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The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any
given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in
core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with
special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The
formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium
cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations.
Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the
Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse
trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster
probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass
models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the
method to any relativistic or nonrelativistic subsaturation equation of state.

DOI: 10.1103/PhysRevC.97.035807

I. INTRODUCTION

Most of the methods used to calculate the equation of
state (EoS) in the (proto)neutron-star crust and in supernova
cores rely on the Wigner-Seitz (WS) approximation. In this
framework, matter is divided into cells, each one charge
neutral, with a nucleus at the center, surrounded by a gas of
free nucleons (neutrons and, at finite temperature, free protons)
and electrons. The standard way to calculate the EoS is then
to minimize the (free) energy of the system with respect to
the atomic and mass number of the nucleus, the volume of the
cell (or its radius), and the free nucleon densities, under baryon
number and charge conservation (see, e.g., the pioneer works of
Refs. [1,2]). If additional structures, like the so-called “pasta”
phases, are included, the minimization is also performed on the
shape of the cell (see, e.g., the pioneer works of Refs. [3,4]).

Within this WS hypothesis, that is within the single nucleus
approximation (SNA), different models to calculate the EoS
of clustered matter at finite temperature have been devel-
oped, using the (compressible) liquid-drop method (see, e.g.,
Refs. [5–9]), the (extended) Thomas-Fermi approach (see, e.g.,
Refs. [10–21]), or more microscopic self-consistent mean-field
Hartree-Fock and Hartree-Fock-Bogoliubov models (see, e.g.,
Refs. [22–27]); see also Ref. [28] for a review. In particular, the
two currently most employed EoSs in supernova simulations,
namely the Lattimer and Swesty (LS) [8] and the Shen et al.
[12,14] EoSs, both make use of this WS concept of a unique
configuration associated to each thermodynamic condition,
given by the baryon density nB , the temperature T , and the
proton fraction Yp (or, equivalently, the electron fraction Ye; be-
cause of charge conservation, Ye = Yp). While for the physics

of “cold” (catalyzed) neutron stars this assumption is correct
(in the absence of phase transitions), at finite temperature the
approximation of a unique configuration, which is the most
favorable from the thermodynamic point of view, has to be
seen as an average way to account for the properties of a
statistical distribution. Despite this approximation does not
change considerably the thermodynamic properties of matter
[29], quantitative differences arise in the matter composition,
in particular concerning the contribution of light and inter-
mediate mass nuclei. In turn, this impacts the calculation of
reaction rates on individual nuclei thus affecting the dynamical
processes depending on these rates (see, e.g., Refs. [30–33]).

Recently, efforts have been made to construct EoSs for
supernova matter including an ensemble of nuclei, based on
the (extended) nuclear statistical equilibrium (NSE) approach,
starting with the pioneer works of El Eid, Hillebrandt et al.
[34,35] (see, e.g., Refs. [36–49]). While standard NSE-based
models treat the matter constituents as a mixture of noninter-
acting ideal gases governed by the Saha equation, neglecting
interactions and in-medium effects (see, e.g., the classical text-
books [50,51]), in extended NSE approaches the distribution
of clusters is obtained self-consistently under conditions of
statistical equilibrium and interactions are taken into account.
Indeed, in-medium corrections are known to be particularly
important at high density. The way of treating these corrections,
as well as other model assumptions such as the choice of
the nuclear masses and/or level densities, are also responsible
for affecting the thermodynamic quantities and the nuclear
composition predicted by different NSE models (see, e.g.,
Ref. [52]). Moreover, a limitation of the current available EoSs
based on the NSE model is that they are given in the form of
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tables, thus systematic investigations in numerical simulations
varying one or the other nuclear input are difficult to perform.

In this work, we derive a general formalism, based on
the work of Ref. [47], to include an extended NSE model at
subsaturation density and finite temperature in any approach,
either nonrelativistic or relativistic, based on the WS cell
approximation, starting from an arbitrary free energy density
and including explicit cluster degrees of freedom. In Sec. II
we introduce the formalism and the particular application to
the LS EoS is presented in Sec. III. Details on the formal
derivations are given in Appendices A and B. In Sec. IV
we discuss the results obtained employing this formalism in
a perturbative way, on the top of the LS EoS, using both
the original compressible liquid-drop model and including
more microscopic nuclear mass table for the calculation of
the nuclear binding energies (Sec. IV A). Finally, in Sec. V,
we draw our conclusions and future outlooks.

II. NSE FROM A WIGNER-SEITZ FREE ENERGY

Let us consider an arbitrary model giving the free energy
in a WS cell, FWS, as a function of the variational parameters.
While at zero temperature a unique realization of the WS cell
is expected, at finite temperature different realizations of the
WS cell are possible (see, e.g., Ref. [47]). If we consider a very
large volume V → ∞, containing a large number of WS cells,
each one with volume V

(j )
C , such that

V (k) =
∑

j

Nj (k)V (j )
C , (1)

Nj (k) being the number of occurrences of the cell (j ) in a
configuration k = {Nj (k),j = 1, . . . ,∞}, the total free energy
of the system is given by

Ftot(k) =
∑

j

Nj (k)F (j )
WS. (2)

Here, FWS = FWS({xk}) is the cell free energy, depending
on a set {xk} of variational variables. In the case of an
EoS model with cluster degrees of freedom, a typical choice
for this set is {A,Z,nng,npg,VC}, A (Z) being the num-
ber of baryons (protons) in the cluster and nng (npg) the
number density of neutrons (protons) in the gas, so that
we have FWS = FWS(A,Z,nng,npg,VC). The notation F

(j )
WS

thus indicates the value of FWS when the variational vari-
ables take the values characteristic of the cell (j ), F (j )

WS =
FWS(A(j ),Z(j ),n

(j )
ng ,n

(j )
pg,V

(j )
C ). Other choices for the {xk} set

are also possible, and we will explicitly express the problem in
terms of the variational variables of the LS EoS subsequently
in the paper. In the case of EoSs based on the density functional
theory, where the variational variables are the single-particle
wave functions, the definition of these cluster variables has
to be derived from the model. Typically, one can take nqg =
nqg(r = RC) (q = n,p), A = VC(nB − nng − npg), and Z =
VC(nBYp − npg), with RC the cell radius.

The WS cell free energy, FWS, reads

FWS = Fnuc + Fg + Flept + Fγ , (3)

and accounts for the contribution of the cluster, the gas, the
leptons (electron and possibly positrons and neutrinos), and the
photons, respectively. Leptons and photons can be described
as a uniform (relativistic) gas, and can be treated separately
(see, e.g., Refs. [8,53,54] for complete expressions). Therefore,
from now on, we will focus only on the (cluster plus gas) baryon
contribution, whose total free energy can be written as

Fbar(k) =
∑

j

Nj (k)
[
F (j )

nuc,vac + F (j )
g V

(j )
C + δF (j )

]
, (4)

where Fg is the free energy density of homogeneous nuclear
matter with neutron and proton density (nng,npg), Fnuc,vac is the
free energy of a cluster (A,Z) in vacuum, and δF accounts for
the in-medium contributions. The latter may include Coulomb
screening and surface terms, and possibly contributions due
to the excluded-volume approximation if the original model
employs this scheme. Including all in-medium effects in the
cluster contribution, one can define Fnuc = Fnuc,vac + δF . In
the SNA, for each thermodynamic condition (nB,T ,Yp), the
variational variables are determined by minimizing the total
free energy density under the constraints of mass and charge
conservation. The associated values of A and Z have therefore
to be interpreted as the nucleus contained in the most probable
cell among the different possibilities (j ) at the given thermo-
dynamic conditions, and will be noted (〈A〉j = ASNA, 〈Z〉j =
ZSNA). However, in a full thermodynamic treatment of Eq. (4),
the variational variables are given by the set Nj (k), and the
variation gives the average occupation 〈Nj 〉k over the different
configurations k, or equivalently the probability 〈pj 〉k ≡ pj .
As a result, one does not get a single A = ASNA,Z = ZSNA

value, but a distribution of possible (A(j ),Z(j )) configurations
with probability pj .

In order to calculate the probability pj , it is convenient to
work in the grand-canonical ensemble. In this framework, one
can construct the grand-canonical partition sum associated to
the free energy Fbar, starting from the Gibbs free energy of the
baryon component

Gbar(k) = Fbar(k) −
∑

j

Nj (k)
(
μnN

(j )
WS + μpZ

(j )
WS

)
, (5)

where μn (μp) is the neutron (proton) chemical potential. We
refer to Appendix A for the proof that the neutron and proton
chemical potentials correspond in fact to those of the gas, i.e.,
μn = μng and μp = μpg , and do not depend on the realization
(k). The total numbers of neutrons (protons) in the WS cell
(j ), N (j )

WS (Z(j )
WS), are given by

N
(j )
WS = N (j ) + nngV

(j )
C , (6)

Z
(j )
WS = Z(j ) + npgV

(j )
C . (7)

Notice that the gas densities do not depend on the cell (j ), since
the gas is uniform over the whole volume. If this condition were
not satisfied, discontinuities in the gas densities would arise at
the cell interface. Therefore, also the chemical potentials of the
gas, μn and μp, do not depend on the cell (j ). The conservation
equations, Eqs. (6),(7), have to be modified if the considered
EoS employs excluded-volume effects. This is easily done by
introducing the number of nucleons in the dense region of
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space, Nr and Zr , and by replacing in all equations N → Nr −
nngVN,Z → Zr − npgVN (thus Ar = Nr + Zr ), with VN the
cluster volume. This will be explicitly worked out in the next
section on the example of the LS model.

Replacing the conservation equations into Eq. (5), we get

Gbar(k) =
∑

j

Nj (k)
[
F (j )

nuc − μnN
(j ) − μpZ(j )

]
+V [Fg − μnnng − μpnpg]. (8)

In principle the gas densities nng,npg , though uniform through-
out the total volume V , could depend on the realization (k)
through the occupation Nj (k). It is however easy to check that
this cannot be the case if we keep the hypothesis that each
cell (j ) is electrically neutral, as it has to be to avoid Coulomb
interactions between the different cells.

Equation (8) defines the Gibbs free energy of the cluster
and the Gibbs free energy density of the gas

G(j )
nuc = F (j )

nuc − μnN
(j ) − μpZ(j ), (9)

Gg = Fg − μnnng − μpnpg. (10)

The explicit expressions of Fg and F
(j )
nuc depend on the par-

ticular model employed. In particular, if the EoS is obtained
through a density functional model, F

(j )
nuc depends on the

density. In that case, because of the baryon number and charge
conservation laws,

nB =
∑

j Nj (k)A(j )

V
+ ng, (11)

np =
∑

j Nj (k)Z(j )

V
+ npg, (12)

np being the total proton number density and ng = nng +
npg, F

(j )
nuc implicitly depends on Nj (k) through its density de-

pendence. This introduces a self-consistency problem, which
does not arise for instance if F

(j )
nuc is obtained through a standard

(i.e., noncompressible) liquid-drop model without any density
dependence. In the general case of a density-dependent free
energy, a rearrangement term has to be added. The effective
one-body equivalent free energy is given by

F̃ (j )
nuc = ∂〈Fbar〉k

∂〈Nj 〉k = F (j )
nuc + 〈Nj 〉k ∂F

(j )
nuc

∂〈Nj 〉k

∣∣∣∣∣
nng,npg,〈Ni 〉k,i �=j

(13)

with 〈Fbar〉k = Fbar({〈Nj 〉k}). Notice that in the partial deriva-
tive the gas component does not appear, because the term∑

j Nj (k)FgV
(j )
C = VFg in Eq. (4) does not depend on Nj (k),

since the gas is homogeneous over the different cells.
The total effective Gibbs free energy of the baryon compo-

nent becomes

G̃bar(k) =
∑

j

Nj (k)G̃(j )
nuc + GgV (14)

with

G̃(j )
nuc = ∂〈Gbar〉k

∂〈Nj 〉k = G(j )
nuc + 〈Nj 〉k ∂G

(j )
nuc

∂〈Nj 〉k

∣∣∣∣∣
nng,npg,〈Ni 〉k,i �=j

.

(15)

Introducing the grand-canonical partition function associated
to the independent cluster problem (plus gas),

Z̃βμnμp
=

∑
k

exp(−βG̃bar(k)), (16)

where β = (kB T )−1, kB being the Boltzmann constant, shows
that in the thermodynamic limit the partition sum of the cluster,
Z̃nuc, and that of the gas, zβμnμp

, can be factorized as

Z̃βμnμp
= Z̃nuc

(
zβμnμp

)V
. (17)

The partition sum of the cluster thus reads

Z̃nuc =
∑

k

exp

⎛
⎝−β

∑
j

Nj (k)G̃(j )
nuc

⎞
⎠, (18)

and, thanks to this factorization, one can follow the standard
derivation of thermodynamics of an ideal classical gas for the
cluster component:

Z̃nuc =
∏
j

∞∑
n=0

(
exp

( − βG̃
(j )
nuc

))n

n!

=
∏
j

exp
(
w

(j )
βμnμp

)
, (19)

where w
(j )
βμnμp

≡ exp(−βG̃
(j )
nuc). In this way, similarly to

Eq. (110) in Ref. [47], one recovers a NSE-like expression
for the cluster multiplicities

〈Nj 〉k = ∂(ln Z̃nuc)

∂(βμj )
= w

(j )
βμnμp

= exp
(−βG̃(j )

nuc

)
, (20)

where μj = (μn + μp)A(j ). Finally, we can express the cluster
probability as

pj = 〈Nj 〉k∑
j 〈Nj 〉k = exp

( − βG̃
(j )
nuc

)
∑

j exp
( − βG̃

(j )
nuc

) . (21)

Note that the functional form of Eq. (20) is formally equiv-
alent to the classical grand-canonical formulation (see, e.g.,
Refs. [51,55]). However, it has to be stressed that the correspon-
dence between the canonical and grand-canonical formulation
is only possible if one writes the Gibbs free energy as Eq. (15).

We turn now to the calculation of the rearrangement term.
As already noticed in Sec. III C of Ref. [47], this term is
expected to be small and was neglected in Ref. [47]. However,
as we will show in Sec. III, the effect of the rearrangement
term can be non-negligible and, indeed, this term is necessary
to recover the correct SNA results in all density domains.

As we have already noticed, the dependence of G
(j )
nuc on

〈Nj 〉k arises from the dependence on the total density, which
induces a constraint among the 〈Nj 〉k variables, see Eq. (12).
Because of the condition of charge neutrality in each cell, np =
Z(j )/V

(j )
C + npg , this can be seen as a dependence on the cell

volume V
(j )
C .

The rearrangement term can thus be expressed as

〈Nj 〉k ∂G
(j )
nuc

∂〈Nj 〉k = −V
(j )
C

∂G
(j )
nuc

∂V
(j )
C

〈Nj 〉kV (j )
C

V
. (22)
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We can see that G̃
(j )
nuc explicitly depends on 〈Nj 〉k , meaning

that Eq. (21) is in reality a self-consistent equation. Since the
rearrangement correction is supposed to be small (we will
quantify this statement in the next section on the specific
example of the LS EoS), we make an approximation in order
to avoid the complication of a self-consistent resolution of
Eq. (21). We first remark from Eqs. (9) and (15) that G̃

(j )
nuc

should be proportional to A(j ). We therefore single out the A(j )

dependence from Eq. (22) and average the rest of the expression
over the different cells. Using V

(j )
C = A(j )/(nB − ng), and

observing that 〈〈Nj 〉kV (j )
C 〉j = V , we get

〈Nj 〉k ∂G
(j )
nuc

∂〈Nj 〉k ≈ −V
(j )
C

〈
∂G

(j )
nuc

∂V
(j )
C

〉
j

= − A(j )

nB − ng

〈
∂G

(j )
nuc

∂V
(j )
C

〉
j

.

(23)

In this expression, 〈∂G
(j )
nuc/∂V

(j )
C 〉j is the most probable value

of the function ∂Gnuc/∂VC among the different cells, and
should be taken from the original SNA model.

The final expression for the effective Gibbs energy, Eq. (15),
is then

G̃(j )
nuc = G(j )

nuc − A(j )

nB − ng

(
∂Gnuc

∂VC

)
SNA

, (24)

which together with Eqs. (9) and (21) completes the model.
With the choice {xk} = {A,Z,nng,npg,VC}, Eq. (21) be-

comes a probability distribution for the different clusters of
size (A,Z) as

p(A,Z) = exp(−βG̃nuc(A,Z))∑
A,Z exp(−βG̃nuc(A,Z))

, (25)

where the gas variables nng,npg are taken from the SNA model,
and the cell volume is obtained for each cluster from the
neutrality condition

VC = Z

nBYp − npg

. (26)

It has been already discussed in Ref. [47] that one can recover
the SNA expression by minimizing the free energy density
under the mass and charge conservation constraints, by using
an auxiliary function. We will not redo the general demonstra-
tion here, but we will apply this procedure in Appendix B
for the specific case of the LS EoS, thus showing that the
most probable cluster which maximizes pj (or, equivalently,
minimizes G̃nuc), coincides with the (unique) cluster predicted
by the LS equations.

III. DISTRIBUTION OF NUCLEI FROM THE LATTIMER
AND SWESTY EQUATION OF STATE

The LS EoS [8] models matter as a mixture of a single
species of heavy nuclei (representing the average of a full
ensemble of heavy nuclei), α particles (representative of
light nuclei), and free neutrons and protons, immersed
in a uniform noninteracting gas of leptons and photons.
At low density, nuclei are considered as spherical, at the
center of a charge-neutral spherical cell and surrounded by
a less dense vapor of neutrons, protons, and α particles,

as well as electrons, positrons, and photons, in the WS
approximation. For nucleons, either inside the nucleus or in
the gas, a simplified nucleon-nucleon interaction of Skyrme
type is employed. α particles are described as hard spheres
of volume vα = 24 fm3 obeying an ideal Boltzmann gas
statistics. Interaction between heavy nuclei and the gas of
α particles and nucleons are treated in an excluded-volume
approach. With increasing density, shape deformations of
nuclei (nonspherical nuclei and bubble phases) are taken into
account by modifying the Coulomb and surface energies, and
the transition to uniform matter is described by a Maxwell
construction (see Ref. [8] for more details). The original
LS EoS routine, which is also used in the present paper, is
available at http://www.astro.sunysb.edu/dswesty/lseos.html
(more recent EoSs in tabular form are given at
http://www.astro.sunysb.edu/lattimer/EOS/main.html). There
exist three parametrizations of the LS EoS routine, according
to the value of the incompressibility of the underlying
nuclear interaction (K = 180, 220, and 375 MeV). For the
numerical applications done in the present paper, we use
the parametrization with K = 220 MeV. Note that a minor
correction has been done with respect to the original code.
Indeed, it has been recognized (see, e.g., Ref. [56]) that the
original LS EoS underestimated the fraction of α particles,
because the α particle binding energy, Bα , has to be measured
with respect to the neutron mass, as all other energies (see,
e.g., Ref. [57]).

For every baryon density nB , temperature T , and electron
(or proton) fraction Ye, the EoS is obtained by minimizing
the cell Helmoltz free energy density. As discussed in Sec. II,
the nonbaryonic components of the free energy density can
be treated separately, and have no role in the equilibrium
equations. The chosen seven independent variables of the
system in the LS EoS are {xk} = {ni,xi,u,rN ,nα,nno,npo},
where ni and xi are the nucleon density and proton fraction
inside the nucleus, respectively, u = VN/VC is the fraction
of the WS cell volume occupied by nuclei (VN being the
volume of the nucleus), rN is the nuclear radius (such that
VN = 4πr3

N/3), nα, nno, and npo are the number density
of the α particles, and of the neutrons and protons in the
outside gas, respectively. However, because of charge neu-
trality and baryon conservation, the number of independent
variables is reduced to five. The minimization is done by
taking partial derivatives of the free energy with respect to
the remaining five independent variables, thus yielding a
system of equilibrium equations (see Eqs. (3.2) in Ref. [8]).
This procedure is equivalent to the minimization of the free
energy density with respect to all variational variables applying
the canonical constraints as Lagrange multipliers, as shown
in Appendix B.

However, to construct a NSE with a distribution of nuclei
starting from the free energy density of the LS EoS, one
has to work in the grand-canonical ensemble. Following the
procedure explained in Sec. II and in Appendix A, and noting
that the gas contribution to the free energy density can be
divided into the contribution coming from α particles, Fα ,
and that of the nucleons outside the nucleus, Fo, the Gibbs
free energy of the cluster, Eq. (9), and the Gibbs free energy
density of the gas (that of the nucleons in the gas, Go, and that

035807-4

http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/lattimer/EOS/main.html


DISTRIBUTION OF NUCLEI IN EQUILIBRIUM STELLAR … PHYSICAL REVIEW C 97, 035807 (2018)

of α particles, Gα), Eq. (10), in each cell (j ), read

G(j )
nuc = F (j )

nuc − μnN
(j ) − μpZ(j ), (27)

Go = Fo − μnnno − μpnpo, (28)

Gα = Fα − μαnα, (29)

where μα is the chemical potential of α particles. Using the LS
variables,1 the free energy of the cluster, Fnuc, that contains the
in-medium corrections (including the excluded-volume terms),
can be written as

Fnuc = VN [ni(fb + fsc + fH ) − fαnα − (1 − nαvα)nofo]

− nαvαnofoVC, (30)

where fb, fsc, and fH are the bulk, the finite size (surface
and Coulomb), and the translational contributions to the free
energy per baryon, respectively, and no = nno + npo. In this
expression, the dependence on the cell is given by the cluster
variables, i.e., {ni,xi,VN,u} = {n(j )

i ,x
(j )
i ,V

(j )
N ,u(j )} and the cell

volume VC = V
(j )
C , since α particles and free nucleons are

assumed uniform in the different cells.
The cluster neutron and proton numbers in each cell

(j ), N (j ) and Z(j ), fulfilling the conservation equations

nB = A

VC

+ 4nα + no, (31)

np = Z

VC

+ 2nα + npo, (32)

are given by

N = VN

[
(1 − xi)ni − nno − 2nα − nnovαnα

1 − u

u

]
, (33)

Z = VN

[
xini − npo − 2nα − npovαnα

1 − u

u

]
(34)

with A = N + Z. Notice that because of the excluded volume,
these numbers do not represent the number of nucleons in the
dense phase, the latters being given, for each cell (j ), by Ar =
niVN,Zr = xiniVN .

To calculate the rearrangement term, we work out explicitly
the expression of Eq. (22). The charge conservation law is
written for LS variables as

np =
∑

j 〈Nj 〉kV (j )
N

(
x

(j )
i n

(j )
i − npg

)
V

+ npg (35)

with the short-hand notation npg = 2nα + npo(1 − nαvα).
As in the general derivation, the definition of np, Eq. (35),

breaks the independence among the cell occupations Nj (k).
In turn, this induces a self-consistency problem because the
Gibbs free energy Gnuc depends on np through the Coulomb
and surface term. Writing the charge conservation in the single
WS cell:

np = u(xini − npg) + npg, (36)

1Note that, unlike Ref. [8], we use capital letters for the energy, e.g.,
F for the free energy, F for the free energy density, and small letters
for the energy per baryon, e.g., f for the free energy per baryon.

we can see that it is more convenient to change variables in
Eq. (22) from VC to u = VN/VC .

The rearrangement term then reads

〈Nj 〉k ∂G
(j )
nuc

∂〈Nj 〉k = 〈Nj 〉k ∂G
(j )
nuc

∂u(j )

∂u(j )

∂np

∂np

∂〈Nj 〉k . (37)

Using ni = Ar/VN , we can single the dependence on the
cluster size out of this expression, and average the rest of this
term with respect to the different cells. The one-body Gibbs
free energy, Eq. (24), can finally be written as

G̃nuc(A,Z) = Gnuc(A,Z) + A(j )
r

〈
〈Nj 〉k
n

(j )
i V

∂Gnuc

∂u

〉
j

= Gnuc(A,Z) + A(j )
r

(
u

niVN

∂Gnuc

∂u

)
SNA

, (38)

where the quantities within the brackets 〈〉j have to be calcu-
lated for the most probable nucleus as given by the standard
solution of the LS equations (see Appendix B).

To verify the thermodynamic consistency of the approach
we can check that the most probable configuration given by the
NSE coincides with the LS representative cluster. To this aim,
one has to minimize the exponent in Eq. (20), i.e., the Gibbs
free energy, Eq. (38). For a better readability of the paper, the
LS equations defining the representative configuration in the
SNA are explicitly rederived in Appendix B.

Note that, in the grand-canonical ensemble, the density of
the outside gas, i.e., that of the free neutrons and protons and
that of alpha particles, are fixed by their chemicals potentials
(see Appendix A):

nqo = ∂go

∂μqo

; nα = ∂gα

∂μα

, (39)

where q = n,p and go (gα) is the Gibbs free energy per baryon
of the nucleons in the outside gas (of the α particles). Moreover,
we further notice that the model requires nB [as well as np, see
Eq. (32)] to be the same in each WS cell. Therefore, different
ions in the cell, in the NSE approach, can have different baryon
number A (the gas baryon number being uniform in the whole
volume and the same in each cell) and different volume VN ,
keeping nB , Eq. (31), constant. Equation (31) thus fixes VC , or
equivalently u. With these constraints, Eqs. (31), (32), and (39),
the seven independent variables on which the minimization has
to be done are reduced to three, namely, (ni,xi,rN ). Calculating
the partial derivatives of the effective Gibbs free energy yields

(i)
∂G̃nuc

∂ni

∣∣∣∣
xi ,rN

= 0, that can be written as

μbi + 2

3

Dβ

niu
+ 1 − u

A0
hμH = μno(1 − xi) + μpoxi,

(40)

where μbi = (1 − xi)μni + xiμpi, μni and μpi are the
chemical potentials of the neutrons and protons inside
the nucleus, and βD = Fc + Fs is the sum of the
Coulomb and surface free energy density (see Eq.
(2.39) in [8]). The constant A0 in the translational free
energy term has been taken equal to 60 in [8], h ≡
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FIG. 1. Nuclear contribution to the Gibbs free energy, with and without the rearrangement term, for two different thermodynamic conditions,
as a function of the number of nucleons in the dense phase Ar : nB = 3 × 10−6 fm−3, T = 0.74 MeV, Ye = Yp = 0.43 (left panel) and nB =
1.22 × 10−2 fm−3, T = 4.13 MeV, Ye = Yp = 0.31 (right panel). The fraction xi = Zr/Ar is fixed to the one of the most probable nucleus.
The dots (squares) correspond to the most probable nucleus obtained without (with) the rearrangement term; the crosses indicate the Ar of the
average nucleus obtained with the LS EoS. See text for details.

h(xi,T ) is a temperature-dependent function entering
in the surface free energy (see Eq. (2.28) in [8]), and
μH is the translational contribution to the chemical
potential (see Eq. (2.43) in [8]).

(ii)
∂G̃nuc

∂xi

∣∣∣∣
ni ,rN

= 0, that gives

μni − μpi − 2

3

Dβ

niu

(
1

xi

+ σ ′

σ

)
− 1 − u

A0
h′(μH − T )

= μno − μpo, (41)

where σ ≡ σ (xi,T ) entering the surface term of
the free energy is defined in Eq. (2.27) in LS [8],
σ ′ ≡ ∂σ/∂xi , and h′ ≡ ∂h/∂xi . Note that combining
Eqs. (40) and (41) yields Eqs. (3.2b),(3.2c) in [8], see
Appendix B.

(iii)
∂G̃nuc

∂rN

∣∣∣∣
ni ,xi

= 0. Noting that minimizing G̃
(j )
nuc with

respect to rN is equivalent to minimize G̃
(j )
nuc with

respect to the nuclear volume VN yields

∂(Fs + Fc)

∂VN

= 0 &
Gnuc

VN

+
〈

u

VN

∂G
(j )
nuc

∂u

〉
= 0.

(42)

The first condition in Eq. (42) gives the equilibrium
equation for rN , or, equivalently, for ni [see Eq. (2.38)
in LS [8] and Appendix B, Eq. (B9)],

ni = 5

2

Arσ

Z2
r e

2

(
u(1 − u)

D

)3

, (43)

e being the elementary charge. Using Eq. (40) and
the expression for μα , Eq. (B11), together with the
thermodynamic relation among the pressure P , the
free energy density F , and the chemical potential μ
of a species with density n, P = −F + μn, applied to

the pressure of the gas, Po, that of the alpha particles,
Pα , and that of the nucleons inside the nucleus, Pi , the
second condition in Eq. (42) becomes

Pi + β

(
2D

3u
− D ′

)
+ niu

A0
hμH = Po + Pα (44)

with D ′ ≡ ∂D/∂u. This expression is equivalent to
Eq. (3.2d) of LS [8], see Appendix B, Eq. (B14). Note
that the term accounting for the binding energy of α
particles,Bα , does not appear in our Eq. (B11) since the
chemical potentials in our definition include the rest
mass. The introduction of the rearrangement term is
indeed required to get the equivalence of the results ob-
tained in the canonical and grand-canonical approach,
and therefore the thermodynamic consistency of the
approach.

The effect of the rearrangement term is analyzed in Fig. 1,
where we display the nuclear part of the Gibbs free energy,
Eq. (38), for two typical conditions of density, temperature,
and proton fraction encountered in the collapsing core of a
supernova. The minimum of each curve represents the most
probable cluster, obtained with or without the rearrangement
term. The crosses correspond to the average single nucleus
calculated in the LS EoS, while the dot (square) symbols mark
the most probable nucleus calculated with the NSE approach
without (with) the rearrangement term. The latter acts in a more
significant way at higher density and temperature. Indeed,
while no noticeable difference is observed at lower densities
(left panel), only including this term allows one to correctly
reproduce the LS most probable nucleus for higher densities
(right panel).

IV. RESULTS

We present in this section the results obtained with the
extended NSE model, implemented in perturbation on the top
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FIG. 2. Ratio xi = Z/A corresponding to the minimum of G̃nuc

at a fixed A, as a function of A, for two thermodynamic conditions:
nB = 3 × 10−6 fm−3, T = 0.74 MeV, Ye = 0.43 (solid line) and
nB = 1.22 × 10−2 fm−3, T = 4.13 MeV, Ye = 0.31 (dashed line).
Triangles indicate the values obtained with the LS EoS.

of the LS EoS. This means that, for a given thermodynamic
condition, the calculation of the EoS and composition is done
in two steps: (i) first, we run the LS analytical routine thus
obtaining the SNA results, (ii) then, varying A and Z, we
calculate ni solving Eq. (43) and G̃nuc(A,Z), Eq. (38), as
explained in Sec. II, thus the probability p(A,Z), Eq. (25),
associated to each cluster (A,Z).2 In this way, we can also
compare the most probable nucleus in the NSE model (i.e., the
one that minimizes G̃nuc) with the SNA one. The resolution of
Eq. (43) forni is done using the root finder routinebroydn from
the Numerical Recipes [58], which employs the Broyden’s
method.3

We start by showing, in Fig. 2, the xi = Z/A ratio cor-
responding to the minimum of G̃nuc, as a function of A. As
an illustrative example, we have chosen two thermodynamic
conditions likely to be met during the infall phase of the su-
pernova core collapse: nB = 3 × 10−6 fm−3, T = 0.74 MeV,
Ye = 0.43 (solid line) and nB = 1.22 × 10−2 fm−3, T =
4.13 MeV, Ye = 0.31 (dashed line). These numbers, as well as
other conditions explored below, are taken from a collapse tra-
jectory followed by the innermost region of the star. The ther-
modynamic conditions for the latter have been obtained with a
one-dimensional hydrodynamic code in general relativity with
a neutrino leakage-type scheme [59–61], starting from a 40M

progenitor from Woosley et al. [62]. The considered collapse
trajectory stops before bounce, before nuclei dissociate in favor
of homogeneous matter. Triangles indicate the (xi,A) values

2In this section, in the spirit of the LS EoS, we define A and Z as the
baryon and proton numbers of the dense phase, A = VNni, Z = Axi .

3Note that the solution may be sensitive to the convergence criterion,
thus the numerical precision required in the root finder. Although we
have found that the resulting value of the most probable Z or N

may vary up to two units for a few of the thermodynamic conditions
explored below, the robustness of our results is not affected and our
conclusions remain unchanged.
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FIG. 3. Baryon number density inside the nucleus, ni , versus A

for three thermodynamic conditions: (1) nB = 3 × 10−6 fm−3, T =
0.74 MeV, Ye = 0.43, (2) nB = 2 × 10−3 fm−3, T = 2.3 MeV, Ye =
0.34, and (3) nB = 1.22 × 10−2 fm−3, T = 4.13 MeV, Ye = 0.31.
Solid lines correspond to the solution of Eq. (43), dots correspond
to ni for the average nucleus predicted by the LS EoS, and dashed
lines represent the cluster distribution (in arbitrary units).

obtained from the original LS model (that is, within the SNA)
for the same thermodynamic conditions: xi,LS = 0.43, ALS =
65 and xi,LS = 0.34, ALS = 161, respectively. One can notice
that the behavior of xi is sensitive to the nuclear distribution,
changing of about 50% when A varies from about 50 to 200,
and it can be quite different from the value predicted by the LS
for the same input variables (nB,T ,Ye), when the nuclear mass
number A is different from the LS one.

In Fig. 3, we plot the number density inside the nucleus,
ni , as calculated by solving Eq. (43), versus A, for a fixed
xi = (xi)SNA equal to that obtained by the LS EoS, for three rep-
resentative thermodynamic conditions taken from the collapse
trajectory: (1) nB = 3 × 10−6 fm−3, T = 0.74 MeV, Ye =
0.43, (2) nB = 2 × 10−3 fm−3, T = 2.3 MeV, Ye = 0.34,
and (3) nB = 1.22 × 10−2 fm−3, T = 4.13 MeV, Ye = 0.31.
Dashed lines represent the cluster distribution (in arbitrary
units), while dots correspond to (ni)SNA for the average single
nucleus predicted by the LS EoS. We notice that the most
probable nucleus, which is identified by the peak of the cluster
distribution, coincides with that predicted by the LS EoS, both
having the same density ni , for the three conditions. We also
note that the density inside the nucleus decreases with A;
because of mass conservation, Eq. (B5), this is compensated
by an increase of the density of the outside gas, no, and that of
α particles, nα . Moreover, increasing density and temperature,
from condition (1) to (3), yields to an increase of the average
cluster mass number and of the width of the distribution.

To better compare the NSE results with the SNA ones,
we show in Fig. 4 the cluster Z versus N distribution
(panel b), for a chosen thermodynamic condition:
nB = 8.6 × 10−4 fm−3, T = 1.83 MeV, Ye = 0.36. The
contour plot displays the cluster probabilities (red to blue,
more to less abundant), while the black dot corresponds to
the LS average nucleus, ZSNA = 38, NSNA = 62. This shows
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FIG. 4. Distribution of nuclei predicted by the NSE model for the
thermodynamic condition nB = 8.6 × 10−4 fm−3, T = 1.83 MeV,
Ye = 0.36. (b) shows the contour plot of the cluster probabilities (red
to blue, from more to less abundant), while the black dot corresponds
to the average nucleus (ZSNA = 38, NSNA = 62) obtained with the LS
EoS. (a) displays the probability distributions for Z = 32, 38, and 41
(from left to right curve), while (c) displays the probability distribution
for N = 40, 62, and 80 (from bottom to top curve).

that our extended NSE reproduces the SNA results, having
the advantage to take into account a full distribution of nuclei.
The smooth cluster distribution with a single-centered peak
also points out the absence of shell effects. Panels (a) and
(c) illustrate the probability distribution, p(A,Z) (in arbitrary
units), for different cuts in Z = 32, 38, 41 [panel (a), from
left to right], and N = 40, 62, 80 [panel (c), from bottom to
top], respectively. The center (green) curves in panels (a) and
(c) correspond to the most probable nucleus, which coincides
again with the SNA result.

A. Inclusion of a microscopic nuclear mass model

One of the limit of the compressible liquid-drop model
employed in the LS EoS is the absence of pairing and shell ef-
fects, that are responsible for the emergence of magic numbers
and impact the cluster distribution, especially at relatively low
density and temperature (see, e.g., Refs. [38,47,52]). Indeed,
shell and pairing effects are expected to be washed out only
at a temperature of a few MeV. To take these effects into
account, either experimental or theoretical mass models have
to be implemented. However, in core-collapse supernovae,
the electron capture drives nuclei towards the neutron-rich
side, where experimental mass measurements are no longer
available and theoretical extrapolations need to be considered.
Therefore, we have included in our perturbative extended NSE
nuclear binding energies from a theoretical mass model. To this
aim, we have redefined the cluster Gibbs free energy, replacing
the contribution corresponding to the nuclear binding energy in
the compressible liquid-drop model, G0

LS, with the theoretical
calculated binding energy, Ebind:

G̃nuc = G̃nuc,LS − G0
nuc,LS + Ebind, (45)

where G̃nuc,LS corresponds to the nuclear contribution to the
Gibbs free energy as calculated in Eq. (38), and G0

nuc,LS is
the same quantity evaluated at T = 0 and with no = nα =
ne = 0 (ne being the electron number density), i.e., the bulk
plus surface (at zero temperature) and Coulomb (without the
screening correction) term. As for the theoretical mass model,
we have employed the Brussels-Montreal microscopic mass
model4 HFB-24 [63]. This model, based on the self-consistent
Hartree-Fock-Bogoliubov method using a 16-parameter gen-
eralized Skyrme effective nucleon-nucleon interaction with a
realistic contact pairing force, fits the 2353 measured masses of

4The mass table for this model is available on the BRUSLIB database
at http://www.astro.ulb.ac.be/bruslib/.
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FIG. 5. Z (left panel) and N (right panel) along the collapse trajectory (time is given in milliseconds), at the center of the star. Dashed lines
correspond to the most probable Z (left panel) and N (right panel) obtained with the LS mass functional, while solid lines correspond to the
variance. Red dots represent the most probable Z (left panel) and N (right panel) obtained implementing the HFB-24 mass model. Insets show
a zoom of the final part of the plot. Arrows indicate four chosen points along the trajectory before the core bounce. See text for details.
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nuclei with N and Z � 8 appearing in the 2012 Atomic Mass
Evaluation (AME) [64] with a root-mean square deviation of
0.5 MeV. Moreover, it is also compatible with other various
experimental and astrophysical constraints [65]. Note that, in
the mass table, atomic mass excess are tabulated; once atomic
masses, Mat(A,Z), are known, nuclear masses, Mnuc, can be
calculated as

Mnuc(A,Z) = Mat − Zmec
2 + Bel(Z), (46)

where me is the electron mass and Bel(Z) is the total bind-
ing energy of all Z removed electrons (see Appendix A in
Ref. [66]).

To illustrate the effect of employing such a mass table
instead of the simplified LS functional on the composition
during the supernova core collapse, we have plotted in Fig. 5
the evolution of Z (left panel) and N (right panel) for given
thermodynamic conditions along the collapse trajectory in the
center of the star; the increasing time (given in milliseconds)
on the x axis corresponds to a simultaneous increase of density

and temperature. The dashed lines correspond to the most
probable Z (left panel) and N (right panel) calculated with the
extended NSE model built on the top of the original LS EoS,
thus keeping the nuclear masses as in the original compressible
liquid-drop model; solid lines represent the variance of Z
and N and give the width of the distribution. We note that
the spread in the nuclear distribution increases with time,
i.e., with density and temperature. The most probable Z (N )
obtained when the HFB-24 mass model is employed instead
of the original mass model implemented in the LS EoS are
displayed by dots in the left (right) panel. We can clearly
notice the emergence of shell structure and magic numbers:
in the first phase of collapse, clusters with Z = 28 dominate,
while in subsequent stages of collapse, clusters with N around
50 first and then with N = 82,126 prevail. At this point of
collapse, remarkable differences in the composition can be
observed when one or the other model is used. Indeed, as
already noticed, e.g., in Ref. [52], the use of different mass
models and the presence (or absence) of shell effects impact

N
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FIG. 6. Distribution of nuclei (N,Z) for four chosen thermodynamic conditions along a collapse trajectory at the center of the star: (a)
nB = 3.86 × 10−6 fm−3, T = 0.79 MeV, Ye = 0.43, (b) nB = 3.35 × 10−4 fm−3, T = 1.51 MeV, Ye = 0.38, (c) nB = 3.01 × 10−3 fm−3,

T = 2.68 MeV, Ye = 0.33, and (d) nB = 5.85 × 10−3 fm−3, T = 3.33 MeV, Ye = 0.31. Contour lines correspond to the cluster normalized
probabilities (red to blue, more to less probable) for the original LS model and for the HFB-24 nuclear mass model. Dots correspond to the
average single nucleus predicted by the LS EoS. See text for details.
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in a considerable way the prediction of the composition in
NSE models. The four arrows in Fig. 5 labeled from (a)
to (d) point at four chosen instants along the trajectory,
before bounce, whose thermodynamic conditions (nB,T ,Ye)
correspond to the nuclear distributions shown in the four panels
of Fig. 6: (a) nB = 3.86 × 10−6 fm−3, T = 0.79 MeV, Ye =
0.43, (b) nB = 3.35 × 10−4 fm−3, T = 1.51 MeV, Ye = 0.38,
(c) nB = 3.01 × 10−3 fm−3, T = 2.68 MeV, Ye = 0.33, and
(d) nB = 5.85 × 10−3 fm−3, T = 3.33 MeV, Ye = 0.31. The
colored contour lines in Fig. 6 (red to blue, more to less
probable nuclei) represent the cluster normalized probability,
Eq. (25), obtained (i) with the original LS model, where
the nuclear masses are taken from the original compressible
liquid-drop model employed in the LS EoS (note that the
oval-shaped distributions are indeed centered on the SNA
results, represented by the black dots) and (ii) with the HFB-24
mass model. It is also clear from this figure the appearance of
magic numbers when the HFB-24 mass model is employed.
Indeed, in this case, a bimodal distribution, which cannot be
reproduced in the single-peaked SNA picture, emerges. While
for thermodynamic conditions at the beginning of the collapse
(panel a) nuclei around Z = 28 and N = 50 are populated,
later on (panel b), the distribution is peaked around N = 50
and N = 82, and subsequently (panel c) around N = 82 and
N = 126; towards the end of the infall phase (panel d), the most
probable nuclei are probably situated around N = 184. We can
also notice that, along the collapse, the most probable nuclei
become bigger (i.e., A increases), and the distributions become
larger. These effects are a consequence of the increasing
density and temperature, respectively.

Finally, an important difference is observed in panels (c)
and (d) between the average nucleus predicted by the original
LS EoS (dots) and the most probable nuclei predicted using
the HFB-24 nuclear mass models. This indicates that the latter
application with the HFB model, contrary to the previous one
where the mass model was taken from the LS EoS, is not fully
consistent. To achieve consistency, we should calculate the
chemical potentials μqo and the full G̃nuc functional directly
from the same energy-density functional as the one used to
compute the nuclear masses. This improvement is left for
future work.

V. CONCLUSIONS

In this paper, we have worked out a general formalism
allowing to calculate the nuclear distribution encountered
in equilibrium stellar matter, associated to any arbitrary
unified EoS, that is a finite temperature nuclear modeling
able to describe both homogeneous and inhomogeneous
asymmetric nuclear matter. The cluster probabilities are given
by simple Boltzmann factors, Eq. (25), with four important
modifications:

(1) the cluster size entering in the Legendre transformation
from Helmotz to Gibbs free energy must be properly
defined such as to ensure mass and charge conservation,
see Eqs. (6),(7);

(2) the cluster chemical potential is given by the chemical
potential of the unbound nucleons, see Eqs. (A8),(A9),
multiplied by the effective cluster size;

(3) all eventual in-medium modifications must be consid-
ered inside the cluster free energy, see Eq. (4) and the
following discussion;

(4) a rearrangement term insuring thermodynamical con-
sistency must be added, see Eq. (24).

This general formalism can be straightforwardly applied to
any relativistic or nonrelativistic subsaturation EoS based on
the WS approximation, that is within the SNA. We have applied
it to the specific case of the LS EoS, which is widely used in
core-collapse simulations. This example has explicitly shown
that the most probable nucleus coincides with the prediction of
the LS EoS, but many other nuclei are populated with a non-
negligible probability, and the width of the nuclear distribution
is an increasing function of the density and temperature.

We have also explored the effect of using a more realistic
mass model, by replacing the simpler compressible liquid-drop
like functional for nuclear masses in the LS EoS with the more
microscopic Brussels-Montreal HFB-24 mass model, which
provides an excellent reproduction of nuclear masses all over
the nuclear chart.

Considering thermodynamic conditions followed by a typ-
ical core-collapse trajectory, we have shown that the isotopic
distribution considerably deviates from the average LS results,
and magic nuclei dominate the whole trajectory. Since the
electron-capture rates on nuclei may vary of orders of mag-
nitude among neighboring nuclei, we expect that a consistent
calculation of the rates over this more realistic distribution
may change the deleptonization rates, and thus the resulting
dynamics of the collapse, with respect to standard collapse
calculations where the SNA is employed. We emphasize
that, especially for high densities and temperatures where the
contribution of the gas surrounding the clusters increases, the
neutron and proton chemical potentials of the gas should be
calculated from the same theoretical model used to compute
the nuclear masses. This is indeed necessary to achieve full
consistency in the model. These calculations, as well as the
implementation of the electron-capture rates on the nuclear
distribution and the evaluation of the effect on the collapse
trajectory, is left for future work.

ACKNOWLEDGMENTS

G.G. was supported by CAPES/COFECUB agreement no.
Ph 853-15. Partial support from the COST Action MP1304
“NewCompStar” is gratefully acknowledged.

APPENDIX A: CHEMICAL POTENTIALS

In this appendix, we show that it is possible to identify the
Lagrange multipliers, introduced to impose the constraints on
the mass and charge conservation, and the chemical potentials
introduced in the expression of the Gibbs free energy, with
the chemical potentials of the homogeneous matter (i.e., of the
uniform gas). Let us consider the case where matter is modeled
with only one type of WS cells, for simplicity. Starting from
the baryon free energy in the WS cell,

Fbar = Fnuc − kBT VC ln zβ, (A1)
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where kB is the Boltzmann constant and the free energy
density of the gas is Fg = −kBT ln zβ, zβ being the mean-
field partition sum for homogeneous matter, one can write
the Gibbs free energy of the baryon component operating a
Legendre transformation with respect to the neutron and proton
baryon numbers (or, equivalently, the total baryon number and
isospin). One thus gets

Gbar = Fbar − μ1NWS − μ2ZWS, (A2)

where we have introduced the auxiliary chemical potentials μ1

and μ2. Using Eqs. (6),(7) [where we have dropped the (j ) in
the notation for convenience], we obtain

Gbar = Fbar − μ1(N + nngVC) − μ2(Z + npgVC). (A3)

Using the mean-field relations of uniform nuclear matter,

ln zβμnμp
= ln zβ + βμ1nng + βμ2npg, (A4)

with β = (kBT )−1, one can see that the neutron and proton gas
densities are given by

nng = kBT
∂ ln zβμnμp

∂μ1

∣∣∣∣
μ2

, (A5)

npg = kBT
∂ ln zβμnμp

∂μ2

∣∣∣∣
μ1

. (A6)

Therefore, the gas densities are uniquely determined by the
chemical potentials, and independent on the realization (k),
i.e., n(k)

ng = nng and n(k)
pg = npg . The Gibbs free energy is finally

given by

Gbar = Fnuc − μ1N − μ2Z − kBT VC ln zβμnμp

= Gnuc + VCGg (A7)

with Gg the Gibbs free energy density of the gas, and

μ1 = −kBT
∂ ln zβ

∂nng

∣∣∣∣
npg

= μng, (A8)

μ2 = −kBT
∂ ln zβ

∂npg

∣∣∣∣
nng

= μpg, (A9)

where one recognizes that the auxiliary chemical potentials
coincide with the neutron and proton chemical potentials of
the homogeneous gas, μn ≡ μng and μp ≡ μpg .

APPENDIX B: LS EOS IN THE CANONICAL ENSEMBLE

In this appendix we rederive the equilibrium equations,
Eqs. (3.2) in LS [8], that result from the minimization of
the total free energy density of the system. The procedure
is equivalent to minimize the auxiliary function constructed
from the free energy density under conservation constraints
(see also Ref. [47]), yielding the SNA results. Since the lepton
(and photon) contribution to the total free energy density can
be treated separately, and does not enter in the minimization,
we only consider here the (total) baryon free energy density. In
the LS EoS, the chosen set of independent variables are {xk} =
{ni,xi,u,rN ,nα,nno,npo}, where ni = Ar/VN and xi = Zr/Ar

are the nucleon density and proton fraction inside the nucleus
in the cell, respectively, u = VN/VC is the fraction of the WS

cell volume occupied by nuclei (VN being the volume of the
nucleus), rN is the nuclear radius (such that VN = 4πr3

N/3),
nα, nno, and npo are the number density of the α particles, and
of the neutrons and protons in the outside gas, respectively. For
simplicity of notation, we omit in this section the superscript
(j ) referring to the cell. Using these LS variables, the baryon
free energy density can be written as

Fbar = Fnuc + Fo + Fα. (B1)

The nuclear contribution is given by the sum of the bulk,
surface, Coulomb, and translational free energy density,

Fnuc = niu[fb(ni,xi) + fs(xi,u,rN ) + fc(xi,ni,u,rN )]

+ niu(1 − u)fH (ni,xi,u), (B2)

where we have put in evidence the dependences on the
independent variables (see Ref. [8] for the detailed expressions
of the different terms). Note that, in the present notation, f
corresponds to free energy per baryon, while F to free energy
density. For the nucleons in the outside gas and the alpha
particles, we have

Fo = nofo(no)(1 − u)(1 − nαvα), (B3)

Fα = nαfα(nα)(1 − u) (B4)

with no = nno + npo.
The mass and charge conservations read

nB = AWS

VC

= uni + 4nα(1 − u)

+ (nno + npo)(1 − u)(1 − nαvα), (B5)

np = ne = ZWS

VC

= xiniu + 2nα(1 − u)

+ npo(1 − u)(1 − nαvα), (B6)

where AWS and ZWS are the total baryon and proton number
in the cell, respectively (the total neutron number in the cell
is thus NWS = AWS − ZWS, and a conservation for nn can be
derived, too) and vα = 24 fm3 is the volume occupied by each
α particle. One can then construct the auxiliary function to be
minimized:

D = Fbar − λ1[np − xiniu − 2nα(1 − u)

− npo(1 − u)(1 − nαvα)]

−λ2[nn − (1 − xi)niu − 2nα(1 − u)

− nno(1 − u)(1 − nαvα)], (B7)

where λ1 and λ2 are the Lagrange multipliers. The minimiza-
tion of the auxiliary function, Eq. (B7), with respect to the
seven variables yields

(i)
∂D
∂rN

∣∣∣∣
ni ,xi ,u,nα,nno,npo

= 0. Noting that only the sur-

face and Coulomb terms depend on rN , i.e., ∂(Fs +
Fc)/∂rN = 0, one recovers the virial theorem, Fs =
2Fc, that gives the equation to be solved separately
for the nuclear radius, Eq. (3.2a) in [8],

rN = 9σ

2β

(
s(u)

c(u)

)1/3

, (B8)
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where s(u) and c(u) are shape parameters aiming to
mimic the transition from nuclei to the bubble phase
[8]. Equivalently, one can write Eq. (B8) in terms of
ni ,

ni = 5

2

Arσ

Z2
r e

2

s(u)

c(u)
. (B9)

Note that in the LS routine, s(u)/c(u) = [u(1 −
u)/D]3.

(ii)
∂D
∂nqo

∣∣∣∣
ni ,xi ,u,rN ,nα,n−qo

= 0, with q = n,p and −q =
p,n. This condition identifies the Lagrange multipliers
as the neutron and proton chemical potentials,

λ1 = −μpo and λ2 = −μno. (B10)

(iii)
∂D
∂nα

∣∣∣∣
ni ,xi ,u,rN ,nno,npo

= 0. Using the thermodynamic

relation between the pressure P , the free energy
density F , and the chemical potential μ of a species
of density n, P = −F + μn, this condition gives Eq.
(3.2e) of LS,5

μα = 2(μno + μpo) − vαPo, (B11)

where Po is the pressure of the neutron and proton gas.

5Note that in Eq. (3.2e) in [8] the minus sign between the neutron
and proton chemical potentials should be replaced with a plus sign.
Moreover,Bα is not included in Eq. (B11) because masses are included
in the chemical potentials.

(iv)
∂D
∂xi

∣∣∣∣
ni ,u,rN ,nα,nno,npo

= 0, that gives Eq. (3.2b) of LS,

μni −μpi − 2

3

βD

niu

(
1

xi

+ σ ′

σ

)
− 1 − u

A0
h′(μH − T )

= μno − μpo, (B12)

with σ ′ ≡ ∂σ/∂xi and h′ ≡ ∂h/∂xi .

(v)
∂D
∂ni

∣∣∣∣
xi ,u,rN ,nα,nno,npo

= 0.

(vi)
∂D
∂u

∣∣∣∣
xi ,ni ,rN ,nα,nno,npo

= 0.

Combining the last two conditions with Eq. (B12),
and noting that μb,i = (1 − xi)μni + xiμpi after op-
erating the change of variables (nni,npi) → (ni,xi),
with nni = ni(1 − xi) and npi = nixi , gives Eqs.
(3.2c),(3.2d) of LS

μni − 2

3

xiβD

niu

σ ′

σ
+ 1 − u

A0
[hμH − h′xi(μH − T )]

= μno, (B13)

Pi + β

(
2

3

D

u
− D ′

)
+ nih

A0
μH u

= Po + Pα, (B14)

where D ′ ≡ ∂D/∂u.
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