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RESTORING UNIQUENESS TO MEAN-FIELD GAMES BY RANDOMIZING

THE EQUILIBRIA

FRANÇOIS DELARUE1

Laboratoire J.-A. Dieudonné,
Université de Nice Sophia-Antipolis and UMR CNRS 7351,

Parc Valrose, 06108 Nice Cedex 02, France.

Abstract. We here address the question of restoration of uniqueness in mean-field games deriving
from deterministic differential games with a large number of players. The general strategy for
restoring uniqueness is inspired from earlier similar results on ordinary and stochastic differential
equations. It consists in randomizing the equilibria through an external noise.

As a main feature, we choose the external noise as an infinite dimensional Ornstein-Uhlenbeck
process. We first investigate existence and uniqueness of a solution to the noisy system made of
the mean-field game forced by the Ornstein-Uhlenbeck process. We also show how such a noisy
system can be interpreted as the limit version of a stochastic differential game with a large number
of players.

1. Introduction

The theory of mean-field games has encountered a tremendous success since it was introduced in
2006 by two independent groups, Lasry and Lions [43, 44, 45] on the one hand and Huang, Caines
and Malhamé [38, 39] on the other hand.

The purpose of mean-field games is to provide an asymptotic formulation for differential games
involving a large number of players interacting with one another in a mean-field way. The standard
writing of mean-field games consists in a forward-backward system involving a forward Fokker-
Planck equation describing the state of the population in equilibrium and a backward Hamilton-
Jacobi-Bellman describing the optimal cost to a typical player when the population is in equilibrium.
This goes back to the earlier works of Lasry and Lions, see [43, 44, 45], and to the subsequent series
of lectures by Lions at the Collège de France, see [46, 47] together with the lecture notes [7] of
Cardaliaguet. This approach, referred to as “the PDE approach”, fits both the cases when the
underlying differential games are deterministic or stochastic; in the deterministic case, the PDEs
involved in the representation are first-order PDEs, whilst they are second-order PDEs in the
stochastic framework. As pointed out in several works by Carmona and Delarue, see [14, 15, 16,
17, 18], the problem may be reformulated in a purely Lagrangian form, using, instead of a forward-
backward system of two PDEs, a forward-backward system of two ordinary or stochastic differential
equations of the McKean-Vlasov type, the name “McKean-Vlasov” emphasizing the fact that the
coefficients of the equations depend upon the statistical distribution of the solution. In that case,
the differential equations appearing in the representation are ordinary or stochastic according to
the deterministic or stochastic nature of the differential game; when the equations are ordinary,
randomness manifests in the dynamics through the initial condition only.

Quite remarkably, the forward-backward structure is common to both formulations, the PDE one,
in which equations are deterministic but set in infinite dimension, and the Lagrangian one, in which
equations are finite dimensional but of the McKean-Vlasov type. The forward-backward nature of
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the problem is a crucial feature in the analysis of mean-field games since forward-backward systems
are known to be hard to solve: Roughly speaking, Cauchy-Lipschitz theory for forward-backward
systems of differential equations holds in small time only, even when the differential equations are
finite dimensional. In arbitrary time, existence or uniqueness of solutions may fail, in which case
the whole system is said to develop singularities in finite time. The typical example for such a
phenomenon is provided by the inviscid one-dimensional backward Burgers equation: Solutions
may be represented through characteristics that describe the motion of a representative particle.
These characteristics solve the forward equation of the forward-backward system representing the
Burgers equation; meanwhile, the backward equation describes the dynamics of the velocity of the
particle, which remains constant along the motion of the particle. It is well known that, for some
choices of the terminal condition, the forward paths may split, such a splitting phenomenon being
usually referred to as a “shock”. In this regard, one interesting question is to decide of the right
continuation of the forward paths once singularities have emerged and uniqueness has been lost.
Anyhow, and quite remarkably, the existence of shocks is deeply connected with the form of the
terminal condition and, under an appropriate monotonicity assumption on the terminal condition,
singularities cannot show up and existence and uniqueness hold true in arbitrary time.

The picture for solving mean-field games is quite similar. Sufficient conditions are known under
which a solution (say for instance a solution to one of the two formulations) does exist in arbitrary
time, but, except in small time, uniqueness may not be guaranteed in most of the cases. We refer
to the original papers [43, 44, 45], to the video lectures [46], to the lecture notes [7] and to the
two-volume book [16, 17] for a review on the general strategy used to solve a mean-field game. We
also refer to the subsequent papers [8, 10, 11, 12] for other strategies, in connection with the theory
of mean-field control problem, and to [33, 34, 35] for the analysis of more intricated cases. For the
small time analysis, we also refer to [38] and to [16, Chapter 4] and [17, Chapter 5]. Existence of
a solution to the Lagrangian formulation may be found in [13, 14, 18], see also [16, Chapter 4].
Regarding uniqueness in arbitrary time, things are as follows. Similar to the analysis of the Burgers
equation, uniqueness is know to hold when the coefficients satisfy a suitable monotonicity condition
with respect to the distribution of the population. The most popular monotonicity property used
in this direction is due to Lasry and Lions, see once again [43, 44, 45], and is usually referred to as
the Lasry-Lions monotonicity condition. However, as emphasized in [1] and in [16, Chapters 4 and
5], other forms of monotonicity may be used.

In analogy with our short description of the forward-backward system associated with Burgers’
equation, the forward-backward system used for representing a mean-field game (whatever the
formulation) reads as the system of characteristics of some partial differential equation. In the
framework of mean-field games, this partial differential equation is called the “master equation” of
the game, the word “master” emphasizing the fact that the equation encapsulates all the information
that is necessary to describe the equilibria of the game. This equation was investigated first by
Lions in his lectures at the Collège de France and then by Gangbo and Swiech [32] in small time,
and by Chassagneux, Crisan and Delarue [21] and by Cardaliaguet, Delarue, Lasry and Lions [9]
in arbitrary time. In the latter reference, it is shown to play a crucial role in the justification of
the passage to the limit, from games with finitely many players to mean-field games. In arbitrary
time, analysis of the equation is performed under the additional assumption that coefficients satisfy
the Lasry-Lions monotonicity condition. We refer to [17, Chapters 5 and 6] for another point of
view on the results contained in [21, 9] and to [3, 4, 5, 15, 36, 37, 40] for other and more heuristic
approaches.

In the current paper, we consider the case when the Lasry-Lions monotonicity condition may fail,
the question being to find a strategy to restore uniqueness. Pursuing the same parallel as before, we
observe that, somehow, a similar program has been investigated for the Burgers equation: Adding
a Laplace operator in front of the Burgers equation permits to restore the existence and uniqueness
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of a classical solution in arbitrary time (as opposed to the inviscid case, for which the existence of
a classical solution may fail). From the Lagrangian point of view, the additional Laplace operator
reads as a Brownian motion that forces the motion of the underlying particle. Similar to the viscous
version of the Burgers equation, the stochastically forced forward-backward system describing the
“random characteristics” of the viscous Burgers equation is know to be uniquely solvable, see
Delarue [24]. In a way, “noise restores uniqueness in the Lagrangian formulation”. Our goal here
is to adapt this strategy to mean-field games.

The idea of restoring uniqueness by means of a random forcing has been extensively studied
in probability theory. It goes back to the earlier work of Zvonkin [55] on the solvability of one-
dimensional stochastic differential equations driven by non-Lipschitz continuous drifts. Several
people also contributed to the subject and investigated the higher dimensional framework, among
which Veretennikov [50], Flandoli, Russo and Wolf [29, 30], Krylov and Röckner [41], Davie [23]...
Similar questions have been also addressed in the framework of infinite dimensional stochastic
differential equations, see for instance Flandoli, Gubinelli and Priola [28] and the monograph by
Flandoli [27]. In any case, the idea is to force in a convenient way the Lagrangian dynamics in
order to restore uniqueness of solutions. Transposed to mean-field games theory, the question is here
to find a suitable randomly forced version of the original mean-field games in order to guarantee
uniqueness of the equilibria.

Here is our main result: For a certain class of coefficients, we manage to restore uniqueness to
mean-field games –deriving from a deterministic differential game– by means of a stochastic forcing.
The stochastic forcing mostly consists in an infinite dimensional Ornstein-Uhlenbeck process. The
reason why it is chosen of infinite dimension is well-understood. Roughly speaking, the stochastic
forcing is indeed intended to act on the elements of the “infinite dimensional manifold” formed by
the d-dimensional probability measures with a finite second-order moment, which is usually called
“the Wasserstein space” (d is the state dimension of a typical player). Here, probability measures
are used to describe the state of the population, whilst the limitation to probability measures
with a finite second-order moment is a convenient assumption which permits to benefit from the
Hilbertian structure of any L2 space constructed above the Wasserstein space. Returning to the
description of the forcing applied to the mean-field system, it is then well-understood that, in order
to capture all the “possible tangent directions” to the manifold at any point of it, it is necessary
to use a noise of infinite dimension. In order to bypass any description of the differential geometry
on the space of probability measures, we use the approach introduced by Lions in his lectures: We
lift equilibria from the space of probability measures to a well-chosen space of square-integrable
random variables and then use, as we just alluded to, the Hilbertian structure of this L2 space.
Fortunately, the Lagrangian description of mean-field games gives a canonical way to realize such
a lift. Our strategy then consists in forcing the dynamics of the random variables representing the
equilibria. In other words, our goal is to force a differential equation defined on an L2 space. A
convenient way to do so is to force the modes of the solution along an orthonormal basis of L2.
For instance, when L2 is chosen as the space L2pS1;Rdq of square-integrable Borel mappings from
S1 to Rd, where S1 denotes the one-dimensional torus, it suffices to force the Fourier modes of
square-integrable Rd-valued functions defined on S1. It is then a standard fact from the theory of
stochastic partial differential equations that the Ornstein-Ulhenbeck process has nice smoothing
properties on L2pS1;Rdq, which is the key feature for restoring uniqueness.

In addition to proving existence and uniqueness of a solution to the noisy version of the original
mean-field game, we also show that the randomly forced version may be interpreted as the limit of
a game with a large number of agents. As a main feature, the finite game not only exhibits mean
field interactions, which is well expected, but also local interactions to nearest neighbours, which is
certainly a new point in the literature on mean-field games; from a mathematical point of view, local
interactions arise from the discretization of the operator driving the additional infinite dimensional
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Ornstein-Ulhenbeck process. The route we take to connect the finite and the infinite regimes is to
prove that, from any equilibrium to the limiting problem, we can construct an approximate Nash
equilibrium to the finite system. Although this way of doing is pretty standard in the theory of
mean-field games, it turns out to be more challenging in our setting because of the additional local
interactions. Of course, another route would consist in proving that any (say closed loop) equilibria
to the finite player system do converge to the limiting equilibrium as the number of players grows
up. It turns out to be a pretty difficult question in the framework of mean-field games; in this
framework, the only generic approach that has been known to handle the convergence of closed
loop equilibria is due to [9] and is based on the aforementioned master equation. We guess that
a similar approach could be implemented here and we hope to address it in a future work. In
fact, a form of master equation is already addressed in the paper: We prove that the equilibrium
strategy (in the limiting regime) can be put in a feedback form and we show that the feedback
function, which may be regarded as a function from L2pS1;Rdq into itself, is a mild solution to a
system of nonlinear equations on L2pS1;Rdq, driven by the second-order operator generated by the
Ornstein-Ulhenbeck process inserted in the dynamics; the latter system reads as a kind of master
equation for our problem. We just say a “kind of” because the usual master equation for mean
field games is the equation satisfied by the value function and not by the feedback function. In
the standard mean field game regime, both are explicitly connected since the feedback function is
the derivative of the value function with respect to the so-called “private state variable”. Things
are slightly different in our setting and we prefer to work, in the noisy regime, with the feedback
function directly. At the end of the day, our guess is that, to plug our own version of the master
equation into the machinery developed by [9], we would need the feedback function to be more
regular than what we show below. Once again, this question is deferred to another work.

Another interesting prospect that we would like to investigate is the zero noise limit: We guess
that any limit of the solutions (to the noisy system), as the intensity of the forcing decreases to 0,
should generate a randomized equilibrium to the original mean-field game. We are not aware of
similar results in the theory of mean-field games, except maybe in the case investigated by Foguen
[31]. There, restoration of uniqueness is investigated for linear-quadratic mean-field games. In
comparison with the general case we handle here, linear-quadratic mean-field games present the
main advantage to have parametrized solutions: Equilibria are Gaussian and are thus parametrized
by their mean and variance and thus live in a finite-dimensional subspace of the space of probability
measures. In this case, it suffices to use a finite dimensional noise to restore uniqueness, which is
precisely what is done in [31]; then, it seems that, for some linear-quadratic mean-field games, zero
noise limits could be addressed by using arguments similar to [2]. Once again, we hope to make
this point clear in a future work in collaboration with Foguen.

Lastly, we emphasize the fact that all these questions should be revisited for mean-field games
deriving from stochastic differential games with idiosyncratic noises. We believe that part of the
technology developed in the paper could be recycled in this framework, except for the fact, due
to the simultaneous presence of two sources of noise –the idiosyncratic one and the external one
used to restore uniqueness–, the formulation of the randomized version of the game should require
a modicum of care. We make this fact clear in the text.

The paper is organized as follows. We present in Section 2 the randomized version of the game.
Main results are exposed in Section 3. The proof of existence and uniqueness of a solution to the
randomized game is given in Section 4. Connection with finite games is addressed in Section 5.

2. Mollified/Randomized MFG

We first present the original Mean-Field Game (MFG for short) and then describe the “mollified”
or “randomized” version that is expected to be uniquely solvable.
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Throughout the article, d is an integer greater than 1 and P2pRdq denotes the space of probability
measures over Rd. It is equipped with the 2-Wasserstein distance (see for instance [51, 52, 16]):

@µ, ν P P2pRq, W2pµ, νq “ inf
π

ˆ
ż

RdˆRd

|x´ y|2dπpx, yq

˙1{2

,

where the infimum in the last line is taken over all the probability measures π P P2pRd ˆ Rdq that
have µ and ν as respective marginals.

2.1. Original problem. We start with a simple MFG consisting of the following matching prob-
lem:

(1) Given a probability space pΩ,A,Pq and a flow of probability measures µ “ pµtqtPr0,T s on

Rd, consider the optimization problem

Jµpαq “ E
”

g
`

Xα
T , µT

˘

`

ż T

0

`

f
`

Xα
t , µt

˘

`
1

2
|αt|

2
˘

dt
ı

,

over controlled dynamics of the form

dXα
t “ bpXα

t , µtqdt` αtdt, (1)

with the initial condition Xα
0 “ X0, X0 being a random variable from Ω to Rd with µ0 as

distribution.
(2) Find pµtqtPr0,T s in such a way that the flow of marginal measures of the optimal path

pX‹t qtPr0,T s in the above optimization problem satisfies

µt “ L
`

X‹t
˘

, t P r0, T s. (2)

Here, α is called the control and is a jointly-measurable mapping

α : r0, T s ˆ Ω Q pt, ωq ÞÑ αtpωq P Rd,
satisfying

E
ż T

0
|αt|

2dt ă 8.

The coefficient b : Rd ˆ P2pRdq Ñ Rd is called the drift. It is assumed to be jointly Lipschitz
continuous, so that (1) is uniquely solvable for any realization ω P Ω and the solutionX : r0, T sˆΩ Q
pt, ωq ÞÑ Xtpωq P Rd is also jointly-measurable. The coefficients g : Rd Ñ R and f : RdˆP2pRdq Ñ R
are called cost functionals. They are assumed be jointly continuous on Rd ˆ P2pRdq. Throughout
the paper, we assume them to be at most of quadratic growth in the sense that, for some constant
C ě 0,

|fpx, µq| ` |gpx, µq| ď C
`

1` |x|2 `M2pµq
2
˘

, x P Rd, µ P P2pRdq,
where M2pµq

2 “
ş

Rd |x|
2dµpxq. In particular, it is well checked that the expectation in the definition

of the cost J makes sense.

Remark 1. All the coefficients are here assumed to be time homogeneous. This is for simplicity
only and the results given below can be extended quite easily to the time-inhomogeneous framework.
Similarly, the fact that f is a quadratic function of α is for convenience only; we could handle more
general running costs of the form fpx, µ, αq that are uniformly convex in α, see for instance [16,
Chapters 3 and 4]. However, the fact that b is linear in α is really crucial for our purpose, at least
if we want to make use, as we do below, of the sufficient version of the Pontryagin principle.

Another possible generalization would be to insert a Brownian motion in the dynamics (1), in
which case the mean-field game would be called “stochastic” or “second-order”. However, the ap-
proach developed below for restoring uniqueness of solutions does not apply to that case, see Remark
5 below. We hope to address this question in a future work.
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Usually, solutions to the matching problem (2) may be characterized in two ways. The origi-
nal one is to characterize the optimization problem in the first item above through a first order
Hamilton-Jacobi-Bellman equation (HJB for short):

Btupt, xq ` bpx, µtq ¨ Bxupt, xq ` fpx, µtq ´
1

2
|Bxupt, xq|

2 “ 0, (3)

for pt, xq P r0, T s ˆ Rd, with upT, xq “ gpx, µT q as boundary condition. Here, the function u :
r0, T sˆRd Ñ R is understood as the value function of the optimization problem (in the environment
µ “ pµtq0ďtďT ). Given the value function, it is known that the optimal control process in the
optimization problem reads (at least formally since the gradient below may not exist or may only
exist as a multi-valued mapping):

α‹ “
`

α‹t “ ´Bxupt,X
‹
t q
˘

0ďtďT
,

where pX‹t q0ďtďT now denotes the solution of the ordinary differential equation:

dX‹t “
´

b
`

X‹t , µt
˘

´ Bxu
`

t,X‹t
˘

¯

dt, t P r0, T s.

It is now easy to implement analytically the fixed point condition in the second item above. Under
the identification pµt “ LpX‹t qq0ďtďT , the flow µ “ pµtq0ďtďT must solve the nonlinear Fokker-
Planck equation:

Btµt ` Bx

´

`

bpx, µtq ´ Bxupt, xq
˘

µt

¯

“ 0, pt, xq P r0, T s ˆ Rd. (4)

with the initial condition µ0 for the population. The forward-backward system made of (3) and
(4) is usually called the MFG system of PDEs. We refer to aforementioned references [7, 46] for
further details.

Another strategy for characterizing the equilibria is to use the Pontryagin principle. Under
appropriate conditions, we know that the optimal paths of the control problem infα J

µpαq in the
first item of the above definition of an MFG equilibrium solve the forward-backward system of two
ODEs:

dX‹t “
´

b
`

X‹t , µt
˘

´ Y ‹t

¯

dt,

dY ‹t “
´

´Bxb
`

X‹t , µt
˘

Y ‹t ´ Bxf
`

X‹t , µt
˘

¯

dt,
(5)

with the initial condition X‹0 “ X0 and the terminal condition YT “ BxgpX
‹
T , µT q. Implementing

the matching condition (2) in the second item of the definition of an MFG equilibrium, we deduce
that equilibria of the MFG must solve the forward-backward system of the McKean-Vlasov type:

dX‹t “
´

b
`

X‹t ,LpX‹t q
˘

´ Y ‹t

¯

dt,

dY ‹t “
´

´Bxb
`

X‹t ,LpX‹t q
˘

Y ‹t ´ Bxf
`

X‹t ,LpX‹t q
˘

¯

dt,
(6)

with the terminal condition YT “ BxgpX
‹
T ,LpX‹T qq. Under suitable convexity properties of the

coefficients in the variable x, which we spell out in Subsection 2.6 below, the system (6) is not
only a necessary condition satisfied by any equilibria of the mean-field game but is also a sufficient
condition. In this framework, (6) characterizes the equilibria of the game. This is precisely this
system that we force stochastically below.

Throughout the article, we focus on this specific convex regime when the Pontryagin principle is
both a necessary and a sufficient condition of optimality. Although it demands strong assumptions
on the structure of the coefficients in the spatial variable x, this so-called “convex regime” turns
out to be especially useful for our purposes: It provides a sharp framework under which, for a
given input µ “ pµtq0ďtďT , the system (5) is uniquely solvable for any initial condition and its
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solution is stable under perturbation of the initial condition and perturbation of the input. It is
worth mentioning that, even in this strong setting, it still makes sense to address the restoration of
uniqueness for the mean-field game, since the McKean-Vlasov forward-backward system (6) may
not be uniquely solvable. Clearly, we shall appreciate having a sharp framework for solving the
control problem infα J

µpαq as it will permit to focus on the difficulties that are exclusively related
with the non-uniqueness of the MFG equilibria.

2.2. Reformulation. In order to proceed, we first notice that pΩ,A,Pq may chosen as the proba-
bility space pS1,BpS1q,Leb1q, where Leb1 is the Lebesgue measure. In this regard, we recall from
[6] that there exists a measurable function Ψ : S1 ˆPpRdq Ñ Rd such that, for every probability µ
on Rd, r0, 1s Q u ÞÑ Ψpu, µq is a random variable with µ as distribution.

With such a convention, the control α is understood as a jointly-measurable mapping

α : r0, T s ˆ S1 Q pt, xq ÞÑ αtpxq P Rd,

and the cost functional may be rewritten as

Jµpαq “

ż

S1
g
`

x,LpXα
T q

˘

dLpXα
T qpxq

`

ż T

0

„
ż

S1
f
`

x,LpXα
t q

˘

dLpXα
t qpxq `

1

2

ż

S1
|αtpxq|

2dx



dt.

(7)

With this reformulation, we introduce the L2 spaces L2pS1q “ L2pS1,BpS1q,Leb1q and L2pS1;Rdq –
rL2pS1qsd. A key fact is that the functions

e0 : S1 Q x ÞÑ 1, en,` : S1 Q x ÞÑ
?

2 cos
`

2πnxq, en,´ : S1 Q x ÞÑ
?

2 sin
`

2πnxq, n P N˚,

form an orthonormal basis of L2pS1q. In particular, for any element ` P L2pS1q, we call `0, `n,` and
`n,´, n P N˚, the different weights of `; we use the same notation when ` P L2pS1;Rdq, in which
case `0, `n,` and `n,´ are vectors of size d. Then, we may write

ż

S1
|αtpxq|

2dx “ |α0
t |

2 `
ÿ

nPN˚

`

|αn,`t |2 ` |αn,´t |2
˘

,

which we shall often summarize into
ż

S1
|αtpxq|

2dx “
ÿ

nPN
|αn,˘t |2,

with the convention that α0,` “ α0 and α0,´ “ 0.
Moreover, given a mapping h : Rd Ñ R, at most of linear growth, we may consider the mapping

h0 : L2
`

S1;Rdq Q ` ÞÑ h0p`q “

ż

S1
h
`

`pxq
˘

dx.

Then, we observe that the cost functional Jµ may be rewritten:

Jµpαq “ g0

`

Xα
T p¨q, µT

˘

`

ż T

0

!

f0
`

Xα
t p¨q, µt

˘

`
1

2

´

|α0
t |

2 `
ÿ

nPN

`

|αn,`t |2 ` |αn,´t |2
˘

¯)

dt, (8)

where Xαp¨q “ pXα
t p¨qq0ďtďT (pay attention to the dot we put in the notation to emphasize the

fact that the path has functional values) is a path with values in L2pS1;Rdq in such a way that
Xp¨q “Xαp¨q (we get rid of the superscript α to simplify the notations) satisfies

9Xn,˘
t “ bn,˘

`

Xtp¨q, µt
˘

` αn,˘t , t P r0, T s, n P N, (9)
7



where, for ` P L2pS1;Rdq and µ P P2pRdq,

bn,˘p`, µq “

ż

S1
b
`

`pxq, µ
˘

en,˘pxqdx, n P N,

denote the modes of bp`, µq.

2.3. Enlarged problem. A strategy for restoring uniqueness to mean-field games now consists
in forcing the modes pXn,˘qnPN introduced in the previous paragraph. To do so, we need to
disentangle the two sources of noise that will manifest in the construction of the new mean field
game: On the one hand, the initial condition is still defined as a square-integrable random variable
on the torus S1 (equipped with the collection LpS1q of Lebesgue sets); on the other hand, we need
another space for carrying the random forcing acting on the nodes pXn,˘qnPN.

Having this picture of our general strategy in mind, we now enlarge the probability space and
consider Ω “ S1 ˆ Ω0, where pΩ0,A0,F0 “ pF0,tqtPr0,T s,P0q is a complete filtered probability space

equipped with a collection pW 0, pW n,`,W n,´qnPN˚q of F0-Brownian motions of dimension d. The
filtration F0 satisfies the usual conditions.

We then equip Ω with the completion A of LpS1q bA0 and with the completion P of Leb1 b P0.
We call F the completion of the filtration pLpS1q b F0,tqtPr0,T s and we denote by ξ the identity

mapping on S1 (which is extended in a canonical way to Ω). Despite the fact that Ω has been
enlarged, we keep the same notations as above for h0p`q and `n,˘ whenever ` is an element of
L2pS1;Rdq. In particular, whenever X is a square-integrable random variable defined on Ω, we may
consider, for P0-almost every ω0 P Ω0, the random variable Xp¨, ω0q on S1 and then h0pXp¨, ω0qq and
Xn,˘p¨, ω0q. Recall indeed from the version of Fubini’s theorem for completion of product spaces
that, for P0-almost every ω0, Xp¨, ω0q is a square-integrable random variable on pS1,LpS1qq, see
Lemma 2 for more details.

The question now is to explain how to use the collection pW 0, pW n,˘qnPN˚q in order to construct
a uniquely solvable randomized mean field game. A näıve way would consist in forcing each mode
process Xn,˘ “ pXn,˘

t q0ďtďT in (9), for n P N, by the corresponding Wiener process W n,˘ (with
the same convention as above that X0 and W 0 are understood as X0,` and W 0,`). However, it
is a well-known fact that the solution

Xtp¨, ω0q “
ÿ

nPN
Xn,˘
t p¨, ω0qe

n,˘p¨q, t P r0, T s,

would not belong to L2pS1;Rdq.
In order to render the modes ppXn,˘

t q0ďtďT qnPN square summable, we may force (9) by another
F0-semi-martingale process Un,˘ such that

E0

”

sup
0ďtďT

´

ÿ

nPN
|Un,˘t |2

¯ı

ă 8, (10)

namely

dXn,˘
t “

´

bn,˘
`

Xtp¨q, µt
˘

` αn,˘t

¯

dt` dUn,˘t , t P r0, T s, n P N. (11)

Assume for instance that
ż T

0

ÿ

nPN

´

sup
xPS1

|bn,˘px, µtq|
2
¯

dt ă 8. (12)

Then,

E0

”

sup
0ďtďT

´

ÿ

nPN
|Xn,˘

t |2
¯ı

ă 8, (13)
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and we can regard

Xtp¨, ω0q “
ÿ

nPN
Xn,˘
t pω0qe

n,˘p¨q, t P r0, T s,

as a process with values in L2pS1;Rdq.
In this regard, the following lemma (see for instance [17, Chapter 2] for similar considerations)

makes clear the connection between random variables from Ω into R and random variables from
Ω0 into L2pS1q:

Lemma 2. Assume that X is a square-integrable Rd-valued random variable on Ω. Then, for P0

almost every ω0 P Ω0, S1 Q x ÞÑ Xpx, ω0q P L
2pS1;Rdq; moreover, we can construct a random

variable Xp¨q on Ω0 with values in L2pS1;Rdq, such that, for P0-almost every ω0 P Ω0, S1 Q x ÞÑ
Xpx, ω0q coincides in L2pS1;Rdq with the realization of the variable Xp¨q at ω0. Conversely, given
a random variable Xp¨q from Ω0 to L2pS1;Rdq, we can construct a random variable X on Ω such
that, for P0-almost every ω0 P Ω0, S1 Q x ÞÑ Xpx, ω0q coincides in L2pS1;Rdq with the realization
of the variable Xp¨q at ω0.

Proof. The proof is pretty straightforward. Given a square-integrable Rd-valued random variable
on Ω, Fubini’s theorem for completion of product spaces says that, for P0-almost every ω0, S1 Q

x ÞÑ Xpx, ω0q is a square-integrable random variable on pS1,LpS1qq. In particular, for P0-almost
every ω0, we can define Xn,˘pω0q “

ş

S1 Xpx, ω0qe
n,˘pxqdx. Each Xn,˘ is a random variable (on

Ω0). We then let

Xp¨q “
ÿ

nPN
Xn,˘en,˘p¨q.

Noticing that a mapping χp¨q from Ω0 into L2pS1;Rdq is measurable with respect to a σ-field G if
and only if its modes pχn,˘qnPN are measurable with respect to G, we deduce that Xp¨q is a random
variable from Ω0 to L2pS1;Rdq.

Conversely, if we are given a square integrable random variable Xp¨q from Ω0 into L2pS1;Rdq,
then we can define pXn,˘qnPN as random variables with values in Rd. We then let

Xnpx, ω0q “

n
ÿ

k“0

Xk,˘pω0qe
k,˘pxq, n P N.

Obviously, we can identify Xn (seen as a random variable on Ω with values in Rd) with Xnp¨q (seen
as a random variable on Ω0 with values in L2pS1;Rdq). It is clear that Xnp¨q converges to Xp¨q

in L2pΩ0,A0,P0;L2pS1;Rdqq and Xn has a limit X̃ in L2pΩ,A,P;Rdq. We then identify X̃p¨q with
Xp¨q.

Importantly, observe that we can proceed similarly with processes. For instance, we can associate,
with any F-progressively-measurable process with values in Rd, an F0-progressively-measurable
process with values in L2pS1;Rdq, and conversely. Indeed, if X “ pXtq0ďtďT is an F-progressively-

measurable Rd-valued process on Ω satisfying E
şT
0 |Xt|

2dt ă 8, then it can be approximated in

L2pr0, T s ˆ Ωq by simple processes of the form

ˆ

Xn
t “

n´1
ÿ

i“0

Xn,i1pti,ti`1s
ptq

˙

0ďtďT

, n P N,

where 0 “ t0 ă ¨ ¨ ¨ ă tn “ T is a subdivision of r0, T s and Xn,i, for each i P t0, ¨ ¨ ¨ , n ´ 1u, is
Fti measurable. Then, by Lemma 2, we can associate with each Xn,i an F0,ti-measurable random
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variable Xn,ip¨q from Ω0 into Rd. Letting

ˆ

Xn
t p¨q “

n´1
ÿ

i“0

Xn,ip¨q1pti,ti`1s
ptq

˙

0ďtďT

,

the sequence pXnp¨q “ pXn
t p¨qq0ďtďT qnPN is Cauchy in L2pr0, T sˆΩ0;L2pS1;Rdqq. The limit Xp¨q “

pXtp¨qq0ďtďT is F0-progressively-measurable and, for almost every t P r0, T s, for almost every ω0 P

Ω0, the realization of Xtp¨q coincides with S1 Q x ÞÑ Xtpx, ω0q.
Conversely, if we are given an F0-progressively-measurable Xp¨q “ pXtp¨qq0ďtďT from Ω0 into

L2pS1;Rdq satisfying E0

şT
0 }Xtp¨q}

2
L2pS1;Rdq

dt ă 8, then we can construct X “ pXtq0ďtďT as the

limit in L2pr0, T s ˆ Ω;Rdq of the sequence of processes
ˆˆ

px, ω0q ÞÑ

n
ÿ

k“1

Xk,˘
t pω0qe

k,˘pxq

˙

0ďtďT

˙

nPN

Clearly, X “ pXtq0ďtďT is F-progressively-measurable and, for almost every t P r0, T s, for almost
every ω0 P Ω0, the realization of Xtp¨q coincides with S1 Q x ÞÑ Xtpx, ω0q.

Given processes X and Xp¨q as we just considered, we can define

χ “

ˆ

χt “

ż t

0
Xsds

˙

0ďtďT

, and χp¨q “

ˆ

χtp¨q “
ÿ

nPN

ż t

0
Xn,˘
s en,˘ds

˙

0ďtďT

.

Then, it is pretty easy to check that, for almost every ω0 P Ω0, for all t P r0, T s, the function
S1 Q x ÞÑ χtpx, ω0q coincides with the realization of χtp¨q at ω0.

2.4. Randomized MFG. With the same assumption as in (10) for the collection of semi-martingales

pUn,˘ “ pUn,˘t q0ďtďT qnPN, we consider the following (informally defined) randomized MFG in lieu
of the original MFG presented in Subsection 2.1:

(1) Given an F0,0-measurable random variable V from Ω0 into P2pRdq, with E0rM2pV q2s ă 8,

and an F0-adapted flow of random measures µ “ pµtq0ďtďT on Rd with continuous paths
from r0, T s into P2pRdq such that P0pµ0 “ V q “ 1, consider the following cost functional

Jµpαq “

ż

Ω0

„

g0

`

XT p¨, ω0q, µT pω0q
˘

`

ż T

0

´

f0
`

Xtp¨, ω0q, µtpω0q
˘

`
1

2

ÿ

nPN
|αn,˘t pω0q|

2
¯

dt



dP0pω0q,

over controlled dynamics of the form

dXn,˘
t “

´

bn,˘
`

Xtp¨q, µt
˘

` αn,˘t

¯

dt` dUn,˘t , t P r0, T s, n P N, (14)

where pXn,˘
0 qnPN denote the modes of a random variable X0p¨q with values in L2pS1;Rdq

such that, P0-almost everywhere, Leb1 ˝ X0p¨q
´1 “ V . Such a random variable exists: it

suffices to take X0p¨q : Ω0 Q ω0 ÞÑ Ψpξ,V pω0qq P L
2pS1;Rdq (see the first lines of Subsection

2.2 for the definition of Ψ) and with the same convention as above that X0,´ is identically

zero. Here the controls ppαn,˘t q0ďtďT qnPN are required to be progressively-measurable with
respect to the filtration F0 and to satisfy:

ÿ

nPN
E0

ż T

0
|αn,˘t |2dt ă 8. (15)
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(2) Find µ “ pµt : Ω0 Q ω0 ÞÑ µtpω0qqtPr0,T s such that, with probability 1 under P0, for all
t P r0, T s,

µtpω0q “ Leb1 ˝X
‹
t p¨, ω0q

´1, (16)

where X‹p¨q “ pX‹t p¨qq0ďtďT q is the optimal path in the optimization problem infα J
µpαq.

Recalling (12), observe that we can provide a simple assumption on b such that, for X as in (14),

Xtp¨q “
ÿ

nPN
Xn,˘
t en,˘p¨q, t P r0, T s,

makes sense as a process from Ω0 into L2pS1;Rdq. In this regard, (14) just says that each Fourier
mode of the state variable Xtp¨q in the space L2pS1;Rdq is forced by the corresponding pUn,˘qnPN.

Of course, the choice of pUn,˘qnPN is the key point in our analysis. In full analogy with µ, we shall
define it as the solution of a fixed point involving the optimal trajectory of the new optimization
problem infα J

µpαq introduced right above, namely we choose each Un,˘ “ pUn,˘t q0ďtďT as

Un,˘t “ ´p2πnq2
ż t

0
X‹n,˘s ds`Wn,˘

t , t P r0, T s, n P N. (17)

Under this choice, the optimal trajectory of the optimization problem infα J
µpαq in environment

µ (as already explained, sufficient conditions will be given below so that an optimal path exists
and is unique) takes the form:

dX‹n,˘t “

´

bn,˘
`

Xtp¨q, µt
˘

` α‹n,˘t ´ p2πnq2X‹n,˘t

¯

dt` dWn,˘
t , t P r0, T s, (18)

where α‹ is the optimal control. Here the rationale for choosing the dissipative factor ´p2πnq2

in the dynamics is twofold. First, the fact that the series of the inverses of the factors, that is
ř

nPN˚p2πnq
´2, converge will permit us to prove, under suitable assumptions, that the modes of

X‹ are square-summable. Second, the factors ´p2πnq2 appear in the formal computation:

B2
xX

‹
t p¨q “

ÿ

nPN
X‹n,˘t B2

xe
n,˘
t p¨q “ ´

ÿ

nPN˚
p2πnq2X‹n,˘t en,˘t p¨q,

where X‹t p¨q “
ř

nPNX
‹n,˘
t en,˘p¨q, which prompts us to reformulate (18) as the controlled SPDE:

BtX
‹
t pxq “ bpXtpxq, µtq ` α

‹
t pxq ` B

2
xX

‹
t pxq `

9Wtpxq, t P r0, T s, x P S1. (19)

The notation 9W denotes a space-time white noise, namely

Wtp¨q “
ÿ

nPN
Wn,˘
t en,˘p¨q, t P r0, T s, x P S1, (20)

is a cylindrical Wiener process with values in L2pS1;Rdq, meaning that, for any f P L2pS1;Rdq, the
process

ˆ
ż

S1
fpxq ¨Wtpdxq “

ÿ

nPN
fn,˘ ¨Wn,˘

t

˙

tPr0,T s

is a Brownian motion with
ş

S1 |fpxq|
2dx as variance.

So, choosing U as in (17) is especially convenient for reformulating the dynamics of the equilib-
rium as the solution of an SPDE. In this regard, a crucial fact in the subsequent analysis will be
played by the structure of the SPDE, which is close to that of an Ornstein-Ulhenbeck (OU) process
with values in L2pS1;Rdq.

If the modes of X‹p¨q satisfy

E0

”

sup
0ďtďT

´

ÿ

nPN
|X‹n,˘t |2

¯ı

ă 8,
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it is then obvious from (12), (15), (17) and (18) that U satisfy (10), which proves that (13) holds
for any α.

In order to reconstruct the dynamics satisfied by X for any controlled α, we may focus on the
difference X ´U . Clearly, X ´U satisfies a controlled ODE with random coefficients:

d
`

Xn,˘
t ´ Un,˘t

˘

“
“

bn,˘
`

Xtp¨q, µt
˘

` αn,˘t
‰

dt, t P r0, T s, n P N,
so that

d
`

Xt ´ Ut
˘

“
“

bpXt, µtq ` αt
‰

dt, t P r0, T s,

with 0 as initial condition.

So, we end up with the following definition:

Definition 3. Given a square integrable F0,0-measurable random variable X0p¨q from Ω0 into

L2pS1;Rdq, we call a solution of the randomized MFG a pair of F0-progressively measurable and
L2pS1;Rdq-valued processes X‹p¨q “ pX‹t p¨qq0ďtďT , with X‹0 p¨q “ X0p¨q as initial condition, and
α‹p¨q “ pα‹t p¨qq0ďtďT , satisfying the integrability conditions

E0

”

sup
0ďtďT

}X‹t p¨q}
2
ı

ă 8,

E0

”

ż T

0
}α‹t p¨q}

2dt
ı

ă 8,

and satisfying the system (18), such that, under the notations

µtpω0q “ Leb1 ˝X
‹
t p¨, ω0q

´1, ω0 P Ω0,

Un,˘t “ ´p2πnq2
ż t

0
X‹n,˘s ds`Wn,˘

t , t P r0, T s, n P N,

the process α‹ (regarded as an F-progressively measurable process with values from Ω into Rd) is an
optimal control of the optimal control problem with random coefficients consisting in minimizing

J̄µpαq “ E
„

g
`

UT ` X̄
α
T , µT

˘

`

ż T

0

´

fpUt ` X̄
α
t , µtq `

1

2
|αt|

2
¯

dt



, (21)

over F-progressively measurable processes α satisfying

E
ż T

0
|αt|

2dt ă 8,

where X̄
α

solves

dX̄α
t “

´

b
`

Ut ` X̄
α
t , µt

˘

` αt

¯

dt, t P r0, T s, (22)

with X̄α
0 “ X0 as initial condition (X0 being regarded as an Rd-valued random variable on Ω).

Remark 4. Definition 3 provides another interpretation of the randomization of the equilibria. It
says everything works as if we kept the same MFG as before, but with random coefficients obtained
by an additive perturbation of the original ones.

Remark 5. The reader may now understand the reason why we have limited our result to the
case of deterministic (instead of stochastic) differential equations. Our strategy is indeed clear: We
enclose the private (or idiosyncratic) noise underpinning the initial condition of the representative
player in the torus; the infinite dimensional noise W p¨q (which reads as a “common noise”) then
acts on the modes of the initial condition. If we had to do so with a stochastic differential game,
we should enclose the whole private random signal (e.g., a Brownian motion) in the torus, but,
then, adaptability conditions would be a delicate issue to handle. In fact, our guess is that, to
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respect the adaptability constraints, the forcing procedure has to be slightly different (and in fact
less straightforward than it is here).

2.5. Infinite dimensional McKV forward-backward system. We now observe that, for a
given F0-progressively measurable random flow µ “ pµtq0ďtďT as in the first item of the randomized
MFG problem defined in (14)–(16), the optimal paths (whenever they exist) should be given by
the stochastic Pontryagin principle, see for instance [48, 49, 53], see also [16]. Here, the stochastic
Pontryagin principle takes the form of the following forward-backward system of SDEs:

dX‹,n,˘t “

´

bn,˘pX‹t p¨q, µtq ´ Y
‹,n,˘
t

¯

dt` dUn,˘t ,

dY ‹,n,˘t “

´

´
ÿ

kPN
Dn,˘b

k,˘pX‹t p¨q, µtqY
‹,k,˘
t ´Dn,˘f0pX

‹
t p¨q, µtq

¯

dt`
ÿ

kPN
Z‹,n,k,˘t dW k,˘

t ,
(23)

for t P r0, T s, with the terminal condition Y ‹,n,˘T “ Dn,˘g0pX
‹
T p¨q, µT q, for all n P N. Above,

pX‹,n,˘t q0ďtďT and pY ‹,n,˘t q0ďtďT take values in Rd and pZ‹,n,˘t q0ďtďT takes values in Rdˆd; also, we
have denoted byD the Fréchet derivative on L2pS1;Rdq and byDn,˘ ‚ “ xe

n,˘p¨q, D ‚yL2pS1;Rdq the d-

dimensional derivative in the direction en,˘. Of course, in the notation Dn,˘hp`, µq, with h matching

bk,˘, f0 or g0, the operator D acts on the first coordinate depending on ` P L2pS1;Rdq. In the nota-

tion Dn,˘b
k,˘pX‹t p¨q, µtqY

‹,k,˘
t , Dn,˘b

k,˘pX‹t p¨q, µtq is implicitly regarded as a square matrix with

columns pDn,˘b
k,˘
j pX‹t p¨q, µtqq1ďjďd, so that the whole reads as

řd
j“1Dn,˘b

k,˘
j pX‹t p¨q, µtqpY

‹,k,˘
t qj .

We shall check properly that all the derivatives make sense in our framework. Lastly, in (23), X‹t p¨q
is a shorten notation for the function in L2pS1;Rdq:

X‹t p¨q “
ÿ

nPN
X‹,n,˘t en,˘p¨q.

For the time being, we do not establish rigorously the derivation of the stochastic Pontryagin
principle. We shall address this question in Proposition 9. Meanwhile, we observe that, inserting
the fixed point condition (17), (23) may be rewritten as

dX‹,n,˘t “

´

bn,˘
`

X‹t p¨q, µt
˘

´ Y ‹,n,˘t ´ p2πnq2X‹,n,˘t

¯

dt` dWn,˘
t ,

dY ‹,n,˘t “

´

´
ÿ

kPN
Dn,˘b

k,˘
`

X‹t p¨q, µt
˘

Y ‹,k,˘t ´Dn,˘f0
`

X‹t p¨q, µt
˘

¯

dt`
ÿ

kPN
Z‹,n,k,˘t dW k,˘

t ,
(24)

for t P r0, T s, with the terminal condition Y ‹,n,˘T “ Dn,˘g0pX
‹
T p¨q, µT q, for all n P N.

Of course, nothing guarantees a priori that the modes in (24) are square summable. So, we
impose, in the definition of a solution to (24), that the modes are indeed square summable.

Definition 6. Given a square integrable F0,0-measurable random variable X0p¨q from Ω0 into

L2pS1;Rdq, we call a solution to (24) a countable collection of F0-progressively measurable pro-

cesses ppXn,˘
t q0ďtďT qnPN, ppY n,˘

t q0ďtďT qnPN, ppZn,k,˘t q0ďtďT qn,kPN, such that

ÿ

nPN
E
”

sup
0ďtďT

`

|Xn,˘
t |2 ` |Y n,˘

t |2
˘

ı

` E
„

ÿ

k,nPN

ż T

0
|Zn,k,˘t |2dt



ă 8,

satisfying, with probability 1, (24) (and the associated terminal condition) with the initial condition

Xn,˘
0 for all n P N, as given by the modes of X0p¨q.
Then, we can define F0-adapted and continuous processes pXtp¨qq0ďtďT and pYtp¨qq0ďtďT with

values in L2pS1;Rdq such that, with probability 1, for all t P r0, T s,

Xtp¨q “
ÿ

nPN
Xn,˘
t en,˘p¨q, Ytp¨q “

ÿ

nPN
Y n,˘
t en,˘p¨q.
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Implementing the matching condition (16) in the formulation of the enlarged problem, we under-
stand that, whenever they exist, fixed points should solve a McKean-Vlasov SDE of the conditional
type. Similar to (24), this McKean-Vlasov SDE must be infinite dimensional. In analogy with (6)
and with the same notation as in (16), it takes the form:

dX‹,n,˘t “

´

bn,˘
`

X‹t p¨q,Leb1 ˝ pX
‹
t p¨qq

´1
˘

´ Y ‹,n,˘t ´ p2πnq2X‹,n,˘t

¯

dt` dWn,˘
t ,

dY ‹,n,˘t “

´

´
ÿ

kPN
Dn,˘b

k,˘
`

X‹t p¨q,Leb1 ˝ pX
‹
t p¨qq

´1
˘

Y ‹,k,˘t

´Dn,˘f0
`

X‹t p¨q,Leb1 ˝ pX
‹
t p¨qq

´1
˘

¯

dt `
ÿ

kPN
Z‹,n,k,˘t dW k,˘

t ,

(25)

for t P r0, T s, with the terminal condition Y ‹,n,˘T “ Dn,˘g0pX
‹
T p¨q,Leb1 ˝ pX

‹
T p¨qq

´1q, for all n P N.
Letting

Bp`q “ b
`

`,Leb1 ˝ `
´1
˘

,

Hp`, hq “
ÿ

kPN

d
ÿ

j“1

Dbk,˘j
`

`,Leb1 ˝ `
´1
˘`

hk,˘
˘j
`Df0

`

`,Leb1 ˝ `
´1
˘

,

Gp`q “ Dg0

`

`,Leb1 ˝ `
´1
˘

,

(26)

for any two `, h P L2pS1;Rdq, (25) may be written as

dX‹n,˘t “

´

Bn,˘
`

X‹t p¨q
˘

´ Y ‹n,˘t ´ p2πnq2X‹n,˘t

¯

dt` dWn,˘
t , n P N,

dY ‹n,˘t “ ´Hn,˘
`

X‹t p¨q, Y
‹
t p¨q

˘

dt`
ÿ

kPN
Z‹n,k,˘t dW k,˘

t ,
(27)

for t P r0, T s, with the terminal condition Y ‹n,˘T “ Gn,˘pX‹T p¨qq, for all n P N.

This permits to give a similar definition to Definition 6:

Definition 7. Given a square integrable F0,0-measurable random variable X0p¨q from Ω0 into

L2pS1;Rdq, we call a solution to (27) (or (25)), a countable collection of F0-progressively mea-

surable processes ppXn,˘
t q0ďtďT qnPN, ppY n,˘

t q0ďtďT qnPN, ppZn,k,˘t q0ďtďT qnPN,kPN, such that

ÿ

nPN
E
”

sup
0ďtďT

`

|Xn,˘
t |2 ` |Y n,˘

t |2
˘

ı

` E
„

ÿ

k,nPN

ż T

0
|Zn,k,˘t |2dt



ă 8,

satisfying, with probability 1, (27) (and the associated terminal condition) with the initial condition

X‹n,˘ “ Xn,˘
0 for all n P N.

Then, we can define F0-adapted and continuous processes pXtq0ďtďT and pYtq0ďtďT with values
in L2pS1;Rdq such that, with probability 1, for all t P r0, T s,

Xtp¨q “
ÿ

nPN
Xn,˘
t en,˘p¨q, Ytp¨q “

ÿ

nPN
Y n,˘
t en,˘p¨q.

2.6. Standing assumptions. Throughout the paper, we assume that

Assumption (A). The coefficient b is assumed to be independent of x and to be bounded and
Lipschitz continuous on P2pRdq –P2pRdq being equipped with the 2-Wasserstein distance–. The
coefficients f and g are differentiable in x, and Bxf and Bxg are bounded and Lipschitz continuous
on RdˆP2pRdq. Moreover, for any µ P P2pRdq, the functions Rd Q x ÞÑ fpx, µq and Rd Q x ÞÑ gpx, µq
are convex.

14



Importantly, notice that, under assumption A, the coefficients in (26) take the simplest form:

Bp`q “ b0p`qe0p¨q, with b0p`q “ b
`

Leb1 ˝ `
´1
˘

,

Hp`, hq “ Fp`q, with Fp`q “ Df0
`

`,Leb1 ˝ `
´1
˘

.
(28)

In particular, the system (27) becomes (removing the stars in the labels):

dXn,˘
t “

´

1pn,˘q“p0,`qb0

`

Xtp¨q
˘

´ Y n,˘
t ´ p2πnq2Xn,˘

t

¯

dt` dWn,˘
t , n P N,

dY n,˘
t “ ´Fn,˘

`

Xtp¨q
˘

dt`
ÿ

kPN
Zn,k,˘t dW k,˘

t ,
(29)

for t P r0, T s, with the terminal condition Y n,˘
T “ Gn,˘pXT p¨qq, for all n P N.

In order to fully legitimate the existence of the Fréchet derivatives of f0 and g0 in the direction
`, we may invoke the following lemma, the proof of which is quite straightforward and is left to the
reader:

Lemma 8. For a continuously differentiable Lipschitz function F : Rd Ñ R (so that F is at most
of linear growth), define F0 : L2pS1;Rdq Q ` ÞÑ

ş

S1 F p`pxqqdx. Then, F0 is Fréchet differentiable
and

DF0p`q “ ∇F ˝ `.

In particular, we have the following expression for F (and similarly for G):

F : L2pS1;Rdq Q ` ÞÑ
`

S1 Q x ÞÑ Bxf
`

`pxq,Leb1 ˝ `
´1
˘˘

,

and then

Fn,˘p`q “

ż

S1
Bxf

`

`pxq,Leb1 ˝ `
´1
˘˘

en,˘pxqdx.

The introduction of Assumption (A) –namely asking b to be independent of x and f and g
to be convex in x– is fully justified by our desire to use the Pontryagin principle as a sufficient
condition of optimality. Generally speaking, it requires the underlying Hamiltonian to be convex,
which is indeed the case under Assumption (A) even though it could be slightly relaxed: We could
certainly allow b to be linear in x; we could also think of allowing the derivatives of f and g to be at
most of linear growth, but this seems a more challenging question. So, under Assumption (A), the
Pontryagin principle is not only a necessary but also a sufficient condition for the original control
problem described in Subsection 2.1; in particular, the McKean-Vlasov equation (6) characterizes
equilibria of the original (non-randomized) mean-field game. The following proposition is to check
that this fact remains true in our randomized framework:

Proposition 9. Given a square integrable F0,0-measurable random variable X0p¨q from Ω0 into

L2pS1;Rdq, any solution to (29) is a solution of the randomized matching problem defined in Def-
inition 3. Conversely, any solution to the randomized matching problem provides a solution to
(29).

In particular, the randomized matching problem is uniquely solvable if and only if the McKean-
Vlasov equation (29) is uniquely solvable.

Proof. First Step. Assume first that the McKean-Vlasov equation (29) has a solution, which we

denote by ppXn,˘
t qnPN, pY

n,˘
t qnPN, pZ

n,k,˘
t qn,kPNq0ďtďT . Denote by pXtp¨qq0ďtďT and pYtp¨qq0ďtďT the

associated L2pS1;Rdq-valued processes as in Definition 7 and let

µt “ Leb1 ˝Xtp¨q
´1, t P r0, T s.

Since the mapping L2pS1;Rdq Q ` ÞÑ Leb1 ˝`
´1 P P2pRdq is continuous, each µt is a random variable

with values in P2pRdq and the process pµtq0ďtďT is F0-adapted. Following (17), we also let (pay
15



attention that we dropped the symbol ‹ in the notation for the solution of the McKean-Vlasov
equation):

Un,˘t “ ´p2πnq2
ż t

0
Xn,˘
s ds`Wn,˘

t , t P r0, T s, n P N.

Observe that Un,˘ is also given by

Un,˘t “ Xn,˘
t ´Xn,˘

0 ´

ż t

0

“

1pn,˘q“p0,`qb
`

µs
˘

ds´ Y n,˘
s

‰

ds, t P r0, T s, n P N,

from which we deduce that

E0

”

sup
0ďtďT

ÿ

nPN
|Un,˘t |2

ı

ă 8.

Consider now an Rd-valued control α “ pαtq0ďtďT as in (22) and denote by pX̄α
t q0ďtďT the

solution to (22), namely

dX̄α
t “

“

bpµtq ` αt
‰

dt, t P r0, T s.

Thanks to Lemma 2, we can regard α and X̄
α

as F0-progressively measurable processes αp¨q and
X̄

α
p¨q from Ω0 to L2pS1q. Since α is fixed, we just note X̄ for X̄

α
. Then, the modes of Xp¨q

satisfy:

dX̄n,˘
t “

`

1pn,˘q“p0,`qbpµtq ` α
n,˘
t

˘

dt, t P r0, T s,

where pαn,˘t q0ďtďT denotes the modes of αp¨q. Letting pX̂n,˘
t “ X̄n,˘

t ` Un,˘t q0ďtďT , we get

d
`

X̂n,˘
t ´Xn,˘

t

˘

“
`

αn,˘t ` Y n,˘
t

˘

dt, t P r0, T s,

with Xα,n,˘
0 ´Xn,˘

0 “ 0, for all n P N.
Now, using the notation “¨” for the inner product in Rd,

d
”

Y n,˘
t ¨

`

X̂n,˘
t ´Xn,˘

t

˘

ı

“
`

αn,˘t ` Y n,˘
t

˘

¨ Y n,˘
t dt

´Dn,˘f0
`

Xtp¨q, µt
˘

¨
`

X̂n,˘
t ´Xn,˘

t

˘

dt` dMn,˘
t ,

where pMn,˘
t q0ďtďT is a square-integrable F0-martingale. Taking expectation, we deduce that

E0

“

Dn,˘g0

`

XT p¨q, µT
˘

¨
`

X̂n,˘
T ´Xn,˘

T

˘‰

“ E0

ż T

0

”

`

αn,˘t ` Y n,˘
t

˘

¨ Y n,˘
t ´Dn,˘f0

`

Xtp¨q, µt
˘

¨
`

X̂n,˘
t ´Xn,˘

t

˘

ı

dt.

Summing over n P N (which is licit in our framework), we deduce that

E0

“@

Dg0

`

XT p¨q, µT
˘

,
`

X̂T p¨q ´XT p¨q
˘D

L2pS1;Rdq

‰

“ E0

ż T

0

”

@`

αtp¨q ` Ytp¨q
˘

, Ytp¨q
D

L2pS1;Rdq
´
@

Df0
`

Xtp¨q, µt
˘

,
`

Xα
t p¨q ´Xtp¨q

˘D

L2pS1;Rdq

ı

dt,

where, as usual, we have let X̂tp¨q “
ř

nPN X̂
n,˘
t en,˘p¨q. Observing that, for two random variables

χp¨q and χ1p¨q with values in L2pS1;Rdq, E0rxχp¨q, χ
1p¨qyL2pS1;Rds “ Erχ ¨χ1s, where, in the last term,

χ and χ1 are regarded as Rd-valued random variables, we deduce from Lemma 8 that

E
“

BxgpXT , µT q ¨
`

X̂T ´XT

˘‰

“ E
ż T

0

”

`

αt ` Yt
˘

¨ Yt ´ BxfpXt, µtq ¨
`

X̂t ´Xt

˘

ı

dt.
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Therefore,

J̄µpαq ´ J̄µp´Y q “ E0

”

gpX̂T , µT q ´ gpXT , µT q ´ BxgpXT , µT q ¨
`

X̂T ´XT

˘

`

ż T

0

´1

2

ˇ

ˇαt ` Yt
ˇ

ˇ

2
` fpX̂t, µtq ´ fpXt, µtq ´ BxfpXt, µtq ¨

`

X̂t ´Xt

˘

¯

dt
ı

.

Since g and f are convex, we deduce that the right-hand side above is non-negative, which shows
that ´Y is an optimal control for J̄µ, that is to say X and ´Y form a randomized equilibrium.

Second Step. We now turn to the converse. Assume that a pair pX‹p¨q,α‹p¨qq satisfies Definition
3. Then, we regard the optimization problem infα J̄

µpαq defined in (21)–(22) as a standard op-
timization problem in random environment. By the standard stochastic Pontryagin principle (up
to a straightforward adaptation due to the fact that the noise is infinite dimensional), we know
that a necessary condition of optimality for some control process α –the corresponding path being
denoted by X̄

α
– is that the solution of the adjoint backward equation

dȲt “ ´BxfpUt ` X̄
α
t , µtqdt`

ÿ

nPN
Zn,˘t dWn,˘

t , t P r0, T s, (30)

with ȲT “ BxgpUT ` X̄
α
T , µT q as terminal condition coincides with ´α, namely

Ȳt “ ´αt, t P r0, T s. (31)

Now, if, as required, we have a control process α‹p¨q (with values in L2pS1;Rdq) with X‹p¨q as
associated path (also with values in L2pS1;Rdq) such that α‹ (when regarded as a process with
values in Rd, see Lemma 2) minimizes J̄µ in (21) when Up¨q is given by (17) and µ by (16), then,
following the discussion right after Lemma 2, we can identify the path of X‹ ´ U (seen as an

Rd-valued process on Ω) with the path of X̄
α‹

. Also, we can define Y ‹ (also seen as an Rd-valued
process) through (31); it solves an equation of the same type as (30). Computing the modes of
X‹p¨q and Y ‹p¨q, we get that pX‹p¨q,Y ‹p¨qq is a solution of the McKean-Vlaosv equation (29). If
the latter one is at most uniquely solvable, this shows that there is at most one MFG equilibrium.

3. Main results

We here expose the main results of the paper. Proofs will given next.

3.1. Existence and uniqueness. The first main result of the paper (whose proof is deferred to
Section 4) is

Theorem 10. Under Assumption (A), (29) is uniquely solvable for any initial condition in the
form of a square-integrable F0,0-measurable random variable X0p¨q from Ω0 to L2pS1;Rdq.

Comparison with the case without noise. It is worth comparing Theorem 10 with solvability results
for the original mean-field game. Existence of a solution under Assumption (A) to (6) was inves-
tigated by Carmona and Delarue [14], see also [16, Chapters 3 and 4], by adapting the analytical
techniques developed by Lasry and Lions, see [43, 44, 45, 7]. Uniqueness is known to hold under
the so-called monotonicity condition due to Lasry and Lions:

(1) b is independent of the measure argument µ; since b is here assumed to be independent of
x, it is thus constant;

(2) for any two µ, µ1 P P2pRdq,
ż

Rd

`

fpx, µq ´ fpx, µ1q
˘

d
`

µ´ µ1
˘

pxq ě 0,

ż

Rd

`

gpx, µq ´ gpx, µ1q
˘

d
`

µ´ µ1
˘

pxq ě 0.

17



Conversely, we can provide explicit examples for which uniqueness fails under Assumption (A).
Choose for instance d “ 1, b ” 0, f ” 0 and gpx, µq “ xgpµ̄q, where µ̄ is understood as the mean
of µ when µ P P2pRq, with g being non-increasing. Then, taking the mean in (6), we get

dErX‹t s “ ´ErY ‹t sdt,
dErY ‹t s “ 0, ErY ‹T s “ g

`

ErX‹T s
˘

,

which coincides with the system of characteristics associated with the inviscid Burgers equation,
which we alluded to in introduction:

Bxupt, xq ´ upt, xqBxupt, xq “ 0, upT, xq “ gpxq, x P R.

Choosing for instance gpxq “ ´x for |x| ď 1 and gpxq “ ´signpxq for |x| ě 1, we know that
uniqueness fails to the above forward-backward system when T ą 1 and ErX‹0 s “ 0 (it is easily
checked that ppErX‹t s,ErY ‹t sq “ p0, 0qq0ďtďT , ppErX‹t s,ErY ‹t sq “ pt,´1qq0ďtďT , ppErX‹t s,ErY ‹t sq “
p´t, 1qq0ďtďT are solutions). This shows that noise in the mollified version (29) indeed restores
uniqueness.

3.2. Master equation. In our analysis, we shall use the fact that (29) is connected with some
infinite dimensional PDE. Provided that existence and uniqueness hold true, the system (29) must
admit a decoupling field U : r0, T s ˆ L2pS1;Rdq Ñ L2pS1;Rdq such that, with probability 1,

Ytp¨q “ U
`

t,Xtp¨q
˘

, t P r0, T s,

or, equivalently,

Y n,˘
t “ Un,˘

`

t,Xtp¨q
˘

, t P r0, T s, n P N,
where pUn,˘qnPN denotes the Fourier modes of U .

Construction of the decoupling field is a standard procedure in the theory of forward-backward
processes. We provide a short account here and we refer to [16, Chapter 4] for further details.
Given t P r0, T s and ` P L2pS1;Rdq, consider (29) but with Xt “ ` as initial condition at time t

(or equivalently Xn,˘
t “ `n,˘). Note the solution ppXn,˘;t,`

s qnPN, pY
n,˘;t,`
s qnPN, pZ

n,k,˘;t,`
s qn,kPNq0ďtďT

and define accordingly the processes pXt,`
s , Y

t,`
s qtďsďT from Ω0 into L2pS1;Rdq ˆ L2pS1;Rdq as in

the discussion right after Lemma 2. By changing the filtration F0 into the augmented filtration

generated by pWn,˘
s ´Wn,˘

t qnPN,tďsďT , we deduce that Y t,`
t is almost surely deterministic, which

permits to let

Upt, `q “ Y t,`
t . (32)

Given this definition, we prove next that

Lemma 11. For any initial condition X0p¨q P L
2pΩ0,F0,0,P0;L2pS1;Rdqq, it holds, with probability

1 under P0,

Ytp¨q “ U
`

t,Xtp¨q
˘

, t P r0, T s. (33)

Provided that U is smooth enough, it must satisfy, by a formal application of Itô’s formula

dY n,˘
t “

ˆ

BtUn,˘
`

t,Xtp¨q
˘

`

A

DUn,˘
`

t,Xtp¨q
˘

,B
`

Xtp¨q
˘

´ Ytp¨q ` B
2
xXtp¨q

E

L2pS1;Rdq

`
1

2
Trace

”

D2Un,˘
`

t,Xtp¨q
˘‰

˙

dt

`

A

DUn,˘
`

t,Xtp¨q
˘

, dWtp¨q

E

L2pS1;Rdq
,

where W p¨q denotes the white noise defined in (20).
18



Identifying with the backward equation in (29), we deduce that U should be a solution of the
infinite dimensional system of infinite dimensional PDEs (on L2pS1;Rdq):

BtUn,˘pt, `q `
@

B2
xDUn,˘pt, `q, `

D

L2pS1;Rdq
`

1

2
Trace

“

D2Un,˘pt, `q
‰

`
@

DUn,˘pt, `q,Bp`q
D

L2pS1;Rdq
´
@

Upt, `q, DUn,˘pt, `q
D

L2pS1;Rdq
` Fn,˘

`

`,Upt, `q
˘

“ 0,
(34)

with Un,˘pT, ¨q “ Gn,˘. The operator

Lhp`q “
@

B2
xDhp`q, `

D

L2pS1;Rdq
`

1

2
Trace

“

D2hp`q
‰

, ` P L2pS1;Rdq,

is called the Ornstein-Uhlenbeck operator on L2pS1;Rdq driven by the unbounded linear operator
B2
x acting on L2pS1;Rdq. It is associated with the semi-group pPtqtě0 generated by the Ornstein-

Ulhenbeck process on L2pS1;Rdq, namely, for a bounded measurable function V from L2pS1;Rdq
into R, PtV maps L2pS1;Rdq into R:

PtV : L2pS1q Q ` ÞÑ E0

“

VpU `t q
‰

, (35)

where, for ` P L2pS1;Rdq, U `p¨q “ pU `t p¨qq0ďtďT is the solution of the OU equation on L2pS1;Rdq
(constructed on pΩ0,F0,P0q):

dU `t p¨q “ B
2
xU

`
t p¨qdt` dWtp¨q, t P r0, T s ; U `0 “ `.

Although there exist several results on infinite dimensional nonlinear PDEs (see for instance
[20, 26, 54]), it seems that systems of type (34) have not been considered so far. We thus prove in
Section 4 the following tailored-made solvability result:

Theorem 12. Under Assumption (A), the decoupling field U of (29) is a mild solution of the
system of PDEs (34), namely, for all n P N:

Un,˘pt, ¨q “ PT´t
´

Dn,˘g0p¨,Leb1 ˝ ¨
´1q

¯

`

ż T

t
Ps´t

”

Dn,˘f0p¨,Leb1 ˝ ¨
´1q `

@

Bp¨q ´ Ups, ¨q, DUn,˘ps, ¨q
D

L2pS1;Rdq

ı

ds.

Moreover, the function U is Lipschitz continuous in the direction ` P L2pS1;Rdq, uniformly in time
t P r0, T s.

Comparison with the case without noise. Once again, it is worth comparing Theorem 12 with results
obtained for the original mean-field game. Under the Lasry-Lions monotonicity condition (say with
b ” 0) and appropriate regularity assumptions on the coefficients, it is proven in Chassagneux,
Crisan and Delarue [21] (see also [9] for the periodic case and [17, Chapter 5] for another point of
view on [21]) that there exists a function

V : r0, T s ˆ Rd ˆ P2pRdq Ñ R,
such that the function

r0, T s ˆ Rˆ L2pS1;Rdq Q pt, x, `q ÞÑ V
`

t, x,Leb1 ˝ `
´1
˘

is differentiable and satisfies the so-called master equation

BtV pt, x, µq ´
1

2
|BxV pt, x, µq|

2 ´

ż

R
BµV pt, x, µqpvqBxV pt, v, µqdµpvq ` fpx, µq “ 0, (36)

for pt, x, µq P r0, T s ˆ Rd ˆ P2pRdq, with V pT, x, µq “ gpx, µq, where BµV is understood as follows.
The Fréchet derivative of ` ÞÑ V pt, x,Leb1 ˝ `

´1q in the direction ` takes the form

D
“

V
`

t, x,Leb1 ˝ ¨
´1
˘‰

¨“`
“ BµV

`

t, x,Leb1 ˝ `
´1
˘

p`p¨qq, (37)
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for some function BµV pt, x, µqp¨q P L
2pRd, µ;Rdq with µ “ Leb1 ˝ `

´1. It is also shown in [21] that
BxV and BµV are differentiable in x (provided that f and g are sufficiently smooth). Therefore,

Bt
`

BxV pt, x, µq
˘

´ Bx
`

BxV pt, x, µq
˘

BxV pt, x, µq

´

ż

R
BxBµV pt, x, µqpvqBxV pt, v, µqdµpvq ` Bxfpx, µq “ 0,

(38)

for pt, x, µq P r0, T s ˆ Rd ˆ P2pRdq, with BxV pT, x, µq “ Bxgpx, µq.
Define now

V : r0, T s ˆ L2pS1;Rdq Q pt, `q ÞÑ
`

S1 Q x ÞÑ BxV
`

t, `pxq,Leb ˝ `´1
˘

P Rd
˘

P L2pS1;Rdq.

Notice that the right-hand side indeed belongs to L2pS1;Rdq if BxV is at most of linear growth in
x, see the aforementioned references. On the model of (34), compute

DVn,˘pt, `q “ D
´

L2pS1;Rdq Q h ÞÑ
ż

S1
BxV

`

t, hpxq,Leb ˝ h´1
˘

en,˘pxqdx
¯

|h“`
.

By (37) and following Lemma 8 (provided again that we have enough regularity), we have

DVn,˘pt, `qpxq “ B2
xV

`

t, `pxq,Leb ˝ `´1
˘

en,˘pxq `

ż

S1
BxBµV

`

t, `pvq,Leb ˝ `´1
˘`

`pxq
˘

en,˘pvqdv,

so that
@

Vpt, `q, DVn,˘pt, `q
D

L2pS1;Rdq

“

ż

S1
B2
xV

`

t, `pxq,Leb ˝ `´1
˘

BxV
`

t, `pxq,Leb ˝ `´1
˘

en,˘pxqdx

`

ż

S1

ż

S1
BxBµV

`

t, `pvq,Leb ˝ `´1
˘`

`pxq
˘

BxV
`

t, `pxq,Leb ˝ `´1
˘

en,˘pvqdvdx.

Going back to (38), changing x into `pxq with x P S1, choosing µ “ Leb ˝ `´1, multiplying by
en,˘pxq and taking the integral over S1, we can write

BtVn,˘pt, `q ´
@

Vpt, `q, DVn,˘pt, `q
D

L2pS1;Rdq
`

ż

S1
Bxf

`

`pxq,Leb1 ˝ `
´1
˘

en,˘pxqdx “ 0, (39)

with Vn,˘pT, ¨q “ Gn,˘, which is the inviscid analogue of (34). Put it differently, (34) reads as a
second-order version of (39); equivalently, Theorems 10 and 12 read as a regularization result for
the master equation via an infinite dimensional Ornstein-Ulhenbeck operator.

Remark 13. The reader may wonder why, in the statement of Theorem 12, we focus on the
equation satisfied by the feedback function and not on the equation satisfied by the value function.
Indeed, it is worth noting that, in the standard theory of mean-field games, the so-called “master
equation” is the equation for the value function, as exemplified in (36) (therein, V identifies with
the value of the mean-field game).

In fact, the main reason is that it looks simpler. Indeed, our analysis is based upon the auxiliary
control problem (21)–(22), which is –and this is the key feature– driven by random coefficients
(not only the measure-valued process µ is random but also the process U depends on ω0). In this
framework, the Pontryagin principle provides a very robust approach: Except for the additional
martingale term in the backward equation (30) in the proof of Proposition 9, it has a standard
structure; and, in fact, the martingale structure plays almost no role in the overall discussion. This
is the reason why we use this approach here; and, as a result, this explains why the master equation
we get is an equation for the feedback function.
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Of course, once the feedback function is given, the value function is easily recovered. They are two
strategies to do so. The first one is to regard the optimal cost J̄µpα‹q in (21) when the initial condi-
tion pt,X‹t p¨qq varies in r0, T sˆL2pS1;Rdq; equivalently, this amounts to consider

ş

Rd V pt, x, µqdµpxq

in (36). Here the resulting function would satisfy a linear PDE on r0, T s ˆ L2pS1;Rdq, but the co-
efficients would depend on the feedback function. Pay attention that, as a mean-field game is not
an optimization problem, this equation could not be regarded as an autonomous Hamilton-Jacobi-
Bellman equation deriving from an optimal control problem in infinite dimension. Another strategy
is to disentangle the initial state of X̄

α
in (22) from the initial condition X0p¨q P L

2pS1;Rdq for
X‹p¨q, which is exactly what is done for standard mean-field games. In fact, by doing so, we first
compute, with X̄α

0 “ x P Rd as initial condition, the optimal value of the optimal control problem
(21)–(22) in the random environment formed by X‹p¨q; since the environment is uniquely defined
in terms of X0p¨q (this is Theorem 10), the optimal value is a mere function of x and X0p¨q. Using
the same notation as in (36), this should be “our” V p0, x,X0p¨qq (here t “ 0 because (21)–(22)
is initialized at time 0, but it is pretty easy to adapt the argument to any initial time t); then
BxV p0, X0p¨q, X0p¨qq should coincide with Up0, X0p¨qq.

It is worth noting that, following the usual approach to mean-field games based on the MFG
PDE system, we could directly address the optimal value of the optimal control problem (21)–(22)
in an arbitrary environment X‹p¨q (before we know that it is an equilibrium) and then look for
an equilibrium by solving a fixed point obtained by plugging the resulting optimal feedback in the
dynamics of X‹p¨q. Basically, this would require to write down the stochastic Hamilton-Jacobi-
Bellman equation associated with (21)–(22) in the arbitrary environment X‹p¨q; this is the point
where we feel that using the Pontryagin principle is simpler.

3.3. Interpretation as an asymptotic game. Classical MFGs arise as asymptotic versions of
games with a large number of players. Similarly, a natural question here is to address the interpre-
tation of the randomized MFG defined above as the limiting version of a large game (with finitely
many players). Generally speaking, there are two ways to make the connection between mean-field
games and finite games: The first one is to prove that equilibria of the finite games (if they do
exist) converge to a solution of the limiting mean-field game, see for instance [9] for the convergence
of closed-loop equilibria and [42] for the convergence of open-loop equilibria; the second one is to
prove that any solution to the limiting game induces a sequence of approximate Nash equilibria to
the corresponding finite games, see for instance [7, 14, 38] for earlier references in that direction. It
turns out that, for standard mean-field games, the second approach is (much) easier to implement
than the first one; for that reason, this is that one that we try to adapt below, see however Remark
15 about the possible implementation of the first approach.

In comparison with the standard case, there are two main differences between our framework
and the aforementioned references. The first one is that the limiting system is perturbed by an
infinite dimensional noise, which should be called “an infinite dimensional common noise”. This
terminology is frequently used in the theory of MFGs to emphasize the fact that the law of the
population feels the realization of the noise, as opposed to more standard cases where the law
of the population is defined as the average over all the possible realizations of the noise, see for
instance [9, 19] and the book [17]. The second feature is the presence of local interactions due to
the Laplacian in the dynamics (29) (see also the SPDE (19)).

In order to describe the corresponding finite games, we proceed as follows. We consider NAN
particles (with state in Rd) that are uniformly distributed all along the N roots of unity of order
N , with exactly AN particles per root, where AN P N˚. States of the NAN particles at time t are

denoted by pXk,j
t qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

. The index k is understood as a label for the position (or the
site) of the particle pk, jq on the unit circle: it is located at point with angle 2πk{N . In particular
(and it is important for the sequel), the set of indices for the location of the site may be identified
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with Z{NZ; sometimes, we thus use the notation Xk``N,j
t for Xk,j

t , for k P t0, . . . , N´1u and ` P Z.

In the notation Xk,j
t , j stands for the label of the particle at the site k, since that there are AN

particles at the site k.
The dynamics of each particle is controlled, each particle pk, jq having dynamics of the form

dXk,j
t “

´

b
`

µ̄Nt
˘

` αk,jt `N2
`

X̄k`1
t ` X̄k´1

t ´ 2X̄k
t

˘

¯

dt`
?
NdBk

t ,

with

X̄k
t “

1

AN

AN
ÿ

j“1

Xk,j
t ,

and Xk,j
0 “ X̄k

0 for all j P t1, ¨ ¨ ¨ , ANu, where pX̄k
0 qk“0,¨¨¨ ,N´1 are given by the following finite

volume approximation of X0p¨q (which is here assumed to be independent of ω0):

X̄k
0 “ N

ż pk`1q{N

k{N
X0pxqdx, k “ 0, ¨ ¨ ¨ , N ´ 1,

whilst the noises pBk “ pBk
t q0ďtďT qk“0,¨¨¨ ,N´1 are independent d-dimensional Brownian motions on

the interval r0, T s with the following definition:

Bk
t “

?
N

ż pk`1q{N

k{N
Wtpdxq.

The random variables pX̄k
0 qk“0,¨¨¨ ,N´1 are thus constructed on the space pS1,LpS1q,Leb1q whilst

the processes pBk “ pBk
t q0ďtďT qk“0,¨¨¨ ,N´1 are constructed on the space pΩ0,A0,P0q, as defined in

Subsection 2.3.
Above µ̄Nt is the empirical distribution

µ̄Nt “
1

NAN

N´1
ÿ

k“0

AN
ÿ

j“1

δ
Xk,j

t
.

Processes pαk,j “ pαk,jt q0ďtďT qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN
are controls with values in Rd; they are progressively-

measurable with respect to the filtration generated by the cylindrical white noise pWtp¨qq0ďtďT .
Controls are required to satisfy

E
ż T

0
|αk,jt |

2dt ă 8.

We assign to player pk, jq the following cost functional

Jk,j
`

pαk
1,j1qk1“0,¨¨¨ ,N´1;j1“1,¨¨¨ ,AN

˘

“ E
”

g
`

Xk,j
T , µ̄NT

˘

`

ż T

0

´

f
`

Xk,j
t , µ̄Nt

˘

`
1

2
|αk,jt |

2
¯

dt
ı

.

Recall that we call an open-loop Nash equilibrium a tuple pα‹k,j “ pα‹k,jt q0ďtďT qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

such that, for any pk0, j0q P t0, ¨ ¨ ¨ , N ´ 1u ˆ t1, ¨ ¨ ¨ , ANu, for any control αk0,j0 “ pαk0,j0t q0ďtďT ,

Jk0,j0ppβk,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN
q ě Jk0,j0ppα‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

q, where βk,j “ α‹k,j if pk, jq “

pk0, j0q and βk0,j0 “ αk0,j0 .
The following statement shows that we can construct an approximated Nash equilibrium from

the solution to problem (24) (compare for instance with [7, 14, 38] and [17, Chapter 6]).

Theorem 14. On top of Assumption (A), assume that f and g are Lipschitz continuous in µ,
uniformly in x. Assume also that the sequence pAN qNPN˚ tends to 8 with N . For a (deterministic)
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initial condition X0p¨q P L
2pS1;Rdq, call pXp¨q,Y p¨q,Zp¨qq the solution to (29). Then, there exists

a sequence of positive reals pεN qNPN˚ converging to 0 as N tends to 8 such that, with

α‹k,jt “ N

ż k{N

pk´1q{N
Ytpxqdx, t P r0, T s,

for all k P t0, ¨ ¨ ¨ , N ´ 1u and j P t1, ¨ ¨ ¨ , ANu, it holds, for any k0 P t0, ¨ ¨ ¨ , N ´ 1u and j0 P

t1, ¨ ¨ ¨ , ANu, and for any control αk0,j0 “ pαk0,j0t q0ďtďT ,

Jk0,j0
`

pβk,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

ě Jk0,j0
`

pα‹k,jk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

´ εN ,

where βk,j “ α‹k,j if pk, jq “ pk0, j0q and βk0,j0 “ αk0,j0.

Remark 15. Theorem 14 must be regarded as a way to connect the problem (24) with a game of the
same flavor as what appears in standard mean field game theory. In this regard, the assumption that
b, fp0, ¨q and gp0, ¨q are at most of linear growth (with respect to M2pµq) is mostly for convenience.
Also, it must be emphasized that it is not the only way to make the connection. Another way would
be to construct an approximate Nash equilibrium in a closed-loop form, as usually done in mean
field games. We assert that it should be indeed possible provided that we let:

α‹k,jt “ N

ż k{N

pk´1q{N
U
`

t, X̄tp¨q
˘

pxqdx, t P r0, T s,

with the notation

X̄tp¨q “

N´1
ÿ

k“0

X̄k
t 1rk{N,pk`1q{Nqp¨q “

1

N

N´1
ÿ

k“0

N
ÿ

j“1

Xk,j
t 1rk{N,pk`1q{Nqp¨q, t P r0, T s,

which means that

dXk,j
t “

ˆ

b
`

µ̄Nt
˘

`N

ż k{N

pk´1q{N
U
`

t, X̄tp¨q
˘

pxqdx`N2
`

X̄k`1
t ` X̄k´1

t ´ 2X̄k
t

˘

˙

dt`
?
NdBk

t .

As the paper is already quite long, we feel better to focus on the construction of an approximated
Nash equilibrium over open-loop form controls only, which is in fact slightly simpler.

Another strategy would be to address the convergence of the Nash equilibria of the finite player
game (if they do exist) to the solution of (24). Describing the dynamics of the equilibria to the
finite player game by means of Pontryagin’s principle and then using the master equation (34), we
could indeed implement the same strategy as that used in [9] for standard mean field games, but this
would require first to improve Theorem 12 and to prove further regularity properties of U . Again,
we feel better to postpone this equation to further works.

Last, we mention that the condition AN Ñ 8 is absolutely crucial. It is must be regarded as a
way to freeze the influence of the local interaction in the dynamics between the particles; this is the
key fact to restore a mean field limit despite the local interactions.

4. Proofs of Theorems 10 and 12

We now prove Theorems 10 and 12.

4.1. Small time analysis. We start with the case when T is small enough.

Theorem 16. There exists a constant c, only depending on the Lipschitz constant of the coefficients
b0, F “ Df0 and G “ Dg0 such that, for T ď c, the system (29) is uniquely solvable for any initial
condition X0p¨q P L

2pΩ0,F0,0,P0;L2pS1;Rdqq. This permits to define the decoupling field U as in
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(32). It maps L2pS1;Rdq into itself. Then, there exists a constant Λ, only depending on the bound
of the coefficients b0, F “ Df0 such that, for T ď c,

sup
0ďtďT

sup
`PL2pS1;Rdq

}Upt, `q}L2pS1;Rdq ď sup
`PL2pS1;Rdq

}Gp`q}L2pS1;Rdq ` ΛT 2.

Moreover, there exists a constant C, only depending on the Lipschitz constant of the coefficients b0,
F “ Df0 and G “ Dg0 such that, for T ď c, for any t P r0, T s, Upt, ¨q is C Lipschitz continuous.
In particular, U satisfies Lemma 11.

Remark 17. We let the reader check that the above result remains true if G is not given as the
gradient of g0, but is a general bounded and Lipschitz continuous function from L2pS1;Rdq into
itself.

Proof. The proof is quite standard in the finite dimensional framework. We give the sketch of it,
insisting on the differences between the infinite-dimensional and finite-dimensional cases.

First step. Existence and uniqueness in small time follow from the application of Picard’s fixed
point theorem. We consider the space S of processes pXp¨q,Y p¨qq “ pXtp¨q, Ytp¨qq0ďtďT with values
in L2pS1;Rdq ˆ L2pS1;Rdq, that are F0-adapted with continuous paths and that satisfy

E0

“

sup
0ďtďT

`

}Xtp¨q}
2
L2pS1;Rdq

` }Ytp¨q}
2
L2pS1;Rdq

˘‰

ă 8.

Given the initial condition X0p¨q P L
2pΩ0,F0,0,P0;L2pS1;Rdqq, we then call Φ the function that

maps pXp¨q,Y p¨qq “ pXtp¨q, Ytp¨qq0ďtďT onto the pair pX̃p¨q, Ỹ p¨qq “ pX̃tp¨q, Ỹtp¨qq0ďtďT satisfying

dX̃n,˘
t “

´

1pn,˘q“p0,`qb0

`

X̃tp¨q
˘

´ Y n,˘
t ´ p2πnq2X̃n,˘

t

¯

dt` dWn,˘
t ,

dỸ n,˘
t “ ´Dn,˘f0

`

Xtp¨q,Leb1 ˝Xtp¨q
´1
˘

dt`
ÿ

kPN
Z̃n,k,˘dW k,˘

t ,

with the terminal condition Ỹ n,˘
T “ Dn,˘g0pXT p¨q,Leb1 ˝ XT p¨q

´1q. Obviously, the backward
equation may be rewritten under the form:

Ỹ n,˘
t “ E0

”

Dn,˘g0

`

XT p¨q,Leb1 ˝XT p¨q
´1
˘

`

ż T

t
Dn,˘f0

`

Xsp¨q,Leb1 ˝Xsp¨q
´1
˘

ds
ˇ

ˇF0,t

ı

.

Taking the square and summing over n P N, we deduce that

ÿ

nPN
|Ỹ n,˘
t |2 ď

ÿ

nPN
E0

”

ˇ

ˇDn,˘g0

`

XT p¨q,Leb1 ˝XT p¨q
´1
˘
ˇ

ˇ

2

` T

ż T

t

ˇ

ˇDn,˘f0
`

Xsp¨q,Leb1 ˝Xsp¨q
´1
˘ˇ

ˇ

2
ds

ˇ

ˇF0,t

ı

.

Since Df0p¨,Leb1 ˝ ¨
´1q and Dg0p¨,Leb1 ˝ ¨

´1q are bounded, we deduce that

ÿ

nPN
|Ỹ n,˘
t |2 ď sup

`PL2pS1;Rdq

}Dg0p`,Leb1 ˝ `
´1q}L2pS1;Rdq ` ΛT 2, (40)

for some deterministic Λ ě 0.
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Consider now another input pX 1p¨q,Y 1p¨qq “ pX 1tp¨q, Y
1
t p¨qq0ďtďT in S and call pX̃ 1p¨q, Ỹ 1p¨qq “

pX̃ 1tp¨q, Ỹ
1
t p¨qq0ďtďT its image by Φ. By the same argument as above, using in addition Bürkholder-

Davis-Gundy inequalities, we get

E0

“

sup
0ďtďT

}Ỹtp¨q ´ Ỹ
1
t p¨q}

2
L2pS1;Rdq

‰

ď E0

”

›

›Dg0

`

XT p¨q,Leb1 ˝XT p¨q
´1
˘

´Dg0

`

X 1T p¨q,Leb1 ˝X
1
T p¨q

´1
˘
›

›

2

L2pS1;Rdq

ı

` T

ż T

0
E0

”

›

›Df0
`

Xsp¨q,Leb1 ˝Xsp¨q
´1
˘

´Df0
`

X 1sp¨q,Leb1 ˝X
1
sp¨q

´1
˘
›

›

2

L2pS1;Rdq

ı

ds.

Observe that Df0 and Dg0 are Lipschitz continuous (from L2pS1;Rdq into itself). Deduce that there
exists a constant C ě 0, only depending on the Lipschitz constants of the coefficients, such that,
for T ď 1,

E0

“

sup
0ďtďT

}Ỹtp¨q ´ Ỹ
1
t p¨q}

2
L2pS1;Rdq

‰

ď C sup
0ďtďT

E0

“

}Xtp¨q ´X
1
tp¨q}

2
L2pS1;Rdq

‰

. (41)

Proceeding in a similar way with the forward equation and using the fact that the factor p2πnq2 in
the dynamics is affected with a sign minus (so that it is a friction term), we get

E0

“

sup
0ďtďT

}X̃tp¨q ´ X̃
1
tp¨q}

2
L2pS1;Rdq

‰

ď CT sup
0ďtďT

E0

“

}Ytp¨q ´ Y
1
t p¨q}

2
L2pS1;Rdq

‰

. (42)

We easily deduce that Φ is a contraction in small time, which shows the existence of a unique fixed
point. This shows that the system (29) is uniquely solvable when T ď c, for a constant c that only
depends on the Lipschitz constants of the coefficients.

Second step. Now that existence and uniqueness are known to hold true, we can define the
decoupling field U in a standard way. The key point is to observe that the system (29), when re-
garded under the initial condition Xt “ ` at time t P r0, T s for some ` P L2pS1;Rdq, is also uniquely

solvable when T ď c and that its solution, denoted by ppXt,`,n,˘ “ pXt,`,n,˘
s qtďsďT qnPN, pY

t,`,n,˘ “

pY t,`,n,˘
s qtďsďT qnPN, pZ

t,`,n,˘,k,˘ “ pZt,`,n,˘,k,˘s qtďsďT qnPN,kPNq is adapted with respect to the com-

pletion of the filtration generated by the collection of Wiener processes ppW 0
s ´W

0
t qtďsďT , ppW

n,˘
s ´

Wn,˘
t qtďsďT qnPN˚q. In particular, for each n P N, the random variable Y n,˘,t,`

t is almost surely de-
terministic. We then let

Un,˘pt, `q “ Y t,`,n,˘
t ,

and

Upt, `q “
ÿ

nPN
Un,˘pt, `qen,˘p¨q P L2pS1;Rdq, t P r0, T s, ` P L2pS1;Rdq.

The bound for U is a straightforward consequence of (40).
As for the Lispchitz constant of U , it follows again from a straightforward adaptation of (41)

and (42). Indeed, for any two solutions pXp¨q,Y p¨qq and pX 1p¨q,Y 1p¨qq to (29), we have

E0

“

sup
0ďtďT

}Ytp¨q ´ Y
1
t p¨q}

2
L2pS1;Rdq

‰

ď C sup
0ďtďT

E0

“

}Xtp¨q ´X
1
tp¨q}

2
L2pS1;Rdq

‰

ď C
´

E0

“

}X0p¨q ´X
1
0p¨q}

2
L2pS1;Rdq

‰

` T sup
0ďtďT

E0

“

}Ytp¨q ´ Y
1
t p¨q}

2
L2pS1;Rdq

‰

¯

,

and then, for T small enough,

E0

“

sup
0ďtďT

}Ytp¨q ´ Y
1
t p¨q}

2
L2pS1;Rdq

‰

ď CE0

“

}X0p¨q ´X
1
0p¨q}

2
L2pS1;Rdq

‰

. (43)
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By performing the analysis on the interval rt, T s instead of r0, T s and by choosing Xp¨q “Xt,`p¨q “
ř

nPNX
t,`,n,˘en,˘p¨q and X 1p¨q “ Xt,`1p¨q “

ř

nPNX
t,`1,n,˘en,˘p¨q for two `, `1 P L2pS1;Rdq, we

deduce that U is Lipschitz continuous in the space variable.
It remains to check that Lemma 11 is satisfied. The argument is standard in the finite dimensional

case, see for instance [24]; as for the infinite dimensional case, we refer to [17, Chapter 5]. So,
we just provide a sketch of the proof. In fact, by regarding t in the formula (33) as the initial
time of the forward process, it suffices to focus on the case t “ 0 and to prove that, for any
X0p¨q P L

2pΩ,F0,0,P;L2pS1;Rdqq, the unique solution pXp¨q,Y p¨qq to (29) satisfies

Y0p¨q “ U
`

0, X0p¨q
˘

,

which is already known to be true when X0p¨q is deterministic, that is X0p¨q “ ` P L2pS1;Rdq. It is
easily checked that it remains true when X0p¨q is a random variable of the form

X0p¨q “

n
ÿ

i“1

1Ai`i, (44)

withAi P F0,0 and `i P L
2pS1;Rdq for all i P t1, ¨ ¨ ¨ , nu; indeed, in that case, Y0p¨q “

řn
i“1 1AiY

0,`i
0 p¨q.

When the support of the law of X0p¨q is included in a compact subset of L2pS1;Rdq, we can approx-
imate X0p¨q in L2pΩ,F0,0,P;L2pS1;Rdqq by a sequence of random variables of the form (44). Using
the fact that the representation formula (33) holds true along the approximation sequence and us-
ing the stability property (43), we deduce that the representation formula holds true when the law
of X0p¨q is compactly supported. When X0p¨q is a general element in L2pΩ,F0,0,P;L2pS1;Rdqq, we
can play the same game: We can approximate X0p¨q by a sequence of compactly supported initial

conditions of the form p
řn
k“0 ϑnpX

k,˘
0 qek,˘qnPN, where pϑnqnPN is a sequence of cut-off functions

from Rd into itself converging to the identity uniformly on compact sets.

4.2. Road map to existence and uniqueness in arbitrary time. Our strategy for proving
existence and uniqueness in arbitrary time is completely inspired from the finite dimensional case.
The point is to apply iteratively Theorem 16 and to provide an a priori bound for the Lipschitz
constant of the decoupling field U that holds true all along the induction. We refer to [24] for a
complete description of the induction procedure in the finite dimensional case.

Change of measure. Below, we mostly focus on the derivation of the a priori bound for the Lipschitz
constant of U . We start with the following observation. For T ď c as in the statement of Theorem
16, we can define the probability P̃0 on Ω0 by

dP̃0

dP0
“ exp

ˆ

´

ż T

0

@

BpXtp¨qq ´ Ytp¨q
˘

, dWt

D

L2pS1;Rdq
´

1

2

ż T

0

›

›BpXtp¨qq ´ Ytp¨q
›

›

2

L2pS1;Rdq
dt

˙

“ exp

ˆ

´
ÿ

nPN

ż T

0

`

1pn,˘q“p0,`qb0pXtp¨qq ´ Y
n,˘
t

˘

¨ dWn,˘
t

´
1

2

ÿ

nPN

ż T

0

ˇ

ˇ1pn,˘q“p0,`qb0pXtp¨qq ´ Y
n,˘
t

ˇ

ˇ

2
dt

˙

,

where B is as in (26). Since b0 is bounded and Y satisfies (40), P̃0 is a probability measure
equivalent to P0. Observe in particular that, for any p ě 1,

E0

”´dP̃0

dP0

¯pı

ă 8. (45)
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Of course, the bound (40) remains true under P̃0. Observe also from the identity

ÿ

kPN

ż T

0
Zn,k,˘s dW k,˘

s “ Y n,˘
T ´ Y n,˘

0 `

ż T

0
Dfn,˘0

`

Xtp¨q,Leb1 ˝Xtp¨q
´1
˘

dt

that, for any p ě 1,

E0

„ˆ

ÿ

kPN

ż T

0
|Zn,k,˘s |2ds

˙p

ă 8.

By (45), the same is true under P̃0, that is

Ẽ0

„ˆ

ÿ

kPN

ż T

0
|Zn,k,˘s |2ds

˙p

ă 8. (46)

Now, we let

W̃n,˘
t “Wn,˘

t `

ż t

0

`

1pn,˘q“p0,`qb0pXsp¨qq ´ Y
n,˘
s

˘

ds, t P r0, T s.

Under P̃0, the processes ppW̃n,˘
t q0ďtďT qnPN are independent Brownian motions and the forward

component of the solution to (29) satisfies

dXn,˘
t “ ´p2πnq2Xn,˘

t dt` dW̃n
t , t P r0, T s,

and is thus an Ornstein-Ulhenbeck process, with Xn,˘
0 as initial condition. Also, under P̃0, the

backward equation takes the form:

dY n,˘
t “

”

´Dn,˘f0
`

Xtp¨q,Leb1 ˝Xtp¨q
´1
˘

´
ÿ

kPN
Zn,k,˘t

`

1pk,˘q“p0,`qb0

`

Xtp¨q
˘

´ Y k,˘
t

˘

ı

dt

`
ÿ

kPN
Zn,k,˘t dW̃ k,˘

t .
(47)

By (46), the drift has finite moments of any order under P̃0.
According to the standard theory of backward SDEs (or, equivalently, by a formal application

of Itô’s formula), we expect

Zn,k,˘t “ Dk,˘Un,˘pt,Xtp¨qq P0 por P̃0q almost everywhere. (48)

Initializing the process pXsq0ďsďT at some ` P L2pS1;Rdq and at some t P r0, T s and taking the

expectation in (47) under P̃0, we conjecture (and this in fact the purpose of Theorem 12 to make
the statement clear) that:

Un,˘pt, ¨q “ PT´t
´

Dn,˘g0p¨,Leb1 ˝ ¨
´1q

¯

`

ż T

t
Ps´t

”

Dn,˘f0p¨,Leb1 ˝ ¨
´1q `

@

DUn,˘ps, ¨q,Bp¨q ´ Ups, ¨q
D

L2pS1;Rdq

ı

ds,
(49)

where, differently from (47), we used the more compact notation B for the drift coefficient. Here the
notation xDUn,˘ps, ¨q,Bp¨q ´ Ups, ¨qyL2pS1;Rdq may be slightly confusing and should be understood

as a function from L2pS1;Rdq into Rd defined by:
@

DUn,˘ps, ¨q,Bp¨q ´ Ups, ¨q
D

L2pS1;Rdq
: L2pS1;Rdq Q ` ÞÑ

@

DUn,˘ps, `q,Bp`q ´ Ups, `q
D

L2pS1;Rdq

“
ÿ

kPN
Dk,˘Un,˘ps, `q

`

Bk,˘p`q ´ Uk,˘ps, `q
˘

,

the summand in the right-hand side reading as the product of a matrix of size d ˆ d by a vector
of size d. Identity (49) is the cornerstone of the a priori bound on the Lipschitz constant of U (in
space).
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Galerkin approximation. The problem with the formula (49) is that we do not know yet whether
U is Fréchet differentiable. In order to proceed, we take advantage of the stability properties of the
solutions to (29) in small time, which can be shown by a mere variation of the arguments used in
the proof of Theorem 16. Indeed, we can use a Galerkin approximation and approximate F “ Df0
and G “ Dg0 by coefficients FpNq and GpNq with a truncated Fourier expansion, namely

BpNqp`q “ B
´

N
ÿ

k“0

`k,˘ek,˘p¨q
¯

FpNq,n,˘p`q “ Fn,˘
´

N
ÿ

k“0

`k,˘ek,˘p¨q
¯

1tnďNu, GpNq,n,˘p`q “ Gn,˘
´

N
ÿ

k“0

`k,˘ek,˘p¨q
¯

1tnďNu,

(50)

for n P N, where we refer to (28) for the definitions of F and G. It is clear that FpNq and GpNq are
bounded by the same constants as F and G and satisfy the same Lipschitz property. Therefore, we
can solve, for T ď c with the same c as in Theorem 16, the forward backward system

dX
pNq,n,˘
t “

´

BpNq,n,˘
´

N
ÿ

k“0

X
pNq,k,˘
t ek,˘p¨q

¯

´ Y
pNq,n,˘
t ´ p2πnq2X

pNq,n,˘
t

¯

dt` dWn,˘
t ,

dY
pNq,n,˘
t “ ´FpNq,n,˘

´

N
ÿ

k“0

X
pNq,k,˘
t ek,˘p¨q

¯

dt`
ÿ

kPN
Z
pNq,n,k,˘
t dW k,˘

t , n P N,

(51)

with X
pNq,n,˘
0 “ Xn,˘

0 as initial condition and Y
pNq,n,˘
T “ GpNq,n,˘p

řN
k“0X

pNq,k,˘
T ek,˘p¨qq as termi-

nal condition. Observe in particular that Y pNq,n,˘ and ZpNq,n,˘ are null for n ą N . Denoting by
U pNq the corresponding decoupling field, it is then well-checked that U pNqpt, `q, for ` P L2pS1;Rdq,
is a function of p`n,˘q0ďnďN only, meaning that

U pNqpt, `q “ U pNq
´

t,
N
ÿ

k“0

`k,˘ek,˘p¨q
¯

. (52)

Also, U pNq,n,˘ is zero when n ą N .
In words, the system (51) reduces to a finite dimensional system of 2N ` 1 equations (i.e. up to

the order n “ N) on Rp2N`1qd. By standard results for non-degenerate forward-backward equations,
see for instance [25] (in order to fit the framework of the latter paper, notice that the linear term

´p2πnq2X
pNq,n,˘
t can be easily removed by considering exppp2πnq2tqX

pNq,n,˘
t instead of X

pNq,n,˘
t ),

we know that U pNqpt, ¨q is differentiable in p`n,˘q0ďnďN for t ă T and that, for n ď N , (48) holds

true with Zn,k,˘ replaced by ZpNq,n,k,˘ and Un,˘ replaced by U pNq,n,˘.
By stability in small time of the solutions to (29) (the proof of which works on the model of the

proof of Theorem 16), we can check that, for T ď c,

E0

”

sup
0ďtďT

´

}Xtp¨q ´X
pNq
t p¨q}2L2pS1;Rdq

` }Ytp¨q ´ Y
pNq
t p¨q}2L2pS1;Rdq

¯ı

` E0

„

ÿ

n,kPN

ż T

0
|Zn,k,˘t ´ Z

pNq,n,k,˘
t |2dt



ď E0

„

›

›

`

GpNq ´G
˘`

XT p¨q
˘
›

›

2

L2pS1;Rdq

`

ż T

0

´

›

›

`

BpNq ´B
˘`

Xtp¨q
˘›

›

2

L2pS1;Rdq
`
›

›

`

FpNq ´ F
˘`

Xtp¨q
˘›

›

2

L2pS1;Rdq

¯

dt



.

(53)

28



Observe now that, for all ` P L2pS1;Rdq,

}FpNqp`q ´ Fp`q}2L2pS1;Rdq
“

N
ÿ

n“0

ˇ

ˇ

ˇ
Fn,˘

´

N
ÿ

n“0

`n,˘en,˘p¨q
¯

´ Fn,˘p`q
ˇ

ˇ

ˇ

2
`

ÿ

něN`1

ˇ

ˇFn,˘p`q
ˇ

ˇ

2

ď

›

›

›
F
´

N
ÿ

n“0

`n,˘en,˘p¨q
¯

´ Fp`q
›

›

›

2

L2pS1;Rdq
`

ÿ

něN`1

ˇ

ˇFn,˘p`q
ˇ

ˇ

2

ď C
ÿ

něN`1

|`n,˘|2 `
ÿ

něN`1

ˇ

ˇFn,˘p`q
ˇ

ˇ

2
,

(54)

from which we get that the left-hand side tends to 0. Proceeding in the same way with BpNq ´B
and GpNq´G and combining with Lebesgue’s dominated convergence theorem, we deduce that the
right-hand side in (53) tends to 0 as N tends to 8. We deduce that the left-hand side also tends
to 0. And then,

lim
NÑ`8

U pNqpt, `q “ Upt, `q, t P r0, T s, ` P L2pS1;Rdq,

and, for a given initial condition ` in (51),

lim
NÑ`8

E0

ÿ

n,kPN

ż T

0
|Z`;pNq,n,k,˘s ´ Z`;n,k,˘s |2ds “ 0, t P r0, T s, ` P L2pS1;Rdq,

where we added the superscript ` in the notations to emphasize the fact that X
pNq
0 p¨q and X0p¨q

were both equal to `. This says that, to prove (48) and the statement of Theorem 12, we can focus
first on the Galerkin approximation and then pass to the limit as N tends to `8. We shall come
back to this point later on.

Smoothing estimates for the OU semi-group. The long time analysis relies on the smoothing prop-
erties of the OU semi-group pPtqtě0 we introduced earlier, see (35).

The following lemma is standard in the literature, see for instance [54, Section 5], see also [20].
It will play a key role in the proof of Theorem 10.

Lemma 18. Let V be a bounded and measurable function from L2pS1;Rdq into R. Then, for any
t P p0, T s, PtV is Fréchet differentiable and, for all ` P L2pS1;Rdq,

›

›DPtVp`q
›

›

L2pS1;Rdq
ď Ct´1{2E0

“

|VpU `t q|2
‰1{2

ď Ct´1{2}V}8,

for a constant C independent of t P p0, T s. If V is Lipschitz continuous on L2pS1;Rdq, then, for
any t P p0, T s and any ` P L2pS1;Rdq,

›

›DPtVp`q
›

›

L2pS1;Rdq
ď LippVq,

where LippVq is the Lipschitz constant of V.

The second inequality in the statement is just a consequence of the fact that the function
L2pS1;Rdq Q ` ÞÑ ErVpU `t qs is LippVq-Lipschitz continuous.

4.3. Analysis of the Galerkin approximation. For a given fixed T ą 0, we consider the
Galerkin approximation of the coefficients, as defined in (50), together with the corresponding
Galerkin approximation of the forward-backward system, as defined in (51).

As we already explained, the system (51) is already known to be uniquely solvable, for any given

initial condition for XpNq, whatever the time duration T is. Also, we know from [25] that the

decoupling field U pNq, when regarded as a function from r0, T s ˆRp2N`1qd into Rp2N`1qd satisfies a
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system of p2N ` 1q PDEs in dimension p2N ` 1qd. By identifying the Fréchet derivative DU pNq of

U pNq with the derivatives in R2N`1 through the formula:

DU pNqpt, `q “
N
ÿ

n“0

B`n,˘U pNq
´

t,
N
ÿ

k“0

`k,˘ek,˘p¨q
¯

en,˘p¨q,

the system of PDEs satisfied by the decoupling field of (51) coincides, in the mild form, with (49),

but with Df0 and Dg0 and replaced by FpNq and GpNq. Namely, we have:

U pNq,n,˘pt, ¨q “ PT´t
`

GpNq,n,˘
˘

`

ż T

t
Ps´t

”

FpNq,n,˘p¨q `
@

DU pNq,n,˘ps, ¨q,BpNqp¨q ´ U pNqps, ¨q
D

L2pS1;Rdq

ı

ds,
(55)

the identity holding true in L2pS1;Rdq, for any t P r0, T s.

Following (40), we claim first:

Lemma 19. There exists a constant C such that, for all N P N˚,

sup
tPr0,T s

sup
`PL2pS1;Rdq

}U pNqpt, `q}L2pS1;Rdq ď C.

The following lemma provides a uniform bound for the Fréchet derivative of the Galerkin ap-
proximation:

Lemma 20. There exists a constant C independent of N such that, for all t P r0, T q and all
N P N˚,

sup
`PL2pS1;Rdq

~DU pNqpt, `q~L2pS1;RdqˆL2pS1;Rdq ď C,

where

~DU pNqpt, `q~L2pS1;RdqˆL2pS1;Rdq “ sup
hPL2pS1;Rdq:}h}

L2pS1;Rdqď1

›

›

›
D
“

xU pNqpt, ¨q, hyL2pS1;Rdq

‰

|¨“`

›

›

›

L2pS1;Rdq
,

the notation Drϕp¨qs|¨“` indicating the fact that the differential is computed with respect to the
argument ¨ and then taken at point `.

Proof. We start from (55). For h P L2pS1q,

@

U pNqpt, ¨q, h
D

“ PT´t
”

@

GpNqp¨q, hyL2pS1;Rdq

ı

`

ż T

t
Ps´t

”

@

FpNqp¨q, h
D

L2pS1;Rdq

ı

ds

`

ż T

t
Ps´t

”

b
pNq
0 p¨q ¨D0xU pNqps, ¨q, hyL2pS1;Rdq

ı

ds

´

ż T

t
Ps´t

”

@

DxU pNqps, ¨q, hyL2pS1;Rdq,U pNqps, ¨q
D

L2pS1;Rdq

ı

ds

“ T1 ` T2 ` T3.

(56)

30



Apply now Lemma 18 when }h}L2pS1;Rdq ď 1. Deduce that

sup
`PL2pS1;Rdq

sup
}h}

L2pS1;Rdqď1

›

›

“

D
@

U pNqpt, ¨q, h
D

L2pS1;Rdq

‰

|¨“`

›

›

L2pS1;Rdq

ď C

"

sup
}h}

L2pS1;Rdqď1
Lip

´

@

GpNqp¨q, h
D

L2pS1;Rdq

¯

`

ż T

t

1
?
s´ t

sup
`PL2pS1;Rdq

sup
}h}

L2pS1;Rdqď1

ˇ

ˇ

ˇ
b
pNq
0 p`q ¨

“

D0xU pNqps, ¨q, hyL2pS1q
‰

|¨“`

ˇ

ˇ

ˇ
ds

`

ż T

t

1
?
s´ t

sup
`PL2pS1;Rdq

sup
}h}

L2pS1;Rdqď1

ˇ

ˇ

ˇ

@

D
“

xU pNqps, ¨q, hyL2pS1;Rdq

‰

|¨“`
,U pNqps, `q

D

L2pS1;Rdq

ˇ

ˇ

ˇ
ds

`

ż T

t

1
?
s´ t

sup
`PL2pS1;Rdq

›

›FpNqp`q
›

›

L2pS1;Rdq
ds

*

,

for a constant C whose value may change from line to line. Recall now that

sup
}h}

L2pS1;Rdqď1
Lip

´

@

GpNqp¨q, h
D

L2pS1;Rdq

¯

ď C,

and that

sup
`PL2pS1;Rdq

!

›

›FpNqp`q
›

›

L2pS1;Rdq
, sup
tPr0,T s

›

›U pNqpt, `q
›

›

L2pS1;Rdq

)

ď C.

We deduce that

sup
`PL2pS1;Rdq

sup
}h}

L2pS1;Rdqď1

›

›D
“@

U pNqpt, ¨q, h
D

L2pS1;Rdq

‰

|¨“`

›

›

L2pS1;Rdq

ď C `

ż T

t

C
?
s´ t

sup
`PL2pS1;Rdq

sup
}h}

L2pS1;Rdqď1

›

›

›
D
“

xU pNqps, ¨q, hyL2pS1;Rdq

‰

|¨“`

›

›

›

L2pS1;Rdq
ds.

By a variant of Gronwall’s lemma, see Lemma 23 right below, we complete the proof.

Using a similar argument, we claim:

Lemma 21. For any compact subset K Ă L2pS1;Rdq, there exist a constant C and real ε ą 0, such
that, for all t P r0, T s and all N,M P N˚,

sup
`PK

�

�DU pNqpt, `q ´DU pMqpt, `q
�

�

L2pS1;RdqˆL2pS1;Rdq

ď
C

?
T ´ t

„

´

sup
`PK

ÿ

nąN^M

|`n,˘|2 ` sup
hPKε

ÿ

nąN^M

|Fn,˘phq|2 ` sup
hPKε

ÿ

nąN^M

|Gn,˘phq|2

` sup
sPr0,T s

sup
hPKε

›

›

`

U pNq ´ U pMq
˘

ps, hq
›

›

2

L2pS1q ` sup
`PK

sup
rPr0,T s

P
`

U `r R Kε
˘

¯1{2


.

where

~DU pNqpt, `q ´DU pMqpt, `q~L2pS1;RdqˆL2pS1;Rdq

“ sup
hPL2pS1;Rdq:}h}

L2pS1;Rdqď1

›

›D
“

xU pNqpt, ¨q ´ U pMqpt, ¨q, hy
‰

¨“`

›

›

L2pS1;Rdq
,

and

sup
`PK

sup
rPr0,T s

P0

`

U `r R Kε
˘

¯

ď ε.
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Proof. Throughout the proof, we use the fact that K is compact in L2pS1;Rdq if and only if K is
closed and, for any ε ą 0, there exists n P N, such that for all h P K,

ř

kěn |h
k,˘|2 ď ε.

First step. Also, we recall that G and F are continuous from L2pS1;Rdq into itself. Hence, GpKq
and FpKq are compact subsets of L2pS1;Rdq. In particular, for all ε ą 0, there exists n P N˚, such
that for all h P K,

ÿ

kěn

|Fk,˘phq|2 ď ε,
ÿ

kěn

|Gk,˘phq|2 ď ε.

Also, we observe that that, for any compact subset K and any ε ą 0, there exists another compact
subset Kε such that, for all ` P K, for all t P r0, T s,

P0

“

U `t P Kε
‰

ě 1´ ε. (57)

The proof is quite straightforward. We give it for the sake of completeness. Indeed, we recall that:

U `t “
ÿ

nPN

´

e´p2πnq
2t`n,˘ `

ż t

0
e´p2πnq

2pt´sqdWn,˘
s

¯

en,˘p¨q. (58)

Obviously, we have, for any n P N,
ÿ

kěn

ˇ

ˇe´p2πkq
2t`k,˘

ˇ

ˇ

2
ď

ÿ

kěn

ˇ

ˇ`k,˘
ˇ

ˇ

2
, (59)

which can be made as small as desired by choosing n large enough, uniformly in ` P K. Also, for
any n P N,

ÿ

kěn

E0

„
ˇ

ˇ

ˇ

ˇ

ż t

0
e´p2πkq

2pt´sqdW k,˘
s

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

kěn

ż t

0
e´2p2πkq2pt´sqds ď

ÿ

kěn

1

2p2πkq2
.

In particular, we can find a universal constant c ą 0 such that:

ÿ

kěn

E0

„ˇ

ˇ

ˇ

ˇ

ż t

0
e´p2πkq

2pt´sqdW k,˘
s

ˇ

ˇ

ˇ

ˇ

2

ď
c

n
. (60)

We deduce that

P0

„

ÿ

kěn3

ˇ

ˇ

ˇ

ˇ

ż t

0
e´p2πkq

2pt´sqdW k,˘
s

ˇ

ˇ

ˇ

ˇ

2

ě
1

n



ď
c

n2
,

and then, by Borel-Cantelli’s Lemma, we obtain:

lim
pÑ8

P0

ˆ

č

něp

"

ÿ

kěn3

ˇ

ˇ

ˇ

ˇ

ż t

0
e´p2πkq

2pt´sqdW k,˘
s

ˇ

ˇ

ˇ

ˇ

2

ď
1

n

*˙

“ P0

ˆ

ď

pě1

č

něp

"

ÿ

kěn3

ˇ

ˇ

ˇ

ˇ

ż t

0
e´p2πkq

2pt´sq
˘

dW k,˘
s

ˇ

ˇ

ˇ

ˇ

2

ď
1

n

*˙

“ 1.

It remains to observe that, for any p ě 1, the set
č

něp

!

h P L2pS1;Rdq :
ÿ

kěn3

|hk,˘|2 ď
1

n

)

is compact in L2pS1;Rdq.
Second step. Following (54), we observe that there exists a constant C ě 0 such that, for all

N P N˚, t P r0, T s and ` P K,

E0

”

›

›GpU `T´tq ´GpNqpU `T´tq
›

›

2

L2pS1;Rdq

ı

ď CE0

”

ÿ

nąN

ˇ

ˇpU `T´tq
n,˘

ˇ

ˇ

2
ı

` CE0

”

ÿ

nąN

|Gn,˘pU `T´tq|
2
ı

. (61)
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By (58), (59) and (60), we have

E0

”

ÿ

nąN

ˇ

ˇpU `T´tq
n,˘

ˇ

ˇ

2
ı

ď
ÿ

nąN

|`n,˘|2 `
c

N
.

Also, using the same notation Kε as in (57), we have, for any ε ą 0 and for all N P N˚, t P r0, T s
and ` P L2pS1;Rdq:

E0

”

ÿ

nąN

|Gn,˘pU `T´tq|
2
ı

ď E0

”

1tU`
T´tPKεu

ÿ

nąN

|Gn,˘pU `T´tq|
2
ı

` CP0

`

U `T´t R Kε
˘

ď sup
lPKε

ÿ

nąN

|Gn,˘plq|2 ` CP0

`

U `T´t R Kε
˘

,
(62)

where we used the fact that G is bounded and where we allowed the constant C to increase from
line to line.

Therefore, (61) yields

E0

”

›

›GpU `T´tq ´GpNqpU `T´tq
›

›

2

L2pS1;Rdq

ı

ď C
´

sup
lPK

ÿ

nąN

|ln,˘|2 ` sup
lPKε

ÿ

nąN

|Gn,˘plq|2 ` P0

`

U `T´t R Kε
˘

`
1

N

¯

.
(63)

Similarly,

sup
sPr0,T´ts

E0

”

›

›FpU `sq ´ FpNqpU `sq
›

›

2

L2pS1;Rdq

ı

ď C
´

sup
lPK

ÿ

nąN

|ln,˘|2 ` sup
lPKε

ÿ

nąN

|Fn,˘plq|2 ` sup
sPr0,T s

P0

`

U `s R Kε
˘

`
1

N

¯

.
(64)

Obviously, the same bound holds true when replacing F by B. We now return to (56) and we write:
@`

U pNq ´ U pMq
˘

pt, ¨q, h
D

“ PT´t
”

@`

GpNq ´GpMq
˘

p¨q, h
D

L2pS1;Rdq

ı

`

ż T

t
Ps´t

”

@`

FpNq ´ FpMq
˘

p¨q, h
D

L2pS1;Rdq

ı

ds

`

ż T

t
Ps´t

”

`

b
pNq
0 ´ b

pMq
0

˘

p¨q ¨D0xU pNqps, ¨q, hyL2pS1;Rdq

ı

ds

`

ż T

t
Ps´t

”

b
pMq
0 p¨q ¨D0x

`

U pNq ´ U pMq
˘

ps, ¨q, hyL2pS1;Rdq

ı

ds

´

ż T

t
Ps´t

”

@

DxpU pNq ´ U pMqqps, ¨q, hyL2pS1;Rdq,U pNqps, ¨q
D

L2pS1;Rdq

ı

ds

´

ż T

t
Ps´t

”

@

DxU pMqps, ¨q, hyL2pS1;Rdq,
`

U pNq ´ U pMq
˘

ps, ¨q
D

L2pS1;Rdq

ı

ds.

(65)

We then make use of Lemma 18. We can find a constant C such that, for all N,M ě 1, ` P K,
h P L2pS1;Rdq with }h}L2pS1;Rdq ď 1, and t P r0, T s,

›

›

›
D
”

PT´t
“@`

GpNq ´GpMq
˘

p¨q, h
D

L2pS1;Rdq

‰

ı

|¨“`

›

›

›

L2pS1;Rdq

ď
C

?
T ´ t

E0

”

›

›

`

GpNq ´GpMq
˘

pU `T´tq
›

›

2

L2pS1;Rdq

ı1{2
,

where we used the fact that E0r|xpG
pNq ´ GpMqqpU `T´tq, hyL2pS1;Rdq|

2s1{2 is less than E0r}pG
pNq ´

GpMqqpU `T´tq}
2
L2pS1;Rdq

s1{2. If, instead of `, we choose the realization of the random variable U `t´t0 ,
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for t0 P r0, ts, we get by the flow property of the Ornstein-Uhlenbeck process:

E0

„

›

›

›
D
”

PT´t
“@`

GpNq ´GpMq
˘

p¨q, h
D

L2pS1;Rdq

‰

ı

¨“Ut´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
T ´ t

E0

”

›

›

`

GpNq ´GpMq
˘

pU `T´t0q
›

›

2

L2pS1;Rdq

ı1{2
.

(66)

By (63) and (57), we obtain:

E0

”

›

›

`

GpNq ´GpMq
˘

pU `T´t0q
›

›

2

L2pS1;Rdq

ı

ď C
´

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPKε

ÿ

nąN^M

|Gn,˘plq|2 ` sup
lPK

sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

¯

.

Therefore,

E0

„

›

›

›
D
”

PT´t
“@`

GpNq ´GpMq
˘

p¨q, h
D

L2pS1;Rdq

‰

ı

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
T ´ t

ˆ

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPKε

ÿ

nąN^M

|Gn,˘plq|2 ` sup
lPK

sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

˙1{2

.

By the same argument,

E0

„

›

›

›
D
”

Ps´t
“@`

FpNq ´ FpMq
˘

p¨q, h
D

L2pS1;Rdq

‰

ı

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
s´ t

ˆ

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPKε

ÿ

nąN^M

|Fn,˘plq|2 ` sup
lPK

sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

˙1{2

.

Similarly, using Lemma 20, it holds that

E0

„

›

›

›
D
”

Ps´t
“`

b
pNq
0 ´ b

pMq
0

˘

p¨q ¨D0xU pNqps, ¨q, hyL2pS1;Rdq

‰

ı

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
s´ t

ˆ

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPK

sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

˙1{2

.

We now turn to the term on the third line in (65). Following (66), we have

E0

„

›

›

›
D
”

Ps´t
“

b
pMq
0 p¨q ¨D0x

`

U pNq ´ U pMq
˘

ps, ¨q, hyL2pS1;Rdq

‰

ı

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
s´ t

E0

„

›

›

›
D
“@`

U pNq ´ U pMq
˘

ps, ¨q, h
D‰

|¨“U`
s´t0

›

›

›

2

L2pS1;Rdq

1{2

.

Obviously, the same holds for the term on the fourth line in (65).

E0

„

›

›

›
D
”

Ps´t
“@

DxpU pNq ´ U pMqqps, ¨q, hyL2pS1q,U pNqps, ¨q
D

L2pS1;Rdq

‰

ı

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
s´ t

E0

„

›

›

›
D
“@`

U pNq ´ U pMq
˘

ps, ¨q, h
D‰

|¨“U`
s´t0

›

›

›

2

L2pS1;Rdq

1{2

.

34



Finally,

E0

„

›

›

›
D
”

Ps´t
“@

DxU pMqps, ¨q, hyL2pS1;Rdq,
`

U pNq ´ U pMq
˘

ps, ¨q
D

L2pS1;Rdq

‰

ı

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
s´ t

E0

”

›

›

`

U pNq ´ U pMq
˘

ps, U `s´t0q
›

›

2

L2pS1;Rdq

ı1{2
.

Collecting all the bounds and plugging them into (65), we get

E0

„

›

›

›
D
“@`

U pNq ´ U pMq
˘

pt, ¨q, h
D‰

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
T ´ t

ˆ

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPKε

ÿ

nąN^M

|Fn,˘plq|2 ` sup
lPKε

ÿ

nąN^M

|Gn,˘plq|2

` sup
lPK

sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

˙1{2

`

ż T

t

C
?
s´ t

E0

„

›

›

›
D
“@`

U pNq ´ U pMq
˘

ps, ¨q, h
D‰

|¨“U`
s´t0

›

›

›

2

L2pS1;Rdq

1{2

ds

`

ż T

t

C
?
s´ t

E0

”

›

›

`

U pNq ´ U pMq
˘

ps, U `s´t0q
›

›

2

L2pS1;Rdq

ı1{2
ds.

By Lemma 24 below, we get

E0

„

›

›

›
D
“@`

U pNq ´ U pMq
˘

pt, ¨q, h
D‰

|¨“U`
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
T ´ t

„ˆ

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPKε

ÿ

nąN^M

|Fn,˘plq|2 ` sup
lPKε

ÿ

nąN^M

|Gn,˘plq|2

` sup
lPK

sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

˙1{2

` sup
sPrt0,T s

E0

”

›

›

`

U pNq ´ U pMq
˘

ps, U `s´t0q
›

›

2

L2pS1;Rdq

ı1{2


.

And then, using the boundedness of U pNq (and U pMq), we obtain

E0

„

›

›

›
D
“@`

U pNq ´ U pMq
˘

pt, ¨q, `
D‰

|¨“Uh
t´t0

›

›

›

2

L2pS1;Rdq

1{2

ď
C

?
T ´ t

„ˆ

sup
lPK

ÿ

nąN^M

|ln,˘|2 ` sup
lPKε

ÿ

nąN^M

|Fn,˘plq|2 ` sup
lPKε

ÿ

nąN^M

|Gn,˘plq|2

` sup
sPr0,T s

sup
lPKε

›

›

`

U pNq ´ U pMq
˘

ps, lq
›

›

2

L2pS1;Rdq
` sup

lPK
sup
rPr0,T s

P0

`

U lr R Kε
˘

`
1

N ^M

˙1{2

,

which completes the proof by taking t “ t0.

Corollary 22. For any compact subset K Ă L2pS1;Rdq, there exists a function w : R` Ñ R`
satisfying limδŒ0wpδq “ 0 such that, for any N P N˚, any s, t P r0, T s and any ` P L2pS1;Rdq,

}U pNqpt, `q ´ U pNqps, `q}L2pS1;Rdq ď Cw
`

|s´ t|
˘

.
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Proof. Without any loss of generality, we can assume t ă s. We then consider the solution

pX
pNq,t,`
r p¨q, Y

pNq,t,`
r p¨q, Z

pNq,t,`
r p¨qqtďrďT of the forward-backward system (51) on the interval rt, T s

with X
pNq,t,`
t p¨q “ ` as initial condition.

We then have:

U pNqpt, `q “ E0

„

U pNq
`

s,XpNq,t,`s p¨q
˘

`

ż s

t
FpNq

`

XpNq,t,`r p¨q
˘

dr



,

so that

U pNqpt, `q ´ U pNqps, `q “ E0

„

´

U pNq
`

s,XpNq,t,`s p¨q
˘

´ U pNqps, `q
¯

`

ż s

t
FpNq

`

XpNq,t,`r p¨q
˘

dr



.

Recalling that the functions pFpNqqNPN˚ are bounded, uniformly in N P N˚, and invoking Lemma
20, we deduce that there exists a constant C such that, for any N P N˚, any t P r0, T s and any
` P L2pS1;Rdq,

}U pNqpt, `q ´ U pNqps, `q}L2pS1;Rdq ď C
´

|s´ t| ` E0

“

}XpNq,t,`s ´ `}L2pS1;Rdq

‰

¯

. (67)

We now recall the Fourier expansion of the forward equation in (51):

dXpNq,n,˘r “

´

1pn,˘q“p0,`qB
pNq,0,`

`

XpNqr p¨q
˘

´ U pNq,n,˘
`

r,XpNqr p¨q
˘

´ p2πnq2XpNq,n,˘r

¯

ds` dWn,˘
r ,

for r P rt, T s, where, for the sake of simplicity, we omitted the indices pt, `q in the notation and we
just indicated the mode indices. We get:

XpNq,n,˘s “ e´p2πnq
2ps´tq`n,˘ `

ż s

t
ep2πnq

2pr´sq1pn,˘q“p0,`qB
pNq,0,`

`

XpNqr p¨q
˘

dr

´

ż s

t
ep2πnq

2pr´sqU pNq,n,˘
`

r,XpNqr p¨q
˘

dr `

ż s

t
ep2πnq

2pr´sqdWn,˘
r .

(68)

Since the functions BpNq and U pNq can be bounded independently of N , we deduce that:

E0

“

}XpNqs ´ `}2L2

‰

ď C

„

|s´ t|2 `
ÿ

nPN
|`n,˘|2

´

e´p2πnq
2ps´tq ´ 1

¯2
`

ÿ

nPN

ż s

t
e2p2πnq2pr´sqdr



. (69)

Now,
ÿ

nPN
|`n,˘|2

´

e´p2πnq
2ps´tq ´ 1

¯2
ď C

ÿ

nPN
|`n,˘|2

“

1^
`

n2ps´ tq
˘‰2

ď C

„

|s´ t|
ÿ

nPN
|`n,˘|2 `

ÿ

něps´tq´1{4

|`n,˘|2


.
(70)

Also, allowing the constant C to change from line to line, we get

ÿ

nPN

ż s

t
e´2p2πnq2ps´rqdr ď Cps´ tq ` C

ż 8

0

ż s

t
e´2p2πxq2ps´rqdrdx ď Cps´ tq1{2. (71)

Collecting (67), (69), (70) and (71), we finally obtain:

}U pNqpt, `q ´ U pNqps, `q}L2pS1;Rdq ď C
`

1` sup
lPK
}l}2L2pS1;Rdq

˘

´

|s´ t|1{4 ` sup
lPK

ÿ

něps´tq´1{4

|ln,˘|2
¯

,

which completes the proof.

Here are now the two variants of Gronwall’s lemma we appealed to right above.
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Lemma 23. Consider two bounded measurable functions g1, g2 : r0, T s Ñ R` such that

g1ptq ď C1 ` C2

ż T

t

g2psq
?
s´ t

ds, (72)

for some constants C1, C2 ě 0. Then there exist λ, µ ą 0, depending on C2 and T only, such that
ż T

0
g1ptq exppλtqdt ď µC1 `

1

2

ż T

0
g2ptq exppλtqdt,

sup
0ďtďT

“

g1ptq
‰

ď µC1 ` 2C2
2

ż T

0
g2ptqdt`

1

2
sup

0ďtďT

“

g2ptq
‰

.

(73)

In particular, if g1 “ g2, then g1 is bounded by µ1C1, for a constant µ1 depending on C2 and T only.

Lemma 24. Consider two bounded measurable functions g1, g2 : r0, T s Ñ R` such that

g1ptq ď
C1

?
T ´ t

` C2

ż T

t

g2psq
?
s´ t

ds, (74)

for some constants C1, C2 ě 0. Then there exist λ, µ ą 0, depending on C2 and T only, such that
ż T

0
g1ptq exppλtqdt ď µC1 `

1

2

ż T

0
g2ptq exppλtqdt,

sup
0ďtďT

“
?
T ´ t g1ptq

‰

ď µC1 ` µ

ż T

0
g2ptqdt`

1

2
sup

0ďtďT

“
?
T ´ t g2ptq

‰

.

(75)

In particular, there exists a constant µ1 depending on C2 and T only such that, whenever g1 “ g2,

sup
0ďtďT

“
?
T ´ t g1ptq

‰

ď µ1C1.

We just prove the second statement. The proof of the first one may be found in [22, Lemma
2.13].

Proof. The first part of Lemma 24 may be proved as in [22, Lemma 2.13]. So, we focus on the
second inequality. For any ε ą 0, (74) yields

pT ´ tq1{2g1ptq

ď C1 ` C2

ż pt`εq^T

t

pT ´ tq1{2

ps´ tq1{2pT ´ sq1{2
pT ´ sq1{2g2psqds` C2ε

´1{2

ż T

pt`εq^T
g2psqds

ď C1 ` C2ε
´1{2

ż T

0
g2psqds` C2 sup

0ďsďT

“

pT ´ sq1{2g2psq
‰

ż pt`εq^T

t

pT ´ tq1{2

ps´ tq1{2pT ´ sq1{2
ds.

Now,
ż pt`εq^T

t

pT ´ tq1{2

ps´ tq1{2pT ´ sq1{2
ds “

ż ε^pT´tq

0

pT ´ tq1{2

s1{2pT ´ t´ sq1{2
ds

“ pT ´ tq1{2
ż 1^rε{pT´tqs

0

1

s1{2p1´ sq1{2
ds

If ε1{2 ď T ´ t, then

ż pt`εq^T

t

pT ´ tq1{2

ps´ tq1{2pT ´ sq1{2
ds ď T 1{2

ż 1^ε1{2

0

1

s1{2p1´ sq1{2
ds.
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Otherwise, T ´ t ď ε1{2 and
ż pt`εq^T

t

pT ´ tq1{2

ps´ tq1{2pT ´ sq1{2
ds ď ε1{4

ż 1

0

1

s1{2p1´ sq1{2
ds.

So, we can find a function δ : R` Ñ R` converging to 0 in 0 such that

pT ´ tq1{2g1ptq ď C1 ` C2ε
´1{2

ż T

0
g2psqds` C2δpεq sup

0ďsďT

“

pT ´ sq1{2g2psq
‰

.

The proof of the second claim is easily completed. Whenever g1 “ g2,
ż T

0
g1ptq exppλtqdt ď 2C1µ,

and then, choosing ε small enough in the second claim, we get by the first part of the statement:

sup
0ďtďT

“
?
T ´ t g1ptq

‰

ď 2µC1 ` 2µ

ż T

0
g1ptqdt

ď 2µC1 ` 2µ

ż T

0
g1ptq exppλtqdt ď 2µC1 ` 4C1µ

2,

which completes the proof.

4.4. End of the proof of Theorem 10. We now turn to the proof of Theorem 10. To this end,
we recall the constant C from Lemma 20. Without any loss of generality, we assume that the
Lipschitz constants of the coefficients b0, F and G are less than the same constant C. We then call
c the constant in the statement of Theorem 16 when the Lipschitz constant of the coefficients is
less than C.

We let N “ rT {cs and τn “ T ´ pN ´ nqc for n P t1, . . . , Nu and τ0 “ 0. We know from

Theorem 16 that, for any square-integrable F0,τN´1-measurable initial condition XpN´1qp¨q with

values in L2pS1;Rdq, the forward-backward system (29) is uniquely solvable. Following Lemma 11,
this permits to define the decoupling field U on rτN´1, T s ˆ L2pS1;Rdq. By (53), we know that,

for any pt, `q P rτN´1, T s ˆ L2pS1;Rdq, the sequence pU pNqpt, `qqNPN˚ , defined as the sequence of
decoupling fields of the systems (51), converges to Upt, `q. In particular, we deduce from Lemma
20 that U is C-Lipschitz in the space variable on rτN´1, T s ˆ L

2pS1;Rdq.
Since UpτN´1, ¨q is C-Lipschitz, we can iterate the argument and apply Theorem 16 on the

interval rτN´2, τN´1s. This permits to extend the definition of the decoupling field U to the set
rτN´2, τN´1sˆL

2pS1;Rdq. By invoking (53) once again but on rτN´2, τN´1s, we deduce that, for any

pt, `q P rτN´2, τN´1sˆL
2pS1;Rdq, the sequence pU pNqpt, `qqNPN˚ converges to Upt, `q, which permits

to iterate the argument and, in the end, to construct a candidate U for being the decoupling field
on the entire r0, T s ˆ L2pS1;Rdq. Once U has been constructed, the proof is completed as in the
finite dimensional case, see for instance [24] and [16, Chapter 4].

4.5. Proof of Theorem 12. First Step. As a by-product of the analysis achieved in the previous
subsection to complete the proof of Theorem 10, we claim that, for any pt, `q P r0, T s ˆ L2pS1;Rdq,

lim
M,NÑ8

}pU pNq ´ U pMqqpt, `q}L2pS1;Rdq “ 0.

Recall from Lemmas 19 and 20 and Corollary 22 that the mappings pU pNqqNPN˚ are uniformly
bounded and uniformly continuous on any compact subset of L2pS1;Rdq. Hence, we have:

lim
M,NÑ8

sup
tPr0,T s

sup
`PK

}pU pNq ´ U pMqqpt, `q}L2pS1;Rdq “ 0.
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We now invoke Lemma 21, from which we deduce that for any compact subset of r0, T qˆL2pS1;Rdq,
il holds that:

lim
M,NÑ8

sup
pt,`qPK

�

�pDU pNq ´DU pMqqpt, `q
�

�

L2pS1;RdqˆL2pS1;Rdq
“ 0,

which shows that the sequence pDU pNqqNPN˚ converges, uniformly on compact subsets of r0, T q ˆ

L2pS1;Rdq. Since each DU pNq is continuous on r0, T qˆL2pS1;Rdq, we deduce that the limit, denoted
by DU is continuous and is the Fréchet derivative of U in the space variable. Of course, DU satisfies
Lemma 20. Passing to the limit in (55), we deduce that U is a mild solution of the system of PDEs
(34), as formulated in the statement of Theorem 12.

5. Construction of an approximated Nash equilibrium

The purpose of this section is to prove Theorem 14. To do so, we use the same setting as in
Subsection 3.3, a short reminder of which is recalled below.

The game consists of NAN particles that are uniformly distributed along the points (which we

call roots) pei2πk{N qk“0,¨¨¨ ,N´1 of the unit circle, with i2 “ ´1 and with exactly AN particles per

root, where AN P N˚. States of the particles at time t are denoted by pXk,j
t qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

,
where k stands for the index of the root occupied by the particle and j for its label among the
collection of particles located at the same site. As already explained in Subsection 3.3, we put

Xk``N,j
t “ Xk,j

t , for k P t0, . . . , N ´ 1u and ` P Z.
Each particle pk, jq has dynamics of the following form:

dXk,j
t “

"

b
`

µ̄Nt
˘

` αk,jt `N
AN
ÿ

l“1

`

Xk`1,l`1
t `Xk`1,l´1

t ´ 2Xk`1,l
t

˘

*

dt`
?
NdBk

t , (76)

for t P r0, T s, with the initial condition Xk,j
0 “ X̄k

0 , where pX̄k
0 qk“0,¨¨¨ ,N´1 are given by:

X̄k
0 “ N

ż pk`1q{N

k{N
X0pxqdx, k “ 0, ¨ ¨ ¨ , N ´ 1, (77)

whilst the noises pBk “ pBk
t q0ďtďT qk“0,¨¨¨ ,N´1 are independent d-dimensional Brownian motions on

the interval r0, T s with the following definition:

Bk
t “

?
N

ż pk`1q{N

k{N
Wtpdxq.

We recall that µ̄Nt denotes the empirical distribution:

µ̄Nt “
1

NAN

N´1
ÿ

k“0

AN
ÿ

j“1

δ
Xk,j

t
.

The processes pαk,j “ pαk,jt q0ďtďT qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN
are constructed on pΩ0,A0,P0q and are Rd-

valued progressively-measurable controls with respect to the filtration generated by the cylindrical
white noise pWtp¨qq0ďtďT satisfying the condition:

E0

ż T

0
|αk,jt |

2dt ă 8.

The cost functional to player pk, jq is then given by:

Jk,j
`

pαk
1,j1qk1“0,¨¨¨ ,N´1;j1“1,¨¨¨ ,AN

˘

“ E0

„

g
`

Xk,j
T , µ̄NT

˘

`

ż T

0

´

f
`

Xk,j
t , µ̄Nt

˘

`
1

2
|αk,jt |

2
¯

dt



.
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Following the statement of Theorem 14, we introduce the collection of controls:

α‹k,jt “ Ȳ k
t , Ȳ k

t “ N

ż k{N

pk´1q{N
Ytpxqdx, t P r0, T s, (78)

for all k P t0, ¨ ¨ ¨ , N ´ 1u and j P t1, ¨ ¨ ¨ , ANu. Then, for some k0 P t0, ¨ ¨ ¨ , N ´ 1u and j0 P
t1, ¨ ¨ ¨ , ANu and for some Rd-valued process γ “ pγtq0ďtďT that is progressively-measurable with
respect to the filtration generated by the cylindrical white noise W p¨q “ pWtp¨qq0ďtďT (that is, the
filtration generated by the processes pxWtp¨q, hyL2pS1;Rdqq0ďtďT for h P L2pS1;Rdq) and that satisfies
the condition

E0

ż T

0
|γt|

2dt ă 8,

we let β‹k,j “ α‹k,j , for k P t0, ¨ ¨ ¨ , N ´ 1u and j P t1, ¨ ¨ ¨ , ANu, with pk, jq “ pk0, j0q. When

k “ k0 and j “ j0, we let β‹k0,j0 “ γ.
The goal of this section is to prove that there exists a sequence of positive reals pεN qNPN˚ ,

converging to 0, independent of γ, k0 and j0, such that

Jk0,j0
`

pβ‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

ě Jk0,j0
`

pα‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

´ εN .

Throughout the analysis, we assume that, on top of Assumption (A), f and g are Lipschitz
continuous in µ, uniformly in x. In particular, f and g are Lipschitz in px, µq.

5.1. Distance between discrete and continuous systems. Most of the proof relies on a sta-
bility property under discretization for SPDEs of the form:

BtXtpxq “ αtpxq `∆Xtpxq ` 9Wtpxq, pt, xq P r0, T s ˆ S1, (79)

with some initial condition X0p¨q P L2pS1;Rdq. Above, the process αp¨q “ pαtp¨qq0ďtďT is an
L2pS1;Rdq-valued progressively-measurable process with respect to the filtration generated by
pWtp¨qq0ďtďT . We assume it to satisfy

E0

ż T

0
}αtp¨q}

2
L2pS1;Rdq

dt ă 8.

The solution to (79) will be denoted pX
pαq
t p¨qq0ďtďT . For another L2pS1;Rdq-valued progressively-

measurable process βp¨q “ pβtp¨qq0ďtďT satisfying

E0

ż T

0
}βtp¨q}

2
L2pS1;Rdq

dt ă 8,

we let

β̄kt “ N

ż pk`1q{N

k{N
βtpxqdx, t P r0, T s, k P t0, ¨ ¨ ¨ , N ´ 1u, (80)

and we consider the discretized version

dX̄k
t “ β̄kt dt`N

2
`

X̄k`1
t ` X̄k´1

t ´ 2X̄k
t

˘

dt`
?
NdBk

t , (81)

for t P r0, T s and k P t0, ¨ ¨ ¨ , N ´ 1u, with the same convention as before that X̄´1
t “ X̄N´1

t and
X̄N
t “ X̄0

t . Above the initial condition is given by the same approximation as in (77). The solution

to (81) will be denoted ppX̄
pβq,k
t qk“0,¨¨¨ ,N´1q0ďtďT . With this solution, we associate the periodic

function

X̄
pβq
t p¨q “

N´1
ÿ

k“0

X̄
pβq,k
t 1rk{N,pk`1q{Nq`Zp¨q, t P r0, T s.

Notice that (and this is the key point of the proof) the equation (81) is just indexed by the label
k of the root (and not by the label j we used before to denote a particle).
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Mild solution of the discrete equation. Equation (81) forms a system of stochastic differential equa-
tions, the solution of which may be put under a discrete mild form, the mild formulation being
based upon the following operator:

∆pNq
´

N´1
ÿ

k“0

λ̄k1rk{N,pk`1q{Nq`Zp¨q
¯

“

N´1
ÿ

k“0

N2
`

λ̄k`1 ` λ̄k´1 ´ 2λ̄k
˘

1rk{N,pk`1q{Nq`Zp¨q,

for any sequence pλ̄kqk“0,¨¨¨ ,N´1. Obviously, ∆pNq is acting on piecewise constant functions from the

torus S1 into R (or, more generally, into Rd) with pk{N ` Zqk“0,¨¨¨ ,N´1 as mesh. We often identify

these functions with piecewise constant functions from r0, 1q into R (or Rd) with pk{N`Zqk“0,¨¨¨ ,N´1

as mesh, in which case the above identity becomes (with a slight abuse of notation):

∆pNq
´

N´1
ÿ

k“0

λ̄k1rk{N,pk`1q{Nqp¨q

¯

“

N´1
ÿ

k“0

N2
`

λ̄k`1 ` λ̄k´1 ´ 2λ̄k
˘

1rk{N,pk`1q{Nqp¨q,

Throughout the analysis, we shall use the following convention. For a collection of weights pλ̄kqk“0,¨¨¨ ,N´1

(with values in R or in Rd), we call

λ̄p¨q “
N´1
ÿ

k“0

λ̄k1rk{N,pk`1q{Nq`Zp¨q (82)

the corresponding piecewise constant step functions on the torus. Observe that, for the sake of
convenience, we omitted to specify the dependence of the function λ̄p¨q upon the discretization
parameter N . Also, according to the previous convention, we shall identify the function λ̄p¨q with

the function
řN´1
k“0 λ̄k1rk{N,pk`1q{Nqp¨q from r0, 1q into R. With this convention of notation, the

solution to (81) may be written under the form:

X̄
pβq
t p¨q “ et∆

pNq
X̄0p¨q `

ż t

0
ept´sq∆

pNq
β̄sp¨qds`

ż t

0
ept´sq∆

pNq
´

ÿ

nPN
ēn,˘p¨qdWn,˘

s

¯

, (83)

with the same convention as before for the notation ēn,˘p¨q, namely:

ēn,˘p¨q “
N´1
ÿ

k“0

ēn,˘,k1rk{N,pk`1q{Nqp¨q, with

ˆ

ēn,˘,k “ N

ż pk`1q{N

k{N
en,˘pxqdx

˙

k“0,¨¨¨ ,N´1

,

which is to say that ēn,˘p¨q is the piecewise constant step function associated with the family of
weights pēn,k,˘qk“0,¨¨¨ ,N´1.

The above writing of the stochastic integral is justified by the fact that

?
N
`

N´1
ÿ

k“0

Bk
t 1rk{N,pk`1q{Nqp¨q

˘

“
ÿ

nPN
Wn,˘
t

„N´1
ÿ

k“0

ēn,˘,k1rk{N,pk`1q{Nqp¨q



,

which follows from a straightforward application of the decomposition of W in Fourier modes,
namely

?
NBk

t “ N

ż pk`1q{N

k{N
Wtpdxq “

ÿ

nPN
Wn,˘
t ēn,˘,k.

Distance between Xpαq and X̄pβq. For the sake of completeness, we recall the mild formulation of
the SPDE (79):

X
pαq
t p¨q “ et∆X0p¨q `

ż t

0
ept´sq∆αsp¨qds`

ż t

0
ept´sq∆

´

ÿ

nPN
en,˘p¨qdWn,˘

s

¯

, t P r0, T s. (84)

Here is the main statement of this subsection.
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Theorem 25. There exist a constant C together with a sequence pεN qNPN˚, converging to 0 as
N tends to 8, such that for any initial condition X0p¨q P L

2pS1;Rdq, any two square-integrable
progressively-measurable process pαtp¨qq0ďtďT and pβtp¨qq0ďtďT with values in L2pS1;Rdq and any
integer N P N˚, it holds

sup
xPS

E0

“

|X̄
pβq
t pxq ´X

pαq
t pxq|2

‰

)

ď C

ˆ

1`
1

t3{4
}X0p¨q}

2
L2pS1;Rdq

` E0

ż t

0
}αsp¨q}

2
L2pS1;Rdq

ds

˙

εN

` CE0

ż t

0

›

›

`

αs ´ βs
˘

p¨q
›

›

2

L2pS1;Rdq
ds,

(85)

for all t P p0, T s.

Proof. The proof is split in several steps. The goal is to compare (83) and (84). Basically, each
step of the proof corresponds to the comparison of a pair of terms in the right-hand sides of (83)
and (84).

Preliminary Step. As a preliminary step, we have the following two standard results, the proofs
of which are postponed to the end of the subsection.

The first identity is

ēnp¨q “ eiπ
n
N

sinpπn{Nq

πn{N

N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q, with ēnp¨q “

ēn,` ` iēn,´
?

2
p¨q, (86)

and i2 “ ´1. The second one is

∆pNq

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



“ ´2N2
“

1´ cos
`2πn

N

˘‰

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



, (87)

which shows that the function
řN´1
k“0 ei2π

kn
N 1rk{N,pk`1q{Nqp¨q is an eigenvector of ∆pNq. In particular,

we have

ept´sq∆
pNq

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



“ e´2N2r1´cosp2πn{Nqspt´sq

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



,

for any s, t P r0, T s, with 0 ď s ď t. Combining with the first identity (86), we get:

ept´sq∆
pNq
ēnp¨q “ eiπ

n
N

sinpπn{Nq

πn{N
e´2N2r1´cosp2πn{Nqspt´sq

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



“ e´2N2r1´cosp2πn{Nqspt´sqēnp¨q,

which shows that ēnp¨q is also an eigenvector of ∆pNq. Taking the real and imaginary parts, the
same holds for ēn,`p¨q and ēn,´p¨q.

Second Step. We now compare the martingale terms in (83) and (84). We start with (83).
Thanks to the preliminary step, it may be rewritten under the form:

ż t

0
ept´sq∆

pNq
´

ÿ

nPN
ēn,˘p¨qdWn,˘

s

¯

“
ÿ

nPN

ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘p¨qdWn,˘

s .

We then observe that there exists a universal constant C such that

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s

ˇ

ˇ

ˇ

ˇ

2

ď
C

N1{4
.
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Indeed, the left hand side is equal to

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s

ˇ

ˇ

ˇ

ˇ

2

“ sup
xPS1

ÿ

něN1{4

ż t

0
e´4N2r1´cosp2πn{Nqspt´sq|ēn,˘pxq|2ds

“
ÿ

něN1{4

sin2pπn{Nq

pπn{Nq2

ż t

0
e´4N2r1´cosp2πn{Nqspt´sqds,

(88)

so that

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s

ˇ

ˇ

ˇ

ˇ

2

ď
ÿ

|n|ěN1{4

sin2pπn{Nq

pπn{Nq2
1

4N2r1´ cosp2πn{Nqs
.

(89)

We then observe that the function % : S1 Q x ÞÑ %pxq “ sin2pxq{p1 ´ cosp2xqq is equal to 1{2 as
cosp2xq “ 2 cos2pxq´1 “ 1´2 sin2pxq. So, the above ratio sin2pπn{Nq{r1´cosp2πn{Nqs is bounded
by a universal constant c. In the sequel, this constant c may vary from line to line as long as it
remains universal. Then,

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s

ˇ

ˇ

ˇ

ˇ

2

ď c
ÿ

něN1{4

1

n2
ď

c

N1{4
. (90)

Actually, the same bound holds for the solution of the SPDE, namely:

sup
xPS1

E0

„
ˇ

ˇ

ˇ

ˇ

ż t

0
ept´sq∆

ˆ

ÿ

něN1{4

en,˘p¨qdWn,˘
s

˙

pxq

ˇ

ˇ

ˇ

ˇ

2

ď
c

N1{4
,

which may be proved in the same way by recalling that ept´sq∆en,˘ “ ´p2πnq2en,˘, for all n P N.
We now handle the difference

ÿ

0ďnăN1{4

ˆ
ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s ´

ż t

0
e´p2πnq

2pt´sqen,˘pxqdWn,˘
s

˙

.

Taking the L2 norm of the modulus, we obtain:

sup
xPS1

E
„ˇ

ˇ

ˇ

ˇ

ÿ

0ďnăN1{4

ˆ
ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s ´

ż t

0
e´p2πnq

2pt´sqen,˘pxqdWn,˘
s

˙ˇ

ˇ

ˇ

ˇ

2

“ sup
xPS1

ÿ

0ďnăN1{4

ż t

0

ˇ

ˇ

ˇ
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxq ´ e´p2πnq

2pt´sqen,˘pxq
ˇ

ˇ

ˇ

2
ds

ď 4
ÿ

0ďnăN1{4

ż t

0

ˇ

ˇ

ˇ
e´2N2r1´cosp2πn{Nqspt´sq ´ e´p2πnq

2pt´sq
ˇ

ˇ

ˇ

2
ds (91)

` 2 sup
xPS1

ÿ

0ďnăN1{4

ż t

0
e´2p2πnq2pt´sq

ˇ

ˇēn,˘pxq ´ en,˘pxq
ˇ

ˇ

2
ds

“ piq ` piiq.
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As for the first term piq, we proceed as follows. We use the following two facts. First, we observe

that, for 0 ď n ď N1{4,

N2
“

1´ cos
`2πn

N

˘‰

“ N2
“1

2

`2πn

N

˘2
`O

` n4

N4

˘‰

“
p2πnq2

2
`O

` 1

N

˘

.

Therefore, for any 0 ď s ď t ď T ,

exp
´

´2N2
“

1´ cos
`2πn

N

˘‰

pt´ sq
¯

“ exp
`

´p2πnq2pt´ sq
˘`

1`Op
1

N
q
˘

,

where the Landau symbol is uniform in s, t P r0, T s, with s ď t, and in 0 ď n ď N1{4. Therefore,

|piq| ď
c

N

ÿ

0ďnďN1{4

ż t

0
exp

`

´p2πnq2pt´ sq
˘

ds ď
c

N

´

1`
ÿ

nPN˚

1

n2

¯

,

which is less than c{N .

In order to handle piiq, we notice that, for 0 ď n ď N1{4,

sup
xPS1

|en,˘pxq ´ ēn,˘pxq| ď
cn

N
ď

c

N1{4
.

We easily deduce that |piiq| is less than c{N1{4.
So, the conclusion of this second step is that there exists a sequence pεN qNPN˚ , independent of

the data, converging to 0 as N tends to 8, such that

sup
0ďtďT

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ż t

0
ept´sq∆

pNq
´

ÿ

nPN
ēn,˘p¨qdWn,˘

s

¯

pxq ´

ż t

0
ept´sq∆

´

ÿ

nPN
en,˘p¨qdWn,˘

s

¯

pxq

ˇ

ˇ

ˇ

ˇ

2

“ sup
0ďtďT

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

nPN

ˆ
ż t

0
e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqdWn,˘

s ´

ż t

0
e´p2πnq

2pt´sqen,˘pxqdWn,˘
s

˙ˇ

ˇ

ˇ

ˇ

2

ď εN ,

which proves that the two martingale terms in (83) and (84) get closer as N tends to 8, uniformly
in time (and in the data).

Third Step. We now provide a similar analysis but for the control terms in (83) and (84). We

start with the case when αp¨q “ βp¨q. To do so, we call pαn,˘t qnPN the sequence of Fourier coefficients
of each αtp¨q, seen as a (random) element of L2pS1;Rdq. Similar to (80), we also define the sequence
ppᾱkt q0ďtďT qk“0,¨¨¨ ,N´1:

ᾱkt “ N

ż pk`1q{N

k{N
αtpxqdx, t P r0, T s, k P t0, ¨ ¨ ¨ , N ´ 1u,

and we define pᾱtp¨qq0ďtďT accordingly, see (82), namely

ᾱtp¨q “
N´1
ÿ

k“0

ᾱkt 1rk{N,pk`1q{Nqp¨q.

With this notation, we have the following identity:

ᾱtp¨q “
ÿ

nPN
αn,˘t

„N´1
ÿ

k“0

ˆ

N

ż pk`1q{N

k{N
en,˘pxqdx

˙

1rk{n,pk`1q{Nqp¨q



“
ÿ

nPN
αn,˘t ēn,˘p¨q.

So, using the preliminary step, we deduce that, for any s, t P r0, T s with s ď t,

ept´sq∆
pNq
ᾱsp¨q “ ept´sq∆

pNq

„

ÿ

nPN
αn,˘s ēn,˘p¨q



“
ÿ

nPN
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqēn,˘p¨q,

44



and then
ż t

0
ept´sq∆

pNq
ᾱsp¨qds “

ÿ

nPN

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘p¨q.

Proceeding as in the second step, we first focus on

ÿ

něN1{4

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘p¨q.

By Cauchy Schwartz inequality, we have

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď

ˆ

ÿ

něN1{4

ż t

0
|αn,˘s |2ds

˙ˆ

sup
xPS1

ÿ

něN1{4

ż t

0
e´4N2r1´cosp2πn{Nqspt´sq|ēn,˘pxq|2ds

˙

.

Take now expectation and deduce that:

sup
xPS1

E0

„
ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď E0

„

ÿ

něN1{4

ż t

0
|αn,˘s |2ds

ˆ

sup
xPS1

ÿ

něN1{4

ż t

0
e´4N2r1´cosp2πn{Nqspt´sq|ēn,˘pxq|2ds

˙

.

By Parseval’s identity, the first term is bounded by E0

şt
0 }αsp¨q}

2
L2pS1;Rdq

ds. The second one may

be handled as in (88) and (90). We deduce that:

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď
c

N1{4
E0

ż t

0
}αsp¨q}

2
L2pS1;Rdq

ds.

Similarly, we have
ż t

0
ept´sq∆αsp¨qds “

ÿ

nPN

ż t

0
αn,˘s e´p2πnq

2pt´sqen,˘p¨qds,

and then,

sup
xPS1

E0

„
ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

ż t

0
αn,˘s e´p2πnq

2pt´sqen,˘pxqds

ˇ

ˇ

ˇ

ˇ

2

ď E0

„

ÿ

|n|ěN1{4

ż t

0
|αn,˘s |2ds

ˆ

ÿ

něN1{4

ż t

0
e´2p2πnq2pt´sqds

˙

,

and again, it is less than pc{N1{4qE0

şt
0 }αsp¨q}

2
L2pS1qds. We now handle the difference

ÿ

0ďnăN1{4

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘p¨q ´
ÿ

0ďnăN1{4

ˆ
ż t

0
αn,˘s e´p2πnq

2pt´sqds

˙

en,˘p¨q

“
ÿ

|n|ăN1{4

ż t

0
αn,˘s

´

e´2N2r1´cosp2πn{Nqspt´sqēn,˘p¨q ´ e´p2πnq
2pt´sqen,˘p¨q

¯

ds.
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By Cauchy-Schwarz inequality,

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

0ďnăN1{4

ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxqds

´
ÿ

0ďnăN1{4

ż t

0
αn,˘s e´p2πnq

2pt´sqen,˘pxqds

ˇ

ˇ

ˇ

ˇ

2

ď E0

„

ÿ

0ďnăN1{4

ż t

0
|αn,˘s |2ds



ˆ sup
xPS1

ÿ

0ďnăN1{4

ż t

0
|e´2N2r1´cosp2πn{Nqspt´sqēn,˘pxq ´ e´p2πnq

2pt´sqen,˘pxq|2ds.

We then follow (91). We deduce that there exist a constant C and a sequence pεN qNPN˚ , independent
of the data, the sequence pεN qNPN˚ converging to 0 as N tends to 8, such that, for all t P r0, T s,

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

nPN

ˆ
ż t

0
αn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq ´
ÿ

nPN

ˆ
ż t

0
αn,˘s e´p2πnq

2pt´sqds

˙

en,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď C

ˆ

E0

ż t

0
}αsp¨q}

2
L2pS1;Rdq

ds

˙

εN , (92)

which proves in particular that, whenever αp¨q “ βp¨q, the control terms in (83) and (84) get closer
as N tends to 8, uniformly in time.

Now, in order to handle the general case when αp¨q “ βp¨q, it suffices to handle the term:

sup
xPS1

E0

„
ˇ

ˇ

ˇ

ˇ

ÿ

nPN

ˆ
ż t

0

`

αn,˘s ´ βn,˘s
˘

e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

.

By Cauchy-Schwarz’ inequality and then by Parseval’s identity, it is less than

sup
xPS1

E0

„ˇ

ˇ

ˇ

ˇ

ÿ

nPN

ˆ
ż t

0

`

αn,˘s ´ βn,˘s
˘

e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď sup
xPS1

"

E0

„

ÿ

nPN

ż t

0
|αn,˘s ´ βn,˘s |2ds

„

ÿ

nPN

ż t

0
e´4N2r1´cosp2πn{Nqspt´sq|ēn,˘pxq|2ds

*

ď E0

„
ż t

0

›

›

`

αs ´ βs
˘

p¨q
›

›

2

L2pS1qds

„

sup
xPS1

ÿ

nPN

ż t

0
e´4N2r1´cosp2πn{Nqspt´sq|ēn,˘pxq|2ds



.

Following (88) and (90), we can easily bound the second factor. We deduce that

sup
xPS1

E0

„
ˇ

ˇ

ˇ

ˇ

ÿ

nPN

ˆ
ż t

0

`

αn,˘s ´ βn,˘s
˘

e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď CE0

„
ż t

0

›

›

`

αs ´ βs
˘

p¨q
›

›

2

L2pS1;Rdq
ds



.

And then, combining with (92),

sup
xPS1

E0

„

ÿ

nPN

ˆ
ż t

0
βn,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘pxq ´
ÿ

nPN

ˆ
ż t

0
αn,˘s e´p2πnq

2pt´sqds

˙

en,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď CεNE0

ż t

0
}αsp¨q}

2
L2pS1;Rdq

ds` CE0

„
ż t

0

›

›

`

αs ´ βs
˘

p¨q
›

›

2

L2pS1;Rdq
ds



.
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Fourth Step. We now handle the initial condition on the same principle. As before, we denote
by pXn,˘

0 qnPN the Fourier coefficients of X0p¨q. Then, we let

X̄0p¨q “

N
ÿ

k“0

ˆ

N

ż pk`1q{N

k{N
X0pxqdx

˙

1rk{N,pk`1q{Nqp¨q “
ÿ

nPN
Xn,˘

0 ēn,˘p¨q.

Therefore,

et∆
pNq
X̄0p¨q “

ÿ

nPN
Xn,˘

0 e´2N2r1´cosp2πn{Nqstēn,˘p¨q.

Proceeding as above,

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

Xn,˘
0 e´2N2r1´cosp2πn{Nqstēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď 2
ÿ

nPN
|Xn,˘

0 |2 ˆ
ÿ

něN1{4

sin2pπn{Nq

pπn{Nq2
e´2N2r1´cosp2πn{Nqst,

which yields to a somewhat different bound from what we obtained in the two previous steps. In
order to recover the same kind of bounds, we use the following trick:

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

Xn,˘
0 e´2N2r1´cosp2πn{Nqstēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď
1

t3{4

ÿ

nPN
|Xn,˘

0 |2 ¨
ÿ

něN1{4

sin2pπn{Nq

pπn{Nq2
t3{4e´2N2r1´cosp2πn{Nqst

ď
c

t3{4

ÿ

nPN
|Xn,˘

0 |2 ¨
ÿ

něN1{4

sin2pπn{Nq

pπn{Nq2
1

pN2r1´ cosp2πn{Nqsq3{4
,

(93)

for a new value of the universal constant c. Recalling that the function R Q x ÞÑ sinpxq{x is bounded
by 1, we deduce that

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

Xn,˘
0 e´2N2r1´cosp2πn{Nqstēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď
c

t3{4

ÿ

nPN
|Xn,˘

0 |2 ¨
ÿ

něN1{4

´sin2pπn{Nq

pπn{Nq2

¯3{4 1

pN2r1´ cosp2πn{Nqsq3{4
,

and then following the argument used to pass from (89) to (90), we deduce that:

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

Xn
0 e
´2N2r1´cosp2πn{Nqstēn,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď
c

t3{4

ÿ

nPN
|Xn,˘

0 |2 ¨
ÿ

něN1{4

1

n3{2
ď

c

t3{4N1{8
.

It is well-checked that a similar bound holds true for

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

něN1{4

Xn,˘
0 e´p2πnq

2ten,˘pxq

ˇ

ˇ

ˇ

ˇ

2

.

So, in order to compare et∆X0 and et∆
pNq
X̄0, see (83) and (84), it remains to handle the difference

ÿ

0ďnăN1{4

´

Xn,˘
0 e´N

2r1´cosp2πn{Nqstēn,˘p¨q ´Xn,˘
0 e´p2πnq

2ten,˘p¨q
¯

.
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By Cauchy-Schwarz inequality, we have the following bound.

sup
xPS1

ˇ

ˇ

ˇ

ˇ

ÿ

0ďnăN1{4

Xn,˘
0 e´N

2r1´cosp2πn{Nqstēn,˘pxq ´Xn,˘
0 e´p2πnq

2ten,˘pxq

ˇ

ˇ

ˇ

ˇ

2

ď

„

ÿ

nPN
|Xn

0 |
2



sup
xPS1

„

ÿ

0ďnăN1{4

ˇ

ˇe´N
2r1´cosp2πn{Nqstēn,˘pxq ´ e´p2πnq

2ten,˘pxq
ˇ

ˇ

2


.

Following the analysis of (91) and using the same trick as in (93), we deduce that there exist a
constant C and a sequence pεN qNPN˚ converging to 0 as N tends to 8, both the constant and the
sequence being independent of the data, such that

sup
xPS1

ˇ

ˇ

`

et∆
pNq
X̄0 ´ e

t∆X0

˘

pxq
ˇ

ˇ

2
ď

εN

t3{4
}X0p¨q}

2
L2pS1;Rdq

.

Fifth Step. By combining the three previous steps, we easily deduce (85).

Proof of the two auxiliary identities (86) and (87). We now prove the identity (86). We start with

ēnp¨q “
N´1
ÿ

k“0

ˆ

N

ż pk`1q{N

k{N
ei2πnxdx

˙

1rk{N,pk`1q{Nqp¨q

“

ˆ

N

ż 1{N

0
ei2πnxdx

˙N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q

“ eiπ
n
N

sinpπn{Nq

πn{N

N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q.

We now check the second identity (87). Implementing the definition of ∆pNq, we get:

∆pNq

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



“ N2
N´1
ÿ

k“0

`

ei2π
pk`1qn

N ` ei2π
pk´1qn

N ´ 2ei2π
kn
N

˘

1rk{N,pk`1q{Nqp¨q

“ ´2N2
“

1´ cos
`2πn

N

˘‰

„N´1
ÿ

k“0

ei2π
kn
N 1rk{N,pk`1q{Nqp¨q



,

5.2. Application to games. We now return to (76) with pαk,j “ α‹k,j “ ´Ȳ
k
qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

as defined in (78) where pXp¨q,Y p¨q,Zp¨qq now denotes the solution to (29). We denote the cor-
responding solution by pX‹,k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

. Since α‹,k,j does not depend on j, we have

X‹,k,j “ X̄
‹,k

for any k P t0, ¨ ¨ ¨ , N ´ 1u, with X̄
‹,k
“ 1{AN

řAN
j“1 X̄

‹,k,j
.

Also, we notice that pX̄‹,0t , ¨ ¨ ¨ , X̄‹,N´1
t q0ďtďT solves the system of SDEs:

dX̄‹,kt “

!

b
`

µ̄‹,Nt
˘

´ Ȳ k
t `N

2
`

X̄‹,k`1
t ` X̄‹,k´1

t ´ 2X̄‹,kt
˘

)

dt`
?
NdBk

t ,

for t P r0, T s, with the same initial condition X̄k
0 as before and for k P t0, ¨ ¨ ¨ , N ´ 1u. The above

system fits the form of (81). To make it clear, we use the following notations:

X̄‹t p¨q “
N´1
ÿ

k“0

X̄‹,kt 1rk{N,pk`1q{Nqp¨q, and µ̄‹,Nt “
1

N

N´1
ÿ

k“0

δ
X̄‹,kt

,

We then apply Theorem 25 with α‹p¨q “ bpLebS1 ˝X
´1p¨qq ´ Y p¨q and β‹ “ bpµ̄‹,N q ´ Y p¨q and

thus pβ‹,k “ bpµ̄‹,N q ´ Ȳ
k
qk“0,¨¨¨ ,N´1. Then, the SPDE (79) takes the form:

BtXtpxq “ b
`

LebS1 ˝ pXtp¨qq
´1
˘

´ Ytpxq `∆Xtpxq ` 9Wtpxq, pt, xq P r0, T s ˆ S1,
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with the same X0p¨q as before as initial condition. Then, by Theorem 25, we get for all t P p0, T s,

sup
xPS1

E0

“

|Xtpxq ´ X̄
‹
t pxq|

2
‰

ď CεN

´

1`
1

t3{4

¯

` CE0

ż t

0

ˇ

ˇb
`

LebS1 ˝ pXsp¨qq
´1
˘

´ bpµ̄‹,Ns q
ˇ

ˇ

2
ds

ď CεN

´

1`
1

t3{4

¯

` CE0

ż t

0

ż

S1
|X̄‹s pxq ´Xspxq|

2dxds` CE0

ż t

0
W2

`

µ̄‹,Ns ,LebS1 ˝ pX̄
‹
s p¨qq

´1
˘2
ds,

where C now depends upon E0

şT
0 }Ysp¨q}

2
L2pS1;Rdq

ds and }X0p¨q}
2
L2pS1;Rdq

. Since µ̄‹,Ns coincides with

LebS1 ˝ pX̄
‹
s p¨qq

´1, the last term in the above inequality is 0. Therefore, by the general version of
Gronwall’s lemma, we get, for any t P p0, T s,

sup
xPS1

E0

“

|Xtpxq ´ X̄
‹
t pxq|

2
‰

ď CεN

´

1`
1

t3{4

¯

. (94)

In order to show that we have constructed an approximate Nash equilibria, we apply a variant
of the sufficiency proof in the Pontryagin principle.

Particle system associated with β. Recall the definition of β from the introduction of Section 5:
Fix a pair pk0, j0q P t0, ¨ ¨ ¨ , N ´ 1u ˆ t1, ¨ ¨ ¨ , ANu and let β‹k,j “ α‹k,j , for k P t0, ¨ ¨ ¨ , N ´ 1u and

j P t1, ¨ ¨ ¨ , ANu, with pk, jq “ pk0, j0q; when k “ k0 and j “ j0, let β‹k0,j0 “ γ, for some Rd-valued
process γ “ pγtq0ďtďT that is progressively-measurable with respect to the filtration generated by

the cylindrical white noise W p¨q “ pWtp¨qq0ďtďT . Then, we call ppχk,jt q0ďtďT qk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

the system of particles:

dχk,jt “

!

b
`

ν̄Nt
˘

` βk,jt `N2
`

χ̄k`1
t ` χ̄k´1

t ´ 2χ̄kt
˘

)

dt`
?
NdBk

t , t P r0, T s,

for k P t0, ¨, N ´ 1u and j P t1, ¨ ¨ ¨ , ANu, with the initial condition χk,j0 “ X̄k
0 , and with

ν̄Nt “
1

NAN

N´1
ÿ

k“0

AN
ÿ

j“1

δ
χk,j
t
,

and

χ̄kt “
1

AN

AN
ÿ

j“1

χk,jt , t P r0, T s.

As usual, we let χ̄tpxq “
řN´1
k“0 χ̄kt 1rk{N,pk`1q{Nqpxq.

Pontryagin principle. For pk0, j0q as above, we compute

d
”

pχk0,j0t ´ X̄‹,k0t q ¨ Ȳ k0
t

ı

“

„

´

b
`

ν̄Nt
˘

´ b
`

µ̄‹,Nt
˘

` βk0,j0t ` Ȳ k0
t

`N2
`

χ̄k0`1
t ` χ̄k0´1

t ´ 2χ̄k0t ´ X̄
‹,k0`1
t ´ X̄‹,k0´1

t ` 2X̄‹,k0t

˘

¯

¨ Ȳ k0
t

´N

ż pk0`1q{N

k0{N

”

Bxf
`

Xtpxq,LebS1 ˝ pXtp¨qq
´1
˘

¨
`

χk0,j0t ´ X̄‹,k0t

˘

ı

dx



dt

` dmt,
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where pmtq0ďtďT is a square integrable martingale. Therefore,

d

„

“

pχk0,j0t ´ X̄‹,k0t q ¨ Ȳ k0
t

‰

`

ż t

0

´

f
`

χk0,j0s , ν̄Ns
˘

´ f
`

X̄‹,k0s ,LebS1 ˝ pX̄
‹
s p¨qq

´1
˘

¯

ds

`
1

2

´

ż t

0
|βk0,j0s |2 ´ |Ȳ k0

s |
2
¯

ds



“

„

1

2

ˇ

ˇβk0,j0t ` Ȳ k0
t

ˇ

ˇ

2
` δNt

`

”

f
`

χk0,j0t ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

´ f
`

X̄‹,k0t ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

´ Bxf
`

X̄‹,k0t ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

¨
`

χk0,j0t ´ X̄‹,k0t

˘

ı



dt

` dmt,

(95)

where we have let

δNt “ f
`

χk0,j0t , ν̄Nt
˘

´ f
`

χk0,j0t ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

`

´

b
`

ν̄Nt
˘

´ b
`

µ̄‹,Nt
˘

`N2
`

χ̄k0`1
t ` χ̄k0´1

t ´ 2χ̄k0t ´ X̄
‹,k0`1
t ´ X̄‹,k0´1

t ` 2X̄‹,k0t

˘

¯

¨ Ȳ k0
t

´N

ż pk0`1q{N

k0{N

”´

Bxf
`

Xtpxq,LebS1 ˝ pXtp¨qq
´1
˘

´ Bxf
`

X̄‹,k0t ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

¯

¨
`

χk0,j0t ´ X̄‹,k0t

˘

ı

dx.

Hence, taking the expectation in (95), using the convexity of f and inserting the terminal costs,
we get:

E0

„

g
`

χk0,j0T , ν̄NT
˘

`

ż T

0

´

f
`

χk0,j0t , ν̄Nt
˘

`
1

2
|βk0,j0t |2

¯

dt



ě E0

„

g
`

X̄‹,k0T ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘

`

ż T

0

´

f
`

X̄‹,k0t ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

`
1

2
|Ȳ ‹,k0t |2

¯

dt



` E0

„

g
`

χk0,j0T ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘

´ g
`

X̄‹,k0T ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘

´ Bxg
`

X̄‹,k0T ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘

¨
`

χk0,j0T ´ X̄‹,k0T

˘



`
1

2
E0

ż T

0

ˇ

ˇβk0,j0t ` Ȳ k0
t

ˇ

ˇ

2
dt` E0

ż T

0
δNt dt` E0δ

1
N ,

where we have let

δ1N “ g
`

χk0,j0T , ν̄NT
˘

´ g
`

χk0,j0T ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘

´N

ż pk0`1q{N

k0{N

”´

Bxg
`

XT pxq,LebS1 ˝ pXT p¨qq
´1
˘

´ Bxg
`

X̄‹,k0T ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘

¯

¨
`

χk0,j0T ´ X̄‹,k0T

˘

ı

dx.
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By convexity of g and from the identity pµ̄‹,Nt “ LebS1 ˝ pX̄
‹
t p¨qq

´1q0ďtďT , we end-up with:

Jk0,j0
`

pβk,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

ě Jk0,j0
`

pα‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

`
1

2
E0

ż T

0

ˇ

ˇβk0,j0t ` Ȳ k0
t

ˇ

ˇ

2
dt` E0

ż T

0
δNt dt` E0δ

1
N .

(96)

Proving the convergence of the remainder. We now investigate the two sequences pδ1N qNě1 and

p
şT
0 δ

N
t dtqNPN˚ . Using once again the identity pµ̄‹,Nt “ LebS1 ˝ pX̄

‹
t p¨qq

´1q0ďtďT together with the
regularity properties of the coefficients, we have

E0

“

|δ1N |
‰

` E0

ż T

0
|δNt |dt

ď C

ˆ

E0

“

W2

`

ν̄NT ,LebS1 ˝ pX̄
‹
T p¨qq

´1
˘‰

`

ż T

0
E0

“

W2

`

ν̄Nt ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘‰

dt

˙

` C sup
xPS1

E0

“

|XT pxq ´ X̄
‹
T pxq|

2
‰1{2

´

1` E0

“

|χk0,j0T ´ X̄‹,k0T |2
‰1{2

¯

` C

ˆ
ż T

0
sup
xPS1

E0

“

|Xtpxq ´ X̄
‹
t pxq|

2
‰

dt

˙1{2„

1`

ˆ
ż T

0
E0

“

|χk0,j0t ´ X̄‹,k0t |2
‰

dt

˙1{2

` C E0

ż T

0
sup
xPS1

ˇ

ˇ∆pNqpχ̄t ´ X̄
‹
t qpxq

ˇ

ˇdt,

where, in the last line, we used the fact that the process pȲ k0
t q0ďtďT is bounded independently of

k0, see for instance Lemma 19.
Observe from (94) that we can find a sequence pεN qNPN˚ , converging to 0 as N tends to 8, such

that

sup
xPS1

E0

“

|XT pxq ´ X̄
‹
T pxq|

2
‰1{2

`

ˆ
ż T

0
sup
xPS1

E0

“

|Xtpxq ´ X̄
‹
t pxq|

2
‰

dt

˙1{2

ď εN .

Now, for any t P r0, T s,

W2

`

ν̄Nt ,LebS1 ˝ pX̄
‹
t p¨qq

´1
˘

ď

ˆ

1

N

1

AN

N´1
ÿ

k“0

N
ÿ

j“1

|χk,jt ´ X̄‹,kt |2
˙1{2

.

So, we end up with:

E
“

|δ1N |
‰

` E
ż T

0
|δNt |dt

ď εN

´

1` sup
0ďtďT

E
“

|χk0,j0t ´ X̄‹,k0t |2
‰1{2

¯

` C sup
0ďtďT

E0

„

1

N

1

AN

N´1
ÿ

k“0

N
ÿ

j“1

|χk,jt ´ X̄‹,kt |2
1{2

` C E0

ż T

0
sup
xPS1

ˇ

ˇ∆pNqpχ̄t ´ X̄
‹
t qpxq

ˇ

ˇdt.

(97)

Now, for any t P r0, T s,

1

N

1

AN

N´1
ÿ

k“0

N
ÿ

j“1

|χk,jt ´ X̄‹,kt |2 ď C

ż t

0

1

N

1

AN

N´1
ÿ

k“0

N
ÿ

j“1

|χk,js ´ X̄‹,ks |2ds

`
C

NAN

ż T

0
|γs ` Ȳ

k0
s |

2ds` C

ˆ
ż T

0
sup
xPS1

ˇ

ˇ∆pNq
`

X̄‹s ´ χ̄s
˘

pxq
ˇ

ˇds

˙2

,

51



so that, by Gronwall’s lemma,

sup
0ďtďT

1

N

1

AN

N´1
ÿ

k“0

N
ÿ

j“1

|χk,jt ´ X̄‹,kt |2

ď
C

NAN

ż T

0
|γs ` Ȳ

k0
s |

2ds` C

ˆ
ż T

0
sup
xPS1

ˇ

ˇ∆pNq
`

X̄‹s ´ χ̄s
˘

pxq
ˇ

ˇds

˙2

.

(98)

We then claim from Proposition 26 below that there exists a constant c, only depending on T , such
that

E
„ˆ

ż T

0
sup
xPS1

ˇ

ˇ∆pNqpX̄‹t ´ χ̄tqpxq
ˇ

ˇdt

˙2

ď
c

A2
N

E0

ż T

0
|γt ` Ȳ

k0
t |

2dt,

from which we deduce that

sup
0ďtďT

E0

„ˆ

1

N

1

AN

N´1
ÿ

k“0

N
ÿ

j“1

|χk,jt ´ X̄‹,kt |

˙2

ď
C

minpN,AN q2
E0

ż T

0
|γt ` Ȳ

k0
t |

2dt,

the constant C being allowed to vary from line to line. By a similar argument, but without
averaging, we obtain

sup
0ďtďT

E0

”

|χk0,j0t ´ X̄‹,k0t |2
ı

ď CE0

ż T

0
|γt ` Ȳ

k0
t |

2dt.

Returning to (97), this yields to

E0

“

|δ1N |
‰

` E0

ż T

0
|δNt |dt ď εN ` CεN

ˆ

E0

ż T

0
|γt ` Ȳ

k0
t |

2dt

˙1{2

,

and then, inserting into (96), we get:

Jk0,j0
`

pβk,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

ě Jk0,j0
`

pα‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

`
1

2
E0

ż T

0

ˇ

ˇγt ` Ȳ
k0
t

ˇ

ˇ

2
dt

´ εN

„

1`

ˆ

E0

ż T

0
|γs ` Ȳ

k0
s |

2ds

˙1{2

, (99)

the sequence pεN qNPN˚ being now allowed to depend upon pAN qNPN˚ .
Obviously, we can a find constant a ą 0, independent of N , such that the sum of the last two

terms in the right-hand side is positive whenever E0

şT
0 |γs|

2ds is greater than a. In such a case, we
have

Jk0,j0
`

pβk,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

ě Jk0,j0
`

pα‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

,

which is the required inequality.

Now, if E0

şT
0 |γs|

2ds ď a, (99) yields

Jk0,j0
`

pβk,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

ě Jk0,j0
`

pα‹k,jqk“0,¨¨¨ ,N´1;j“1,¨¨¨ ,AN

˘

´ εN
`

1` a1{2
˘

,

and the result follows easily.

Stability of the interaction. In order to complete the proof, it remains to evaluate the distance
between ∆pNqX̄

‹
p¨q and ∆pNqχ̄p¨q, which is the purpose of the next statement.

Proposition 26. There exists a constant C, only depending on T , such that, with the same nota-
tions as before,

E0

„ˆ
ż T

0
sup
xPS1

ˇ

ˇ∆pNqpX̄‹t ´ χ̄tqpxq
ˇ

ˇdt

˙2

ď
C

A2
N

E0

ż T

0
|γt ` Ȳ

k0
t |

2dt.
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Proof. By (84), we notice that, for any t P r0, T s,

X̄tp¨q ´ χ̄tp¨q “

ż t

0
ept´sq∆

pNq`

bpµ̄‹,Ns q ´ bpν̄Ns q
˘

ds`

ż t

0
ept´sq∆

pNq`

ᾱ‹sp¨q ´ β̄sp¨q
˘

ds

“ piqt ` piiqt,

(100)

where we have let

ᾱ‹t p¨q “
N´1
ÿ

k“0

α‹t1rk{N,pk`1q{Nqp¨q, β̄tp¨q “
N´1
ÿ

k“0

ˆ

1

AN

AN
ÿ

j“1

βk,jt

˙

1rk{N,pk`1q{Nqp¨q.

As for piq, using the fact that both bpµ̄‹,Ns q and bpν̄Ns q are constant functions of x P S1 for each
s P r0, T s, it is absolutely obvious that

piqt “

ż t

0

`

bpµ̄‹,Ns q ´ bpν̄Ns q
˘

ds,

and then ∆pNqpiqt “ 0. Returning to (100), it suffices to focus on piiqt.
Letting p%̄tp¨q “ pᾱ

‹
t ´ β̄tqp¨qq0ďtďT and following the third step in the proof of Theorem 25, we

have
ż t

0
ept´sq∆

pNq`

ᾱ‹s ´ β̄s
˘

p¨qds “
ÿ

nPN

ˆ
ż t

0
%̄n,˘s e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘p¨q,

where p%̄n,˘s qnPN denote the Fourier coefficients of the function %̄s P L
2pS1;Rdq. Here we used the

identity

%̄sp¨q “
ÿ

nPN

N´1
ÿ

k“0

ˆ

N

ż pk`1q{N

k{N
%̄spxqdx

˙

1rk{N,pk`1q{Nqp¨q “
ÿ

nPN
%̄n,˘s ēn,˘p¨q,

which follows from the fact that %̄sp¨q is constant on each rk{N, pk ` 1q{Nq. Then,

∆pNqpiiqt “
ÿ

nPN

ˆ
ż t

0
%̄n,˘s

`

´2N2r1´ cosp2πn{Nqs
˘

e´2N2r1´cosp2πn{Nqspt´sqds

˙

ēn,˘p¨q.

We deduce that

sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇ ď 2
ÿ

nPN

ż t

0
|%̄n,˘s |

| sinpπn{Nq|

πn{N

`

2N2r1´ cosp2πn{Nqs
˘

e´2N2r1´cosp2πn{Nqspt´sqds,

which we rewrite

sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇ ď
ÿ

nPN

ż t

0
%̄n,˘s ¨ hn,˘s ds,

where we have let

hn,˘s “ sign
`

%̄n,˘s
˘`

2N2r1´ cosp2πn{Nqs
˘ | sinpπn{Nq|

πn{N
e´2N2r1´cosp2πn{Nqspt´sq,

where signpxq is understood as psignpx1q, ¨ ¨ ¨ , signpxdqq for x P Rd. Obviously,

sup
0ďsďt

ÿ

nPN
|hn,˘s |2 ă 8,

so that, by Parseval’s identity,

sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇ ď

ż t

0

ż

S1
%̄spxq ¨ hspxqdx,

53



with
hsp¨q “

ÿ

nPN
hn,˘s en,˘p¨q.

In fact %̄sp¨q “ rpγs ` Ȳ
k0
s q{AN s1rk0{N,pk0`1q{Nqp¨q. Hence, we have

sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇ ď
1

AN

ˇ

ˇ

ˇ

ˇ

ż t

0

`

γs ` Ȳ
k0
s

˘

¨

ˆ
ż pk0`1q{N

k0{N
hspxqdx

˙

ds

ˇ

ˇ

ˇ

ˇ

.

Clearly, by (86),
ˇ

ˇ

ˇ

ˇ

ż pk0`1q{N

k0{N
hspxqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

nPN
hn,˘s

ż pk0`1q{N

k0{N
en,˘pxqdx

ˇ

ˇ

ˇ

ˇ

ď 2
ÿ

nPN
|hn,˘s |

| sinpπn{Nq|

πn
.

Then,
ż T

0
sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇdt

ď
4

AN

ÿ

nPN

ż T

0

ż t

0
|γs ` Ȳ

k0
s |

sin2pπn{Nq

pπnq2
`

N3r1´ cosp2πn{Nqs
˘

e´2N2r1´cosp2πn{Nqspt´sqds dt

“
4

AN

ÿ

nPN

ż T

0
|γs ` Ȳ

k0
s |

sin2pπn{Nq

pπnq2
`

N3r1´ cosp2πn{Nqs
˘

ˆ
ż T

s
e´2N2r1´cosp2πn{Nqspt´sqdt

˙

ds.

We thus have
ż T

0
sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇdt ď
2

AN

ˆ
ż T

0
|γs ` Ȳ

k0
s |ds

˙ˆ

N
ÿ

nPN

sin2pπn{Nq

pπnq2

˙

ď
2

AN

ˆ
ż T

0
|γs ` Ȳ

k0
s |ds

˙ˆ

1

N

N
ÿ

n“0

sin2pπn{Nq

pπn{Nq2
`N

ÿ

nąN

1

n2

˙

.

So, there exists a constant C, only depending on T , such that

E0

„
ˇ

ˇ

ˇ

ˇ

ż T

0
sup
xPS1

ˇ

ˇ∆pNqpiiqtpxq
ˇ

ˇdt

ˇ

ˇ

ˇ

ˇ

2

ď
C

A2
N

E0

ż T

0
|γt ` Ȳ

k0
t |

2dt,

which completes the proof.
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