that

C∗0 (X,u2)

C∗0 (X,u1)
= γ e

u2
1
2 (1−γ2) =: v(γ,∞) under H0, (24)

C∗0 (X,u2)

C∗0 (X,u1)
= γ

(
1− (γ2 − 1)u2

1

k − 2 + γ2u2
1

) k−1
2

=: v(γ, k) under H1. (25)

Quantities v(γ,∞) and v(γ, k) in (24) and (25), for values of u1 and γ not too large, are quite different.
Furthermore, for all k it holds that v(γ, k) > v(γ,∞) and k 7→ v(γ, k) is decreasing. We build a non
symmetric test where we reject H0 whenever the associated empirical ratio is too large compared to its
expected behavior under H0. It is important to observe that v(γ,∞) does not depend on the spectral
moment of X nor on its covariance function. The choice of u1 ≥ 1 and γ > 1 are left to the practitioner,
or might be imposed by the data-set. We expect that the larger γ is and the smaller k is the better the
test will be. However, in practice γ should not be too large as we need to estimate C∗0 (X,u2), which
requires to have sufficiently enough excursions above the level u2 = γ u1.

Let T1 and T2 be two rectangles in R2 such that dist(T1, T2) > 0 and |T1| = |T2| > 0. For any positive

integer N , we define T
(N)
i = {Nt : t ∈ Ti}, for i = 1, 2. Consider the statistics

R̂γ,N :=
Ĉ

0,T
(N)
2

(X,u2)

Ĉ
0,T

(N)
1

(X,u1)
, (26)
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with Ĉ0,T defined in (8).

Test with asymptotic level α. We can establish the asymptotic normality of the statistics R̂γ,N .

Proposition 3.1. Assume that X satisfies condition (A). Let T
(N)
1 and T

(N)
2 defined as before and R̂γ,N

as in (26). Then, under H0 it holds that√
|T (N)

1 |
(
R̂γ,N − v(γ,∞)

)
d−−−−→

N→∞
N (0,Σ(u1, u2)),

where Σ(u1, u2) <∞.

Proof. As the sets T
(N)
1 and T

(N)
2 are such that dist(T

(N)
1 , T

(N)
2 ) → +∞ and |T (N)

1 | = |T (N)
2 | → +∞,

from Proposition 5a in [12] it holds that

√
|T (N)

1 |

Ĉ0,T
(N)
1

(X,u1)− E[C
/T

(N)
1

0 (X,u1)]

Ĉ
0,T

(N)
2

(X,u2)− E[C
/T

(N)
2

0 (X,u2)]

 d,H0−−−−→
N→∞

N
((

0
0

)
,

(
V (u1) 0

0 V (u2)

))
,

where u 7→ V (u) is defined in Equation (9) of [12]. Moreover, one can prove that the limit of

√
|T (N)|

1

(
C
/T

(N)
1

1 (X,u1)− E[C
/T

(N)
1

1 (X,u1)]

C
/T

(N)
2

1 (X,u2)− E[C
/T

(N)
2

1 (X,u2)]

)

is non degenerate (see [20] or [26]). Then, the same decomposition as in the proof of Proposition 2.6
leads to √

|T (N)
1 |

(
Ĉ

0,T
(N)
2

(X,u2)− C∗0 (X,u2)

Ĉ
0,T

(N)
1

(X,u1)− C∗0 (X,u1)

)
d,H0−−−−→
N→∞

N
((

0
0

)
,

(
V (u2) 0

0 V (u1)

))
. (27)

Applying the delta method, we get the result with Σ(u1, u2) =

(
V (u2)+v(γ,∞)2 V (u1)

)
C∗0 (X,u1)2 .

Consider the consistent empirical estimator Σ̂u1,u2 :=
̂V(R̂γ,N ) |T (N)

1 | of Σ(u1, u2), where
̂V(R̂γ,N ) is the

empirical variance of the considered ratio. Then, from Proposition 3.1, it holds that√√√√ |T (N)
1 |

Σ̂u1,u2

(
R̂γ,N − v(γ,∞)

)
=

√√√√ 1

̂V(R̂γ,N )

(
R̂γ,N − v(γ,∞)

) d,H0−−−−→
N→∞

N (0, 1).

Take a confidence level α ∈ (0, 1) and set q1−α such that P(N(0, 1) ≥ q1−α) = α. We define the test φT (N)

with asymptotic level α as

φT (N) = 1{√
1

̂V(R̂γ,N )

(
R̂γ,N−v(γ,∞)

)
≥q1−α

}. (28)
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Discussion on consistency. Suppose that X is a Student field with K degrees of freedom (K is fixed).
Then, the test statistic can be decomposed as follows√√√√ |T (N)

1 |
Σ̂u1,u2

(
R̂γ,N − v(γ,∞)

)
= Σ̂−1/2

u1,u2

(√
|T (N)

1 |
(
R̂γ,N − v(γ,K)

)
+

√
|T (N)

1 |
(
v(γ,K)− v(γ,∞)

))
: = Σ̂−1/2

u1,u2
(I1 + I2),

where I2
P, H1−−−−→
N→∞

+∞. Then, if we were able to establish that Σ
−1/2
u1,u2 is bounded away from 0 and if a

joint central limit theorem for
(
C
/T
i (X,u1), C

/T
i (X,u2)

)
, i = 0, 1 for X a Student fields was known this

would entail the consistency of the test, i.e., PH1(φT (N) = 1) −→
N→∞

1. Remark that at least numerically,

in our simulations studies it seems to be the case (see Figure 10 below).
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Figure 10: Student random field with unit variance and different degrees of freedom in a domain of size 210 × 210 pixels.

We display the empirical PH1(φT (N) = 1) on M = 100 iterations. Left: u1 = 1, γ = 2 and, under H0, R̂2,N = 0.4463.

Right: u1 = 1, γ = 3 and, under H0, R̂3,N = 0.0549. Threshold α = 0.05 is displayed by a dashed horizontal line.

Numerical illustrations. In Figure 10 we show the empirical PH1(φT (N) = 1) with φT (N) as in (28)
for two values of γ. We observe that when γ is larger the power of the test increases. Remark that to
perform this test, it is not necessary to know the degree of freedom of the Student alternative. However,
as illustrated in Figure 10, if k gets too large or γ is too small the test fails to distinguish H1 from H0.
It is easily explained by the following expansion as K →∞,

v(γ,K) = v(γ,∞)
(

1 +O
(γ − 1

K

))
.

Additionally, under H0 several experiments have been reproduced to illustrate that the test φT (N) with

empirical Σ̂u1,u2
, has the desired asymptotic level α. However, for the sake of brevity, we do not display

these results here.

3.2 Testing against a power of a Gaussian field

Consider the alternative

H1(η) : ∃ η > 0, η 6= 1 such that X = sign(G) |G|ησ−1(η),
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where G is a centered Gaussian random field with unit variance and σ2(η) := 21−η Γ(2η)
Γ(η) , such that the field

X has unit variance under H1(η). It is centered by construction and it is unnecessary to impose any as-

sumption on the covariance function of G. It is straightforward to get C∗0 (X,u) = C∗0 (G, sign(u) |u| 1η σ(η))
and the statistics in (25) for these alternatives H1 becomes, for u2 = γu1 and γ > 1,

C∗0 (X,u2)

C∗0 (X,u1)
= γ

1
η exp

(
− (γ2/η − 1)u

2/η
1 σ2(η)

2

)
:= ṽ(γ, η). (29)

Note that under H0, η = 1 and v(γ,∞) previously defined in (24) coincides with ṽ(γ, 1). For γ > 1, the
quantity in (29) is either smaller or larger than (24) depending on η. Symmetrizing the previous test, it
follows that to test H0 : η = 1 against H1(η) : η 6= 1 we may consider the test with asymptotic level α

φ̃T (N) := 1{√
1

̂V(R̂γ,N )

∣∣R̂γ,N−ṽ(γ,1)
∣∣≥q1−α

2

}

where P(N(0, 1) ≤ q1−α2 ) = 1 − α
2 . In this case we have a better understanding of the behavior of the

test statistic under H1. Under (A), applying (27) and using that EX(u) = EG(sign(u) |u|1/ησ(η)), we
derive ∀ η > 0√

|T (N)
1 |

(
Ĉ
/T

(N)
2

0 (X,u2)− C∗0 (X,u2)

Ĉ
/T

(N)
1

0 (X,u1)− C∗0 (X,u1)

)
d−−−−→

N→∞
N
((

0
0

)
,

(
V (fη(u2)) 0

0 V (fη(u1))

))
, (30)

with fη(u) := sign(u)|u|1/ησ(η). If we suppose that X = sign(G) |G|ησ−1(η) with η 6= 1 it holds that√√√√ |T (N)
1 |

Σ̂u1,u2

(
R̂γ,N − ṽ(γ, 1)

)
= Σ̂−1/2

u1,u2

(√
|T (N)

1 |
(
R̂γ,N − ṽ(γ, η)

)
+

√
|T (N)

1 |
(
ṽ(γ, η)− ṽ(γ, 1)

))
:= Σ̂−1/2

u1,u2
(Ĩ1 + Ĩ2),

where from (30) we get Ĩ1
d−−−−→

N→∞
N (0,Σ) and Ĩ2

P,H1−−−−→
N→∞

∞. Then, if Σ̂u1,u2
is bounded from below,

which is not easy to establish, we would have PH1(φ̃T (N) = 1) −→
T↗R2

1, which would ensure the consistency

of the test φ̃T (N) .

4 Illustration on 2D digital mammograms

In this section we consider images from a recent solid breast texture model inspired by the morphol-
ogy of medium and small scale fibro-glandular and adipose tissue observed in clinical breast computed
tomography (bCT) images (UC Davis database). Each adipose compartment is modeled as a union of
overlapping ellipsoids and the whole model is formulated as a spatial marked point process. The contour
of each ellipsoid is blurred to render the model more realistic (for details see [22], Section 2.2 and Figure
1). Finally, considered mammograms images were simulated by x-ray projection. Evaluation provided in
[22] has shown that simulated mammograms and digital breast tomosynthesis images are visually similar,
according to medical experts.

Description of data-set. We consider 15 simulated 2D digital images generated by this texture model.
The images were kindly provided by GE Healthcare France, department Mammography. From a clinical
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point of view, radiologists use the Breast Imaging Reporting and Data System (or BI-RADS) to classify
breast density into four categories. They go from almost all fatty tissue to extremely dense tissue with
very little fat. In this latter category, it can be hard to see small tumors in or around the dense tissue.
The images we studied belong to first three morphologic situation groups :

(A) Almost entirely adipose breasts;

(B) Scattered fibro-glandular dense breasts;

(C) Heterogeneously dense breasts.

One image from each group is reported in Figure 11. As remarked in Section 3 in [22], the considered
simulated digital mammograms from groups (A), (B) and (C) show a high visual realism compared to
real images in these 3 different clinical situations.
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Figure 11: One image from group (A) (left), group (B) (center) and group (C) (right). Image size: 251× 251.

For a mathematical point of view, one difference between the considered 3 groups is the chosen intensity
of the homogeneous spatial point process in [22]’s model: νA = 3.5 × 10−3mm−3 for group (A), νB =
5× 10−3mm−3 for group (B) and νC = 2.3× 10−3mm−3 for the (C) one.

Gaussian test based on C∗0 . We perform the test described in Section 3.1 for these 3 data-sets
composed by N = 5 images and for u1 = 1. The test is more difficult as it may seem, due to the blurring
step in the procedure to produce the images. Then, the excursion sets have more irregular contour than
a standard shot noise field as studied in Section 2.3. Moreover, due to the small size of the considered
images (251 × 251) and of the simulated samples (N = 5), we relax the conditions to reject H0. First,
we consider larger levels for the test, i.e., α ∈ {0.2, 0.1, 0.05}. Second, as we have access to the entire
image, we consider 1000 different tests corresponding to different values of u2 ∈ [−3, 3] for the excursion
sets. Then, we have to symmetrize the test in Section 3.1 since we consider both negative and positive
values of u2. The test statistic in (28) becomes

φT (N) = 1{ ̂V(R̂γ,N )
−1/2∣∣R̂γ,N−ṽ(γ,1)

∣∣≥q1−α
2

} with q1−α2 the (1− α
2 )-quantile of a N (0, 1).

As the 5 images of each group are random generations of the same parameter setting model, we estimate
the empirical variance of R̂γ based on the 5 images of each group.

We compute for each image in each group the 1000 p−values associated to the considered u2. In Table 1,
we display the number of the obtained p−values smaller than the significant α-levels (α ∈ {0.2, 0.1, 0.05}).
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Furthermore, we highlight in bold text the numbers that are larger than α× 1000 and for which H0 can
be put in default.

Group Level Image

α 1.A 2.A 3.A 4.A 5.A

A

0.2 84 76 248 683 651

0.1 41 41 136 613 565

0.05 27 8 57 491 467

α 1.B 2.B 3.B 4.B 5.B

B

0.2 65 119 58 43 900

0.1 19 71 28 12 858

0.05 10 35 15 6 797

α 1.C 2.C 3.C 4.C 5.C

C

0.2 389 230 347 575 468

0.1 267 164 210 411 312

0.05 190 126 142 288 242

Table 1: Number of p−values associated to the 1000 different values of u2 ∈ [−3, 3] that are smaller than
the significant α-levels. In bold text the numbers larger than α× 1000 for which H0 is rejected.

We can remark the discrepancy with the Gaussianity hypothesis for all images of group (C) and for all
considered significant α-levels. The same consideration holds true for the last three images of group (A).
Conversely, some simulated 2D digital mammograms seem to be not so far from the Gaussianity in term
of the studied R̂γ,N ratio. Roughly speaking, images of group (B) are closer to Gaussinity than group
(A), which is itself closer to Gaussianity than (C). This might be viewed in parallel with the intensities
considered for each group: νC < νA < νB . This chosen parameter setting may explain why our test
rejects Gaussianity more easily in group C than in group B. The interested reader is referred for instance
to the first four images of group (B); a very different behavior is realized by the last image of this group
where the Gaussianity hypothesis is rejected for almost all considered levels u2. Finally, the robustness
with respect to the chosen significant α-levels can be observed in Table 1.

5 Conclusions and discussion

We have presented new statistical tools for inferring parameters and testing Gaussianity when only a
sparse observation of a 2D random field is available, namely only the excursion set(s) above one or two
level(s) within a large window. These tools are based on the three LK curvatures of the excursion sets,
which are loosely given by the Euler characteristic, the half perimeter and the area.

The idea of considering the statistical characteristics of the excursion sets has been originally developed
for one-dimensional processes with the powerful theory of crossings. Let us comment how our two-
dimensional results can be adapted to dimension one. First, we recall that only two LK curvatures are
available for Borelian subsets of R: the one-dimensional Lebesgue measure (i.e. the length) and the Euler
characteristic C0 (i.e. the number of connected components). A similar statement as Proposition 2.5
provides an estimator of C∗0 (X,u) for any standard stationary process X.
In particular, when X is a Gaussian process defined on R, an adapted version of Proposition 2.6 allows
to build a consistent estimator of the second spectral moment of X, which is asymptotically normal with
known asymptotic variance. Indeed, the latter variance can be computed from the asymptotic variance
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V (u) appearing in [12] with an explicit formula in dimension one (see Proposition 8 in [12]). Let us
again insist on the fact that the consistent estimator of the second spectral moment that we propose only
relies on the observation of a single excursion of X. It would be interesting to compare it with more
usual estimators based for instance on the estimation of the covariance function of X, which requires the
observation of the whole process, or with the naive empirical estimator based on the number of crossings
at different levels that is described in [23] and used in [12], Section 4.1.2.
In the same vein, for a chi-square process defined on R, the finiteness of the asymptotic variance of the
Euler characteristic of excursion sets is proved in Proposition 7 in [12]. Using this result, one could expect

to obtain the consistency of the estimator K̂(u) of the degrees of freedom and the estimator λ̂T,K̂(u)(u)

of the Gaussian second spectral moment, which are obtained from Equations (14) and (15) adapted to
the univariate framework.

Turning back to the bivariate framework, let us discuss about the potential improvement provided by the
joint observations of several LK densities. In Section 4, in order to analyse the simulated 2D digital mam-
mograms data-set, we have used C∗0 (·, u). Let us now investigate the use of C∗2 (·, u) and the associated

unbiased estimator in Proposition 2.5. In Figure 12 we display Ĉ2,T (·, u) for each image in the 3 groups
compared with the tail distribution with zero mean and unit variance ψ(u) (see Equation (11)). In order
to improve the readability for extreme values of u, in Figure 12 we chose a logarithmic scale for the y−axis.
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Figure 12: Ĉ2,T (·, u) in (10) for the 3 groups for different values u. The full black line represents ψ(u) in Equation (11),
i.e., the Gaussian tail distribution with zero mean and unit variance. We take here a logarithmic scale for the y−axis.

A clear assessment is that the two LK densities C∗0 and C∗2 bring two different points of view on the 15

images. For instance, for extreme levels u, say above level 2.5, the Ĉ2,T (·, u) of the mammograms clearly
have a different behavior than the Gaussian one (see Figure 12). Moreover, the difference is greater for
images of type (C) than for images of type (B), which is already greater than images of type (A). A

similar behavior was not observed with the Ĉ0,T (·, u). This point clearly deserves to be studied. As it
involves larger levels, it is certainly related to extreme values theory.

Following the idea of taking advantage of the joint observation of several LK densities, our study can be
continued with the development of efficient numerical tools adapted to different sorts of medical images.
For instance, considering 2D x-ray bone images in order to detect osteoporosis, one can expect getting
information on the bone density through C∗2 and on the bone connectivity through C∗0 . Both quantities
really affect the mechanical bone resistance and should be both evaluated with the target of reducing the
number of misclassified patients. Another direction that merits to be explored in the use of 3D images
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that are now quite common for medical diagnoses. Hence, one should improve our methods by including
now four LK curvatures that are directly linked to the bone tissue itself instead of projected images.

In this article, we have not fully used the joint estimation of two (nor three) LK densities. Indeed, we are
not aware of any joint central limit theorem for the LK densities of excursion sets of stationary random
fields on R2, except in the case of a Boolean model in [19] or in the case of pixelated images in [29] and
binary images in [13]. Those results do not apply in our context. If it exists, such a theorem would enable
to build asymptotic confident regions that take into account the whole information of LK densities of the
observed excursion set.

Finally, in the present study, we became aware that the Matlab function bwperim seems to not perform
very well on the excursion sets of the two dimensional fields we considered, yielding an overestimation of
C∗1 . The observed pixelization errors arise numerically due to the discretized representation of the smooth
level set from a pixelated image, we mentioned this drawback in Section 2. It should be interesting to
link our study with the numerous literature on pixelization effects. The already mentioned papers [29]
and [13] should provide good tools for such an approach.

A Technical proofs

A.1 Proof of Proposition 2.7

Computation of the LK densities for Tk. We use (7) after observing that Tk = F (G) with G =
(G0, G1, . . . , Gk) and F : (x, y) ∈ R× Rk 7→ x

||y||/
√
k

. Then

F−1([u,∞))) =
{

(x, y) ∈ R× Rk : ||y|| ≤
√
k

u
x
}
, if u > 0. (31)

ρ

ρ
ρ̃

||y|| = 1
ux

x

||y|| = −1
ux

||y|| = 1
ux+ ρ̃

−x0

Figure 13: Case k = 2. The domain F−1([u,∞)) in (31) (area delimited by plain lines) and the tube Tube(F, ρ) around

(area delimited by dotted lines), where ||y||2 =
∑k
i=1 y

2
i , x0 := ρ sin(θk) =

√
k
u√

1+ k
u2

and ρ̃ := ρ
cos θk

= ρ
√

1 + k
u2 with

θk := arctan
(√

k
u

)
.

Denote by Fk the cumulative chi distribution (the square root of a chi-square random variable) with k
degrees of freedom. Using (31) and u > 0, we have that

P
(
G(0) ∈ Tube(F, ρ)

)
=

∫
x≥−x0

e−x
2/2

√
2π

Fk

(√k
u
x+ ρ̃

)
dx+O(ρk),
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where we have neglected the circular part of Tube(F, ρ). Then, using x0 =
√
k
u

(√
1 + k

u2

)−1

, ρ̃ =

ρ
√

1 + k
u2 and that Fk(0) = F ′k(0) = 0, we get

P
(
G(0) ∈ Tube(F, ρ)

)
=

∫
x≥0

e−x
2/2

√
2π

Fk

(√k
u
x
)
dx+ ρ

√
1 +

k

u2

∫
x≥0

e−x
2/2

√
2π

F ′k

(√k
u
x
)
dx

+
1

2
ρ2
(

1 +
k

u2

)∫
x≥0

e−x
2/2

√
2π

F ′′k

(√k
u
x
)
dx+O(ρk).

The latter formula is established for u > 0. The case u < 0 is derived using symmetry arguments. If
u = 0, F−1([0,∞)) = R+ × Rk and Equation (6) becomes

P
(
G(0) ∈ Tube(F, ρ)

)
=

∫
x≥−ρ

e−x
2/2

√
2π
× 1dx =

1

2
+ ρ

1√
2π

+
ρ2

2
× 0 +O(ρ3).

Then, we derive the following formulas, valid for k ≥ 3,

M0(Tk, u) = P(Student(k) ≥ u) =


∫ +∞

0
e−x

2/2
√

2π
Fk(

√
k
u x) dx if u > 0,

1
2 if u = 0,

1−
∫ +∞

0
e−x

2/2
√

2π
Fk(

√
k
−ux) dx else;

M1(Tk, u) =

{
(1 + k

u2 )1/2
∫ +∞

0
e−x

2/2
√

2π
F ′k(

√
k
|u| x) dx if u 6= 0,

1√
2π

if u = 0;

M2(Tk, u) =

{
sign(u)(1 + k

u2 )
∫ +∞

0
e−x

2/2
√

2π
F ′′k (

√
k
|u| x) dx if u 6= 0,

0 if u = 0.

These quantities can be simplified using the following result E[|N (0, 1)|k] = 1√
π

2
k
2 Γ
(
k+1

2

)
. It follows from

simple computations that

M0(Tk, u) = P(Student(k) ≥ u), M1(Tk, u) =
1√
2π

(
1 +

u2

k

) 1−k
2

,

M2(Tk, u) =
k − 1

2
√
π

u√
k

Γ
(
k−1

2

)
Γ
(
k
2

) (1 +
u2

k

) 1−k
2

.

Then, it is straightforward to derive the Student LK densities from (7). The above quantities do not
depend on the parameter dimension of the Student field Tk, which is equal to 2 in our bivariate context.
�

Computation of the second spectral moment of Tk (Formula (16)). The Student field is isotropic,

the second spectral moment is λStu := [V(Tk(0)′)](1,1) = V(∂1Tk(0)) where for t = (T
(N)
1 , T

(N)
2 ), ∂1f(t) =

∂f

∂T
(N)
1

(t). Note that

Tk(t) =
√
k
G0(t)√
Zk(t)

, t ∈ R2,
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where Zk =
∑k
i=1Gi(t)

2 is a chi-square random field with k degrees of freedom independent of the
Gaussian field G0. We have

∂1Tk(t) =
√
k
∂1G0(t)

√
Zk(t)−G0(t) ∂1Zk(t)

2
√
Zk(t)

Zk(t)
=
√
k

(
∂1G0(t)√
Zk(t)

− 1

2
G0(t)

∂1Zk(t)

Zk(t)3/2

)
,

which is centered, as G0 and ∂1G0 are independent, centered and independent of (Zk, ∂1Zk). Therefore,
we get

λStu = E[(∂1Tk(0))2] = k

(
λE
( 1

Zk(0)

)
+

1

4
E
(∂1Zk(0)2

Zk(0)3

))
,

where we used that G0 and ∂1G0 are independent, centered, with unit variance and independent of
(Zk, ∂1Zk) together with E[∂1G0(0)2] := λ. To complete the computation of λStu, we first have that, for

k ≥ 3, E
(

1
Zk(0)

)
= 1

k−2 . Second, using the definition of a chi-square distribution, it holds that

∂1Zk(0)2

Zk(0)3
= 4

∑k
i,j=1Gi(0)Gj(0)∂1Gi(0)∂1Gj(0)(∑k

i=1Gi(0)2
)3 .

Taking expectation and using that ∂1Gi is centered and independent of
(
(∂1Gj , Gj)j 6=i, Gi

)
together with

the definition of λ, we derive that

E
(
∂1Zk(0)2

Zk(0)3

)
= 4kλE

(
G1(0)2(∑k
i=1Gi(0)2

)3
)

= 4kλE

(
G1(0)2(

G1(0)2 + Zk−1(0)
)3
)
,

where Zk−1 is a chi-square random field with k − 1 degrees of freedom and independent of G1. Then,

I(k) := E

(
G1(0)2(∑k
i=1Gi(0)2

)3
)

=
1√
2π

∫
R

∫
R+

x2

(x2 + z)3
e−(x2+z)/2 z

k−1
2 −1

2
k−1

2 Γ
(
k−1

2

)dzdx
=

1√
2π2

k−1
2 Γ

(
k−1

2

) ∫
R

∫
R+

x2

x6(1 + y)3
e−x

2(1+y)/2 xk−3 y
k−1

2 −1 x2dydx with z = x2y

=
1

2
k−1

2 Γ
(
k−1

2

) ∫
R+

y
k−3

2

(1 + y)5/2

(∫
R

(1 + y)1/2

√
2π

xk−5e−x
2(1+y)/2dx

)
dy.

We recognize the (k − 5)-th moment of a N(0, (1 + y)−1) random variable in the last line. Let µ(`) :=
E[N(0, 1)`] with ` ∈ N, it holds that

I(k) =
µ(k − 5)

2
k−1

2 Γ
(
k−1

2

) ∫
R+

u
k−3

2

(1 + u)k/2
du =

µ(k − 5)

2
k−1

2 Γ
(
k−1

2

)B(k − 1

2
,

1

2

)
,

where B(x, y) denotes the beta function. It simplifies in

I(k) =
µ(k − 5)

2
k−1

2 Γ
(
k−1

2

) Γ
(
k−1

2

)
Γ
(

1
2

)
Γ
(
k
2

) =
√
πµ(k − 5)

1

2
k−1

2 Γ
(
k
2

) .
Finally, for k ≥ 5,

λStu = λ k

(
1

k − 2
+
√
π
E[N(0, 1)k−5]

2
k−1

2 Γ
(
k
2

) )
=

λ
k
k−2 if k is even,

λ k
(

1
k−2 +

√
π

2k−3

(k−5)!

( k−5
2 )!Γ

(
k
2

)) else.

�
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A.2 An auxiliary result

In the following we state and prove an auxiliary result which is crucial in the derivation of Proposition 2.11
and Theorem 2.12. In the sequel we will make extensive use of notations and definitions introduced in [7],
some of them will be redefined, for the others the reader can refer to [7]. As in Section 2.3, we consider
a shot-noise field SΦ prescribed by

SΦ(t) =
∑

(xi,bi,ri)∈Φ

bi1riD(t− xi) , t ∈ R2,

where Φ is a stationary Poisson point process on R2×R∗×R+ with intensity measure ν LebR2⊗dFB⊗dFR
where ν > 0, FB is a probability measure on R∗, FR is a probability measure on R+ and D is the unit
disc in R2, well defined under the condition E[|B|] E[R2] < +∞, with B and R two random variables
with respective distributions FB and FR.
Since excursion sets of SΦ are not always UPR, we need to introduce the level perimeter LP and the
level total curvature LTC integrals as introduced in [7]. Using this setting, the excursions ESΦ(u) are
elementary sets (see Definition 1 [7]). Then, for a bounded open set U and h a continuous bounded
function, one can define

LPSΦ(h, U) := 2

∫
R
h(u)Φ1(ESΦ(u), U)du

LTCSΦ
(h, U) :=

∫
R
h(u)TC(∂ESΦ

(u), U)du = 2π

∫
R
h(u)Φ0(ESΦ

(u), U)du.

Let us consider the distribution F (dm) = FB(db)×FR(dr) for m = (b, r) ∈ R× (0,+∞) ⊂ R2 and denote
gm(x) = b1rD(x) with D the unit disk. The function gm is an elementary function on R2 (see Definition
3 in [7]) with discontinuity set given by

Sgm = Rgm = ∂Dr,

where ∂Dr is the circle of radius r. According to Theorem 4 of [7], a.s. for any U bounded open set, the
shot noise field SΦ is an elementary function on U with discontinuity set given by U ∩ SSΦ

with

SSΦ
= ∪

(x,m)∈Φ
τx∂Dr = RSΦ

∪ ISΦ
,

with

RSΦ
= ∪

(x,m)∈Φ
τx∂Dr\ISΦ

for ISΦ
=

6=
∪

(x1,m1),(x2,m2)∈Φ
τx1

∂Dr1 ∩ τx2
∂Dr2 ,

where τxy = x+ y.
By Proposition 2 and Theorem 4 of [7], for H a primitive of h and H1 the one dimensional Hausdorff
measure (recall that H1(A) = |A|1), it follows that

LPSΦ
(h, U) =

∑
(x,m)∈Φ

∫
τx∂Dr∩U

[H(SΦ\{(x,m)}(z) + b+)−H(SΦ\{(x,m)}(z) + b−)]H1(dz)

where we use the fact that H1 (τx∂Dr ∩ τx′∂Dr′) = 0 a.s. for all different points of Φ and denote
b+ = max(b, 0) and b− = min(b, 0). Besides, we have LTCSΦ

(h, U) = RSΦ
(h, U) + ISΦ

(h, U), where

RSΦ
(h, U) =

∑
(x,m)∈Φ

∫
τx∂Dr∩U

[H(SΦ\{(x,m)}(z) + b+)−H(SΦ\{(x,m)}(z) + b−)] sign(b)κ∂Dr (z)H1(dz),
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Figure 14: Illustration with an elementary function given by f = 1Dr1 + 1Dr2 with 0 < r1 < r2. Left: its discontinuity

set Sf = Rf ∪If with If given by the red crosses. Center and Right: Ef (1) and Ef (2): the boundaries are regular except
at corner points given by If .

with κ∂Dr (z) = 1
r the curvature of the curve ∂Dr at point z ∈ ∂Dr, and

ISΦ
(h, U) =

1

2

6=∑
(x1,m1),(x2,m2)∈Φ

∑
z∈τx1

∂Dr1∩τx2
∂Dr2∩U

∆b1,b2H(SΦ\{(x1,m1),(x2,m2)}(z))βb1,b2(z),

where ∆b1,b2H(t) =
[
H(t+ b+1 + b+2 ) +H(t+ b−1 + b−2 )−H(t+ b+1 + b−2 )−H(t+ b−1 + b+2 )

]
and for z ∈

τx1
∂Dr1 ∩ τx2

∂Dr2 ,

βb1,b2(z) = dist

(
sign(b1)

x1 − z
r1

, sign(b2)
x2 − z
r2

)
,

with dist the geodesic distance on the circle.

We can now state the following result that has interest on its own: it allows to obtain uniform bounds
for the integral functionals, these bounds being usually hard to obtain when considering an excursion set
at a fixed level.

Proposition A.1 (Moments of LPSΦ
and LTCSΦ

). Assume that E(R2) < +∞ and E(|B|) < +∞ and
recall that p = 2πE(R) and a = πE(R2). Then, for any U bounded open set and any continuous function
h with primitive H, one has

i). E (LPSΦ(h, U))) = νp|U |
∫
R E ([H(SΦ(0) + b+)−H(SΦ(0) + b−)])FB(db);

ii). E (LTCSΦ
(h, U)) = 2πν|U |

∫
R E ([H(SΦ(0) + b+)−H(SΦ(0) + b−)]) sign(b)FB(db)

+ (νp)2

2 |U |
∫
R2 E (∆b1,b2H(SΦ(0)))FB(db1)FB(db2).

Moreover, when R ≤ Rmax a.s. for some positive constant Rmax and H is bounded, one has

iii). Var (LPSΦ
(h, U))) ≤ CH |U |

(
(Rmaxνp)

2
+ νa

)
;

iv). Var (LTCSΦ(h, U)) ≤ CH |U |
{(

(Rmaxν)
2

+ ν
)

+ (νp)2
(
(Rmaxνp)

2 + νa+ 1
)}
,

for a constant CH that only depends on ‖H‖∞ and such that CH ≤ 27π‖H‖2∞.

Proof. i). Let us introduce

f
(1)
h ((x,m),Φ) =

∫
τx∂Dr∩U

[H(SΦ(z) + b+)−H(SΦ(z) + b−)]H1(dz)
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such that LPSΦ
(h, U) =

∑
(x,m)∈Φ f

(1)
h ((x,m),Φ\{(x,m)}). It follows from the reduced Campbell formula

(see e.g. [4] Theorem 1.4.3),

E
(
LPSΦ(h, U)

)
=

∫
R2×R2

E
(
f

(1)
h ((x,m),Φ)

)
νdxF (dm),

with E
(
f

(1)
h ((x,m),Φ)

)
= E ([H(SΦ(0) + b+)−H(SΦ(0) + b−)])H1 (τx∂Dr ∩ U) by stationarity of SΦ.

Hence,

E (LPSΦ
(h, U)) = ν|U |

∫
R
H1 (∂Dr)FR(dr)

∫
R
E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
FB(db)

= |U |νp
∫
R
E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
FB(db).

iii). It holds that

(LPSΦ
(h, U))

2
=

∑
(x1,m1)∈Φ

f
(1)
h ((x1,m1),Φ\{(x1,m1)})2

+

6=∑
(x1,m1),(x2,m2)∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)}),

where

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})
= f

(1)
h ((x1,m1),Φ\{(x1,m1)})f (1)

h ((x2,m2),Φ\{(x2,m2)})

=

∫
τx1

∂Dr1∩U

∫
τx2

∂Dr2∩U
Kh((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})(z1, z2)H1(dz2)H1(dz1)

for

Kh((x1,m1), (x2,m2),Φ)(z1, z2) = [H(SΦ(z1) + τx2gm2(z1) + b+1 )−H(SΦ(z1) + τx2gm2(z1) + b−1 )]

× [H(SΦ(z2) + τx1
gm1

(z2) + b+2 )−H(SΦ(z2) + τx1
gm1

(z2) + b−2 )].

Since R ≤ Rmax a.s, for any |z − z′| > 2Rmax, the variables SΦ(z) and SΦ(z′) are independent.

Firstly, it holds

E

 6=∑
(x1,m1),(x2,m2)∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})


=

∫
R2×R2

∫
R2×R2

E(f
(2)
h ((x1,m1), (x2,m2),Φ)ν2dx1F (dm1)dx2F (dm2) := I1 + I2,

where we split the integral over the domains |x1 − x2| ≤ 4Rmax and |x1 − x2| > 4Rmax. Indeed,
for |x1 − x2| > 4Rmax we have |zj − xi| > 3Rmax for any {i, j} = {1, 2} and zj ∈ τxj∂Drj so that
τxigmi(zj) = 0. By independence, we get that

I2 =
(
E(LPSΦ

(h, U))
)2

−
∫
R2×R2

∫
R2×R2

1|x1−x2|≤4Rmax
E(f

(1)
h ((x1,m1),Φ)E(f

(1)
h ((x2,m2),Φ)ν2dx1F (dm1)dx2F (dm2).
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Hence
I1 + I2 =

(
E(LPSΦ(h, U))

)2
+ ν2∆h(U),

with

∆h(U) =

∫
R2×R2

∫
R2×R2

1|x1−x2|≤4Rmax
∆h(U, (x1,m1), (x2,m2))dx1F (dm1)dx2F (dm2),

for

∆h(U, (x1,m1), (x2,m2)) =
(
E(f

(2)
h ((x1,m1), (x2,m2),Φ)− E(f

(1)
h ((x1,m1),Φ)E(f

(1)
h ((x2,m2),Φ)

)
.

As H is bounded, we have |f (1)
h ((x,m),Φ)| ≤ 2‖H‖∞H1(τx∂Dr ∩ U), so that

|∆h(U, (x1,m1), (x2,m2))| ≤ 8‖H‖2∞H1(τx1
∂Dr1 ∩ U)H1(τx2

∂Dr2 ∩ U).

It follows that, for CH := 27π‖H‖2∞,

∆h(U) ≤ 8‖H‖2∞|U | × π(4Rmax)2

(∫
R
H1(∂Dr)F (dr)

)2

≤ CHR2
max|U |p2.

Secondly,

E
( ∑

(x1,m1)∈Φ

f
(1)
h (x1,m1),Φ\{(x1,m1)})2

)
=

∫
R2×R2

E
(
f

(1)
h ((x,m),Φ)2

)
νF (dm)dx

≤ ν|U |4‖H‖2∞
∫
R
H1 (∂Dr)

2
F (dr) ≤ 16π‖H‖2∞|U |νa.

Hence, we obtain
Var (LPSΦ

(h, U)) ≤ CH |U |
(
R2
maxν

2p2 + νa
)
.

ii). iv). Recall that LTCSΦ
(h, U) = RSΦ

(h, U) + ISΦ
(h, U). Then, we bound the expectation and vari-

ance of RSΦ
(h, U) and ISΦ

(h, U) separately.

First consider RSΦ(h, U), we prove similarly

E (RSΦ
(h, U)) = ν|U |

∫
R

H1 (∂Dr)

r
F (dr)

∫
R
E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
sign(b)FB(db),

= 2πν|U |
∫
R
E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
sign(b)FB(db),

and
E
(

(RSΦ
(h, U))

2
)

= E (RSΦ
(h, U))

2
+ ∆̃h(U), with |∆̃h(U)| ≤ CH |U |

(
R2
maxν

2 + ν
)
.

Now, let us focus on ISΦ
(h, U). We have

ISΦ
(h, U) =

1

2

6=∑
(x1,m1),(x2,m2)∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)}),

where
f

(2)
h ((x1,m1), (x2,m2),Φ) =

∑
z∈τx1

∂Dr1∩τx2
∂Dr2∩U

∆b1,b2H(SΦ(z))βb1,b2(z).
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It holds that

E (ISΦ
(h, U))

=
1

2

∫
R4

∫
R4

E
(
f

(2)
h ((x1,m1), (x2,m2),Φ)

)
ν2dx1F (dm1)dx2F (dm2)

=
1

2

∫
R4

∫
R4

∑
z∈τx1∂Dr1∩τx2∂Dr2∩U

E(∆b1,b2H(SΦ(z)))βb1,b2(z)ν2dx1F (dm1)dx2F (dm2)

=
ν2|U |

2

∫
R2

E(∆b1,b2H(SΦ(0)))

∫
R4

∑
z∈∂Dr1∩τx∂Dr2

dist(sign(b1)
−z
r1
, sign(b2)

x− z
r2

))dxdr1dr2

FB(db1)FB(db2)

with, by kinematic formula (see Lemma 1 in [7] for instance),∫
R2

∑
z∈∂Dr1∩τx∂Dr2

dist(sign(b1)
−z
r1
, sign(b2)

x− z
r2

))dx = H1(∂Dr1)H1(∂Dr2).

It follows that

E (ISΦ(h, U)) =
(νp)2|U |

2

∫
R2

E(∆b1,b2H(SΦ(0)))FB(db1)FB(db2).

Let us write

(ISΦ
(h, U))

2

=
1

4

 6=∑
(x1,m1),(x2,m2)∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})

2

=
1

4

6=∑
(x1,m1),...,(x4,m4)∈Φ

f
(4)
h ((x1,m1), . . . , (x4,m4),Φ\{(x1,m1), . . . , (x4,m4)}

+

6=∑
(x1,m1),(x2,m2),(x3,m3)∈Φ

f
(3)
h ((x1,m1), (x2,m2), (x3,m3),Φ\{(x1,m1), (x2,m2), (x3,m3)}

+
1

4

6=∑
(x1,m1),(x2,m2)∈Φ

(
f

(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})

)2

:= I1(Φ) + I2(Φ) + I3(Φ),

where

f
(4)
h ((x1,m1), . . . , (x4,m4),Φ\{(x1,m1), . . . , (x4,m4)})
= f

(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x1,m2)})f (2)

h ((x3,m3), (x4,m4),Φ\{(x3,m3), (x4,m4)})
=

∑
z∈τx1

∂Dr1∩τx2
∂Dr2∩U

∑
z′∈τx3

∂Dr3∩τx4
∂Dr4∩U

∆b1,b2H(SΦ\{(x1,m1),...,(x4,m4)}(z) + τx3
gm3

(z) + τx4
gm4

(z))

× βb1,b2(z)∆b3,b4H(SΦ\{(x1,m1),...,(x4,m4)}(z
′) + τx1gm1(z′) + τx2gm2(z′))βb3,b4(z′),

and, by symmetry,

f
(3)
h ((x1,m1), (x2,m2), (x3,m3),Φ\{(x1,m1), (x2,m2), (x3,m3)})
=

∑
z∈τx1

∂Dr1∩τx2
∂Dr2∩U

∑
z′∈τx3

∂Dr3∩τx1
∂Dr1∩U

∆b1,b2H(SΦ\{(x1,m1),...,(x3,m3)}(z) + τx3
gm3

(z))

× βb1,b2(z)∆b3,b1H(SΦ\{(x1,m1),...,(x3,m3)}(z
′) + τx1

gm1
(z′))βb1,b3(z′).
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Hence, we can also write

E (I1(Φ)) =
(
E (ISΦ

(h, U))
)2

+ ν4 ˜̃∆h(U),

with ˜̃
∆h(U) =

1

4

∫
R16

1|x1−x3|≤4Rmax
˜̃
∆h(U, (x1,m1), . . . , (x4,m4))dx1F (dm1) . . . dx4F (dm4),

for∣∣∣ ˜̃∆h(U, (x1,m1), . . . , (x4,m4))
∣∣∣

≤ 2(4‖H‖∞)2
∑

z∈τx1
∂Dr1∩τx2

∂Dr2∩U

∑
z′∈τx3

∂Dr3∩τx4
∂Dr4∩U

βb1,b2(z)βb3,b4(z′)dx1F (dm1) . . . dx4F (dm4),

Therefore, | ˜̃∆h(U)| ≤ CH |U |R2
maxp

4. Similar arguments lead to

|E(I2(Φ))| ≤ CHν3|U |p2a and |E(I3(Φ))| ≤ CHν2|U |p2..

Finally, since Var (ISΦ(h, U)) = E(I1(Φ)) + E(I1(Φ)) + E(I1(Φ))−
(
E(ISΦ(h, U))

)2

, we obtain

Var (ISΦ(h, U)) ≤ CH |U |(νp)2
(
(Rmaxνp)

2 + νa+ 1
)
.

A.3 Proof of Lemma 2.10

From now on we assume that B is a discrete random variable with values in Z∗. Then, the random field
SΦ has values in Z, and it follows that for all u ∈ R, ESΦ

(u) = ESΦ
(due). For u ∈ Z, choosing h a

continuous function with compact support in (0, 1) and such that
∫
R h(t)dt = 1 one has

Φ1(ESΦ
(u), U) =

1

2
LPSΦ

(τu−1h, U) and Φ0(ESΦ
(u), U) =

1

2π
LTCSΦ

(τu−1h, U),

where τu−1h(t) = h(t − (u − 1)) vanishes outside (u − 1, u). Now, considering for t 6= 0, the function
ht(u) = eiut we can compute the Fourier transforms of u 7→ 1

|U |E (Φj(ESΦ(u), U)) as 1
2|U |E (LPSΦ(ht, U))

for j = 1 and 1
2π|U |E (LTCSΦ(ht, U)) for j = 0. We obtain the right members of (18) and (19) using

Proposition A.1 i) and ii), with Ht(u) = eitu−1
it . The link with C∗j (SΦ, u) is given in the next proposition.

Proposition A.2. For all u ∈ Z,

•
(
E
(
C
/T
1 (SΦ, u)− Φ1(ESΦ

(u),T̊ )

|T |
)2)1/2

≤ |∂T |1|T | ;

•
(
E
(
C
/T
0 (SΦ, u)− Φ0(ESΦ

(u),T̊ )

|T |
)2)1/2

≤ 2νp |∂T |1|T | , as soon as νp|∂T |1 > 1.

As a consequence C∗j (SΦ, u) exists for j ∈ {0, 1} and is equal to
E(Φj(ESΦ

(u),U))
|U | , for any bounded open

set U .

Proof. Let us remark that the boundary contributions (see Figure 2 of [7]) may be controlled using the
fact that a.s.∣∣∣C1(SΦ, u, T )− Φ1(ESΦ(u), T̊ )

∣∣∣ ≤ |∂T |1 and
∣∣∣C0(SΦ, u, T )− Φ0(ESΦ(u), T̊ )

∣∣∣ ≤ 1

2
# (SSΦ ∩ ∂T ) + 1,
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where we use that T being a rectangle the curvature is 0 on its boundary except at corner points where
it is π

2 . Dividing by |T | we immediately get the first point. For the second one, since SSΦ = ∪iτxi∂Dri ,
with τxi∂Dri ∩ τxj∂Drj ∩ ∂T = ∅ a.s. as soon as i 6= j, we have

# (SSΦ ∩ ∂T ) =
∑
i

# (τxi∂Dri ∩ ∂T ) a.s.

It follows that

E (# (SSΦ ∩ ∂T )) =

∫
R2×R+

# (τx∂Dr ∩ ∂T ) νdxFR(dr).

But, again kinematic formula (see Lemma 1 of [7]) yields∫
R2

# (τx∂Dr ∩ ∂T ) dx = 4r|∂T |1,

so that

E (# (SSΦ ∩ ∂T )) =
2

π
νp|∂T |1.

Moreover,

Var (# (SSΦ
∩ ∂T )) =

∫
R2×R+

(#(τx∂Dr ∩ ∂T ))
2
νdxFR(dr) ≤ 4

π
νp|∂T |1,

since # (τx∂Dr ∩ ∂T ) ≤ 2. Therefore,

E((#(SSΦ
∩ ∂T ))2) = Var(#(SSΦ

∩ ∂T )) +E(#(SSΦ
∩ ∂T ))2 ≤ 4

π
νp|∂T |1(1 +

1

π
νp|∂T |1) ≤ 2 (νp|∂T |1)

2
,

as soon as νp|∂T |1 ≥ 1. The second bound is obtained dividing by |T | and using the fact that
√

2/2+1 ≤ 2.
Now we have

|E
(
C
/T
j (SΦ, u)

)
− E(Φj(ESΦ

(u), T̊ ))

|T̊ |
| ≤ E

(∣∣∣∣∣‖C/Tj (SΦ, u)− Φ1(ESΦ
(u), T̊ )

|T |

∣∣∣∣∣
)
≤ max(1, νp)

|∂T |1
|T | ,

by the previous bound. This allows us to prove that C∗j (SΦ, u), j = 0, 1 exist as the limit of E(C
/T
j (SΦ, u))

when T ↗ R2.

A.4 Proof of Theorem 2.12

We work under the same assumptions as in Sections A.2 and A.3. We furthermore assume that R ≤ Rmax

a.s. Denote by ‖Z‖2 :=
(
E[Z2]

)1/2
, then we write

‖C/Tj (SΦ, u)− C∗j (SΦ, u)‖2 ≤
∥∥∥∥∥C/Tj (SΦ, u)− Φj(ESΦ

(u), T̊ )

|T |

∥∥∥∥∥
2

+

∥∥∥∥∥Φj(ESΦ
(u), T̊ )

|T | − C∗j (SΦ, u)

∥∥∥∥∥
2

.

The first term is bounded by max(2νp, 1) |∂T |1|T | by Proposition A.2. Moreover, using R ≤ Rmax a.s. and

choosing h a non-negative continuous function with compact support in (0, 1) such that
∫
R h(t)dt = 1,∥∥∥∥∥Φ1(ESΦ

(u), T̊ )

|T | − C∗1 (SΦ, u)

∥∥∥∥∥
2

2

=
1

4|T |2 Var
(

LPSΦ
(τu−1h, T̊ )

)
≤ C

4|T |
(
R2

maxν
2p2 + νa

)
,
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by Proposition A.1, since we can choose a primitive of τu−1h uniformly bounded by 1. Similarly, we
obtain ∥∥∥∥∥Φ0(ESΦ

(u), T̊ )

|T | − C∗0 (SΦ, u)

∥∥∥∥∥
2

2

=
1

4π2|T |2 Var
(

LTCSΦ
(τu−1h, T̊ )

)
≤ C

2π2|T |
(

(Rmaxν)
2

+ ν + (νp)2
(
(Rmaxνp)

2 + νa+ 1
))
.

Finally,

‖C/T2 (SΦ, u)− C∗2 (SΦ, u)‖22 =
1

|T |2
∫
T×T

Cov
(
1SΦ(x)≥u, 1SΦ(y)≥u

)
dxdy ≤ 4πR2

max

|T | ,

using the fact that SΦ(x) and SΦ(y) are independent as soon as |x − y| > 2Rmax. By the triangle

inequality, we obtain the result for Ĉj,T (SΦ, u), j ∈ {0, 1, 2}.
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