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Abstract

The convection onset in a evaporation thermal model of a solute/solvent solution is numerically studied. The transient
nature of the di�usion temperature pro�le requires to control the perturbations which will lead to the transition to a
convective �ow. Contrary to previous papers, we adopted here a perturbation mode, which is physical and experimentally
reproducible, by accounting for a heat transfer at the lateral walls. Based on the Péclet number evaluated in the core �ow
�eld only, the critical viscosities and the corresponding times for the transition between a di�usion and convection regimes
were calculated as a function of the �uid layer thickness, the aspect ratio and the convective heat transfer coe�cient. The
study of the spatio-temporal diagrams allowed us to characterize the way the convection propagates in the �uid domain
as well as the evolution of the mean cell size and wavenumber.

Keywords: Rayleigh-Bénard-Marangoni instabilities; numerical simulations; transient �ow; evaporation model;

1 Introduction

Many industrial processes such as painting, inking or packaging involve the drying of binary liquid �lms with a least one
volatile component. For a solute/solvent solution brought in contact with a gas environment at standard conditions, the
solvent vaporization at the liquid/gas interface leads to an unsteady heat and mass transfer into the whole liquid layer. The
solvent evaporation at the liquid/gas interface creates, at the same time, a decrease in the solvent concentration, a cooling
due to the phase change endothermic phenomenon, and a reduction in the solution layer thickness. These thermal and solutal
variations at the interface then di�use into the �uid layer. Under speci�c conditions, this transient di�usive regime can turn
out to be unstable because of the buoyancy and/or surface tension forces induced by the thermal and/or solutal gradients.
The slow decrease in the �uid layer thickness, combined with the viscosity increasing produced by the enriched solution in
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solute, implies the convective �ow must always fades away over the long time, so that the transfer evolution ends up being
driven by the di�usion, again.

The mechanisms leading to natural convective �ows have been widely studied. Amongst the earlier works upon convective
instabilities, we can mention the theoretical contribution by Pearson [17] for surface tension driven �ows (Bénard-Marangoni
instabilities) and the experiments by Blair and Quinn [4] for the buoyancy-driven �ows (Rayleigh-Bénard instabilities). A
recent numerical, experimental and theoretical review involving surface tension instabilities has been published by Wang
et al. [22] to elucidate the mechanisms of the Marangoni e�ect.

The models used to study the �lm or droplet evaporation introduce di�erent levels of descriptions. For example, the evap-
oration of a pure �uid involves the temperature variable, while the concentration of the components must also be taken
into account for mixtures. The transfers at the interface are also the subject of numerous models. They can result from
the full simulation of the heat and �uid �ow in the gaseous phase, or be determined by assuming a di�usion regime in the
environment, or more simply be modelled via Newton's laws and global transfer coe�cients. The choice for the model of the
interface deformation depends greatly on the studied problem, too. It can be rigid and motionless if the evaporated liquid
volume is negligible, moveable but non-deformable to account for volume loss, or completely deformable when its shape
results from the stress jumps and the continuity of the velocity. The dynamic of solutions may converge toward a steady
or quasi-steady �ow, or evolve continuously as a function of time, depending on the applied boundary conditions or the
temporal range of interest. The consequences upon numerical methods for the search of the convection onset are important
since the classical linear stability analysis is a priori not applicable when the di�usive solution is unsteady.

In the evaporation case of pure volatile liquids, the experimental works by Colinet et al. [6] and Mancini and Maza [15] focused
on the coupling between the solution and the surrounding gas phase, while numerical studies were conducted by Merkt and
Bestehorn [16]. They showed that, for moderate evaporation rates, the one-sided layer model where only the liquid �lm is
simulated is a good model for real problems. In that case, a generalized heat transfer coe�cient accounting for both the
convective heat transfer and the thermal evaporation �ux is introduced at the liquid/gas interface. In this scope, Machra�
et al. [14] developed a one-sided model to study the thermal Marangoni instability produced by a liquid evaporation in
an inert gas. The use of a linear stability analysis of the transient base state using the frozen time approach showed the
conditions for which the introduction of a generalized heat transfer coe�cient, function of the perturbation wavenumber, is
particularly relevant at the interface.
In the case of evaporation of a solute/solvent solution, both thermal and solutal contributions are able to destabilize the
di�usive solution. In experimental studies by Bassou and Rharbi [1], the authors highlighted the correlation between the
solutal Bénard-Marangoni convection cell size and the size of the surface corrugations visible on the deposit at the end of
the drying process. For a water/ethanol solution, Machra� et al. [12] have numerically studied the buoyancy-surface tension
coupling. In a quasi-steady regime, the authors developed linear stability analysis to obtain the neutral stability curves as a
function of the solutal/thermal Marangoni/Rayleigh numbers. Later on, they carried on their works with transient solutions
and the frozen-time approach [13], what allowed them to compute the neutral stability curves in the parameter plane spanned
by the liquid layer thickness and the elapsed time after the exposure of the aqueous solution to the surrounding gas.

The present contribution is a part of a more general study devoted to the understanding of the �uid �ow and heat and
mass transfer in a speci�c solution of Polyisobutylene and Toluene in which the viscosity strongly depends on the solute
concentration. The �rst work was conducted by Toussaint et al. [19] with experiments. They interested in the convection
onset for wide ranges of initial liquid layer thicknesses and solute concentrations (viscosities). They also studied the lifetime
of convection cells and the time from which the viscous skin is created at the �uid surface. Based on these experimental
results and considering the very large di�erence in the thermal and solutal di�usion time scales, two evaporation models
have been worked out. One is valid at the �rst beginning of the drying and rests on a uniform concentration �eld, while the
second model is valid later and assumes a thermal equilibrium in the whole �uid layer. The study of the solutal model was
carried out by Trouette et al. [21]. The transition from the di�usive state to a convective �ow was studied with transient
numerical simulations, and the preponderance of the solutal Marangoni convection over the buoyancy one was shown. Re-
cently, Yiantsios et al. [23] performed numerical simulations of the solutal Bénard-Marangoni convection, considering both
the strong dependence of viscosity with the solute concentration and the free surface deformation. They showed that the
wrinkles observed by Bassou and Rharbi [1] at the end of the drying may be viewed as the signature of the convection
cells. The transient thermal model was studied successively by Touazi et al. [18] and Trouette et al. [20], who carried out
non-linear numerical simulations in two or three-dimensional geometries, applying random perturbations on some initial
�elds (velocity [18] and temperature [20]) in order to control the convection onset. The viscosity thresholds were obtained
for a wide range of �uid layer thicknesses and these results turned out to be in qualitative agreement with the experimental
data by Toussaint et al. [19]. The linear stability analysis by Doumenc et al. [7], performed with the non normal approach,
provided threshold values in the same order of magnitude than those obtained with the non-linear simulations and the
experimental works [18, 19, 20]: for transient problems and a given layer thickness, the di�usive and convective transition
viscosity is not clearly de�ned, as for steady base �ows, but by a blurred interval depending essentially on the amplitude of
the initial perturbation and the used criterion to delimit the di�usion and convection regimes. An overview upon some of

2



these recent works, including the thermal and solutal models, can be found in [8].

The former works on Polyisobutylene/Toluene solutions rely on a control of the convection onset through random disturbances
applied at the initial time. One di�culty raised by this approach is how to choose physically the magnitude, and in a lesser
extend, the shape of the initial perturbations. Furthermore, the introduction of uncertainties in the numerical model makes
the reproducibility of the simulation results tricky, except if the perturbation �eld is fully known on a given mesh, and if the
same numerical code is used; otherwise, the solution risks to be modi�ed. As a consequence, this approach may raise the
issue of the convergence of the numerical solutions as a function the mesh size, when the disturbance is mesh dependent.
In this contribution, we consider a thermal model for the evaporation of a Polyisobutylene/Toluene solution. The pertur-
bations of the di�usion transient solution, which give rise to the convection onset, are physically caused by the convective
heat transfer with the surrounding gas modelled at the lateral boundaries. The rest of the paper is organized into three
sections. The �rst one describes the physical, mathematical and numerical models. The next section is devoted to the result
presentation. After a short introduction and discussion upon the transient solutions and the used criterion to de�ne the
transition between the di�usion and convection regimes, the critical viscosities are given as a function of the layer thickness.
The accurate description of the convective cell appearance, evolution and their fade-out is then proposed on the basis of
spatio-temporal diagrams. Some comparisons are also provided using simulations with disturbances at the initial conditions.
The last section is devoted to the concluding remarks and a placement in perspective of our threshold viscosities and those
of the literature.

2 Physical, mathematical and numerical models

A homogeneous Polyisobutylene/Toluene (PIB/Toluene) solution at rest is contained into an open container topped by air
at standard atmospheric conditions. In contact with the surrounding gas, the liquid solvent evaporates. As evaporation is an
endothermic process, some amount of latent heat is taken away from the solution at the gas/liquid interface. Subsequently,
the cooling and the solvent de�cit are di�using into the �uid layer thickness. Under speci�c dimensionless parameters (to
be determined), the transient di�usive solution becomes unstable and a �uid motion occurs. This instability may be driven
by surface tension and/or density variations, each of them induced by thermal or solutal inhomogeneities. As the physical
approximations have been widely discussed in previous papers [7, 8, 18, 19, 20], only the main assumptions are here reminded
for sake of brevity. A one-sided model is used and the heat transfer with the surrounding gas is taken into account by a
constant and uniform convective coe�cient. Since the mass di�usivity of the PIB/toluene solution is about three order of
magnitude smaller than its thermal di�usivity, it is possible to identify a thermal regime for short times where the solvent
fraction is assumed uniform in the entire liquid �lm [3, 8]. From this assumption, it results that both the physical properties
and the �uid thickness do not evolve substantially: they are kept constant at their initial values. Lastly and in accordance
with the previous works [18, 20], a two-dimensional approximation is used since the transitions from di�usion solutions to
convection �ows do not depend signi�cantly on the space dimension. Therefore, the �uid layer consists of a rectangular
domain of aspect ratio A = L/e, where L is the horizontal length and e the thickness of the layer. Thus, the heat transfer
and �uid �ow are governed by the Navier-Stokes and energy equations, expressed with the Boussinesq approximation.
Based on the �uid thickness e, the thermal di�usivity α and the density ρ, the velocity, time and pressure scales are
respectively de�ned by α/e, e2/α and ρα2/e2. Let us �rst note H = h+ L(dΦs/dT )|T0

, with h the convective heat transfer
coe�cient at the free surface, Φs the mass �ux density, L the speci�c latent heat and T0 the temperature of the surrounding
gas. The reduced temperature di�erence then writes Θ = (T − T0)/∆T , where ∆T = LΦs/H is the di�erence between the
uniform temperature at the �nal steady state and T0. The governing dimensionless equations for the �uid �ow and the heat
transfer in the liquid �lm read: ∀(x, y) ∈]0, A[×]0, 1[

∇ ·V = 0 (1a)

∂V

∂t
+ (V ·∇)V = −∇P + Pr∇2V + RaPr Θ ey (1b)

∂Θ

∂t
+ (V ·∇) Θ = ∇2Θ (1c)

where V = Uex + V ey and P are the dimensionless velocity and pressure �elds.
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The dimensionless set of boundary conditions are expressed as follows:

at x = 0 and A:

{
V = 0 (no slip)

∇Θ ·n = −BisideΘ (lateral heat exchange)
(2a)

at y = 0:


V = 0 (no slip)

∂Θ

∂y
= 0 (adiabatic surface)

(2b)

at y = 1:



∂U

∂y
= −Ma

∂Θ

∂x
(thermocapillary stress)

V = 0 (zero mass �ux, see [7])

∂Θ

∂y
= −Bi(Θ + 1) (energy balance)

(2c)

The dimensionless parameters are the Rayleigh, Prandtl, Marangoni and Biot numbers, as well as the aspect ratio A = L/e.
They are de�ned as Ra = gβ∆Te3/(να), Pr = ν/α and Ma = −(dγ/dT )|T0

∆Te/(ρνα), with g the gravity acceleration, β
the thermal expansion isochoric coe�cient, ν the kinematic viscosity and γ the surface tension. The Biot numbers at the
top interface and at the lateral sides are Bi = He/k and Biside = hsidee/k, where k is the thermal conductivity and hside is
the convective heat transfer coe�cient along the vertical walls. For thermally isolated lateral surfaces, hside is set to zero.
The �uid �ow is initialized at rest with small temperature �uctuations around the surrounding gas temperature:

for t = 0, ∀(x, y) ∈]0, A[×]0, 1[

{
V = 0
Θ = r × ξ(x, y) (except otherwise mentioned, r = 0)

(3)

where r is the dimensionless amplitude of the perturbation and ξ a probabilistic function drawn from the standard uniform
distribution in the range ]− 0.5, 0.5]. If r = 0, the initial temperature is homogeneous, equal to zero.
The governing equations (1), with the boundary conditions (2) and the initial conditions (3), are discretized with a spatial
and temporal second order �nite volume scheme on a staggered grid. The temporal approximations rely on the Gear scheme,
with an explicit Adams-Bashforth method for the velocity and temperature advection terms. The velocity and pressure �elds
are uncoupled with the Goda's algorithm [9]. Additional details on the numerical method and the validations are provided
in [3].

3 Results

Except for the dynamic viscosity, all the other physical properties of the solution are assumed equal to those of the pure
solvent: k = 0.142W/(m ·K), cp = 1710 J/(kg ·K), ρ = 866 kg/m3, β = 1.07 × 10−3K−1, L = 396 kJ/kg, dγ/dT |T0 =
−11.9 × 10−5N/(m ·K), h = 28W/(m2

·K) and α = 9.59 × 10−8m2/s. Unless otherwise stated, the lateral heat transfer
coe�cient is set to hside = 10W/(m2

·K). The �uid viscosity is a free parameter since it depends on the PIB volume fraction
ϕPIB used to prepare the mixture: log10(µ) = 8.235 + 14.02X + 6.575X2 + 1.392X3 + 0.1114X4 with X = log10(ϕPIB) [18,
19].
Since the main �uid properties are �xed, the dimensionless parameters depend only on the �uid thickness and the viscosity.
With e in mm and µ in mPa · s, the dimensionless parameters are then de�ned by

(Ra, Ma, Pr, Bi, Biside) = (451e3/µ, 5851e/µ, 12µ, 0.2e, 0.07e) (4)

Therefore, for the sake of simplicity, most results will be discussed and analysed as a function of two physical parameters
only, the thickness e and the dynamic viscosity µ of the �uid.

In the next sections, three �uid layer thicknesses are studied to scan the di�erent kinds of convection �ows, namely e = 1mm
for the capillary driven �ow (Bénard-Marangoni convection), e = 8mm for the coupled capillary and buoyancy driven �ow
(Rayleigh-Bénard-Marangoni convection) and e = 20mm for the buoyancy driven �ow (Rayleigh-Bénard convection) [18].

The sensitivity of the numerical parameters was carefully checked for the di�erent thicknesses [3]. The time steps are chosen
equal to ∆t = 10−3, 10−4 and 4× 10−5 for e = 1, 8 and 20 mm, respectively. A su�cient number of control volumes across
the �uid thickness was shown to be Ny = 40, the mesh size is then de�ned by (Nx, Ny) = (40A, 40) with A the aspect ratio.
For the capillary driven �ows (e = 1 and 8 mm), a geometric re�nement with the scale factor Cy = 0.95 is applied in the
vertical direction to capture e�ciently the capillary gradients at the upper free surface.
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3.1 Comments on the convection onset for a transient solution

For adiabatic walls (Biside = 0 in Eq. (2a)), the convection onset is directly driven by the thermal gradients created by the
evaporation process. Thus, if these gradients are too small, no �uid motion will take place and the solution will remain
purely di�usive. To highlight the evolution of the vertical gradient, the temperature di�erence between the bottom and top
surfaces of the �uid layer is drawn as a function of time for the one-dimensional unsteady pure di�usive problem, and for
three thicknesses (Fig. 1). The curve evolutions clearly show that the temperature di�erence, and then the vertical thermal
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Figure 1: Evolution of the di�usion temperature di�erence ∆Θmax = Θ(y = 0)−Θ(y = 1) for three thicknesses, e = 1, 8 and
20mm.

gradient, are transient. Therefore, the velocity �eld can grow or be sustained only during a �nite time range where the
temperature di�erence is large enough. Past this temporal interval, the thermal and viscous di�usions dominate upon the
buoyant and/or capillary convections, so that the �uid �ow is damped out and ends up to die out.
In the linear stability analysis framework, the convection onset is due to the growth of a small disturbance. For a steady
base �ow, there is a unique time scale which corresponds to the inverse of the perturbation growth rate. Assuming a unique
attractor in the phase space, the asymptotic �ow won't depend on the shape of the perturbation, nor on the positive value
of its growth rate. On the other hand, if the base solution is transient (as it is shown in Fig. 1), a competition between the
time scale of the perturbation and the time scale of the base �ow evolution occurs. It results that the appearance of the
convection becomes dependent of the magnitude of the perturbation: a too small initial perturbation won't be able to create
a signi�cant velocity �ow over the time scale of the base solution.
For adiabatic walls (Biside = 0 in Eq. (2a)) and a uniform initial temperature �eld (r = 0 in Eq. (3)), the destabilization is
then necessarily numerical in its origin. It is, for example, due to the number of signi�cant digits, the accuracy of the linear
solvers, ill-conditioned matrices, the Navier-Stokes solver, . . . Therefore, improving the overall accuracy of the numerical
scheme will shift the transition threshold towards higher Rayleigh and Marangoni numbers. Obviously, this shifting in the
parameter values has no physical meaning and must be avoided. Illustrations and a more thoroughly discussion about this
issue are provided in Sec. 3.4. In order to be free from this constraint, two di�erent options are chosen in this work:

(i) either the intensity of the initial temperature disturbance is controlled through the small parameter r > 0 (see the
initial conditions (3)) with adiabatic lateral walls (Biside = 0 in Eq. (2a)),

(ii) or the initial temperature �eld is kept uniform (r = 0 in Eq. (3)), but the lateral walls are submitted to a convective
heat transfer driven by a Biot number Biside > 0 in Eq. (2a).

The former approach based on random perturbations applied on a initial �eld was already considered in order to identify
the convection onset in a PIB/toluene solution for the thermal [18] and solutal [8, 21] regimes in two-dimensional models.
This idea was also extended by Chénier et al. [5] and Trouette et al. [20] in the thermal regime, using more sophisticated
perturbations based on spatial auto-correlations principles. Although these authors concluded that neither the nature nor the
amplitude of the initial perturbation acts signi�cantly on the convection onset, the physical meaning of these perturbations
remains questionable. Numerous other choices for the perturbations could have been adopted. For capillary driven �ows,
spatial disturbances may be applied to the gas temperature surmounting the �uid solution. This kind of perturbation is all
the more relevant that the lateral con�nement e�ects are negligible, as it occurs for the evaporation of a �ne �uid layer in
large dishes. However, the spatial shape and the temporal evolution of the �uctuations are a priori unknown. Since there
is no suitable experimental data, randomly disturbances in space and time should have been chosen. But as mentioned
before, this choice is physically questionable again. To overcome this issue, the latter approach is proposed in this work. The
`perturbation' of the one dimensional transient di�usion pro�le is produced by means of a convective heat transfer at the lateral
walls. Physically, this amounts to considering non-adiabatic vertical walls. Indeed, because of the evaporation at the free
surface, the liquid temperature becomes less than the surrounding air temperature. The small horizontal thermal gradients,
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which set up along the container vertical walls, produces a local �uid motion due to the buoyancy and the temperature
dependent surface tension. According to whether the core �ow is linearly stable or not, these localized disturbances will be
damped or ampli�ed to possibly create a convection �ow in the whole �uid layer.

3.2 Physical criterion for the di�usion/convection transition

The transition between a di�usive solution and a convective �ow is measured by the Péclet number based on the maximal
velocity magnitude and the �uid thickness. To free from the �uid motion induced by the thermal gradients close to the
lateral walls, the evaluation of the Péclet number is restricted to the core �uid domain of width 2e, de�ned by the rectangle
(x−A/2, y) ∈ [−1, 1]× [0, 1]:

Pecore(t) = max
(x−A/2,y)∈
[−1,1]×[0,1]

‖V(x, y; t)‖ (5)

The solution will be considered to be convective if the core Péclet number Pecore(t) exceeds temporarily the unity in time.
Inversely, the solution is said di�usive if Pecore(t) < 1, for all t. Two characteristic times can then be identi�ed depending
on whether the solution becomes convective (td/cv) or get back to a di�usive regime tcv/d (see Fig. 2):

∃td/cv > 0 such that Pecore(td/cv) = 1 and ∀t < td/cv,Pecore(t) < 1 (6a)

∃tcv/d > 0 such that Pecore(tcv/d) = 1 and ∀t > tcv/d,Pecore(t) < 1 (6b)

The critical parameters ec and µc are de�ned when the both criteria (6a) and (6b) are satis�ed at the same time tc:
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Figure 2: Core Péclet evolution Pecore(t) for two viscosities, e = 1mm, hside = 10 W/(m2
·K) and r = 0.

∃tc > 0 such that Pecore(tc) = 1 and ∀t 6= tc,Pecore(t) < 1 (7)

and consequently tc = td/cv = tcv/d.
For a given �uid thickness e, an approximation of the critical viscosity µc that allows us to get the condition (7) is searched.
At µ = µc, e is the critical thickness ec. From a practical point of view, the critical value µc is evaluated thought an iterative
procedure. As a �rst step, rough lower and upper bounds of µc with two viscosities is sought: the viscosity µ(1) is such that
the solution remains purely di�usive (∀t > 0, Pecore(t) < 0) and the viscosity µ(2) < µ(1) is such that conditions (6) are

ful�lled. The time t
(1)
max (resp. t

(2)
max), which corresponds to the maximal value of the core Péclet evolution Pe(1)core(t) for µ

(1)

(resp. Pe(2)core(t) for µ
(2)), is taken in order to proceed to a new approximation of µc via the false position method:

do while 2
µ(1) − µ(2)

µ(1) + µ(2)
> εµ,



µ̃c =
[Pe(2)core(t

(2)
max)− 1]× µ(1) + [1− Pe(1)core(t

(1)
max)]× µ(2)

Pe(2)core(t
(2)
max)− Pe(1)core(t

(1)
max)

if Pecore(µ̃c, t) < 1 then
µ(1) ← µ̃c

else
µ(2) ← µ̃c

In this algorithm, the stopping criteria is set to εµ = 10−2. This method turns out to be usually convergent if the initial
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range of viscosity is not too large. When the convergence is reached, the critical value µc is approximated by the updated
µ̃c calculated from the linear combination of the last viscosities µ(1) and µ(2).

3.3 Critical viscocity

The convection onset in the core �uid layer is illustrated in Fig. 3, and it is due to the following phenomena. The thermal �ux,

(a) t = 0.5, Θav = −0.08885 (b) t = 1, Θav = −0.1695

(c) t = 1.5, Θav = −0.2435 (d) t = 3, Θav = −0.4266

(e) t = 6, Θav = −0.6652

Figure 3: Fluctuation of the temperature �eld around its average value Θav(t) (coloured �eld, Θ(x, y; t) − Θav(t) ∈
[−0, 06; 0, 04] ) and stream lines for e = 1mm, µ = 3.25mPa · s, hside = 10W/(m2

·K) and r = 0.

which originates from the convective heat transfer at the lateral walls, creates local temperature perturbations to the one di-
mensional transient di�usive state. Because of the resulting buoyancy and surface tension inhomogeneities, weak �ows in the
vicinity of the vertical surfaces develop (Fig. 3(a)). If the core �uid is enough unstable, the local disturbances are ampli�ed
in time and spread in space (Figs. 3(a)-3(b)), to �nally invade the whole �uid layer (Figs. 3(c)-3(d)), before being damped
out for the long times in the central region (Fig. 3(e)). Obviously, the ability of the �ow to maintain or amplify the convec-
tion depends on the e�ective Rayleigh and Marangoni numbers which evolve with the local temperature di�erence (see Fig. 1).

In �gure 4 are reported the viscosity thresholds µc for e = 1mm, 8mm and 20mm as a function of the aspect ratio A.
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Figure 4: Transition thresholds µc as a function of the aspect ratio A for di�erent thicknesses and lateral convective heat
transfer coe�cients, r = 0.

Di�erent convective heat transfer coe�cients hside at the lateral walls are investigated. Whatever the hside and e values,
the critical viscosity is clearly a decreasing function of A. This behaviour is explained as follows. Let us assume that the
viscosity is set to its critical value µc. In that case, the convection produced at the lateral walls propagates towards the
tested �uid region (x − A/2, y) ∈ [−1, 1] × [0, 1] so that the core Péclet number grows with time, reaches its peak when
Pecore(tc) = 1, just before decreasing. If the lateral walls are now moved away from each other, the convection won't be able
to reach the core �ow layer anymore and the solution will then be considered as di�usive since Pecore(t) < 1 whatever t.
To recover signi�cant velocities in the central region, the convection must be strengthened by reducing the intensity of the
stabilizing contributions, namely increasing the Marangoni and Rayleigh numbers or similarly by reducing the �uid viscosity
as shown in Fig. 4. The viscosity decrease seems more pronounced for thick �uid layers: for example between A = 20 and 30
and for hside = 10 W/(m2

·K) (violet empty squares), the viscosity is reduced of about 13%, 20% and 21% for e = 1, 8 and
20 mm, respectively. This suggests that the buoyancy driven �ows (moderate and large thicknesses) are intrinsically more
stable than capillary driven ones (small thicknesses).
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The fall in the viscosity threshold with the decrease of the lateral convective heat transfer coe�cient is also observed in
Fig. 4. Indeed, the hside decrease reduces the intensity of the induced lateral �uid �ow. To recover the convection in the core
�uid layer, the viscosity that acts to damp out the �uid �ow must be diminished. On the whole, three order of magnitude
decrease in the convective heat transfer coe�cient involves a µc drop of about 10%, whatever the thickness and the aspect
ratio, except for e = 1 mm and A = 20 where it reaches ∼ 20%. Noticed that if hside = 0, the vertical surfaces are adiabatic
and no physical perturbation can arise. As discussed in Sec. 3.1, this case is critical since the evolution of the solution would
then be controlled mainly by the numerical errors (solver, accuracy, . . .), what would have no physical relevance.

3.4 Spatio-temporal diagrams: physical versus numerical disturbances

Figure 5(a) presents the spatio-temporal diagram obtained by reporting the �uid velocity at the free surface U(x, y = 1; t)
as a function of time, for e = 1mm, hside = 10W/(m2

·K), A = 20 and a viscosity 40% smaller than µc (see Fig. 4(a)).
Snapshots of this �ow �eld are drawn in Fig. 3. Figures 3 and 5(a) clearly show that the onset of the convection starts near

(a) A = 20 (b) A = 80

Figure 5: Horizontal velocity at the free surface as a function of time, for e = 1mm, µ = 3.25mPa · s, hside = 10W/(m2
·K)

and r = 0. (a) Small extension A = 20. The symbols stand for the loci where the maximal velocity of each convective cell
reaches the magnitude Amax/2

n (n = 1, 7 and 10) with Amax = maxx,t[U(x, y = 1; t)] the maximal velocity. The stream
lines at times t = 0.5, 1, 1.5, 3 and 6 are drawn in Fig. 3. (b) Large extension A = 80.

the vertical walls before spreading over the whole �uid domain. This gives rise to the occurrence of new circulation cells
which are rotating in alternated directions, as illustrated by the red and blue stripes in the spatio-temporal diagram. These
convective cells evolve in number, size and shape while keeping the symmetry around x = A/2 = 10. The reorganization of
the convective cells at t ≈ 2.5 and 5.5 is robust since it is also observed for the larger extension A = 80 (see Fig. 5(b) close
to the boundaries x = 0 and 80).
For large aspect ratios, Fig. 5(b) for A = 80, in addition to the propagation of the convection that occurs gradually from
the boundaries to the core �uid layer, convective cells appear suddenly at the centre of the domain for t ∼ 3.5. The
speci�c behaviour of this latter spatio-temporal diagram is due to the existence of two time scales that trigger the convection
onset. One has a physical origin and is due to the �ow induced by the convective heat transfer along the lateral walls.
The other results from the growth of a local disturbance. For large aspect ratios, the second mode of destabilization
seems to prevail in the core �uid layer. To explain its origin, extra simulations are performed with the same parameters
(e = 1mm, µ = 3.25mPa · s, hside = 10W/(m2

·K) and A = 80), and by adding di�erent small disturbances of maximal
magnitude r, on the initial temperature �eld (see Eq. (3)). Figure 6(a), showing the spatio-temporal diagrams achieved with
r = 10−6, 10−9 and 10−12, clearly points out that the strengthening of the initial disturbance brings forward the onset of
the destabilization in the core �uid layer. These arti�cial initial perturbations act roughly as the spurious perturbations
stemming from the numerical solving (Navier-Stokes solver, number of signi�cant digits, . . .). To con�rm this assertion, two
additional simulations are carried out with the same main parameters, but without any heat transfer at the lateral wall
(hside = 0) and any initial perturbation (r = 0), but with two di�erent algorithms to uncouple the pressure and velocity
variables. The �rst simulation is performed with the current �nite volume code that uses the incremental pressure correction
scheme [9]. The second one is based on a pseudo-spectral code with a velocity correction method [2, 11]. The comparison of
the two spatio-temporal diagrams in Fig. 6(b) clearly shows that the numerical choices to solve the Navier-Stokes equations
play an important role on the convection onset when the solution is let free to evolve without any control of the nature of
the perturbation, neither at the lateral walls (hside = 0) nor at the initial time (r = 0). With the pressure correction method
(lower picture in Fig. 6(b)), the convective cells emerge close to the wall like it was obtained for a non zero convective heat
transfer coe�cient, but more belatedly; afterwards, they are propagated towards the core �uid layer. This destabilization
is related to the appearance of spurious numerical boundary layers along the walls which are due to the pressure-velocity
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(a) From bottom to top: r = 10−6, 10−9 and 10−12. (b) Bottom: Finite volume with a incremental pressure correction
scheme; top: spectral method with a velocity correction scheme.

Figure 6: Horizontal velocity at the free surface as a function of time for e = 1mm, µ = 3.25mPa · s and A = 80. (a)
hside = 10W/(m2

·K) with di�erent initial temperature perturbations of magnitude r. (b) hside = 0 and r = 0 for two
incompressible Navier-Stokes solvers.

decoupling of the pressure correction method [10]. The velocity correction method [2, 11] does not su�er such a drawback.
However in this latter case, since the continuity equation is not perfectly satis�ed in the bulk �uid, the instability arises
simultaneously everywhere in the �uid domain (upper picture in Fig. 6(b)). From the analysis of these two last simulations, it
could then be argued that the projection-like methods are unadapted to handle such physical problem, and an �exact� solver
for the Navier-Stokes equations should be used. Although this remark seems a-priori pertinent, such solvers cannot become
independent from the other numerical errors (number of signi�cant digits, accuracy of the linear solvers, ill-conditioned
matrices, . . .). To conclude this discussion, it is then necessary to free from any spurious numerical destabilization to ensure
a physical and predictable behaviour of the numerical solution. This is achieved by controlling explicitly the destabilization
source. In this work, it simply amounts to considering a weak heat transfer at the lateral walls. However for A = 80
(Fig 5(b)), despite the lateral disturbances, the core �uid remains controlled by the numerical perturbations. And it is the
reason why the critical viscosities µc obtained for A > 40 are in fact not presented in Fig. 4.

3.5 Propagation celerity of the convection wave

To characterize the propagation phenomena, the maximal velocity magnitude at the free surface of each circulation cells
has been recorded with its abscissa, as a function of time. From these temporal data, we have extracted the times and the
corresponding abscissas for which the velocity magnitudes are equal to the prescribed values ±Amax/2

n, n = 1, . . . , 10, with
Amax = maxx,t[U(x, y = 1; t)]. In this algorithm, only (x, t)-coordinates associated with cells that were originated from the
lateral walls were accounted for. An example of such coordinates is plotted on Fig. 5(a) for n = 1, 7 and 10 and positive
velocities only. After having made use of the symmetry of the diagram around the mid-plane x = A/2, the set of points
obtained for a �xed n value is nearly aligned according to a straight line. The propagation celerity of the convection wave is
then evaluated by a linear regression. Figure 7 gives this celerity cn=1,10 as a function of the aspect ratio A, for e = 1, 8 and
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n, n = 1 to 10, and the �lled circle stand for the mean value. Parameters: hside = 10
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·K) and r = 0.

20 mm. The scattering of the celerity for a given aspect ratio A is at most about ±15% of the average value given by the
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�lled circles. For each thickness, two di�erent behaviours can be identi�ed depending on whether the aspect ratio is small
or large. This partition takes place for A ' 60 when e = 1 and 8 mm, and A ' 40 when e = 20mm. For large wall-to-wall
spacings, the mean wave celerity is rather constant, independent of the aspect ratio. If the aspect ratio decreases enough, the
waves seem to propagate rather faster, indicating that the con�nement e�ects promote the development of the convective cells.

The sensitivity of the mean propagation celerity of the convection wave is analysed via a parametric study in the (Ma,Ra)
plane for A = 20 and Biside = 0.07 (hside variable). Figure 8, which provides the celerity map as a function of the Rayleigh
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Figure 8: Mean propagation celerity of the convection wave as a function of Ma and Ra. Iso thicknesses in [mm] (white
lines) and viscosities in [mPa · s] (black lines) are also represented. The uncoloured region corresponds to transient di�usive
solutions in the core domain (Pecore(t) < 1, ∀t > 0). Parameters: Biside = 0.07, A = 20 and r = 0.

and Marangoni numbers, indicates that the wave celerity increases with Ma and Ra, or with the physical parameters 1/µ
and e. The Pr and Bi numbers, as well as the convective heat transfer coe�cient hside, are deduced from relations (4). A
bi-quadratic analytical approximation c̃ of the numerical celerity has been formulated by means of the least-square method:

c̃(Ma,Ra) =

2∑
i=0

2∑
j=0

ai,jRaiMaj (8)

with the coe�cients a0,0 = 2.49, a1,0 = −0.002, a0,1 = 0.008, a1,1 = 1.73 × 10−5, a2,0 = 2.38 × 10−6, a0,2 = −3 × 10−7,
a1,2 = −4.95 × 10−9, a2,1 = −4.13 × 10−9 and a2,2 = 1.21 × 10−12. The relative di�erences between the analytical and
numerical celerity |c̃/c−1| (indicated in brackets in Tab. 1) indicates that the approximation (8) is accurate. Notice that the

Marangoni ↓ Rayleigh → 500 1500 2500 3500
500 - 16.06 (0.88%) 24.20 (1.64%) 33.43 (1.52%)
1000 15.17 (0.37%) 24.89 (1.56%) 33.00 (0.93%) 40.58 (1.91%)
1500 29.63 (1.60%) 31.10 (1.69%) 38.79 (0.58%) 45.90 (1.35%)
2000 23.06 (1.62%) 34.88 (2.10%) 42.56 (0.54%) 50.29 (1.87%)

Table 1: Mean propagation celerity c of the convection wave. The bracketed values are the relative di�erences between the
simulation and the correlation function (8), |c̃/c− 1|. The solution at Ra = 500 and Ma = 500 is di�usive: no convective cell
reaches the core �uid layer (Pecore(t) < 1, ∀t > 0). Parameters: Biside = 0.07, A = 20 and r = 0.

variation range of the celerity is large enough to neglect the scattering produced by the di�erent tested values ±Amax/2
n,

from n = 1 to 10.

3.6 Critical time for the convection onset

The critical times tc (Eq. (7)) for the onset of the convection in the core �uid layer are given in Fig. 9 for the threshold
viscosities µc and three critical thicknesses. The analysis of tc as a function of the aspect ratio A is delicate because of
di�erent antagonistic e�ects. On the one hand, the time tc is expected to increase when the vertical walls are moved apart
because (a) the convection wave has to cover a longer distance to propagate from the lateral boundaries toward the core
�uid layer, and (b) the celerity of this wave tends to decrease as a function of A (see Fig. 7 for A ≤ 40), if the viscosity is
kept constant. On the other hand from Fig. 4, the increases in the aspect ratio leads to a decrease in the critical viscosity.
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Figure 9: Transition times tc as a function of the aspect ratio A for di�erent thicknesses and lateral convective heat transfer
coe�cients, r = 0.

Let us assume that the validity range of the analytical celerity expression c̃(Ra,Ma) (Eq. (8)), obtained with a �xed aspect
ratio, can be prolonged for Ra and Ma parameters close to their critical values. Then, reducing the viscosity (successive
black isolines with same white isoline in Fig. 8) gives rise to a growth of the wave celerity c, denoted δc > 0. Considering
tc, the time required for the wave to reach the cavity centre, we approximatively have c × tc ' A/2. A small variation in
the aspect ratio δA leads to a variation δtc of tc, in order of δtc = δA/(2c) − tc × δc/c. Therefore, the critical time tc for
the convection to travel from the walls to the core �uid layer will be reduced (δtc < 0), if δA/2 < tc × δc. From Fig. 9, tc
seems overall rather to rise with the aspect ratio. This would suggest that the celerity increase due to the decrease in the
critical viscosity is insu�cient to counterbalance the increase in the length between the central �uid layer and the lateral walls.

As mentioned in Sec. 3.3, the decrease in the convective heat transfer coe�cient hside leads to a reduction of the critical
viscosity, when A and e are kept constant (Fig. 4). As previously, if we assume that the approximated celerity c̃(Ra,Ma)
(Eq. 8) is valid for parameters close to their critical values, the threshold time tc would be reduced when hside is decreased.
However, this analysis seems rather inconsistent with the numerical results shown in Fig. 9. This apparent contradiction may
be explained by looking more carefully at the spatio-temporal diagrams for di�erent convective heat transfer coe�cients, for
example for e = 8mm and A = 20 (Fig. 10). The decrease in hside reduces the heat transfer through the vertical walls and

(a) hside = 10 W/(m2
·K), µ = 145 mPa · s (b) hside = 1 W/(m2

·K), µ = 135 mPa · s (c) hside = 0.1 W/(m2
·K), µ = 130 mPa · s

Figure 10: Horizontal velocity at the free surface as a function of time, for e = 8mm, µ . µc and r = 0.

therefore the intensity of the local convective �ow. But the main feature concerns the delayed onset of the convection close
to the walls. This is due to the temporal variation of di�usive temperature �eld which decreases from Θ = 0 (T = T0) to
Θ = −1 (T = T0−LΦs/H). Since hside decreases, the required time t to get a signi�cant heat �ux (hside(T (t)−T0)) becomes
longer: the appearance of a convection seed along the lateral walls is consequently delayed.

3.7 Convection cell characterization

The characterization of the convective cells is based on spatio-temporal diagrams which provide the velocity at the free
surface as a function of time. The adopted procedure is as follows. For each time, the di�erent abscissa where the horizontal
velocity cancels are recorded. If the Péclet number reaches or exceeds the unity between two adjacent zero positions, the so
de�ned interval is then identi�ed as the signature of a convective pattern; otherwise the local region is assumed di�usive. To
avoid bias in the analysis, the two large convection cells adjacent to the lateral walls are disregarded. Figure 11 shows the
evolution of the number of convection cells Ncell for hside = 10W/(m2

·K), e = 1, 8 and 20mm with viscosities respectively
about 40%, 50% and 60% smaller than the critical ones and a large range of aspect ratios A. The solution is �rstly di�usive
(Ncell = 0) for short times, then convective cells become visible and their numbers increase. This augmentation is not
sensitive to the aspect ratio A; only the plateau corresponding to the maximum number of cells di�ers. For large aspect
ratios, a sudden increase in Ncell is observed at t = 3.5, 1, and 0.4 for e = 1, 8 and 20 mm, respectively. As already shown in
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(a) e = 1 mm, µ = 3.25 mPa · s (b) e = 8 mm, µ = 70 mPa · s (c) e = 20 mm, µ = 500 mPa · s

Figure 11: Evolution of the the number of convective cells Ncell for di�erent aspect ratios, hside = 10W/(m2
·K) and r = 0.

Fig. 5(b), this behaviour is due to numerical perturbations whose growth rates are greater than those of the convective cells
propagating from the wall to the core �ow region. Once the whole �uid domain is �lled by convective cells, their number
remains nearly constant or slightly decreases because of local rearrangements (see for example Fig. 11(a) for A = 20 and at
t ∼ 2.5, and the diagram 5(a) at the same time). Finally for longer times, the number of convective cells weakens smoothly
before the �uid solution becomes again at rest, except at the wall vicinity where the convection remains intense (uncounted
cells). It is worth noticing that the moment from which the decrease in the cell number is signi�cant is almost independent
of the aspect ratio A, in the order of t ∼ 5, 2 and 1.3 for e = 1, 8 and 20mm. For e = 1mm, the interval of the cell decrease
is more extended than for the two other thicknesses.

Figure 12 gives the averaged cell size λav at some discrete times, for various thicknesses and aspect ratios. This average

(a) e = 1 mm, µ = 3.25 mPa · s, ∆τ = 1 (b) e = 8 mm, µ = 70 mPa · s, ∆τ = 0.5 (c) e = 20 mm, µ = 500 mPa · s, ∆τ = 0.2

Figure 12: Evolution of the average size of the convective cells λav for di�erent aspect ratios, hside = 10W/(m2
·K) and

r = 0.

is carried out over the whole convective cells and time intervals ∆τ which are indicated in the captions. For the three
thicknesses, the averaged cell size is nearly constant (λav = 1± 10%), both in the propagation and plateau regimes, as long
as the number of convective cells does not fall sharply. This numerical value indicates that, as usually, the length scale for
the convection cells are related to the �uid thickness. A slight di�erence is noticed for the smallest thickness and 3 . t . 5
where the average cell size is a bit greater, in the order of 1.15±5%. When the �uid �ow locally relaxes towards the di�usive
state, the remaining convective cells get signi�cantly longer, mainly for e = 1mm (see Fig. 12(a) and the snapshot 3(e) for
A = 20 and t = 6).

3.8 Perturbations induced at the initial time

In the former works by Touazi et al. [18] and Trouette et al. [20, 21], the convection seed was originated from the initial
conditions by adding small random disturbances, either on the velocity or the temperature �eld. To this end, we proceed the
same way by suppressing the heat transfer at the lateral wall (Biside = 0 in Eq. (2c)) and introducing a spatial perturbation
on the temperature �eld, chosen in a uniform distribution with a magnitude r = 10−3 (see Eq. (3)).
Figure 13(a) shows the spatio-temporal diagram for the horizontal velocity at the free surface for e = 1mm, µ = 3.25
mPa · s and A = 20. Introducing disturbances at the initial instant modi�es substantially the convection at the free surface
(see Fig. 5(a) for comparison), namely the convection onset and the evolutions of both the cell number (Fig. 13(b) versus
Fig. 11(a)) and the cell size (Fig. 13(c) versus Fig. 12(a)). The simultaneous appearance of the convective cells in the whole
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Figure 13: Evolution of the solution for e = 1mm, µ = 3.25 mPa · s, hside = 0 and r = 10−3.

�uid layer is a common characteristic of the evolution of the �uid �ow when the perturbations are set at t = 0. Therefore, the
time corresponding to the convection onset is nearly insensitive to the aspect ratio A (Fig. 13(b)). The shape of the random
disturbance does nearly not in�uence it also, contrary to the intensity r that moves it forward or backward according to
whether the r-value is larger or smaller (see Fig. 6(a) as an illustrative example). Since the perturbation is chosen randomly,
the spatio-temporal diagram does not ful�l the symmetry condition about the mid plane x = A/2, as it was when a convective
heat transfer was imposed at the lateral walls. Di�erent initial conditions lead to slightly di�erent diagrams, but the overall
evolution of the number and size of the convective cells are qualitatively the same. For the thin liquid �lm e = 1mm, the
increase in the cell size with time looks smoother than in the case where the heat transfer at the vertical walls are activated
(see Figs. 12(a) and 13(c)). Notice that this di�erence is much less pronounced for the thicker �uid layers, e = 8 and 20
mm [3]. In Fig. 13(c) is also drawn the evolution of the average cell size obtained by Trouette et al. [20], also for e = 1mm
and A = 20, but with µ = 3 mPa · s. The slow and regular increase in the Ncell is qualitatively recovered. Quantitative
comparisons are di�cult because the viscosity, the way the cell size is determined, and the initial temperature perturbation
di�er.

4 Summary and concluding remarks

In this paper, the transition between a di�usive and convective �ow regime, induced by the evaporation of a Polyisobuty-
lene/Toluene solution, is numerically studied. Since the �ow evolution is transient, it is necessary to control the nature of
the disturbance that will give rise to convection; otherwise the destabilization won't be physical, but numerical in nature.
Contrary to the approach used in previous works, where random perturbations are imposed at the initial condition. We
have adopted here a model in which the disturbance is induced at the lateral walls, through a heat transfer. To proceed
to the evaluation of the transition between an essentially di�usive solution to a convective �ow, we have used a criteria
based on the Péclet number evaluated in the core �uid layer, far away from the lateral boundaries. The critical viscosity has
been determined for di�erent aspect ratios of the �uid layer, three thicknesses and a large range of heat transfer coe�cients.
The investigation of the convection �ow has been done by means of spatio-temporal diagrams representing the free surface
velocity as a function of time. This has enabled us to study the celerity of the convection wave sourced from the lateral
walls, the evolution of the convection cells, both in size and number.

Finally, the sensitivity of the convection onset to the way the solution is destabilized is illustrated in Fig. 14 which sums
up the critical viscosities µc obtained in this study, and the thresholds given by Touazi et al. (personal data and [18]), but
for disturbances applied on the velocity �eld instead of on the temperature �eld. This �gure clearly emphasizes that the
thresholds depend on the adopted choices to perturb the solution, either at the initial condition, or at the boundary, but
also the criteria to decide whether the �ow is convective or not. The main advantage of our approach, which consists in
accounting the heat transfer at the lateral walls, is that the solution is determinist and easily reproducible (same threshold
and spatio-temporal diagram for example).
Some comparisons may also be performed with the experimental measurements on PIB solutions [19] (Fig. 15). The convec-
tive/di�usive nature of �ows was achieved through visualizations of the free surface motions with a Marlin digital camera, the
solution being seeded with iriodin particles. For few experiments, top views were also performed with an IR camera to provide
information on the surface temperature �eld which is more sensitive to exhibit convection �ows. Our transition thresholds
between a di�usion state and a convective �ow are in good agreement with the 2D numerical transition line by Touazi et al.
[18]. Notice that the violet square symbols in Fig. 14 are identical to this transition line for our three thicknesses of interest.
By in large, the simulations seem to underestimate the critical viscosities, what means that the experimental liquid layers
are more unstable than the numerical ones. This di�erence may be explained if we consider some experimental perturbations

13



e=1 mm

µ
c 

(m
P

a.
s)

 3.5

 4

 4.5

 5

 5.5

 6

[4
, 

5
]

[5
.4

8
, 

5
.5

7
]

[4
.3

2
, 

5
.4

3
]

[4
.2

1
, 

5
.0

9
]

[4
.0

8
, 

4
.7

5
]

[3
.9

4
, 

4
.5

4
]

e=8 mm
 90

 100

 110

 120

 130

 140

 150

 160

[1
0

0
, 

1
5

0
]

[1
5

5
, 

1
5

6
]

[9
7

.1
, 

1
4

5
]

[9
5

.1
, 

1
3

7
]

[9
3

.7
, 

1
3

2
]

[9
3

.4
, 

1
3

0
]

Touazi et al.
hside=0

rvel=2, A=20

Touazi (Pers. Data)
hside=0

rvel=2, A=20

hside=0
r=10-3, A∈[20;40]

hside=10 W/(m2.K)
r=0, A∈[20;40]

hside=1 W/(m2.K)
r=0, A∈[20;40]

hside=0.1 W/(m2.K)
r=0, A∈[20;40]

hside=0.01 W/(m2.K)
r=0, A∈[20;40]

e=20 mm
 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

[1
0

5
0

, 
1

4
0

0
]

[1
3

8
8

, 
1

4
0

5
]

[8
9

4
.5

, 
1

4
1

7
]

[8
8

0
.7

, 
1

3
0

6
]

[8
7

0
.7

, 
1

2
6

3
]

[8
6

8
.7

, 
1

2
5

7
]

Figure 14: Synthesis of the critical viscosity µc for disturbances produced along the lateral walls (hside = 10 W/(m2
·K)

and r = 0) and at the initial condition (hside = 0 and r = 10−3). Comparison with the Touazi's personal data and by Touazi
et al. [18], both obtained for random disturbances of magnitude rvel = 2 applied on the velocity �eld. Each box given in
the Touazi's personal data indicates the best obtained framing of the viscosity threshold, on the one hand by a convective
solution (lower bound) and on the other hand by a di�usive one (upper bound) (see Fig. 2 for example). Published data
in [18] are the average values of the aforementioned data.
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Figure 15: Comparison between the critical viscosity intervals de�ned for hside ∈ [0.01; 10] W/(m2
·K), A ∈ [20; 40], r = 0

and three thicknesses (e = 1, 8 and 20mm), the experimental data by Toussaint et al. [19] and the 2D numerical transition
line by Touazi et al. [18].

which promote the convection in the liquid layer. This assumption seems valid if we refer to the experimental set-up where
an extracting hood is used to control the solvent concentration far from the solution. The consequence of this sucking up is a
non negligible air velocity close the the �lm surface that was evaluated by the experimentalists of about 0.1 m/s. Accounting
for this destabilizing e�ect, we can reasonably conclude that our numerical results are in qualitative agreement with the
experiments.
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