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RESTORING UNIQUENESS TO MEAN-FIELD GAMES BY RANDOMIZING
THE EQUILIBRIA

FRANCOIS DELARUE!

Laboratoire J.-A. Dieudonné,
Université de Nice Sophia-Antipolis and UMR CNRS 7351,
Parc Valrose, 06108 Nice Cedex 02, France.

ABSTRACT. We here address the question of restoration of uniqueness in mean-field games deriving
from deterministic differential games with a large number of players. The general strategy for
restoring uniqueness is inspired from earlier similar results on ordinary and stochastic differential
equations. It consists in randomizing the equilibria through an external noise.

As a main feature, we choose the external noise as an infinite dimensional Ornstein-Uhlenbeck
process. We first investigate existence and uniqueness of a solution to the noisy system made of
the mean-field game forced by the Ornstein-Uhlenbeck process. We also show how such a noisy
system can be interpreted as the limit version of a stochastic differential game with a large number
of players.

1. INTRODUCTION

The theory of mean-field games has encountered a tremendous success since it was introduced in
2006 by two independent groups, Lasry and Lions [43| [44] [45] on the one hand and Huang, Caines
and Malhamé [38], 39] on the other hand.

The purpose of mean-field games is to provide an asymptotic formulation for differential games
involving a large number of players interacting with one another in a mean-field way. The standard
writing of mean-field games consists in a forward-backward system involving a forward Fokker-
Planck equation describing the state of the population in equilibrium and a backward Hamilton-
Jacobi-Bellman describing the optimal cost to a typical player when the population is in equilibrium.
This goes back to the earlier works of Lasry and Lions, see [43] [44] [45], and to the subsequent series
of lectures by Lions at the College de France, see [40, [47] together with the lecture notes [7] of
Cardaliaguet. This approach, referred to as “the PDE approach”, fits both the cases when the
underlying differential games are deterministic or stochastic; in the deterministic case, the PDEs
involved in the representation are first-order PDEs, whilst they are second-order PDEs in the
stochastic framework. As pointed out in several works by Carmona and Delarue, see [14] [15] 16,
17, 18], the problem may be reformulated in a purely Lagrangian form, using, instead of a forward-
backward system of two PDEs, a forward-backward system of two ordinary or stochastic differential
equations of the McKean-Vlasov type, the name “McKean-Vlasov” emphasizing the fact that the
coefficients of the equations depend upon the statistical distribution of the solution. In that case,
the differential equations appearing in the representation are ordinary or stochastic according to
the deterministic or stochastic nature of the differential game; when the equations are ordinary,
randomness manifests in the dynamics through the initial condition only.

Quite remarkably, the forward-backward structure is common to both formulations, the PDE one,
in which equations are deterministic but set in infinite dimension, and the Lagrangian one, in which
equations are finite dimensional but of the McKean-Vlasov type. The forward-backward nature of
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the problem is a crucial feature in the analysis of mean-field games since forward-backward systems
are known to be hard to solve: Roughly speaking, Cauchy-Lipschitz theory for forward-backward
systems of differential equations holds in small time only, even when the differential equations are
finite dimensional. In arbitrary time, existence or uniqueness of solutions may fail, in which case
the whole system is said to develop singularities in finite time. The typical example for such a
phenomenon is provided by the inviscid one-dimensional backward Burgers equation: Solutions
may be represented through characteristics that describe the motion of a representative particle.
These characteristics solve the forward equation of the forward-backward system representing the
Burgers equation; meanwhile, the backward equation describes the dynamics of the velocity of the
particle, which remains constant along the motion of the particle. It is well known that, for some
choices of the terminal condition, the forward paths may split, such a splitting phenomenon being
usually referred to as a “shock”. In this regard, one interesting question is to decide of the right
continuation of the forward paths once singularities have emerged and uniqueness has been lost.
Anyhow, and quite remarkably, the existence of shocks is deeply connected with the form of the
terminal condition and, under an appropriate monotonicity assumption on the terminal condition,
singularities cannot show up and existence and uniqueness hold true in arbitrary time.

The picture for solving mean-field games is quite similar. Sufficient conditions are known under
which a solution (say for instance a solution to one of the two formulations) does exist in arbitrary
time, but, except in small time, uniqueness may not be guaranteed in most of the cases. We refer
to the original papers [43, [44] [45], to the video lectures [46], to the lecture notes [7] and to the
two-volume book [16, [I7] for a review on the general strategy used to solve a mean-field game. We
also refer to the subsequent papers [8| [10] [IT], 12] for other strategies, in connection with the theory
of mean-field control problem, and to [33] 34, 35] for the analysis of more intricated cases. For the
small time analysis, we also refer to [38] and to [I6, Chapter 4] and [I7, Chapter 5]. Existence of
a solution to the Lagrangian formulation may be found in [13, [14] [1§], see also [16, Chapter 4].
Regarding uniqueness in arbitrary time, things are as follows. Similar to the analysis of the Burgers
equation, uniqueness is know to hold when the coefficients satisfy a suitable monotonicity condition
with respect to the distribution of the population. The most popular monotonicity property used
in this direction is due to Lasry and Lions, see once again [43] 44 [45], and is usually referred to as
the Lasry-Lions monotonicity condition. However, as emphasized in [I] and in [16, Chapters 4 and
5], other forms of monotonicity may be used.

In analogy with our short description of the forward-backward system associated with Burgers’
equation, the forward-backward system used for representing a mean-field game (whatever the
formulation) reads as the system of characteristics of some partial differential equation. In the
framework of mean-field games, this partial differential equation is called the “master equation” of
the game, the word “master” emphasizing the fact that the equation encapsulates all the information
that is necessary to describe the equilibria of the game. This equation was investigated first by
Lions in his lectures at the College de France and then by Gangbo and Swiech [32] in small time,
and by Chassagneux, Crisan and Delarue [2I] and by Cardaliaguet, Delarue, Lasry and Lions [9]
in arbitrary time. In the latter reference, it is shown to play a crucial role in the justification of
the passage to the limit, from games with finitely many players to mean-field games. In arbitrary
time, analysis of the equation is performed under the additional assumption that coefficients satisfy
the Lasry-Lions monotonicity condition. We refer to [I7, Chapters 5 and 6] for another point of
view on the results contained in [21), 9] and to [3] [4 [5] 15] B6], 37, [40] for other and more heuristic
approaches.

In the current paper, we consider the case when the Lasry-Lions monotonicity condition may fail,
the question being to find a strategy to restore uniqueness. Pursuing the same parallel as before, we
observe that, somehow, a similar program has been investigated for the Burgers equation: Adding
a Laplace operator in front of the Burgers equation permits to restore the existence and uniqueness
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of a classical solution in arbitrary time (as opposed to the inviscid case, for which the existence of
a classical solution may fail). From the Lagrangian point of view, the additional Laplace operator
reads as a Brownian motion that forces the motion of the underlying particle. Similar to the viscous
version of the Burgers equation, the stochastically forced forward-backward system describing the
“random characteristics” of the viscous Burgers equation is know to be uniquely solvable, see
Delarue [24]. In a way, “noise restores uniqueness in the Lagrangian formulation”. Our goal here
is to adapt this strategy to mean-field games.

The idea of restoring uniqueness by means of a random forcing has been extensively studied
in probability theory. It goes back to the earlier work of Zvonkin [55] on the solvability of one-
dimensional stochastic differential equations driven by non-Lipschitz continuous drifts. Several
people also contributed to the subject and investigated the higher dimensional framework, among
which Veretennikov [50], Flandoli, Russo and Wolf [29, [30], Krylov and Rockner [41], Davie [23]...
Similar questions have been also addressed in the framework of infinite dimensional stochastic
differential equations, see for instance Flandoli, Gubinelli and Priola [28] and the monograph by
Flandoli [27]. In any case, the idea is to force in a convenient way the Lagrangian dynamics in
order to restore uniqueness of solutions. Transposed to mean-field games theory, the question is here
to find a suitable randomly forced version of the original mean-field games in order to guarantee
uniqueness of the equilibria.

Here is our main result: For a certain class of coefficients, we manage to restore uniqueness to
mean-field games —deriving from a deterministic differential game— by means of a stochastic forcing.
The stochastic forcing mostly consists in an infinite dimensional Ornstein-Uhlenbeck process. The
reason why it is chosen of infinite dimension is well-understood. Roughly speaking, the stochastic
forcing is indeed intended to act on the elements of the “infinite dimensional manifold” formed by
the d-dimensional probability measures with a finite second-order moment, which is usually called
“the Wasserstein space” (d is the state dimension of a typical player). Here, probability measures
are used to describe the state of the population, whilst the limitation to probability measures
with a finite second-order moment is a convenient assumption which permits to benefit from the
Hilbertian structure of any L? space constructed above the Wasserstein space. Returning to the
description of the forcing applied to the mean-field system, it is then well-understood that, in order
to capture all the “possible tangent directions” to the manifold at any point of it, it is necessary
to use a noise of infinite dimension. In order to bypass any description of the differential geometry
on the space of probability measures, we use the approach introduced by Lions in his lectures: We
lift equilibria from the space of probability measures to a well-chosen space of square-integrable
random variables and then use, as we just alluded to, the Hilbertian structure of this L? space.
Fortunately, the Lagrangian description of mean-field games gives a canonical way to realize such
a lift. Our strategy then consists in forcing the dynamics of the random variables representing the
equilibria. In other words, our goal is to force a differential equation defined on an L? space. A
convenient way to do so is to force the modes of the solution along an orthonormal basis of L?.
For instance, when L? is chosen as the space L?(S!;R?) of square-integrable Borel mappings from
S! to R?, where S' denotes the one-dimensional torus, it suffices to force the Fourier modes of
square-integrable R%valued functions defined on S'. It is then a standard fact from the theory of
stochastic partial differential equations that the Ornstein-Ulhenbeck process has nice smoothing
properties on L2(S';R?), which is the key feature for restoring uniqueness.

In addition to proving existence and uniqueness of a solution to the noisy version of the original
mean-field game, we also show that the randomly forced version may be interpreted as the limit of
a game with a large number of agents. As a main feature, the finite game not only exhibits mean
field interactions, which is well expected, but also local interactions to nearest neighbours, which is
certainly a new point in the literature on mean-field games; from a mathematical point of view, local
interactions arise from the discretization of the operator driving the additional infinite dimensional
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Ornstein-Ulhenbeck process. The route we take to connect the finite and the infinite regimes is to
prove that, from any equilibrium to the limiting problem, we can construct an approximate Nash
equilibrium to the finite system. Although this way of doing is pretty standard in the theory of
mean-field games, it turns out to be more challenging in our setting because of the additional local
interactions. Of course, another route would consist in proving that any (say closed loop) equilibria
to the finite player system do converge to the limiting equilibrium as the number of players grows
up. It turns out to be a pretty difficult question in the framework of mean-field games; in this
framework, the only generic approach that has been known to handle the convergence of closed
loop equilibria is due to [9] and is based on the aforementioned master equation. We guess that
a similar approach could be implemented here and we hope to address it in a future work. In
fact, a form of master equation is already addressed in the paper: We prove that the equilibrium
strategy (in the limiting regime) can be put in a feedback form and we show that the feedback
function, which may be regarded as a function from L?(S';R%) into itself, is a mild solution to a
system of nonlinear equations on L?(S'; R¢), driven by the second-order operator generated by the
Ornstein-Ulhenbeck process inserted in the dynamics; the latter system reads as a kind of master
equation for our problem. We just say a “kind of” because the usual master equation for mean
field games is the equation satisfied by the value function and not by the feedback function. In
the standard mean field game regime, both are explicitly connected since the feedback function is
the derivative of the value function with respect to the so-called “private state variable”. Things
are slightly different in our setting and we prefer to work, in the noisy regime, with the feedback
function directly. At the end of the day, our guess is that, to plug our own version of the master
equation into the machinery developed by [9], we would need the feedback function to be more
regular than what we show below. Once again, this question is deferred to another work.

Another interesting prospect that we would like to investigate is the zero noise limit: We guess
that any limit of the solutions (to the noisy system), as the intensity of the forcing decreases to 0,
should generate a randomized equilibrium to the original mean-field game. We are not aware of
similar results in the theory of mean-field games, except maybe in the case investigated by Foguen
[31]. There, restoration of uniqueness is investigated for linear-quadratic mean-field games. In
comparison with the general case we handle here, linear-quadratic mean-field games present the
main advantage to have parametrized solutions: Equilibria are Gaussian and are thus parametrized
by their mean and variance and thus live in a finite-dimensional subspace of the space of probability
measures. In this case, it suffices to use a finite dimensional noise to restore uniqueness, which is
precisely what is done in [31]; then, it seems that, for some linear-quadratic mean-field games, zero
noise limits could be addressed by using arguments similar to [2]. Once again, we hope to make
this point clear in a future work in collaboration with Foguen.

Lastly, we emphasize the fact that all these questions should be revisited for mean-field games
deriving from stochastic differential games with idiosyncratic noises. We believe that part of the
technology developed in the paper could be recycled in this framework, except for the fact, due
to the simultaneous presence of two sources of noise —the idiosyncratic one and the external one
used to restore uniqueness—, the formulation of the randomized version of the game should require
a modicum of care. We make this fact clear in the text.

The paper is organized as follows. We present in Section [2| the randomized version of the game.
Main results are exposed in Section [3l The proof of existence and uniqueness of a solution to the
randomized game is given in Section [4] Connection with finite games is addressed in Section

2. MorLiriED/RANDOMIZED MFG

We first present the original Mean-Field Game (MFG for short) and then describe the “mollified”
or “randomized” version that is expected to be uniquely solvable.
4



Throughout the article, d is an integer greater than 1 and P»(R%) denotes the space of probability
measures over R%. Tt is equipped with the 2-Wasserstein distance (see for instance [51, 52, 16]):

1/2

e PR, W) =inf ([ o sParten)
4 R4 xRd

where the infimum in the last line is taken over all the probability measures m € Po(R? x R?) that

have p and v as respective marginals.

2.1. Original problem. We start with a simple MFG consisting of the following matching prob-
lem:
(1) Given a probability space (€2, A,P) and a flow of probability measures p = (f1t)sejo,7] on
R?, consider the optimization problem

J#(@) = E[g(X§. pr) +f0 (F (X5 ) + o)t
over controlled dynamics of the form
dX7 = b( X, pe)dt + oudt, (1)

with the initial condition X§ = X, X¢ being a random variable from {2 to RY with Lo as
distribution.

(2) Find (4t)seo,r) in such a way that the flow of marginal measures of the optimal path
(X{)tejo,r) in the above optimization problem satisfies

w=L(X7), te[o.1]. 2)
Here, «v is called the control and is a jointly-measurable mapping
o :[0,T] x Q3 (t,w) — a;(w) € RY,
satisfying
T
EJ |y |?dt < 0.
0

The coefficient b : R? x Py(R?) — R? is called the drift. It is assumed to be jointly Lipschitz
continuous, so that is uniquely solvable for any realization w € €2 and the solution X : [0, T]x 3
(t,w) — Xi(w) € R?is also jointly-measurable. The coefficients g : R — R and f : RExPy(R?) — R
are called cost functionals. They are assumed be jointly continuous on R? x Py(R%). Throughout
the paper, we assume them to be at most of quadratic growth in the sense that, for some constant
C =0,

[f (@, )] + lg(z, w)] < C(1+ [af + Ma(n)?), zeR? e Py(RY),

where My(11)? = §pa |z|*dp(z). In particular, it is well checked that the expectation in the definition
of the cost J makes sense.

Remark 1. All the coefficients are here assumed to be time homogeneous. This is for simplicity
only and the results given below can be extended quite easily to the time-inhomogeneous framework.
Similarly, the fact that f is a quadratic function of « is for convenience only; we could handle more
general running costs of the form f(x,p, ) that are uniformly convex in «, see for instance [16,
Chapters 3 and 4]. However, the fact that b is linear in « is really crucial for our purpose, at least
if we want to make use, as we do below, of the sufficient version of the Pontryagin principle.

Another possible generalization would be to insert a Brownian motion in the dynamics (1)), in
which case the mean-field game would be called “stochastic” or “second-order”. Howewver, the ap-
proach developed below for restoring uniqueness of solutions does not apply to that case, see Remark
[ below. We hope to address this question in a future work.
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Usually, solutions to the matching problem may be characterized in two ways. The origi-
nal one is to characterize the optimization problem in the first item above through a first order
Hamilton-Jacobi-Bellman equation (HJB for short):

6tu(t7x) + b(xa,ut) ' axu(th) + f(IUaMt) - %‘6;{&(1&, x)‘Z = O? (3)

for (t,x) € [0,T] x RY, with u(T,z) = g(z,ur) as boundary condition. Here, the function u :
[0,T] xR? — R is understood as the value function of the optimization problem (in the environment
© = (pe)o<t<r). Given the value function, it is known that the optimal control process in the
optimization problem reads (at least formally since the gradient below may not exist or may only
exist as a multi-valued mapping):

o = (af = —0dzu(t, X7))

o<t<T”

where (X} )o<t<r now denotes the solution of the ordinary differential equation:
ax; = (b(X; ) = Oult, X7) )dt, te [0,

It is now easy to implement analytically the fixed point condition in the second item above. Under
the identification (u: = L£(X}))o<t<r, the flow p = (p)o<t<r must solve the nonlinear Fokker-
Planck equation:

Ot + 5m<(b(:p,ut) - ﬁxu(t,:):)),ut) =0, (t,z)e[0,T]xR% (4)

with the initial condition pg for the population. The forward-backward system made of and
is usually called the MFG system of PDEs. We refer to aforementioned references [7, 46] for
further details.

Another strategy for characterizing the equilibria is to use the Pontryagin principle. Under
appropriate conditions, we know that the optimal paths of the control problem inf, J* () in the
first item of the above definition of an MFG equilibrium solve the forward-backward system of two
ODEs:

dX* — (b(X;, ) — Y;) dt,

07 = (~2b (X7 ) 7 = 20f (X7 ) )t

with the initial condition X = Xy and the terminal condition Y7 = 0,9(X7., pr). Implementing
the matching condition in the second item of the definition of an MFG equilibrium, we deduce
that equilibria of the MFG must solve the forward-backward system of the McKean-Vlasov type:

dX} = (b(X;,c(X;)) . Y;)dt,

()

(6)
av; = (~aub(X7, LX) Yy = 2uf (X7, £(X7)) ),

with the terminal condition Yy = 0,9(X7, £(X].)). Under suitable convexity properties of the
coefficients in the variable x, which we spell out in Subsection below, the system @ is not
only a necessary condition satisfied by any equilibria of the mean-field game but is also a sufficient
condition. In this framework, @ characterizes the equilibria of the game. This is precisely this
system that we force stochastically below.

Throughout the article, we focus on this specific convex regime when the Pontryagin principle is
both a necessary and a sufficient condition of optimality. Although it demands strong assumptions
on the structure of the coefficients in the spatial variable z, this so-called “convex regime” turns
out to be especially useful for our purposes: It provides a sharp framework under which, for a
given input p = (ut)o<t<r, the system is uniquely solvable for any initial condition and its
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solution is stable under perturbation of the initial condition and perturbation of the input. It is
worth mentioning that, even in this strong setting, it still makes sense to address the restoration of
uniqueness for the mean-field game, since the McKean-Vlasov forward-backward system @ may
not be uniquely solvable. Clearly, we shall appreciate having a sharp framework for solving the
control problem inf, J* () as it will permit to focus on the difficulties that are exclusively related
with the non-uniqueness of the MFG equilibria.

2.2. Reformulation. In order to proceed, we first notice that (£2,.4,P) may chosen as the proba-
bility space (S', B(S'), Leb;), where Leb; is the Lebesgue measure. In this regard, we recall from
[6] that there exists a measurable function ¥ : S' x P(R%) — R? such that, for every probability u
on R%, [0,1] 3 u +> W(u, ) is a random variable with y as distribution.

With such a convention, the control ¢ is understood as a jointly-measurable mapping

o [0,T] x St 3 (t,x) — a(x) € RY,

and the cost functional may be rewritten as

7@) = | ol L)L) 2)

—~~
EN|
~

+ jT U§1 [z, LX) dL(X) () + ;Ll |at(:n)|2dx]dt.

0
With this reformulation, we introduce the L? spaces L?(S') = L2(S', B(S'), Leb;) and L2(S'; R?) ~
[L2(S")]?. A key fact is that the functions

:Stsr—1, et Stz \/5(:05(2%71:5), e Stsg \/Esin(Qﬂ'nx), n e N*

form an orthonormal basis of L2(S!). In particular, for any element £ € L2(S'), we call £°, /% and
(™=, n e N*, the different weights of ¢; we use the same notation when ¢ € L?(S';R%), in which
case 0, (™ and £™~ are vectors of size d. Then, we may write

[ e W (e

neN*

2 o),

which we shall often summarize into

n,+
| tout)Pas = 3 ot

neN

with the convention that a%* = o and a%~ = 0.
Moreover, given a mapping h : R¢ — R, at most of linear growth, we may consider the mapping

ho : L*(SY;RY) 5 £+ b () = J h((z))dz.
Sl

Then, we observe that the cost functional J* may be rewritten:

[0 (x5, ) + 5 (10812 + X (Pl ™) et @

T
7(@) = g0 (XF (o) + |
where X (1) = (X (+))o<t<r (pay attention to the dot we put in the notation to emphasize the
fact that the path has functional values) is a path with values in L?(S'; R?) in such a way that
X (1) = X*(-) (we get rid of the superscript a to simplify the notations) satisfies

Xpt = 0" (X0 () ) + o, t€[0,T], meN, (9)
7



where, for £ € L?(S';R?) and p € Po(R%),

b F (L, 1) = Ll b(l(z), p)e™* (z)dr, mneN,

denote the modes of b(¢, u).

2.3. Enlarged problem. A strategy for restoring uniqueness to mean-field games now consists
in forcing the modes (X "’i)neN introduced in the previous paragraph. To do so, we need to
disentangle the two sources of noise that will manifest in the construction of the new mean field
game: On the one hand, the initial condition is still defined as a square-integrable random variable
on the torus S! (equipped with the collection £(S') of Lebesgue sets); on the other hand, we need
another space for carrying the random forcing acting on the nodes (X ”’J—r)neN.

Having this picture of our general strategy in mind, we now enlarge the probability space and
consider Q = S x Qg, where (Qq, Ao, Fo = (Fo,t)te[o,]; Po) is a complete filtered probability space
equipped with a collection (WO, (W™T W™™), cn+) of Fo-Brownian motions of dimension d. The
filtration F( satisfies the usual conditions.

We then equip © with the completion A of £(S') ® A and with the completion P of Leb; ® Po.
We call F the completion of the filtration (L£(S') ® Fo,t)sefo,r] and we denote by & the identity
mapping on S! (which is extended in a canonical way to ). Despite the fact that Q has been
enlarged, we keep the same notations as above for ho(¢) and £+ whenever £ is an element of
L?(S';R%). In particular, whenever X is a square-integrable random variable defined on 2, we may
consider, for Pg-almost every wq € €, the random variable X (-,wp) on S! and then ho(X (-, wp)) and
X% (- wp). Recall indeed from the version of Fubini’s theorem for completion of product spaces
that, for Pg-almost every wg, X (-,wp) is a square-integrable random variable on (S!, £(S')), see
Lemma 2] for more details.

The question now is to explain how to use the collection (WO, (W™*), y«) in order to construct
a uniquely solvable randomized mean field game. A naive way would consist in forcing each mode
process X+ = (X[”’i)ogth in @, for n € N, by the corresponding Wiener process W™ (with
the same convention as above that X% and W are understood as X%+ and W%*). However, it
is a well-known fact that the solution

Xt('awo) = Z th,i('aWO)emi(')a te [O>T]7

neN

would not belong to L2(S'; R?).
In order to render the modes ((X;"")o<t<T)nen Square summable, we may force @D by another
Fo-semi-martingale process U™ such that

Eo[ sup (Z |Ut"’i|2)] < o, (10)

0<st<T neN

5)

namely
dX]F = (b”’i(Xt(-),ut) + a?’i>dt +dUME, te[0,T], neN. (11)

Assume for instance that

LT Z (sup ]b"’i(:u,utﬂ?)dt < 0. (12)

neN zeSt

Then,

Eo[ sup (Z X,

0<t<T neN
8
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and we can regard
Xi(wo) = Y. X F (wo)e™ (), te[0,T],

neN
as a process with values in L2(S'; R?).

In this regard, the following lemma (see for instance [I7, Chapter 2] for similar considerations)
makes clear the connection between random variables from €2 into R and random variables from
Qo into L*(S'):

Lemma 2. Assume that X is a square-integrable R%-valued random variable on Q. Then, for Py
almost every wy € Ny, S' 3 © — X(z,wy) € L*(SY;RY); moreover, we can construct a random
variable X (-) on Qo with values in L*>(S';R?), such that, for Py-almost every wy € Qp, S! 3 x —
X (x,wo) coincides in L*>(S'; R?) with the realization of the variable X () at wy. Conversely, given
a random variable X () from Qo to L*(SY;RY), we can construct a random variable X on Q such
that, for Po-almost every wy € Qo, St 3 2 — X (z,wg) coincides in L?(S';RY) with the realization
of the variable X (-) at wy.

Proof. The proof is pretty straightforward. Given a square-integrable R%-valued random variable
on , Fubini’s theorem for completion of product spaces says that, for Pp-almost every wg, St 3
x +— X(7,wp) is a square-integrable random variable on (S!, £(S')). In particular, for Pp-almost
every wo, we can define X™¥ (wy) = {1 X (2, wo)e™* (2)dx. Each X™F is a random variable (on
). We then let
X() = 3 X ()
neN

Noticing that a mapping x(-) from Qq into L2(S'; R?) is measurable with respect to a o-field G if
and only if its modes (x"%),en are measurable with respect to G, we deduce that X (-) is a random
variable from Qg to L%(S!; R%).

Conversely, if we are given a square integrable random variable X (-) from Qg into L?(S';RY),
then we can define (X™%),cy as random variables with values in R?. We then let

X"z, wg) = Z XFE(wo)ebE(x), neN.
k=0

Obviously, we can identify X™ (seen as a random variable on © with values in R?) with X"(-) (seen
as a random variable on Qg with values in L?(S! g RY)). Tt is clear that X"(-) converges to X(-)
in L2(9, Ao, Po; L2(S*;RY)) and X™ has a limit X in L?*(Q, A, P;RY). We then identify X (-) with
X(G). o

Importantly, observe that we can proceed similarly with processes. For instance, we can associate,
with any F-progressively-measurable process with values in R?, an Fo-progressively-measurable
process with values in L2(S!; R?), and conversely. Indeed, if X = (X;)o<t<7 is an F-progressively-
measurable R%valued process on € satisfying ES(:]F | X¢|2dt < oo, then it can be approximated in
L%([0,T] x Q) by simple processes of the form

n—1

(th p— Z Xn7i1(ti7ti+l] (t)) 3 n S N,

i=0 0<t<T

where 0 = tg < --- < t, = T is a subdivision of [0,7] and X™*, for each i € {0,---,n — 1}, is

Fi, measurable. Then, by Lemma |2, we can associate with each X™* an F(;,-measurable random
9



variable X™(.) from € into R?. Letting

n—1
(X00) = X X O1000)
i=0 0<t<T
the sequence (X"(-) = (X7 (-))o<t<T)nen is Cauchy in L2([0, T] x Qo; L2(S'; R?)). The limit X (-) =
(Xt(+))o<t<r is Fo-progressively-measurable and, for almost every t € [0,T], for almost every wy €
0o, the realization of X;(-) coincides with S! 3 x — X;(z,wp).
Conversely, if we are given an Fo-progressively-measurable X (-) = (X¢(-))o<t<r from Qp into
L?(SY; RY) satisfying Eq S(? HXt(-)H%Q(Sl;Rd)dt < 0, then we can construct X = (X;)o<i<r as the

limit in L2([0, 7] x £;R?) of the sequence of processes

n
<( T, wo) Z tk (wo)e ’+($)) >
k=1 0<t<T/ neN

Clearly, X = (X;)o<t<r is F-progressively-measurable and, for almost every t € [0,T], for almost
every wy € €, the realization of X;(-) coincides with S' 3 x — X;(z,wp).
Given processes X and X (-) as we just considered, we can define

t
X = (Xt =J Xst) , and x(-) < Zf XmEent s
0 0<t<T

neN >0<t<T
Then, it is pretty easy to check that, for almost every wy € g, for all ¢ € [0,T], the function
S' 53 2+ x¢(x,wp) coincides with the realization of x;(-) at wp.

2.4. Randomized MFG. With the same assumption as in (10| for the collection of semi-martingales
U™t = (U Y o<t<r)nen, we consider the followmg (mformally defined) randomized MFG in lieu
of the original MFG presented in Subsection
(1) Given an Fyg-measurable random variable ¥ from € into Pa(R?), with Eo[Ma(7)?] < oo,
and an Fp-adapted flow of random measures p = (u¢)o<t<r On R? with continuous paths
from [0, 7] into Pa(RY) such that Po(uuo = #) = 1, consider the following cost functional

W@=Lh@mmmmw
+ JT (fo(Xt(', 0); t1(wo)) Z o™ )dt} dPo(wo),

0 neN

over controlled dynamics of the form
dxXp* = Oﬂ*(Xﬂ)/ﬁ)+cﬁi>dt+dU?i, te[0,T], neN, (14)

where (X T ,en denote the modes of a random variable Xo(-) with values in L2(S'; R?)
such that, Pg-almost everywhere, Leb; o Xo(-)~! = #. Such a random variable exists: it
suffices to take Xo(-) : Q9 3 wp — V(& ¥ (wp)) € L?(S'; R?) (see the first lines of Subsection
. 2.2/ for the definition of W) and with the same convention as above that X%~ is identically
zero. Here the controls ((a;” )0<t<T)neN are required to be progressively-measurable with
respect to the filtration Fy and to satisfy:

meh#Wﬁ<w (15)

neN
10



(2) Find p = (s = Qo 3 wo = pe(wo))seo,r) such that, with probability 1 under Py, for all
e [0,T],
pue(wo) = Leby o X/ (-, wo) ", (16)
where X™*(-) = (X;(-))o<t<r) is the optimal path in the optimization problem infs J*(cr).
Recalling , observe that we can provide a simple assumption on b such that, for X as in ,
ZX”+ nEL),  telo,T],
neN
makes sense as a process from Qg into L2(S'; R?). In this regard, (14) just says that each Fourier
mode of the state variable X;(-) in the space L?(S';R?) is forced by the corresponding (U™%),,en.

Of course, the choice of (U™%),,cy is the key point in our analysis. In full analogy with p, we shall
define it as the solution of a fixed point involving the optimal trajectory of the new optimization
problem inf J#(a) introduced right above, namely we choose each U™ = (U )o<i<r as

t
Ut = —(27rn>2f Xmtds + Wbt te[0,T], neN. (17)
0

Under this choice, the optimal trajectory of the optimization problem inf, J#(a) in environment
p (as already explained, sufficient conditions will be given below so that an optimal path exists
and is unique) takes the form:

ax;™E = (6" (X)) + afE = 2en)2XE )dt + dWE, e [0, T, (18)

where a* is the optimal control. Here the rationale for choosing the dissipative factor —(2mn)?
in the dynamics is twofold. First, the fact that the series of the inverses of the factors, that is
D neN* (27n)~2, converge will permit us to prove, under suitable assumptions, that the modes of
X™ are Square—summable. Second, the factors —(27n)? appear in the formal computation:

Z X*n +02 n+( ) _ Z (QWH)QX:n’ie?’i(')v

neN neN*
where X7 (-) =Y,y X7 £em(.), which prompts us to reformulate as the controlled SPDE:
X () = b(Xe(2), o) + of (2) + 02X] (2) + Wi(x), te[0,T], zeS (19)
The notation W denotes a space—time white noise, namely
2W"+”+ ), tel0,T], zeS, (20)
neN

is a cylindrical Wiener process with values in L?(S';R?), meaning that, for any f € L%(S';R%), the
process

< f(a)- Wid) = 3 fo- wz“>
. te[0,T]

neN
is a Brownian motion with {q, | f(z)|?dz as variance.

So, choosing U as in is especially convenient for reformulating the dynamics of the equilib-
rium as the solution of an SPDE. In this regard, a crucial fact in the subsequent analysis will be
played by the structure of the SPDE, which is close to that of an Ornstein-Ulhenbeck (OU) process
with values in L?(S'; R9).

If the modes of X™*(-) satisfy

Eo [sup (Z | X7 )] < o,

0<t<T *,eN
11



it is then obvious from , , and that U satisfy , which proves that holds

for any «.

In order to reconstruct the dynamics satisfied by X for any controlled a, we may focus on the
difference X — U. Clearly, X — U satisfies a controlled ODE with random coefficients:

d(XF —UPF) = [0 (X(), ) + o dt, te[0,T], neN,
so that
d(X: — Up) = [b(Xy, ) + ¢ ]dt, t€[0,T],
with 0 as initial condition.

So, we end up with the following definition:

Definition 3. Given a square integrable Foo-measurable random wvariable Xo(-) from g into
L%(SYRY), we call a solution of the randomized MFG a pair of Fo-progressively measurable and
L2(SY;RY)-valued processes X*(-) = (X7 (-))o<t<r, with X(-) = Xo(-) as initial condition, and
a*(-) = (a5 ())o<t<T, satisfying the integrability conditions

Eo| sup |X7()I?| <0,

0<t<T
T
ol [ i ()R] < e
0

and satisfying the system , such that, under the notations
pi(wo) = Leby o X7 (- wo) ™Y, wo € Qo,

t
Ut = _(QTFH)ZJ X:mEds + Wi, te[0,T], nel,
0

the process a* (regarded as an F-progressively measurable process with values from Q into R?) is an
optimal control of the optimal control problem with random coefficients consisting in minimizing

T
_ _ _ 1
7(0) = B|g(Ur + Xf.pr) + [ (04 X ) + Gt (21)
0
over F-progressively measurable processes a satisfying
T
EJ lu2dt < o,
0

where X< solves
dXe = (b(Ut + X2 ) + at) dt, tel0,T], (22)

with X§ = Xo as initial condition (Xo being regarded as an R%-valued random variable on Q).

Remark 4. Definition[3 provides another interpretation of the randomization of the equilibria. It
says everything works as if we kept the same MFG as before, but with random coefficients obtained
by an additive perturbation of the original ones.

Remark 5. The reader may now understand the reason why we have limited our result to the
case of deterministic (instead of stochastic) differential equations. Our strategy is indeed clear: We
enclose the private (or idiosyncratic) noise underpinning the initial condition of the representative
player in the torus; the infinite dimensional noise W (-) (which reads as a “common noise”) then
acts on the modes of the initial condition. If we had to do so with a stochastic differential game,
we should enclose the whole private random signal (e.g., a Brownian motion) in the torus, but,

then, adaptability conditions would be a delicate issue to handle. In fact, our guess is that, to
12



respect the adaptability constraints, the forcing procedure has to be slightly different (and in fact
less straightforward than it is here).

2.5. Infinite dimensional McKV forward-backward system. We now observe that, for a
given Fy-progressively measurable random flow g = (p4)o<t<7 as in the first item of the randomized
MFG problem defined in 7, the optimal paths (whenever they exist) should be given by
the stochastic Pontryagin principle, see for instance [48] 49, [53], see also [16]. Here, the stochastic
Pontryagin principle takes the form of the following forward-backward system of SDEs:

ax;mE = (67X (), ) = Y ) dt 4 dU

*, M * *, 1 (23)
Ayt = (_ 2 D 1 655 (X7 (), 1) YT — D1 Fo(X7 (- )Mt))dt + Z AT (e

keN keN

for t € [0,T'], with the terminal condition ij’n’i = Dy +90(X7(-), pr), for all n € N. Above,
(X" ocrer and (V™) o<i<r take values in RY and (Z;"F)o<i<r takes values in R4*?; also, we
have denoted by D the Fréchet derivative on L2(SY; R%) and by D,, 1+ ¢ = (e™*(.), D .>L2(S1;Rd) the d-
dimensional derivative in the direction e™*. Of course, in the notation D,, +h(¥, 1), with b matching
6F£, fo or go, the operator D acts on the first coordinate depending on ¢ € L?(S'; R?). In the nota-
tion D,, +b5E (X7 (1), Mt)Yt*’k’i, Dy + 65 (X7 (), ) is implicitly regarded as a square matrix with
columns (D), + b?’i(X;(-), tt))1<j<d> 50 that the whole reads as 2?21 D, + bf’i(X{(-), ,ut)(Y;*’k’i)j.
We shall check properly that all the derivatives make sense in our framework. Lastly, in , X7 ()
is a shorten notation for the function in L2 (Sl' R9):

Z X*,n + e +
neN

For the time being, we do not establish rigorously the derivation of the stochastic Pontryagin
principle. We shall address this question in Proposition [0} Meanwhile, we observe that, inserting
the fixed point condition , may be rewritten as

X = (65 (0 (o) = i = (2mn X7t W

*, M * * * *, M 24
AV = (= 3 Db (X (o) Yy = Do (X7 O e+ Yz s, Y

keN keN
for t € [0,T], with the terminal condition Y;’n’i = Dy +90(X7(+), pr), for all n e N.

Of course, nothing guarantees a priori that the modes in are square summable. So, we
impose, in the definition of a solution to , that the modes are indeed square summable.
Definition 6. Given a square integrable Foo-measurable random wvariable Xo(-) from g into
L*(SYRY), we call a solution to a countable collectz’on of Fo-progressively measurable pro-

+ +
cesses (X7 Dot )nerts (V7" Docter)nen, (27" )oct<r)nken, such that

> E[ sup (|X75 2 + [y )] —HE{ > f |Z”’”|2dt] <,
k,neN

aoN  OStST
satisfying, with probability 1, . 24) (and the associated terminal condition) with the initial condition
Xy * for all n € N, as given by the modes of Xo(-).
Then, we can define Fy-adapted and continuous processes (Xi(+))o<t<r and (Yi(:))o<t<r with
values in L*(S';R?) such that, with probability 1, for all t € [0,T1,

+ +
_ Z th,fen,-‘r 7 Z YTL e +

neN neN
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Implementing the matching condition in the formulation of the enlarged problem, we under-
stand that, whenever they exist, fixed points should solve a McKean-Vlasov SDE of the conditional
type. Similar to , this McKean-Vlasov SDE must be infinite dimensional. In analogy with @
and with the same notation as in , it takes the form:

AX77 = (00 (X7 (), Leby o (X7 () ™1) = V'™ — (@mn)2 X775 ) db + dW;,

Ay = (= ) Da b (X7 (), Leby o (X7 () 7)) ¥
keN

— Do (X; (), Leby o (X7 ()71) )at - + Y,z awf+,
keN

for t € [0, T, with the terminal condition Y™ * =D, +00(X5(-),Leby o (X%())71), for all n e N.
Letting

B(¢) =b(¢,Leby o 71),

d .
h) = Z Z Db?’i— (£7Leb1 0671) (hk,i)J + Df0(£7 Leb1 0671)7

keN j=1 (26)
&(¢) = Dgo (¢, Leby o £71),
for any two ¢, h € L?>(S';R?), may be written as
dx;m* = (%”i (X7 () =y ™E — (27m)2xt*”¢)dt +dWE, neN,
(27)

dyrn,i _ 7ﬁn,i (X;(),Y?())dt + Z Z:n,k,ithk7i7
keN
for t € [0, T, with the terminal condition YTM’J—r = & (X%(-)), for all n € N.
This permits to give a similar definition to Definition [6}

Definition 7. Given a square integrable Foo-measurable random wvariable Xo(-) from g into
Lz(Sl;Rd), we call a solution to (or ), a countable collection of Fo-progressively mea-

k,t
surable processes (X, )oci<t)nens (V" 5o<ter)nen, (ZF)o<t<r)nenken, such that

ZE[ sup (|X75 2 + [y )] +ELZNJ |Z”’”|2dt] < o,

neN 0<t<T
satisfying, wzth probability 1, . (and the associated terminal condition) with the initial condition
Xt = XO’— for all m € N.
Then, we can define Fo-adapted and continuous processes (Xi)o<i<r and (Yi)o<i<r with values
in LZ(SI;Rd) such that, with probability 1, for allt € [0,T],

= DL XPEMEC), V() = D YT E()

neN neN

2.6. Standing assumptions. Throughout the paper, we assume that

Assumption (A). The coefficient b is assumed to be independent of x and to be bounded and
Lipschitz continuous on Py(RY) ~Py(RY) being equipped with the 2-Wasserstein distance—. The
coefficients f and g are differentiable in x, and 0, f and 0,¢ are bounded and Lipschitz continuous
on R x Py (R4). Moreover, for any p € Pa(R?), the functions R 3 z — f(x, 1) and R? 3 2 — g(z, 1)
are Convex.

14



Importantly, notice that, under assumption A, the coefficients in take the simplest form:
B(¢) = bo(L)eg(:), with bo(¢) = b(Leby o (™),

1 (28)
H(C,h) =F(0), with F(¢) = Dfo(¢,Leby o £71).
In particular, the system becomes (removing the stars in the labels):
de’i = (1(n7i):(o,+)bo (Xt()) - Ytn’ir - (27m)2th’i)dt + thnia neN,
(29)

Y = —FmE (X ())dt+ Yz A,
keN

for t € [0,T], with the terminal condition Y{f’i = &+ (Xp(-)), for all n e N.

In order to fully legitimate the existence of the Fréchet derivatives of fo and gg in the direction
£, we may invoke the following lemma, the proof of which is quite straightforward and is left to the
reader:

Lemma 8. For a continuously differentiable Lipschitz function F : R? — R (so that F is at most
of linear growth), define Fo : L*(SY;RY) 5 £ +— o, F({(x))dz. Then, Fo is Fréchet differentiable
and

DFo(¢) =VFol.

In particular, we have the following expression for § (and similarly for &):
§:L2(SHRY) 54 (S' a2 — 0, f(¢(z),Leby o 7)),
and then
() = Ll 0z f (¢(z),Leby o Eil))e"’i(:c)dx.

The introduction of Assumption (A) —namely asking b to be independent of z and f and g
to be convex in z— is fully justified by our desire to use the Pontryagin principle as a sufficient
condition of optimality. Generally speaking, it requires the underlying Hamiltonian to be convex,
which is indeed the case under Assumption (A) even though it could be slightly relaxed: We could
certainly allow b to be linear in x; we could also think of allowing the derivatives of f and g to be at
most of linear growth, but this seems a more challenging question. So, under Assumption (A), the
Pontryagin principle is not only a necessary but also a sufficient condition for the original control
problem described in Subsection in particular, the McKean-Vlasov equation @ characterizes
equilibria of the original (non-randomized) mean-field game. The following proposition is to check
that this fact remains true in our randomized framework:

Proposition 9. Given a square integrable Foo-measurable random variable Xo(-) from Qg into
L2(SY;RY), any solution to s a solution of the randomized matching problem defined in Def-
inition [3  Conversely, any solution to the randomized matching problem provides a solution to

[29).
In particular, the randomized matching problem is uniquely solvable if and only if the McKean-
Viasov equation 1s uniquely solvable.

Proof. First Step. Assume first that the McKean-Vlasov equation has a solution, which we
denote by ((X;" 5 )nen, (Y, nen, (21" )n pen)o<t<r. Denote by (Xi(+))o<r<r and (Yy(+))o<t<r the
associated L?(S';R%)-valued processes as in Definition [7| and let

pe = Leby o Xy ()71, te0,T].

Since the mapping L?(S'; R?) 5 £ +— Leb; o~ ! € Py (R?) is continuous, each s is a random variable
with values in P»(R?) and the process (pu)o<t<r is Fo-adapted. Following (I7), we also let (pay
15



attention that we dropped the symbol * in the notation for the solution of the McKean-Vlasov
equation):

t
0 = —em? [ XiFas 4 WP, e[0.T) men
0

Observe that U™ is also given by
t
UPt = Xt - Xt - f (100 )=0.0)b(1s)ds — Y% ]ds, te[0,T], neN,
0

from which we deduce that

IEO[ sup Z |Ut”’i|2] < 0.

Ost<T neN

Consider now an Re%valued control a = (ay)o<t<7 as in and denote by (X®)o<t<r the
solution to , namely
dX = [b(ue) + oy ]dt, t€[0,T].

Thanks to Lemma |2, we can regard v and X% as [Fo-progressively measurable processes a(:) and
X“() from Qg to L?(S!). Since a is fixed, we just note X for X“. Then, the modes of X(-)
satisfy:

AXPF = (L o)=(0,.0)b(e) + of"F)dt,  te[0,T],

where (Oz?’i)ogtST denotes the modes of a(-). Letting (Xt"i — X"+ Uf’i)ogtggr, we get

d(XPE = XF) = (aF + v F)dt, telo,T],
with Xgo™® — X»* = 0, for all n € N.
Now, using the notation “” for the inner product in R¢,
AV (R X5) | = (o] )y
= Dyt Fo(Xe (), ) - (XP5 = X{F)dt + dM,
where (M, ’i)ogth is a square-integrable Fp-martingale. Taking expectation, we deduce that
Eo[ D +0(X7(-), pr) - (X7 — X77)]
<o [ (0 ) X Do (Xitop) - (K0 - )

Summing over n € N (which is licit in our framework), we deduce that

E0[<Dgo (XT(')’ MT)’ (XT() - XT('))>L2(81;R¢1)]

T
= IEO fo [<(at() + Yi('))vylvf(')>L2(Sl;Rd) - <Df0 (Xt()7 Nt)a (Xta() - Xt('))>L2(S1;Rd)]dt7
where, as usual, we have let X;(-) = 3 X}' Fent(.). Observing that, for two random variables
x(-) and x/(+) with values in L?(SY; RY), Eo[{x(-), X' ())r2@sre] = E[x - X']; where, in the last term,
x and y’ are regarded as R%valued random variables, we deduce from Lemma |§] that

T

B[2xg(Xr ur) - (Xr = X1)] =B |

0 [ (a0 +Y3) - i = 00 f (X ) - (K = X0) [t
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Therefore,

JH(a) = JH(=Y) = Eg [Q(XT, pur) — 9(Xr, pr) — 0g(Xr, pr) - (X7 — X1)

! 2 5 )
+ f (5‘0% + Y+ F( X ) — F (X 1) = 0 f (X pae) - (X — Xt)>dt].
0

Since g and f are convex, we deduce that the right-hand side above is non-negative, which shows
that —Y is an optimal control for J#, that is to say X and —Y form a randomized equilibrium.

Second Step. We now turn to the converse. Assume that a pair (X*(-), a*(+)) satisfies Definition
Then, we regard the optimization problem inf, J#(cr) defined in f as a standard op-
timization problem in random environment. By the standard stochastic Pontryagin principle (up
to a straightforward adaptation due to the fact that the noise is infinite dimensional), we know
that a necessary condition of optimality for some control process o —the corresponding path being
denoted by X “~ is that the solution of the adjoint backward equation

Yy = =0, f(Us + X po)dt + Y Z0dW]™", e[0T, (30)

neN

with Y7 = 0,9(Ur + X%, ur) as terminal condition coincides with —a;, namely
Y, = —aq, te[0,T]. (31)

Now, if, as required, we have a control process a*(-) (with values in L?(S';R%)) with X*(-) as
associated path (also with values in L?(S'; R?%)) such that o* (when regarded as a process with
values in RY, see Lemma minimizes J* in when U () is given by and p by , then,
following the discussion right after Lemma [2| we can identify the path of X* — U (seen as an
R9-valued process on ) with the path of X* . Also, we can define Y* (also seen as an R%valued
process) through ; it solves an equation of the same type as . Computing the modes of
X*(-) and Y*(-), we get that (X*(-),Y™(-)) is a solution of the McKean-Vlaosv equation (29). If
the latter one is at most uniquely solvable, this shows that there is at most one MFG equilibrium.
|

3. MAIN RESULTS

We here expose the main results of the paper. Proofs will given next.

3.1. Existence and uniqueness. The first main result of the paper (whose proof is deferred to

Section M) is

Theorem 10. Under Assumption (A), is uniquely solvable for any initial condition in the
form of a square-integrable Fo o-measurable random variable Xo(-) from Qo to L?(S'; RY).

Comparison with the case without noise. It is worth comparing Theorem [10] with solvability results
for the original mean-field game. Existence of a solution under Assumption (A) to @ was inves-
tigated by Carmona and Delarue [14], see also [16, Chapters 3 and 4], by adapting the analytical
techniques developed by Lasry and Lions, see [43] [44] [45] [7]. Uniqueness is known to hold under
the so-called monotonicity condition due to Lasry and Lions:

(1) b is independent of the measure argument y; since b is here assumed to be independent of
x, it is thus constant;
(2) for any two p, ' € Pa(RY),

J (f (@, p) = fl,p))d(p — ') (z) = 0, f (9(z, 1) = g(a, 1)) d(p — 1) (x) = 0.
R4 Rd
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Conversely, we can provide explicit examples for which uniqueness fails under Assumption (A).
Choose for instance d = 1, b= 0, f = 0 and g(x, u) = zg(fr), where f is understood as the mean
of 1 when p € Po(R), with g being non-increasing. Then, taking the mean in (6]), we get

dE[X}] = —E[Y;]dt,

dE[Yy] =0, E[Y7] = g(E[X7]),
which coincides with the system of characteristics associated with the inviscid Burgers equation,
which we alluded to in introduction:

Opu(t,x) —u(t,z)ozu(t,z) =0, u(T,z)=g(x), zeR.

Choosing for instance g(x) = —z for |z| < 1 and g(z) = —sign(x) for |z| > 1, we know that
uniqueness fails to the above forward-backward system when 7" > 1 and E[X] = 0 (it is easily
checked that ((E[X7],E[Y?]) = (0,0))osrer, (BLX71EN]) = (£, —1))o<ecr, (E[X;],E[Y;]) =
(—t,1))o<t<r are solutions). This shows that noise in the mollified version indeed restores
uniqueness.

3.2. Master equation. In our analysis, we shall use the fact that is connected with some
infinite dimensional PDE. Provided that existence and uniqueness hold true, the system must
admit a decoupling field ¢/ : [0, 7] x L?(S';RY) — L2(S';RY) such that, with probability 1,

V() =U(t, X)), tel0,T7],

or, equivalently,
Y = U™t (4, X4(), te[0,T], neN,
where (4™%*),cn denotes the Fourier modes of U.
Construction of the decoupling field is a standard procedure in the theory of forward-backward

processes. We provide a short account here and we refer to [16l Chapter 4] for further details.

Given t € [0,T] and ¢ € L?(S';R?), consider but with X; = £ as initial condition at time ¢
(or equivalently X;"* = %), Note the solution (X&), (V) nen, (Z0FF0) Len)o<ier
and define accordingly the processes (X5, V&) coer from Q into L2(S;R?) x L2(S';RY) as in
the discussion right after Lemma By changing the filtration Fy into the augmented filtration
generated by (Wg' o+ _ th7i)neN7t<5§T, we deduce that Ytt’e is almost surely deterministic, which

permits to let
Ut,0) = v, (32)

Given this definition, we prove next that

Lemma 11. For any initial condition Xo(-) € L*(Q0, Fo 0, Po; L?(SY; R?)), it holds, with probability
1 under Py,
Yi() =U(t, X(1), te[0,T]. (33)

Provided that U is smooth enough, it must satisfy, by a formal application of 1t6’s formula

dY;ni - (atun’i (t, Xt()) + <DZ/{n’i (tv Xt('))v%(Xt(')) —Yi() + a"’%th(')>L2(S1;Rd)

+ %Trace [D2Z/{"’J—r (t, Xt())]) dt
+ <Dun7i (t Xt('))’th('»L?(Sl;Rd)’

where W (-) denotes the white noise defined in ([20)).
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Identifying with the backward equation in , we deduce that U should be a solution of the
infinite dimensional system of infinite dimensional PDEs (on L?(S'; R%)):

1
O™ (t,0) + {02 DU (L, 0),£) stray T 5Tlrace[DQumi(t, 0)]
+ <Dun7i(t7 E)a %(€)>L2(81;Rd) - <Z/l(t, E)v Dumi(tv €)>L2(81;Rd) + S'Tl,i (K,Z/l(t, é)) = Oa
with Y™+ (T, ) = &™*. The operator

(34)

LO(6) = (BDB(0),0) 2 a1y + 5 Trace D?(0)], £ IX(SHRY),

is called the Ornstein-Uhlenbeck operator on L?(S';R) driven by the unbounded linear operator
02 acting on L2(S';R?). Tt is associated with the semi-group (P;);>0 generated by the Ornstein-
Ulhenbeck process on L2(S';R?), namely, for a bounded measurable function V from L?(S!; R%)
into R, P;V maps L?(S'; R?) into R:

PV LA(SY) 3 0 Eo[V(U))], (35)
where, for £ € L*(S5RY), U‘(:) = (UL())o<t<r is the solution of the OU equation on L?(S'; R%)
(constructed on (g, Fo, Pp)):

dUL () = 2Uf(dt + dWi(-), te[0,T]; U§="¢.

Although there exist several results on infinite dimensional nonlinear PDEs (see for instance
[20 26| [54]), it seems that systems of type have not been considered so far. We thus prove in
Section {4 the following tailored-made solvability result:

Theorem 12. Under Assumption (A), the decoupling field U of is a mild solution of the
system of PDEs , namely, for all n € N:

UE(t,-) = Pry (Dn,igo(',Lebl o .—1))

T
" J Po—t [Dn,ifo(~, Leb; o '_1) + <%() - U(S, ')’ DZ/{n’i(S7 ')>L2(81'Rd)]d8.
t b}
Moreover, the function U is Lipschitz continuous in the direction £ € L*(SY;RY), uniformly in time
te[0,T].

Comparison with the case without noise. Once again, it is worth comparing Theorem [I2| with results
obtained for the original mean-field game. Under the Lasry-Lions monotonicity condition (say with
b = 0) and appropriate regularity assumptions on the coefficients, it is proven in Chassagneux,
Crisan and Delarue [21] (see also [9] for the periodic case and [I7, Chapter 5] for another point of
view on [21I]) that there exists a function

V :[0,T] x R? x Po(RY) — R,
such that the function
[0,T] x R x LY(SYRY) 5 (¢, 2, 0) — V(t,x,Lebl o 6_1)
is differentiable and satisfies the so-called master equation
1
OV (b, 1) — 510V (8, 0) fR OuV (t,0, 1) (0)0:V (b, v, )dp(v) + f(a,m) =0, (36)
for (t,z,u) € [0,T] x R? x Py(R?), with V(T,z,u) = g(z, n), where 0,V is understood as follows.

The Fréchet derivative of £ — V(t,x,Leb; o £71) in the direction £ takes the form

D[V (t,z,Leby o -_1)]:8 =0,V (t,x,Leb; o e (e)), (37)
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for some function 0,V (t,x, u)(-) € L*(RY, u;RY) with p = Leb; o £71. It is also shown in [21] that
0,V and 0,V are differentiable in « (provided that f and g are sufficiently smooth). Therefore,

01 (0V (t, @, 1)) — 02 (02 V (t, @, 1)) 02V (¢, @, )

38
— f 020,V (t,z, 1) (v) 0LV (t,v, pw)dp(v) + 0p f(x, ) = 0, (38)
R
for (t,z,p) € [0,T] x R? x Py(RY), with 0,V (T, x, u) = 0xg(x, ).
Define now

V:[0,T] x L* (S RY) 5 (t,6) — (S 32— 3,V (¢, £(x), Lebo ¢71) e R?) e L*(S"; RY).

Notice that the right-hand side indeed belongs to L?(S'; R?) if 0,V is at most of linear growth in
x, see the aforementioned references. On the model of , compute

DVt 0) = D(LXSSRY 2 b | 02V (1, he), Lebo h™ )" H(w)dr)
St )

By and following Lemma [8] (provided again that we have enough regularity), we have

DV™E(t ) () = 8§V(t, ¢(z),Leb o E_l)e”’i(x) + | 020,V (¢,€(v),Lebo E_l) (¢(z))e™* (v)dv,
Sl

so that

<V(t7 g)? Dvn’i (ta €)>L2(81;Rd)

= f o2V (t,£(z),Leb o £71)0,V (t,£(x), Leb o £ 1) e™* (2)dx
St
+ f 020,V (t,4(v), Leb o E_l) (6(z)) 0.V (t,£(x), Leb o E_l)e”’i(v)dvdaz.
st Jst

Going back to (38)), changing z into ¢(z) with 2 € S', choosing p = Leb o £~!, multiplying by
e™*(x) and taking the integral over S!, we can write

OV™E(E,0) = V(8,0 DV (L)) o g1y + L Ouf (£(x), Leby o €71)e"*(x)dw =0, (39)

with V»%(T,.) = &™%, which is the inviscid analogue of ([34). Put it differently, reads as a
second-order version of ; equivalently, Theorems (10| and [12| read as a regularization result for
the master equation via an infinite dimensional Ornstein-Ulhenbeck operator.

Remark 13. The reader may wonder why, in the statement of Theorem we focus on the
equation satisfied by the feedback function and not on the equation satisfied by the value function.
Indeed, it is worth noting that, in the standard theory of mean-field games, the so-called “master
equation” is the equation for the value function, as exemplified in (therein, V identifies with
the value of the mean-field game).

In fact, the main reason is that it looks simpler. Indeed, our analysis is based upon the auxiliary
control problem f, which is —and this is the key feature— driven by random coefficients
(not only the measure-valued process p is random but also the process U depends on wy). In this
framework, the Pontryagin principle provides a very robust approach: FExcept for the additional
martingale term in the backward equation in the proof of Proposition @ it has a standard
structure; and, in fact, the martingale structure plays almost no role in the overall discussion. This
1s the reason why we use this approach here; and, as a result, this explains why the master equation
we get is an equation for the feedback function.
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Of course, once the feedback function is given, the value function is easily recovered. They are two
strategies to do so. The first one is to regard the optimal cost J*(a*) in when the initial condi-
tion (t, X7 (-)) varies in [0, T]x L2(S*; RY); equivalently, this amounts to consider §pq V (¢, , p)dp(z)
in ([B6). Here the resulting function would satisfy a linear PDE on [0,T] x L2(SY;R%), but the co-
efficients would depend on the feedback function. Pay attention that, as a mean-field game is not
an optimization problem, this equation could not be regarded as an autonomous Hamilton-Jacobi-
Bellman equation deriving from an optimal control problem in infinite dimension. Another strategy
is to disentangle the initial state of X< in from the initial condition Xo(-) € L*(S';R?) for
X*(), which is exactly what is done for standard mean-field games. In fact, by doing so, we first
compute, with X'é" =z € RY as initial condition, the optimal value of the optimal control problem
— in the random environment formed by X™*(-); since the environment is uniquely defined
in terms of Xo(-) (this is Theorem[1(]), the optimal value is a mere function of x and Xo(-). Using
the same notation as in (36), this should be “our” V(0,z,Xo(-)) (here t = 0 because (21)-(22)
is initialized at time 0, but it is pretty easy to adapt the argument to any initial time t); then
0V (0, Xo(+), Xo(+)) should coincide with U(0, Xo(+)).

It is worth noting that, following the usual approach to mean-field games based on the MFG
PDE system, we could directly address the optimal value of the optimal control problem f
in an arbitrary environment X*(-) (before we know that it is an equilibrium) and then look for
an equilibrium by solving a fized point obtained by plugging the resulting optimal feedback in the
dynamics of X*(-). Basically, this would require to write down the stochastic Hamilton-Jacobi-
Bellman equation associated with f in the arbitrary environment X*(-); this is the point
where we feel that using the Pontryagin principle is simpler.

3.3. Interpretation as an asymptotic game. Classical MFGs arise as asymptotic versions of
games with a large number of players. Similarly, a natural question here is to address the interpre-
tation of the randomized MFG defined above as the limiting version of a large game (with finitely
many players). Generally speaking, there are two ways to make the connection between mean-field
games and finite games: The first one is to prove that equilibria of the finite games (if they do
exist) converge to a solution of the limiting mean-field game, see for instance [9] for the convergence
of closed-loop equilibria and [42] for the convergence of open-loop equilibria; the second one is to
prove that any solution to the limiting game induces a sequence of approximate Nash equilibria to
the corresponding finite games, see for instance [7}, 14}, 38| for earlier references in that direction. It
turns out that, for standard mean-field games, the second approach is (much) easier to implement
than the first one; for that reason, this is that one that we try to adapt below, see however Remark
about the possible implementation of the first approach.

In comparison with the standard case, there are two main differences between our framework
and the aforementioned references. The first one is that the limiting system is perturbed by an
infinite dimensional noise, which should be called “an infinite dimensional common noise”. This
terminology is frequently used in the theory of MFGs to emphasize the fact that the law of the
population feels the realization of the noise, as opposed to more standard cases where the law
of the population is defined as the average over all the possible realizations of the noise, see for
instance [9), [19] and the book [I7]. The second feature is the presence of local interactions due to
the Laplacian in the dynamics (see also the SPDE ([19)).

In order to describe the corresponding finite games, we proceed as follows. We consider N Ay
particles (with state in RY) that are uniformly distributed all along the N roots of unity of order
N, with exactly Ay particles per root, where Ay € N*. States of the N Ay particles at time ¢ are
denoted by (Xf’g)k:07... N—1;j=1,- Ay- The index k is understood as a label for the position (or the
site) of the particle (k,j) on the unit circle: it is located at point with angle 27k/N. In particular
(and it is important for the sequel), the set of indices for the location of the site may be identified
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with Z/NZ; sometimes, we thus use the notation XkMN’j for X, M for ke {0,...,N—1}and { € Z.

In the notation X, kg , 7 stands for the label of the particle at the site k, since that there are Ay
particles at the site k:

The dynamics of each particle is controlled, each particle (k,j) having dynamics of the form
dx7 = (b(ﬁiv) +ap? + N2(XfH g X1 - 2Xf))dt ++/NdBF,

with
1 AN

and Xg’j = X} for all j € {1,---, An}, where (X})r—o.. n_1 are given by the following finite
volume approximation of Xo(-) (which is here assumed to be independent of wy):
(k+1)/N

Xt=N Xo(x)dz, k=0,--- ,N—1,
k/N

whilst the noises (B* = (Bf)o<i<T)k=0.... N_1 are independent d-dimensional Brownian motions on
the interval [0, T"] with the following definition:

(k+1)/N

BF =+/N Wi(dzx).

k/N
The random variables ( H)k=0... N—1 are thus constructed on the space (S!,£(S!),Leb;) whilst
the processes (B* = (B )o\t T)k=0,., N—1 are constructed on the space (€,.Ao, Pp), as defined in
Subsection 2.3
Above [i¥ is the empirical distribution
| Nolax
oy 2 Z 5X1w
~ NAy k=0 j=1

Processes (a7 = (O[f’j)[)gth)k:O’... N—1;j=1,-,A, are controls with values in R?: they are progressively-
measurable with respect to the filtration generated by the cylindrical white noise (Wi(-))o<t<7-
Controls are required to satisfy

T .
EJ a1 2dt < oo.
0

We assign to player (k, j) the following cost functional

T
) ‘ 1 .
Jk’]((a J )k’zO,---,Nfl;j’zl,---,AN) = E[Q(X?Jaﬂzjy) +Jo (f(Xf’jaﬁiV) + §|af’J

2)dt].

Recall that we call an open-loop Nash equilibrium a tuple (a**/ = (th*kd)ogtg’f)k-:o’... Nelyj=1l, Ay
such that, for any (ko,jo) € {0,---, N — 1} x {1,---, Ax}, for any control a*o-Jo = (afo7]0)0<tST,
Jkodo (BRI)_o . -1t Ay) = TR0 ((@**9)k_g.. N—1.j=1... Ay), where B% = a*F7 if (K, j) +
(Ko, jo) and BFo70 = aho-do.,

The following statement shows that we can construct an approximated Nash equilibrium from
the solution to problem (compare for instance with [7, 14, B8] and [I7, Chapter 6]).

Theorem 14. On top of Assumption (A), assume that f and g are Lipschitz continuous in p,

uniformly in x. Assume also that the sequence (AN)nen* tends to oo with N. For a (deterministic)
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initial condition Xo(-) € L*(SY;R?), call (X (-),Y (-), Z(-)) the solution to (29). Then, there exists
a sequence of positive reals (e )nenx converging to 0 as N tends to oo such that, with

k/N
ki Nf z, tel0,T],
k—1) /N
for all k € {0,--- ,N — 1} and j € {1,--- ,AN‘}, it holds, for any ko € {0,--- ,N — 1} and jo €
{1,---, An}, and for any control a*0:do = (afo’jo)ogth,

JkOJO(<’6k’J)k:07"'7N71;j:17""AN) 2 JkOJO(( ::3 7% N_17.]:177AN) - €N7
where 8% = o*Fd if (k,7) * (ko,jo) and BFodo = gkoso,

Remark 15. Theorem must be regarded as a way to connect the problem with a game of the
same flavor as what appears in standard mean field game theory. In this regard, the assumption that
b, f(0,-) and g(0,-) are at most of linear growth (with respect to Ma(u)) is mostly for convenience.
Also, it must be emphasized that it is not the only way to make the connection. Another way would
be to construct an approximate Nash equilibrium in a closed-loop form, as usually done in mean
field games. We assert that it should be indeed possible provided that we let:

k/N
ok _ NJ U(t, X,()) @)de, te[0,T],
k—1)/N

with the notation

N— NN
Z LN ey () = Z Z LN, ks1)n) (), t€[0,T1,
which means that
. k/N _ _ _
dxXFi = < )+ Nf U(t, X () (x)do + N? (X + XF1 - 2Xf)>dt +VNdBF.
k—1)/N

As the paper is already quite long, we feel better to focus on the construction of an approximated
Nash equilibrium over open-loop form controls only, which is in fact slightly simpler.

Another strategy would be to address the convergence of the Nash equilibria of the finite player
game (if they do exist) to the solution of . Describing the dynamics of the equilibria to the
finite player game by means of Pontryagin’s principle and then using the master equation , we
could indeed implement the same strategy as that used in [9] for standard mean field games, but this
would require first to improve Theorem and to prove further reqularity properties of U. Again,
we feel better to postpone this equation to further works.

Last, we mention that the condition Ax — o0 is absolutely crucial. It is must be regarded as a
way to freeze the influence of the local interaction in the dynamics between the particles; this is the
key fact to restore a mean field limit despite the local interactions.

4. PROOFS OF THEOREMS [0 AND [12]
We now prove Theorems [10] and

4.1. Small time analysis. We start with the case when T is small enough.

Theorem 16. There exists a constant ¢, only depending on the Lipschitz constant of the coefficients

bo, § = Djo and & = Dgg such that, for T < c, the system s uniquely solvable for any initial

condition Xo(-) € L*(Qo, Foo,Po; L2(S';R?)). This permits to define the decoupling field U as in
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(32). It maps L*(S; ]Rd) into itself. Then, there exists a constant A, only depending on the bound
of the coefficients by, § = Dfo such that, for T < c,

sip sup U D) |prepn < sup [6(0)| g gy + AT
0<t<T ¢eL?(S};R%) (eL2(S1;RY)

Moreover, there exists a constant C, only depending on the Lipschitz constant of the coefficients by,
§ = Dfyg and & = Dgq such that, for T < ¢, for any t € [0,T], U(t,-) is C Lipschitz continuous.
In particular, U satisfies Lemmal11].

Remark 17. We let the reader check that the above result remains true if & is not given as the
gradient of go, but is a general bounded and Lipschitz continuous function from L?*(S';R?) into
itself.

Proof. The proof is quite standard in the finite dimensional framework. We give the sketch of it,
insisting on the differences between the infinite-dimensional and finite-dimensional cases.

First step. Existence and uniqueness in small time follow from the application of Picard’s fixed
point theorem. We consider the space S of processes (X (-), Y (+)) = (X¢(+), Y2(+))o<t<r with values
in L2(SY; RY) x L2(S';R?), that are Fo-adapted with continuous paths and that satisfy

Eo[ sup (HXt(‘)H%%sl;Rd) + HYt(')Hiz(sl;Rd))] < .

0<t<T

Given the initial condition Xo(-) € L%(Q, Fo,0, Po; L*(SY; R?)), we then call ® the function that
maps (X (-), Y () = (Xi(-), Yi(-))osi<r onto the pair (X (-), Y(-)) = (Xi(-), Yi(-))o<t<r satisfying

dX; = <1(n,i):(0,+)bo(5{t(')) -y - (27Tn)25(tn’i>dt +dW,

dY;"* = —Dp +fo (X(-), Leby o Xy (1)) dt + Z VACLEN 1aae
keN

with the terminal condition f/r}t’i = Dy +90(X7(),Leb; o X7(-)71). Obviously, the backward
equation may be rewritten under the form:

T
YE =K [Dn,igo (Xr(-),Leby o Xp(-)™1) + J Dy +f0(Xs(-), Leby o X ()~ )ds |f°’t]'
¢
Taking the square and summing over n € N, we deduce that

Z V< Z Eo[}Dn,igo (X7(-), Leby o XT(‘)il)F

neN neN

T 2
—l—Tf ‘Dn,ifO(Xs('),Lebl OXS(-)_1)| ds‘f(),t].
t

Since Dfo(-,Leby o -~1) and Dgg(-, Leby o -7!) are bounded, we deduce that

DIVEP < sup |Dgo(6 Leby o €7Y)| st gay + AT, (40)
neN e L2(S1;R4)

for some deterministic A = 0.
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_Consider now another input (X'(),Y'(:)) = (X/(-),Y{())o<t<r in S and call (X'(:),Y"(-)) =
(X/(+),Y/(:))o<t<r its image by ®. By the same argument as above, using in addition Biirkholder-
Davis-Gundy inequalities, we get

Eo[ sup [Yi(-) — ﬁ/(')ﬂgm(sl;ﬂ{d)]
o<t<T
< EO[HDGO (X7(-),Lebr o Xr(-) ") = Dgo(X7(-), Leby o X7(-) ™) Hi?(Sl;Rd)]
T
+ TJO ]Eo[HDfo (Xs(+), Leby 0 Xo(-)™1) — Dfo(X{(-), Leby 0 X{(-)7") ”iQ(Sl;Rd)]dS'

Observe that Dfy and Dgg are Lipschitz continuous (from L?(S'; R?) into itself). Deduce that there
exists a constant C' = 0, only depending on the Lipschitz constants of the coefficients, such that,
for T'< 1,

Eo[ sup Hi/t() - ﬁ/(‘)H%%SERd)] < Cosup EO[”Xt() - XL{(')H%%Sl;Rd)]‘ (41)

o<t<T <t<T

Proceeding in a similar way with the forward equation and using the fact that the factor (27n)? in
the dynamics is affected with a sign minus (so that it is a friction term), we get

Eof sup [X:() = XiO)li2@1m0] < OT sup Bo[¥i() = ¥ ()l2(010]- (42)

o<t<T

We easily deduce that ® is a contraction in small time, which shows the existence of a unique fixed
point. This shows that the system is uniquely solvable when T' < ¢, for a constant ¢ that only
depends on the Lipschitz constants of the coefficients.

Second step. Now that existence and uniqueness are known to hold true, we can define the
decoupling field U in a standard way. The key point is to observe that the system , when re-
garded under the initial condition X; = ¢ at time ¢ € [0, 7] for some ¢ € L(S';R?), is also uniquely
solvable when T < ¢ and that its solution, denoted by ((X4™* = (XL, 1 )pen, (V0T =
(}@t’e’"’i)tgng)neN, (Zt’e’”’i’k’i = (Zﬁ’e’"’i’k’i)ngT)neN,keN) is adapted with respect to the com-
pletion of the filtration generated by the collection of Wiener processes (W0 —W9)<s<r, (WiF —
th’i)tgng)neN*). In particular, for each n € N, the random variable Y;"’i’t’ﬁ is almost surely de-
terministic. We then let

L{”’i(t,ﬁ) _ Ytt,é,n,i7
and
U0 = D Ut et () e L(SHRY), te[0,T], €eL*(ShRY).
neN
The bound for U is a straightforward consequence of .

As for the Lispchitz constant of U, it follows again from a straightforward adaptation of

and (42). Indeed, for any two solutions (X (-),Y (-)) and (X'(:),Y’(-)) to (29), we have

Eo[ sup [[Yi(+) — Y;f/(')H%?(Sl;Rd)]
0<t<T

< C sup ]Eo[HXt(') - Xé(')”i%sl;Rd)]

0<t<T

< C(Eo[\lXo(-) — Xo() 72 ey + T sup Eof[Yi() —W(')“%?(SHW)])’

0<t<T
and then, for T" small enough,
Eo[ sup Vi) = Y () 7251 ma) | < CBo[IX0() = Xo()|2(5124) | (43)
0<t<T
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By performing the analysis on the interval [¢, T] instead of [0, 7] and by choosing X (-) = X5¢(.) =
Sy XbEmEenE () and X/(1) = XB() = 3 XBOmEemE () for two £,0 € LA(S';RY), we
deduce that U is Lipschitz continuous in the space variable.

It remains to check that Lemma|[l1]is satisfied. The argument is standard in the finite dimensional
case, see for instance [24]; as for the infinite dimensional case, we refer to [I7, Chapter 5]. So,
we just provide a sketch of the proof. In fact, by regarding ¢ in the formula as the initial
time of the forward process, it suffices to focus on the case ¢ = 0 and to prove that, for any
Xo(+) € L3(Q, Fo 0, P; L2(SY;R?)), the unique solution (X (+), Y (+)) to satisfies

Yo(-) = U(0,Xo(")),

which is already known to be true when Xo(-) is deterministic, that is Xo(-) = £ € L>(S'; R%). Tt is
easily checked that it remains true when Xo(-) is a random variable of the form

Xo() = i 14,4, (44)
i=1

with A; € Foo and £; € L2(SY;RY) for alli € {1,--- ,n}; indeed, in that case, Yo(-) = 37, 14, Y4 ().
When the support of the law of X¢(+) is included in a compact subset of L?(S'; R?), we can approx-
imate Xo(-) in L2(2, Fo0, P; L2(S'; R?)) by a sequence of random variables of the form (4). Using
the fact that the representation formula holds true along the approximation sequence and us-
ing the stability property , we deduce that the representation formula holds true when the law
of Xo(+) is compactly supported. When X, (+) is a general element in L2(Q, Fy o, P; L2(S'; R?)), we
can play the same game: We can approximate Xo(-) by a sequence of compactly supported initial
conditions of the form (D>}, _, 19n(X(]f ’J—r)e"‘“"i)ne]\;7 where (U, )nen is a sequence of cut-off functions
from R¢ into itself converging to the identity uniformly on compact sets. =

4.2. Road map to existence and uniqueness in arbitrary time. Our strategy for proving
existence and uniqueness in arbitrary time is completely inspired from the finite dimensional case.
The point is to apply iteratively Theorem and to provide an a priori bound for the Lipschitz
constant of the decoupling field U that holds true all along the induction. We refer to [24] for a
complete description of the induction procedure in the finite dimensional case.

Change of measure. Below, we mostly focus on the derivation of the a prior: bound for the Lipschitz
constant of /. We start with the following observation. For T' < ¢ as in the statement of Theorem
we can define the probability Py on 2 by

dPy T 1 (T 2
W% = exXp| — o <%<Xt()) - Kﬁ(')),th>L2(S1;Rd) - 5 o H%(Xt<)) - Yz(')“[,%gl;[@d)dt

T
B exp<_ 2 L (Lnt)=(0,4)b0(Xe () = Y F) - dW=

neN

1 T .
B 5 Z L ‘1(n’i):(07+)b0(Xt(')) - }/;f ,+‘2dt>7

neN

where B is as in . Since by is bounded and Y satisfies , Py is a probability measure
equivalent to Pg. Observe in particular that, for any p > 1,

o[ (422)'] < o ()
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Of course, the bound remains true under Py. Observe also from the identity

ZJ A R i fo F(X4(-), Leby o X,(-) 1) dt

keN
that, for any p > 1,
wf (B[ to) ] <
keN
By , the same is true under P, that is
~ T P
EOKZJ |Z§’k’i|2ds> ] < 0. (46)
keN V0

t
Wt = Wt L (L 4)=(0,1)00(Xs (1)) = Y F)ds,  te[0,T].

Now, we let

Under Py, the processes ((th’i)ogth)neN are independent Brownian motions and the forward
component of the solution to (29) satisfies

dX{"F = —(2mn)? X" Edt + dW),  te[0,T],

and is thus an Ornstein-Ulhenbeck process, with X T as initial condition. Also, under Py, the
backward equation takes the form:

aY;"* = | =Dufo(Xi(), Leby 0 Xe() ™) = 3 27 (1 )=0.)00(Xa () = V%) |t

i e (47)
+ >z AW
keN
By , the drift has finite moments of any order under Pj.
According to the standard theory of backward SDEs (or, equivalently, by a formal application
of Itd’s formula), we expect

Ztn’k’ir = Dy +U™E(t, X4(-)) Pg (or Pg) almost everywhere. (48)

Initializing the process (Xs)os<r at some £ € L?(SY;RY) and at some t € [0,T] and taking the
expectation in under IP’O, we conjecture (and this in fact the purpose of Theorem . to make
the statement clear) that:

UE(t,) = Pry (Dn,ig()(‘, Leb; o -_1)>
! (49)
+ J Ps—t [Dn,irfO(-, Leb; o-71) + <Dun,i(8, ), B(-) —U(s, ')>L2(81;Rd)]d‘9’
t

where, differently from , we used the more compact notation 95 for the drift coefficient. Here the
notation (DU™E(s,-),B(-) — U(s, ")) r2(s1,re) may be slightly confusing and should be understood

as a function from L?(S';R?) into R? defined by:
<Dun7i(57 ), B(-) —U(s, ')>L2(S1;Rd) : L2(81§ Rd) 50— <Dun7i(57 0),B(€) —U(s, €)>L2(§1;Rd)

= . Dy s U™E (s, 0)(BRE(0) — U (s,0)),
keN
the summand in the right-hand side reading as the product of a matrix of size d x d by a vector
of size d. Identity is the cornerstone of the a priori bound on the Lipschitz constant of U (in
space).
27



Galerkin approzimation. The problem with the formula is that we do not know yet whether
U is Fréchet differentiable. In order to proceed, we take advantage of the stability properties of the
solutions to in small time, which can be shown by a mere variation of the arguments used in
the proof of Theorem Indeed, we can use a Galerkin approximation and approximate § = Dfg
and ® = Dgo by coefficients F») and &) with a truncated Fourier expansion, namely

N
_ % <I€Z:0€k,+ek,+<,)>

N N
FNnt (p) = @i(z Ek,iek,i(,))l{ngN}’ BNt (p) — ®n,i<z gk,idc,i(_))l{nsN}’

k=0 k=0

(50)

for n € N, where we refer to for the definitions of § and &. It is clear that F®) and &W) are
bounded by the same constants as § and & and satisfy the same Lipschitz property. Therefore, we
can solve, for T' < ¢ with the same ¢ as in Theorem [16] the forward backward system

N
dXt(N),nﬂ_r _ (sB(N),n,i(Z Xt(N),k,iek,i(,D . Y;(N)m,i B (QWn)th(N)’n’i)dt 4 thn,J_r’
(51)

day,NmE (Z HEhE())dt+ Y, 2w, ne N,
k=0 keN

with XSN)’n’i — X" as initial condition and YT(N)’n’J—r =Mty X}N)’k’iek’i(-)) as termi-
nal condition. Observe in particular that Y V)% and Z(N)™E are null for n > N. Denoting by
UWN) the corresponding decoupling field, it is then well-checked that ¢/(Y) (t,0), for £ € L2(S;RY),
is a function of (#™*)g<,<n only, meaning that

UM (t,0) =u™ (t, i fk’iek’i(-)) (52)

Also, UMt g zero when n > N.

In words, the system reduces to a finite dimensional system of 2N + 1 equations (i.e. up to
the order n = N) on R(EN+1d By standard results for non-degenerate forward-backward equations,
see for instance [25] (in order to fit the framework of the latter paper, notice that the linear term

(27m)2X( )% can be easily removed by cons,1der1ng exp((27m)2t)X(N)’n’* instead of X( ), +)
we know that U/(V) (¢, -) is differentiable in (£%)gcp<y for t < T and that, for n < N, . ) holds
true with Z™** replaced by Z(M)mk+ and Y™+ replaced by YNt

By stability in small time of the solutions to (the proof of which works on the model of the
proof of Theorem , we can check that, for T' < ¢,

N N
Eo| suwp (1) = XV () ey + %) = Y0100 ) |
o<t<T

+EO[ZJ ZmkE ) nk-&-’dt]
n,keN
< 50| ()~ ©) (Xr() o0

[ (0 =) KO g+ 16 =) 50D ]

0
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Observe now that, for all £ e L?(S';RY),

N N
80 =8O = e (Z et 0) —g0f + 3 o
N
< H%(Z gn,iren,i(,)> -5 ;(Sl;Rd) %: 1’Sn,i(£)‘2 (54)
n=zN+

n=0
<C YR Y )

n=N+1 n=N+1

from which we get that the left-hand side tends to 0. Proceeding in the same way with B®) — B
and &) — & and combining with Lebesgue’s dominated convergence theorem, we deduce that the
right-hand side in tends to 0 as N tends to co. We deduce that the left-hand side also tends
to 0. And then,

lim UN(t,0) =U(t,0), te0,T], £ e L*S";RY,

N—+0
and, for a given initial condition £ in ,

T
lim E, 2 f |Z£;(N),n,k,i _ me’k’i‘QdS -0, tel0,T], (e LQ(Sl;Rd)7
N=to o renJo

where we added the superscript ¢ in the notations to emphasize the fact that X(()N)(-) and Xo(-)
were both equal to £. This says that, to prove and the statement of Theorem we can focus
first on the Galerkin approximation and then pass to the limit as N tends to +00. We shall come
back to this point later on.

Smoothing estimates for the OU semi-group. The long time analysis relies on the smoothing prop-
erties of the OU semi-group (P;);>0 we introduced earlier, see (35)).

The following lemma is standard in the literature, see for instance [54], Section 5], see also [20].
It will play a key role in the proof of Theorem

Lemma 18. Let V be a bounded and measurable function from L?(S';R?) into R. Then, for any
t e (0,T], P;V is Fréchet differentiable and, for all £ € L*(S';RY),

1/2

[DPYO)] 261,20y < CEPPE[[VWUH ] < O3V,

for a constant C independent of t € (0,T]. If V is Lipschitz continuous on L?(S';R?), then, for
any t € (0,T] and any £ € L*>(S';R?),

HD,PtV(E)HIﬂ(SI;Rd) < Llp(V),
where Lip(V) is the Lipschitz constant of V.

The second inequality in the statement is just a consequence of the fact that the function
L2(SY;RY) 5 ¢+ E[V(U/)] is Lip(V)-Lipschitz continuous.

4.3. Analysis of the Galerkin approximation. For a given fixed T' > 0, we consider the
Galerkin approximation of the coeflicients, as defined in , together with the corresponding
Galerkin approximation of the forward-backward system, as defined in .

As we already explained, the system is already known to be uniquely solvable, for any given
initial condition for X ) whatever the time duration T is. Also, we know from [25] that the
decoupling field YY), when regarded as a function from [0,T] x REN+Dd o REN+HDD gatisfies a
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system of (2N + 1) PDEs in dimension (2N + 1)d. By identifying the Fréchet derivative DUWN) of
UDN) with the derivatives in R2V+! through the formula:

N N
DUN(t,0) = Z Opn s M) (t, Z ekz,irek,i(_)>€n¢(.)’

the system of PDEs satisfied by the decoupling field of coincides, in the mild form, with ,
but with Dfg and Dgg and replaced by FM) and ). Namely, we have:

U(N)’n’i(t, ) =Pr_; (@(N),n,i)

T (55)
N L ps_t[guvmi(.) (DU (s, ), BN U(N)(Sr)%z(gl;Rd)]dS»

the identity holding true in L?(S'; R?), for any t € [0, T7].
Following , we claim first:

Lemma 19. There exists a constant C such that, for all N € N*,

sup sup UM, 0) lr2(stirey < C.
te[0,T] £eL?(S';R?)

The following lemma provides a uniform bound for the Fréchet derivative of the Galerkin ap-
proximation:

Lemma 20. There exists a constant C' independent of N such that, for all t € [0,T) and all
N e N*¥,

sup  [IDUMN(t, )| L2 (s1:payw L2 (s1:m0) < C,
LeL2(S1;R%)

where

DU (#, )| L2sr mety L2(s ey = sup DIUNM(E, ), by 2 ]
heL?(SLR):|h] 2 g1,pay <1

L2 (Sl;Rd)7

the notation D[QO(')]‘.:@ indicating the fact that the differential is computed with respect to the
argument - and then taken at point L.

Proof. We start from (55). For h e L*(S'),

UM, ), hy = Pr_y [<@(N)(.)7 h>L2(Sl;Rd)] + LT 2 [<3(N)(.), h>L2(Sl;Rd)]d8

T
() (N)
+ Ps—_t|b -) - Do N . d
L t[ o () Dol (s,°) >L2(81,Rd)] S (56)

T
— L Ps—t [<D<U(N)(Sv )y )y p2stmay, UM (s, ‘)>L2(s1;Rd)]ds

=T+ 15+ T3.
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Apply now Lemma (18 when A LQ(Sl Rd) < 1. Deduce that

sup sup H [D<Z/l
eL2(SHRY) [ 251,y <1

< C{ sup Llp <<Q§(N)()a h>L2(SI;Rd)>

Hh”LQ(Sl;Rd)él

’ h>L2(SI;Rd)] |~=£HL2(81;Rd)

)

1 ( N)
+ J sup sup by (0) - [DoU ™ (s,-), Wy 21y, _,|ds
t Vs—1t teL2(S1;RY) Hh’HL2(S1 <1 ’ 0 [ L*8 )]\ —5‘

iRA)

SupP ’<D[<U(N)(S’ )y h>L2(Sl;Rd)] \:WU(N)(Sv £)>L2(81;Rd) ds

J s — €€L2(S1 R4) HhHL2(g1 rdy Sl

(N)
" Jt s—1 ZELZS(%IB;Rd) HS (6) ||L2(81§Rd)d8}7

for a constant C' whose value may change from line to line. Recall now that

sup Llp (<Q5(N) ()’ h>L2 (Sl;Rd)) < O,

HhHLQ(Sl;Rd)Sl

and that
Sup {HE(N) (€)|‘L2(81~Rd)’ sup (U™ (t,0) Hp(SLRd)} <C
LeL2(SH;RD) ’ te[0,77] ’

We deduce that

sup sup D u(N) (ta ')7 h . — R

LeL2(S1;RY) hﬁ(gl;Rd)Sl} [< >L2(817Rd)]\ _ZHLQ(SIJRd)
C—&-J sup DZ/l s )y resipdy | ds
t s—1t (eL2(S1;RY) ”h||L2(sl pty <1 H < ( ) >L (SHR )]|._€ L2(SL;R9)

By a variant of Gronwall’s lemma, see Lemma [23| right below, we complete the proof. B

Using a similar argument, we claim:

Lemma 21. For any compact subset K = L?(S';R?), there exist a constant C' and real € > 0, such
that, for all t € [0,T] and all N, M € N*,

ig}ngu(N) (t,€) — DU EMHL%S%RQXL?(S%R%

¢ { +12 ()2 72
< sup Z |0* % + Sup Z |§"*(h)|* + sup Z |&™=(h)]
v T—t <ZEIC n>NAM Sn>NAM heke n>NAM
1/2
+ sup sup H (Z/I(N) fU(M))(S,h)HQLQ(SI) + sup sup IF’(UTZ ¢ ICE)> ]
se[0,T] heke (eK ref0,T]

where

DU (t, ) — DU, )] 1251 ety < L2(52 R

- Sup HD[<Z/{(N) <t7 ) - U(M) (ta ’)7 h>].:£HL2(SI;Rd)7

heL? (ST RD): Al 2 1 gy <1

and

sup sup Py (Uf ¢ ICE)) <e
ek re[0,T]
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Proof. Throughout the proof, we use the fact that K is compact in L?(S';RY) if and only if K is
closed and, for any € > 0, there exists n € N, such that for all h € K, Zk>n 2 <e.

First step. Also, we recall that & and § are continuous from L2(S';RY) into itself. Hence, &(KC)
and F(K) are compact subsets of L2(S'; R%). In particular, for all € > 0, there exists n € N*, such

that for all h € KC,
DMEHEmP<e, D e Em)P <.

k=n k=n
Also, we observe that that, for any compact subset K and any € > 0, there exists another compact
subset K such that, for all £ € K, for all ¢ € [0,T7],

Po[Uf e K] = 1 —e. (57)
The proof is quite straightforward. We give it for the sake of completeness. Indeed, we recall that:

UE _ Z (e—(27rn)2t€n,i + Jt
t

e—(2wn)2(t—s)de,i>en,i(.). (58)
neN 0

Obviously, we have, for any n € N,

2 ’67(27rk)2t€k,4_r‘2 < Z ‘gk,i 2

k=n k=n

(59)

Y

which can be made as small as desired by choosing n large enough, uniformly in ¢ € . Also, for
any n € N,

ft ¢~ (2mh)(=3) gyt
0

% 5|

k=n

k)2 (t—s 1
] k;f e d8\§2(27rk)2'

In particular, we can find a universal constant ¢ > 0 such that:

t 2
c
> EO[ L e~ 2Tk (t=s) gy kit ] <. (60)
k=n
We deduce that )
t

]P)O|: Z J e_(27rk)2(t—5)dWSk7i > 1] < i’

k>n3 0 n?

and then, by Borel-Cantelli’s Lemma, we obtain:

t
. —(27k)?(t—s) k,+
I}LI{:OIP’O(D{Z Le dwy

n2p *k>=n3

-m(UN{ S

p=lnzp “k>=n3

<)

2
< 1}) -1
n
It remains to observe that, for any p > 1, the set

ﬂ{heLQSl RY): N nhEP < }

n=p k=n3

J —(2mk)2 (1— D) awhE
0

is compact in L?(S';R9).
Second step. Following , we observe that there exists a constant C' = 0 such that, for all
NeN* te[0,T] and £ € K,

]Eo[H@(U%_t) _ @<N>(U§_t)\|i2(gl;Rd)] < CEO[ 3 |(U§é_t)n¢|2] + CEO[ 3 |<’5”’i(U:‘f—t)!2]' (61)

n>N n>N
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By , and , we have
Bo| Y Wk ] < 3 levt2+ =
n>N

n>N
Also, using the same notation K¢ as in , we have, for any ¢ > 0 and for all N € N* ¢t € [0,T]

and £ € L(SY; R%):

Eo| Y 16" (Uf_)1?| < Bo| iy ey D, 18" (UF_)P| + CPy(UF_, ¢ )
n>N n>N (62)
< sup DU1S™ED + CPo(Ur_, ¢ K°),
n>N

where we used the fact that & is bounded and where we allowed the constant C to increase from
line to line.

Therefore, yields
EO[”QS(UTZ“ft) - 6(N)(U7€ft)”i2 SLRd)]

63
<C(swp Y [ 4 sup Z &™) +P0(U7€“—t¢lcs)+l)' o
lek n>N N
Similarly,
sup EO[HS(UZ - §M@y) HL2 (Sl Rd)]
s€[0,7—¢] (64)
1
< C(Sup Z ™2 4 sup Z ITVE (D + sup IP’O(Uf ¢IC5) + N)

lek SN ‘n>N s€[0,T7]

Obviously, the same bound holds true when replacing § by 8. We now return to and we write:

(™ =u)(, ). by

T
= 7)T t[<(®(N) ®(M))()’ h>L2(§1;Rd)] + L /Psft [<(3’(N) - S(M))()a h>L2(Sl;Rd)]d3

T
+ \ Ps_t (b(N) b(M))() : D0<U(N)(S,'),h>L2(S1;Rd)]dS

T i (65)
+] Ps_t_béM)(-)'D()((Z/l(N)—U(M))(s,-),h>L2(81;Rd)]ds

T

- Ps—¢ <D<(U(N) - U(M))(S) ’)7 h>L2(Sl;Rd)7u(N) (87 ')>L2(S1;Rd):|d5

J Ps—¢ <D<U(M) (57 ')7 h>L2(Sl;Rd)’ (M(N) B u(M)) (8’ ')>L2(81;Rd):|ds'

We then make use of Lemma [I§f We can find a constant C' such that, for all N,M > 1, £ € K,
h e L*(SY;RY) with ||h||z2g1.ray < 1, and t € [0, T,

HD[PT*K(QS(N) -, h>L2<Sl;Rd>]]|-=e

c N M ¢ 2 1/2

= mEO{H (62~ ))(UT—t)||L2<Sl;Rd)] ’

where we used the fact that Eo[|((&™) — QS(M))(U%_t),h>L2(S1;Rd)|2]l/2 is less than Eof||(&®Y) —
s (UL t)“L2 st Rd)]l/Q. If, instead of ¢, we choose the realization of the random variable U{_, ,
33
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for tg € [0,t], we get by the flow property of the Ornstein-Uhlenbeck process:

9 1/2
L2(S! ;]Rd)]

EO[HD[PT (@M — g (), h>L2(Sl;Rd)]].=Utto

9 1/2
< <= Bo[ (&) = ) (U)o
By and , we obtain:
Bo[J(6) — &) Ui )[2 6120

1
< C’(sup ™% 2 4 sup |B™E(1)]2 + sup sup Po(UL ¢ K°) + )
leK n>§ v ek n>§ v leK r€[0,T] (Ur ¢ %) NAM

9 1/2
L2(St ;Rd)]

c < +)2 +07y)2 l L 2
sup |I"*]% + sup |&"™=(1)| + sup sup Po(U, ¢ K°) + :
T —t\iex n>;A v ek n>§ v leK r€[0,T] (Ur ¢ 15) NAM

Therefore,

o[ [P Pr (6™ - 89)0 1]

_77t
|'_Ut—t0

By the same argument,

9 1/2
Ho “D [Ps*t [<E™ =34D)(), h>L2(Sl;Rd)]] L?(Sl;Rd)]

c < +2 +7\|2 ! 1 2
< ——— | sup |I™*]% + sup I§= ()| + sup sup Po(U, ¢ KF) + .
Vs —t \iek n>;A v ek n>§ v leK re[0,T] ( ) NAM

Similarly, using Lemma it holds that

—_77¢
|‘—Ut—t0

2 :|1/2
Uf_y, IL2(STRY)

c ( +p2 ! 1L\
< sup ™= +sup sup Po(U, ¢ K°) + )
Vs =t \iex n>giM = leK re[0,T] (Ur# ) N A M

We now turn to the term on the third line in . Following , we have

Eo [HD[PH[([’((JN) = 05" () - DeU™N (s, h>L2<Sl;Rd)]]

) 1/2
L2(SH;R4) ]

o [HD[PS—t[b(()M)(') Do U™ —u™) (s, ), h>L2(SI;Rd)]]

|.:Ute—t0
C

1/2
< E HD U™ _ ), h .
e ROICOROY R S
Obviously, the same holds for the term on the fourth line in .

9 1/2
Fo [HD [PS—tKD«u(N) — U (s, ), sy, U™, ')>L2(Sl;Rd)]] l-=Uf, LQ(sl;Rd)]

C 9 1/2
< .
Vvs—t1 L2(S1; Rd)]

Bo) [ DL ~ )61y,
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Finally,
Eo |:HD[Pst [<D<U(M) (S’ ')a h>L2(Sl;Rd)v (U(N) - U(M)) (Sa ')>L2(81;Rd)]]
1/2
T B[l — U (5, UL o)
Collectlng all the bounds and plugging them into , we get
1/2
ol L@ =)0 [
C
< m(sup S s Y R s (@)

lek n>NAM lekce n>NAM lek Sn>NAM

9 1/2
0 L2(81;Rd)]

_77t
|'_Ut—t

it()

1/2
+sup sup Po(U' ¢ K°) + >
lek re[0,T) 0( ) NAM

r_c ) 2
mEO[HDK(U U5, W]y )] ds
T C 1/2

R Y m] is

By Lemma [24] below, we get
) 1/2
L?(S%Rd)}

Dl BRI
< TC_tKSup oo mERP s Y FEOR+sup Y [0

lek n>NAM lekcs n>NAM lekcs n>NAM

L2(S1;R4

Eo

tto

[

1 1/2
+sup sup Po(U! ¢ K°) + >
1K re[0,T] ol ) N M

N 1/2
+ses[}:§)T] EO[” U™ — ™M) (s, UL, HL2(Sl;Rd)] ]

And then, using the boundedness of /(™Y) (and UM)), we obtain
: 1/2
N p—
B | D@ -t 090y [
¢ n
< Tt[(“p > EOR4sp D) [nE0)P

ttO

ek s NAM €KX s NAM €K s NAM
1/2
2 l e 1
+ sup sup U™ — (M) s, ) +sup sup Po(U, ¢ K > ],
se[o,T]leicsH( )6 Dlzsimy €K 1€[0,T] ( AT

which completes the proof by taking ¢t = ty. B

Corollary 22. For any compact subset KK < L*(SY;R?), there exists a function w : Ry — R,
satisfying lims o w(8) = 0 such that, for any N € N*, any s,t € [0,T] and any ¢ € L*(S*;RY),

2™, 0) = U™ (5, 0)] 251 ey < Cw(ls — ).
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Proof. Without any loss of generality, we can assume t < s. We then consider the solution
(XﬁN)’t’e(-), YT(N)’t’E(-), Z7(‘N)’t7£('))t<7-gT of the forward-backward system on the interval [t,T]
with Xt(N)’t’é(-) = { as initial condition.

We then have:

UM (1, 1) = By [u(N) (s, X004) + [ 5 (XﬁN”’f(-))dr],
t
so that

UM (t,0) —UN) (s,0) = E0[<U(N) (s, XVIBE)) — J FM (x(NBL ))dr}.

Recalling that the functions (FV))yen+ are bounded, uniformly in N € N*, and invoking Lemma
we deduce that there exists a constant C' such that, for any N € N* any ¢ € [0,7] and any
(e L2(SY;RY),

U (1,€) = U™ (5, D) 22 ey < C (Js =t + Bo[| X — £ 2z ] ) (67)
We now recall the Fourier expansion of the forward equation in :
X — (100120, BOOT (KV() ~UO 1 X)) — (2 XM Y s+ W

for r € [t,T], where, for the sake of simplicity, we omitted the indices (¢,#) in the notation and we
just indicated the mode indices. We get:

XNt _ g=(2mn)?(s=0) gn.t +L Ty B0 (XN () gy

(68)

B Js €(27rn)2(r—s)Z/{(N)m,i (T’, X7£N)<>)d7“ n JS e(Qﬂn)Q(r—S)dW;l,i'
t t

Since the functions BMN) and YY) can be bounded independently of N, we deduce that:

]EO[HXS(N)—€|\%2] < [|S—t’2—|— 2 wn+’ ( 27m (s— EJ 2(27n) (r s) ] (69)

neN neN

Now,

Z et 2 ( (2mn)2(s—t) _ 1)2 < CZ 121 A (nQ(s—t))]2

neN neN (70)
n,* |2 n,* |2
<C{|s—t|2|€’|+ > |ev|].
neN n;(s—t)_l/4
Also, allowing the constant C' to change from line to line, we get
> f —2@mn)*(s=r)gp < C(s —t) + Cf f 22m0)*(s=r) drdy < C(s — t)V/2, (71)

neN

Collecting (/67| , , and , we finally obtain:

HU(N)(t,K) —Z/{(N)(s,f)HLz(Sl;Rd) < C(l +Slu1£) HZH%Q(Sl;Rd))OS—tPM —|—Slup Z ’lnﬂ_r|2>7
€ e

n>(s—t)~1/4
which completes the proof. N

Here are now the two variants of Gronwall’s lemma we appealed to right above.
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Lemma 23. Consider two bounded measurable functions g1,ge : [0,T] — Ry such that

T
at) <+ CQJ; j%ds, (72)

for some constants C1,Co = 0. Then there exist X\, u > 0, depending on Cs and T only, such that

T 1 T
j (1) exp(M)dt < uCy + & f g2(t) exp(M)dt,

2
0 ; 0 (73)
1
sup [91 (t)] < uCi + 2C’22J g2(t)dt + 5 Sup [gg(t)].
0<t<T 0 0<t<T

In particular, if g1 = g2, then gy is bounded by 1'C1, for a constant ' depending on Co and T only.

Lemma 24. Consider two bounded measurable functions g1, g2 : [0,T] — Ry such that

C1 T ga(s)
t) < C ds, 74
nl) < Fr—+ QL\/ES (74)

for some constants C1,Co = 0. Then there exist X\, u > 0, depending on Co and T only, such that

T 1 (T
| e < i+ 5 [ amle) exprnyar,

0 0 . 1 (75)
sup [VT —tgi1(t)] < pCr + MJ g2(t)dt + = sup [VT —tga(t)].

0<t<T 0 2 o<t

In particular, there exists a constant i’ depending on Co and T only such that, whenever g1 = go,

sup [VT —tgi(t)] < p/Ch.

0<t<T

We just prove the second statement. The proof of the first one may be found in [22] Lemma
2.13].

Proof. The first part of Lemma may be proved as in [22, Lemma 2.13]. So, we focus on the
second inequality. For any € > 0, (74]) yields

(T —1)"gu(t)

(t+e)AT (T _ t) 1/2 12 12 T
tr QL (s —t)\/2(T — 5)1/2( 5)/7g2(s)ds + Cae f(t+5)ATg2(8) s
T (t+e) AT (T — t)1/2
—1/2 12
< CO1 + Coe Jo g2(s)ds + Co OilslgT[(T $)"%ga(s)] L ORI ds.
Now,
(t+e) AT (T — 75)1/2 en(T—t) (T — t)1/2 ;
ft (s — t)V/2(T — 5)1/2 5= L SV2(T — ¢ — 5)1/2 o
Lnle/(T—t)] 1
_ (12 .
(T=1) Jo SI2(1— 5)1/2 ds

If €'/2 < T —t, then

(t+e) AT _ A\1/2 lnae
f (T—1) ds < Tlﬂf ;ds.
¢ (s — t)1/2(T — 3)1/2 0 31/2(1 _ 3)1/2




Otherwise, T — t < €%/2 and

t+e) AT 1/2 1
| @0 s | s
’ (s — t)12(T — 5)1/2 o s1/2(1— s)1/2

So, we can find a function § : R, — R, converging to 0 in 0 such that

T
(T —t)Y%g1(t) < C1 + 0251/ZJ g2(s)ds + Ca6(e) sup [(T — 3)1/292(3)].

0 0<s<T

The proof of the second claim is easily completed. Whenever g; = go,

T
J g1(t) exp(At)dt < 2Cp,
0

and then, choosing € small enough in the second claim, we get by the first part of the statement:

T
sup [VT —tgi1(t)] <2uCy + 2uf g1(t)dt
0

O<t<T
T
< 2uCq + 2,uj g1(t) exp(\t)dt < 2uCy + 4C 2,
0
which completes the proof. N

4.4. End of the proof of Theorem We now turn to the proof of Theorem [I0] To this end,
we recall the constant C' from Lemma [20] Without any loss of generality, we assume that the
Lipschitz constants of the coefficients by, § and & are less than the same constant C'. We then call
c the constant in the statement of Theorem [16| when the Lipschitz constant of the coefficients is
less than C.

We let N = [T/c] and 7, = T — (N —n)c for n € {1,...,N} and 79 = 0. We know from
Theorem (16 that, for any square-integrable J ,,_,-measurable initial condition XN~ (.) with
values in L?(S';R?), the forward-backward system is uniquely solvable. Following Lemma
this permits to define the decoupling field ¢ on [rn_1,7T] x L*(S};RY). By (53)), we know that,
for any (t,£) € [ty—1,T] x L*(S';R%), the sequence (UN)(t,€))yens, defined as the sequence of
decoupling fields of the systems , converges to U(t, ). In particular, we deduce from Lemma
that U is C-Lipschitz in the space variable on [ry_1,T] x L%(S'; R%).

Since U(Tn—1,-) is C-Lipschitz, we can iterate the argument and apply Theorem on the
interval [Tn_2,7n—1]. This permits to extend the definition of the decoupling field U to the set
[Tn_2, Tnv_1] x L?(S*; R?). By invoking once again but on [7x_2, Tnv—1], we deduce that, for any
(t,0) € [Tn—2, Tnv—1] x L*(S'; R?), the sequence (UWN)(t,€)) yen+ converges to U(t,£), which permits
to iterate the argument and, in the end, to construct a candidate U for being the decoupling field
on the entire [0,7] x L*(S';R%). Once U has been constructed, the proof is completed as in the
finite dimensional case, see for instance [24] and [16, Chapter 4].

4.5. Proof of Theorem First Step. As a by-product of the analysis achieved in the previous
subsection to complete the proof of Theorem (10, we claim that, for any (t,¢) € [0,T] x L*(S'; R%),

phim @ = U 0|20y = 0.
Recall from Lemmas and and Corollary that the mappings (U (N )) Nen* are uniformly
bounded and uniformly continuous on any compact subset of L?(S!; Rd). Hence, we have:
lim sup sup U — gy (M) (4 ray = 0.
M SUP S I )& 0 L2(s1re)
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We now invoke Lemma from which we deduce that for any compact subset of [0, T') x L2(S*; R%),
il holds that:

lim  sup H‘(DZ/{(N) — Dy

=0,
M,N—w (¢ ek

)& O L2 51 ety L2 (51 )
which shows that the sequence (DUWN))yens converges, uniformly on compact subsets of [0,T) x
L?(SY;RY). Since each DU is continuous on [0,T) x L2(S'; R%), we deduce that the limit, denoted
by DU is continuous and is the Fréchet derivative of U in the space variable. Of course, DU satisfies
Lemma Passing to the limit in (55]), we deduce that U is a mild solution of the system of PDEs
, as formulated in the statement of Theorem

5. CONSTRUCTION OF AN APPROXIMATED NASH EQUILIBRIUM

The purpose of this section is to prove Theorem To do so, we use the same setting as in
Subsection a short reminder of which is recalled below.

The game consists of N Ay particles that are uniformly distributed along the points (which we
call roots) (e™™/NY,_o .. y_1 of the unit circle, with i> = —1 and with exactly Ay particles per
root, where Ay € N*. States of the particles at time ¢ are denoted by (Xf’J)k=07...,N_l;j=17...7AN,
where k stands for the index of the root occupied by the particle and j for its label among the
collection of particles located at the same site. As already explained in Subsection we put
XfMN’j = th’j, for ke {0,...,N —1} and £ € Z.

Each particle (k,7) has dynamics of the following form:

dx; = {b(ggv ) +ap? + N (XFH G x P o x }dt ++/NdBE,  (76)
=1
for t € [0, T], with the initial condition X(]f’j = X}, where (X})1—o... y_1 are given by:

N (k+1)/N
Xt=N Xo(z)dx, k=0,---,N—1, (77)
k/N
whilst the noises (Bk = (BF)o<i<T) k=0,..,N—1 are independent d-dimensional Brownian motions on
the interval [0, T'] with the following definition:
k+1)/N

(
BF =N Wi (dzx).
k/N

We recall that i)Y denotes the empirical distribution:

The processes (a7 = (af’j)ogtg’]‘)k:ow.7N_1;j:1’...,AN are constructed on (Qg, Ao, Pg) and are R?-
valued progressively-measurable controls with respect to the filtration generated by the cylindrical
white noise (W3(-))o<t<r satisfying the condition:

T .
EOJ laf9 2dt < oo.
0
The cost functional to player (k,j) is then given by:

. Y . T . 1 ;
TR (& Yz N—1ji=1,- 4y ) = Eo [Q(X?J,Mg) +J (f(Xf’]vﬂiv) + 2\04?’]’2>dt]-
0
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Following the statement of Theorem we introduce the collection of controls:

. _ k/N
oM =Y}, V=N Yi(z)dz, te[0,T], (78)
(k—1)/N
for all k € {0,---,N — 1} and j € {1,---,Ay}. Then, for some ky € {0,--- ,N — 1} and jp €
{1,---, Ay} and for some R?-valued process v = (7)o<t<r that is progressively-measurable with

respect to the filtration generated by the cylindrical white noise W () = (W,(+))o<t<r (that is, the
filtration generated by the processes ((Wi(-), k)12 (s1,ray)o<t<r for h € L?(S;RY)) and that satisfies
the condition

T
EOJ Ive|2dt < oo,
0

we let %7 = a*%J, for k € {0,---,N — 1} and j € {1,---, Ay}, with (k,j) + (ko,jo). When
k= ko and j = jo, we let @*F0-Jo — ~.

The goal of this section is to prove that there exists a sequence of positive reals (en)nens,
converging to 0, independent of v, kg and jp, such that

TROI (B9 )z, N- 11,04y ) = T (@) jmp e N-tij=1,0 4y ) — €N

Throughout the analysis, we assume that, on top of Assumption (A), f and g are Lipschitz
continuous in g, uniformly in z. In particular, f and g are Lipschitz in (z, u).

5.1. Distance between discrete and continuous systems. Most of the proof relies on a sta-
bility property under discretization for SPDEs of the form:

0 Xi(x) = ap(x) + AXy(2) + Wi(z), (t,z) € [0,T] x S, (79)

with some initial condition Xo(-) € L?(S';R%). Above, the process a(-) = (ay(-))o<t<r is an
L?(SY;RY)-valued progressively-measurable process with respect to the filtration generated by
(Wi (+))o<t<r- We assume it to satisfy

T
Eof loe ()72 1 ey dt < 0.
0

The solution to will be denoted (Xt(a)(~))g<t<_p. For another L%(S!; R%)-valued progressively-
measurable process B(-) = (B¢())o<t<r satisfying

T
o [ 1810 a0 oyt <
0

we let
B (k+1)/N
Bt =N Bi(z)dw, te[0,T], kefo,--- N—1}, (80)
k/N
and we consider the discretized version
dX{ = Bfdt + N*(XFH + X1 — 2X})dt + VNdBY, (81)

for t € [0,T] and k € {0,--- , N — 1}, with the same convention as before that X’t_l = XtN_l and
XN = X?. Above the initial condition is given by the same approximation as in . The solution

to will be denoted ((X't('e)’k)k:(),...7N_1)0<t<T. With this solution, we associate the periodic
function

N-1

. —(8)k

XP ) = 2 (®) /N (k1) N4z (), t€[0,T].
=0

Notice that (and this is the key point of the proof) the equation is just indexed by the label
k of the root (and not by the label j we used before to denote a particle).
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Mild solution of the discrete equation. Equation forms a system of stochastic differential equa-
tions, the solution of which may be put under a discrete mild form, the mild formulation being
based upon the following operator:

A(N)( Z A1 [k/N, (l~c+1)/N)+Z ) Z N? )‘kH + A /_\k)l[k/N,(k+1)/N)+Z(')a
k=0
for any sequence (A\* )k=0,-.. N—1. Obviously, A( ) is acting on piecewise constant functions from the
torus S! into R (or, more generally, into RY) with (k/N + Z)g—o.... n—1 as mesh. We often identify
these functions with piecewise constant functions from [0, 1) into R (or R?) with (k/N+Z)k=o,... N—1
as mesh, in which case the above identity becomes (with a slight abuse of notation):

(Z XL iy () = Z N2+ = 20 1 gy ) ()
k=0 k=0
Throughout the analysis, we shall use the following convention. For a collection of weights (A*)—o
(with values in R or in R?), we call
N—

= Z L/, (k+1)/N)+2 () (82)
the corresponding piecewise constant step functlons on the torus. Observe that, for the sake of
convenience, we omitted to specify the dependence of the function A(-) upon the discretization
parameter N. Also, according to the previous convention, we shall identify the function A(-) with
the function Ziv:_ol Xkl[k/M(kH)/N)(') from [0,1) into R. With this convention of notation, the
solution to may be written under the form:

KO () = 2 %, ERTERINCS P '
¢ = 0()+0€ ﬂs()d8+0

IO (Ve awrE), (83)

neN

with the same convention as before for the notation e™*(-), namely:

N = i (R+D)/N-
e E () = Y @R ey (), with (e"’ =N e”’(m)dx) ,
k=0 k/N k=0, ,N—1

which is to say that e™*(-) is the piecewise constant step function associated with the family of

weights (e ) =0, N-1-
The above writing of the stochastic integral is justified by the fact that
N-1
Z B 1,1y () = D0 WE [ Z e N, (k1)) (¢ )]

neN

which follows from a stralghtforward application of the decomposmon of W in Fourier modes,

namel
Y (k+1)/N "
VNB} =N Wi(da) = Y Wih*em®h,

k/N neN

Distance between X(® and XB). For the sake of completeness, we recall the mild formulation of
the SPDE ([79):

X() = B Xo() + |

0

t t
e(tis)Aas(')dS + J e(tis)A (Z €n7i()dWsn7i>7 te [07 T] (84)
0 neN

Here is the main statement of this subsection.
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Theorem 25. There exist a constant C together with a sequence (en)nen*, converging to 0 as
N tends to o, such that for any initial condition Xo(-) € L?(S';R?), any two square-integrable
progressively-measurable process (o (-))o<i<r and (Be(-))o<t<r with values in L?(S';R?Y) and any
integer N € N*, it holds

_ 1 t
sup Bo[1 X7 (0) - XV (@)P]} < (14 W\\Xoc)u; sy + B [ 10uO)gnzads )on
xTre

(85)
+ CEo J | (a ”L2(81 R)dS;
for allt € (0,T].

Proof. The proof is split in several steps. The goal is to compare and . Basically, each
step of the proof corresponds to the comparison of a pair of terms in the right-hand sides of
and .

Preliminary Step. As a preliminary step, we have the following two standard results, the proofs

of which are postponed to the end of the subsection.
The first identity is

n(y _ inn sin(mn/N) Nt jo kn 1 ey gt 4 e %
e"(-)=¢e" /N ];06 N 1N ey (), with e”() = T(')v (86)
and 72 = —1. The second one is
N-1 9. [N=
A(N){Z 27 v 1)) )] = —2N?[1 = cos(-)] [ 2 €PN L ey ( )] (87)
k=0 k=0
which shows that the function Z,]fv 01 ei2m L[x/N,(k+1)/n) () is an eigenvector of AW In particular,
we have

N—-1
8 AW V2T =7 — 2[1—cos(27n —s iomkn
el [Z 62 k/N k+1)/N)( )] =2Vl (@mn/W))(E )[2 e N 1[k/N,(k+l)/N)(')]7
k=0

for any s,t € [0,T], with 0 < s < t. Combining with the first identity , we get:

/N N1 k/N,(k+1)/N)(')]

672N2 [1—cos(27n/N)](t—s) en ( ) ’

. N—-1
e(tfs)A(N) én() _ eiﬂL]\’, Sll’l(?Tn/N) 672N2[1fcos(27rn/N)](tfs) |: Z eiZﬂk—" [
k=0

which shows that e"(-) is also an eigenvector of AW Taking the real and imaginary parts, the
same holds for e (-) and ™~ (+).

Second Step. We now compare the martingale terms in and . We start with .
Thanks to the preliminary step, it may be rewritten under the form:

t
J e(t—s)A(N> (Z _n, +( )de + Z j —2N2[1—cos(2mn/N)](t— S)é ( )de +
0

neN

We then observe that there exists a universal constant C' such that

t
f 672N2 [1—cos(2wn/N)](t—s) gt (LU)dWsn’i

2 C
] <
n>N1/4 0

N1/4°

sup Eg {

zeSt
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Indeed, the left hand side is equal to

T
Z j6—2]\/2[1—cos(27rn/N)](t—s)én,i(x)dwgl,i
0

n>N1/4

]
t 2
— sup Z Je_zuv [1-cos(2rn/N))(t=8) g1 (2) 2 s (88)
.’EESl n>N1/4 0
sin?(mn/N)

T
_ —4N?[1—cos(2mn/N)](t—s)
e -

sup Eq {
zeS!

n>N1/4

so that

jt 6—2]\72 [1—cos(2mn/N)](t—s) gt ($)dWSn,i
0

]

sup Eq {
zeSt

n2N1/4

sin?(mn/N) 1
S X /N2 AN cos(mn/N)]

(89)

In|=N1/4

We then observe that the function ¢ : S! 3 x — o(x) = sin?(z)/(1 — cos(2z)) is equal to 1/2 as
cos(2r) = 2cos?(z) —1 = 1—2sin%(x). So, the above ratio sin?(7n/N)/[1—cos(27n/N)] is bounded
by a universal constant c. In the sequel, this constant ¢ may vary from line to line as long as it
remains universal. Then,

t 2
sup ]EO[ Z f 6—2N2[1—cos(27m/N)](t—s)én,i(x)dWSn,i ] <c Z % < i/4. (90)
zeS?t n2N1/4 0 n2N1/4 n N
Actually, the same bound holds for the solution of the SPDE, namely:
t 2
c
sup Eo{ f e(ts)A< e”’i(-)dW”’i> (x) ] < —7,
zeS?t 0 n>%1/4 ’ N4
which may be proved in the same way by recalling that e(*~*)2¢™® — —(27n)2e™*, for all n € N.

We now handle the difference

t t
<J 6_2N2 [1—cos(2mn/N)](t—s) én’i(l')de’i _ f
0

e—(27m)2(t—s)€n,i (x)dwsmi) )
0

0<n<N1/4

Taking the L? norm of the modulus, we obtain:

t
(J €_2N2[1_COS(27W’/N)](t_s)én’i(:L‘)dWSn’i _ J
0 0

t
sup ]E[

zeSt

e—(27rn)2(t—s) et (l’)dWSn’i>

0<n<N1/4

t
_ sup f ’6—2N2[1—cos(27rn/N)](t—s)én,i(x) B e—(27rn)2(t—s)en,i($)’2ds
0

2eS! §<p<N1/4

t
<4 Z ‘€—2N2[1—cos(27rn/N)](t—s) o e—(Zﬂ'n)Q(t—s) 2d8 (91)
0

0<n<N1/4

t
+ 2sup Z J e—2(27rn)2(t—s)|én,i(x) _ en,i($)|2d8
0

zeSt 0<n<N1/4
= (i) + (i1).
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As for the first term (i), we proceed as follows. We use the following two facts. First, we observe
that, for 0 <n < N4,

2mn 1,2mn.2 n? (27n)? 1

N1 o ()] = (R o] - 2L oLy,

Therefore, for any 0 < s <t < T,
2 1
exp<—2N2[1 — cos(%)](t - s)) = exp(—(2mn)2(t — s)) (1 + O(N))’
where the Landau symbol is uniform in s,¢ € [0,T], with s < ¢, and in 0 < n < N'/%. Therefore,
. c 1
|(l)|<ﬁ Z J exp(—(2mn)?(t — s))ds < N(1+ Z ﬁ)’
0<n<N1/4 neN*

which is less than ¢/N.
In order to handle (i), we notice that, for 0 < n < N4,
t

n,+ n, % 70
sup |64 (r) — 4] < B < 15

We easily deduce that |(i7)] is less than ¢/N1/4,

So, the conclusion of this second step is that there exists a sequence (en)nen#, independent of
the data, converging to 0 as N tends to oo, such that
2}

L I8 (3 et (W) (@) [ IR et (awy) @)

neN 0 neN

sup sup Eg {
0<t<T zeS!

t t 2
— sup sup EO{ Z (J 6_2N2[1_005(2”n/N)](t_s)én’i(x)de’i _J e—(27rn) (t=s)gn, (z)dW +) ]
o<t<Tazes' LI \Jo 0
< EN,

which proves that the two martingale terms in and get closer as IV tends to oo, uniformly
in time (and in the data).

Third Step. We now provide a similar analysis but for the control terms in and . We
start with the case when a(-) = B(+). To do so, we call (a?’i)neN the sequence of Fourier coefficients
of each ay(+), seen as a (random) element of L*(S*; R?). Similar to (80]), we also define the sequence
() o<t<T) k=0, ,N—1:

(k+1)/N

=N a(z)dz, tel[0,T], ke{0,---,N—1},
k/N

and we define (ay(-))o<t<r accordingly, see (82), namely
N-1

= > A ey ().
k=0

With this notation, we have the following identity:

B it N-1 (k+1)/N - nt +
()= ) oy’ [Z <NJ e "(x)d$> [k /n, (k+1)/N) ( ] Z o TemT

neN k=0 k/N neN
So, using the preliminary step, we deduce that, for any s,¢ € [0,7] with s <,

e(t—s)A(N)as(_) _ e(t—s)A(N)|:Z a'g,ién,'i-( ] 2 an-i— —2N2[1—cos(2mn/N)](t— s) +()

neN

)
neN
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and then

t t
f (=98N 5 g Z (f a?,-‘reQNQ[lcos(27rn/N)](ts)dS) E (),
0 0

neN

Proceeding as in the second step, we first focus on

t
(J a’;’ie_zNQ [1—cos(2wn/N)](t—s)ds> én,i(.).
0

TL>N1/4

By Cauchy Schwartz inequality, we have

t
sup Z <f Cy?,ie—2N2[1—cos(27rn/N)](t—s)d$> én’i(:[:)
n>=N1/4 0

zeS!

t
< Z J |an+|2ds> <sup Z J —4N?[1—cos(2mn/N)](t— s)|—n+( )|2d8>
n=N1/4 zeSt n>N1/4

Take now expectation and deduce that:
2}

t
Z <J a';l,+e—2N2[1—cos(27rn/N)](t—s)d8> én’i(iv)
0
t
<K, |: Z J |an ,+ |2d8:| (Sup Z f 6_4N2 [1—cos(2mn/N)](t—s) |én,i(x) |2d5> )
n=N1/4

n=N1/4
QTESI TLZNl/‘l 0

sup Eg [

zeS!

By Parseval’s 1dent1ty, the ﬁrst term is bounded by Eg SO lavs (- ds. The second one may

be handled as in and . We deduce that:

t
Z <f ag,iefQNQ [1cos(27rn/N)](ts)dS) gt (gj)
0

n>N1/4

||L2 Sl ]Rd)

2 t
C
o | | < sveBo [ 1osOs eyt

zeSt

Similarly, we have

t
f (t—s)A ds_ZJ n,+ 7(27rn) (t—s) n+()d
0

2]
5 o)

n>=N1/4

and then,

t
f a?’ief(%")Q(t*S) eV E(z)ds
n=N1/4 0

caf 5 e

and again, it is less than (¢/NY4)Eq Sé ||a5(-)|\%2(81)d5. We now handle the difference

t t
(J ag,ie*QNQ [1cos(27rn/N)](ts)dS> én,i(.) _ Z <f ag,ief(an)Q(tfs) dS) emE ()
0 0

sup Eg {

zeSt

0<n<N1/4 0<n<N1/4
t
_ Z f O(?’J_r <672N2[1fcos(27m/N)](tfs)én,i(') - 67(27m)2(t75)6n,4_r(_))ds'
0
|n|<N1/4
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By Cauchy-Schwarz inequality,

t
Z J a?,ie—ZNQ[1—005(27rn/N)](t—s)én7i(m)ds

0<n<nN1/4 Y0

sup Eg [

zeS!

t
o 2 J a?,ie—(Qﬂn)Q(t—s)en,i (l’)ds
0

]

0<n<N/4
‘ +2
<m| % [ larpas]

0<n<N1/4 "0

t

—9N2[1—cos o) _ 204
X sup j |€ 2N?[1—cos(2mn/N)](t s)en,i(x)_e (2mn)2 (¢ S)en’i(l‘)|2ds.

zeSt O<n<N1/4 0

We then follow . We deduce that there exist a constant C and a sequence (&) yen*, independent
of the data, the sequence (¢x)nen+ converging to 0 as N tends to oo, such that, for all ¢ € [0, T1],

t t 2
Z <J a?’ie_ZNQ[1_605(27Tn/N)](t_8)ds) én,i(x) _ 2 (J a?,ie—(Qﬂ-n)?(t—s)ds) en,i(x> :|
0 0

neN neN
t
< c<E0 | |as<->||;(§1;Rd)ds>sN, (92)
0

which proves in particular that, whenever a(-) = 3(-), the control terms in and get closer
as IV tends to oo, uniformly in time.
Now, in order to handle the general case when a(-) #+ 3(-), it suffices to handle the term:

D ]

By Cauchy-Schwarz’ inequality and then by Parseval’s identity, it is less than

t 2
Z <J (Oé?vi _ Bg,i)6—2N2[1—COS(Q7rn/N)](t—s)dS> gt ($> ]
0

neN

t t
< SUP{EO[Z f ‘a?’i _ Bg,-&-‘QdS] [Z f 674N2[17cos(27rn/N)](tfs)|én,i ($)|2d8]}
0 0

zeS! neN neN

t t
< Eg [J H(as — /BS)()|iQ(S1)d5} |:Sup Z J;) e—4N2[1—cos(27rn/N)](t—s)’én,i(x)‘2d$:| )

0 zeS! neN
Following and , we can easily bound the second factor. We deduce that

t 2
Z (J (a?vi _ B;I,i)€—2N2[1—cos(27m/N)](t—s)ds) én’i(l‘) ]

neN

0
t
< CBal [ 00 = ) O ngnets|
And then, combining with ,

t t
sup E, [Z (J l@g,ie—QNQ[1—cos(27rn/N)](t—s)ds> én’i(l‘) _ Z <J a?yie—(Qﬂ'n)2(t—S)ds> en,i(x)
neN \W0 0

xeSt neN

sup Eg [

zeS?!

t
J (Ck?’i _ B;L,i)€—2N2[1—Cos(27rn/N)](t—s) dS) gt (1.)

sup Eg [
0

zeS!

sup Eg [
zeSt

sup Eg [
zeS!

|

t t
< CeEg L Jerg ()1 s + OEO[ L I(as — &)(-)Hiz(glw)ds].
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Fourth Step. We now handle the initial condition on the same principle. As before, we denote
by (Xg’i)neN the Fourier coefficients of X¢(-). Then, we let

B N (k+1)/N 4
500 = B (V[ Koo ey () = X X0,
k/N neN
Therefore,
N) & n - —cos(2mn -n
etAN Xo(-) = Z Xo’ie 2N?[1 (2mn/N)]t 5 i()
neN
Proceeding as above,

2
ng,i 6_2N2 [1—cos(27rn/N)]tén,i (ZL‘)

sup
zeS! n>N1/4
. 9
Sin“(mn/N)  _on2[—cos(2mn/N)
<2 ) [XPE? % ST AN Lcos(2mn/N)]
neZN 0 n2§1/4 (7rn/N>2 y

which yields to a somewhat different bound from what we obtained in the two previous steps. In
order to recover the same kind of bounds, we use the following trick:

2
ng,ief2N2 [17(:05(27Tn/N)]tén,J_r (1.)

sup
zeSt n>N1/4
1 nt 2 SiHQ(W”/N) 3/4 _—2N?[1—cos(2nn/N)]t
< Z ‘X + ] Z ST e cos(2mn (93)
3/4 0 2
134 S v (En/N)
.2
¢ nto sin®(7n/N) 1
< O |XpER :
g LT D T (N cosam N

neN n>N1/4
for a new value of the universal constant c. Recalling that the function R 3 x — sin(z)/z is bounded
by 1, we deduce that

2
X[")’L,ief2N2[17COS(27TTL/N)]téTL,i (:17)

sup
.Z‘ESI n>N1/4
.9
c 19 sin®(mn/N)\ 3/4 1
< P X ( )
3/4 0 2 211 — 3/47
i SN (@n/N2 ) (NP1 — cos(2mn/N)])Y

and then following the argument used to pass from (89)) to , we deduce that:

2
c n,+ 2 1 c
< #3/4 Z [ Xo ™" Z n3/2 < 13/AN1/8"

neN n>N1/4

Xge—2N2[1—cos(27rn/N)]tén,i (a:)

sup
zeSt

TL?NI/4

It is well-checked that a similar bound holds true for

2

sup Xg’ie*(%”)%e”’i(x)

zeS?t

n2N1/4
So, in order to compare ' X, and etA(N))_(O, see ([83]) and (84)), it remains to handle the difference
P

Z (Xg,iefNZ[lfcos(Qﬂn/N)]tén,i(.) o Xé%ief(an)Qten,i(_)) )

0<n<N1/4
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By Cauchy-Schwarz inequality, we have the following bound.
2

sup Z Xgl,iefNQ[lfcos(an/N)]tén,i(l,) o Xg,ief(Qﬂn)Qten,i(x)

2e8H g <naN1/4

< [Z ’Xg|2] sup[ Z ‘ —N2[1—cos(27n/N)]t & +($) - e—(27rn)2ten,i(x)‘2}.
neN oS Ly N1/

Following the analysis of and using the same trick as in , we deduce that there exist a
constant C' and a sequence (¢y)nen* converging to 0 as N tends to co, both the constant and the
sequence being independent of the data, such that

(N) & 2 _ ¢
sup|(etA Xo — €tAX0) (33)| < #HXO(')”%%S%W)'

xeSt

Fifth Step. By combining the three previous steps, we easily deduce . [ |
Proof of the two auxiliary identities and . We now prove the identity . We start with

N—1 (ks /N
&) =), <N f ¢ mxdx)l[k/zv,(ml)/zv)(')

k=0 k/N
N N—
— (NL ezznnxda:> Z LR TIPS
iwlSin(ﬂ—n/N)N ' 2 kn
¢ TN ,;0 N LN, (k1)) (-

We now check the second identity . Implementing the definition of A, we get:

N-1 N-1

i2mkn iop (EE1)n jop e=Dn iomkn

A(N)[Z * Nl[k/N,(k+1>/N)(-)] = N2 ) (T 4T 2PN ) 1 ey ()
k=0 k=0

= —2N?[1 — cos( { Z "N LN, (k1)) (¢ )}

5.2. Application to games. We now return to with (ak’j = a*hi = —Yk)kzo,‘.. N—lyj=1,, Ay
as defined in where (X (-),Y(-), Z(-)) now denotes the solution to (29). We denote the cor-
responding solution by (X*’k’j)k:(),...,N,l;j:17...7AN Since a**J does not depend on 7, we have
X*kJ = X" for any ke {0,--+, N — 1}, with X = 1/Ay 7% X**,

Also, we notice that (X;’O, e ,X;’N_l)ogtg’]‘ solves the system of SDEs:

ax;* = {o(p™) = ¥+ N X - 2% Lat + VNaBE,

for ¢ € [0, T], with the same initial condition X as before and for k € {0,--- , N — 1}. The above
system fits the form of (| @ To make it clear, we use the following notations:

N—
—x, N 1
Z k?/N k+1)/N)( )7 and Hy = N Z 5)—{:,1%,
We then apply Theorem [25) . 5| with a*(-) = b(Lebgi 0 X 1(-)) = Y (-) and 8* = b(a*") — Y(-) and
thus (8% = b(p*N) — f’k)kzgj...’N_l. Then, the SPDE takes the form:

0:X¢(2) = b(Lebgi o (X;(-))7") = Yi(x) + AXy(x) + Wilz), (t,z)€[0,T] x S,
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with the same X((-) as before as initial condition. Then, by Theorem 25, we get for all ¢t € (0,7,
sup EO[]Xt(a:) — )_Q(a:)|2]

zeSt

1 t
< CsN(l + 1W) + CE0L|b(Lebgl o (Xo())Y) = b(asN)[2ds
t t
< Cen (1 + %/4) + C]EOJ Jl | X (z) — Xo(z)Pdzds + C'EOJ Wa (3™, Lebg: o (X;(.))—l)st,

where C' now depends upon Eg So Vs (I3, (st Rd)ds and | Xo(-)[2, (S1:RY)" Since jis™ coincides with

Lebg: o (X2(-))7%, the last term in the above inequality is 0. T herefore by the general version of
Gronwall’s lemma, we get, for any ¢ € (0,77,

_ 1
sup Eo[|Xi(x) ~ X ()] < C’eN(l + /4). (94)

In order to show that we have constructed an approximate Nash equilibria, we apply a variant
of the sufficiency proof in the Pontryagin principle.

Particle system associated with 3. Recall the definition of 3 from the introduction of Section
Fix a pair (ko,jo) € {0,--- ,N —1} x {1,--- , Ay} and let 8**J = a**7, for k€ {0,--- , N — 1} and
je{l,---, An}, with (k, ) % (ko,jo); when k = ko and j = jo, let 3**0:0 = ~_ for some R%-valued
process v = (7¢)o<t<T that is progressively-measurable with respect to the filtration generated by
the cylindrical white noise W (-) = (W;(:))o<t<r- Then, we call ((Xf’J)Ogth)k:()’...7N_1;j:17...7AN
the system of particles:

i = {b( MY 4 BET 4 N2 (T 4 T - 2;25)}dt ++VNdBf, tel0,T],

for k€ {0,-,N —1} and j € {1,--- , Ay}, with the initial condition Xlg’j = Xk, and with

and
7]
Xt = A Z x;?, tel0,T).

_ N—1 _
As usual, we let x¢(z) = Y 0 XFLpe/n,(e1)/n) (@)
Pontryagin principle. For (ko, jo) as above, we compute

dI:(XfOJO _ X* kO) Yko]
= | (b0et) — o)+ o v

+ N2( photl 4 Xico 1 2—k’o X;’kOH 75(;,140—1 + QXt*,ko)) 'Ytko

(ko+1)/N

- N [ax F(Xi(z), Lebgt o (X;() 1) - (xkodo — )_(t*’ko)]dx] dt
ko/N

+ dmt ,
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where (m¢)o<i<7 is a square integrable martingale. Therefore,
1 X 3, t 7, Uk Uk —
d[[(xfo’” = XMy v+ fo (£ (koo 52) = F(X250, Lebgy o (X2() 1) ) ds

Lot okodor2  1orkor2
by ([t -y as)
1 i ko |2
Lt v o
+ 70 Lebgy o (X7()7") = (X7, Lebgy o (X7()) ™)
— 0 (X710, Lebgi o (X7 () 7) - (% — X?*’“O)]]dt
+dmt,

where we have let

o = £, mY) = F(x"%, Lebg o (X7 () ™)
+ (b(E) = b(EN) + N2+ xfomt - 2 - KPRt - xR o) ) v
(ko+1)/N
-N | (0o (Xe(a), Lebs o (X() ™)

ko/N
— e f (X770, Lebgi o (X7 () 71)) - (xfo% = X77) |de.

Hence, taking the expectation in (95]), using the convexity of f and inserting the terminal costs,
we get:

Eo[ (x50 VZTV)+J

0

T

(Pt ) + g1t |

T

> o (X3 Lebes o (X)) +

0

. B B 1,
(f<Xt . Lebgi o (X7 ())71) + 51, ’k°|2)dt}
+ Eq |:g(X];—,O7jO,LebSl o (X%())*l) _ g(X%’kO,Lebgl o (X%())fl)

_ g(X*Jco Leber o (X*())—l) . ( ko,jo X*’ko)]
AN AN T XT T
1 T oo o2 T
+ QEOJ |87 + Yo dt +E0J N dt + Eodly,
0 0

where we have let

S = g, ) — g(X27°, Lebg o (X5(-)) 1)

o [( +9(Xr(x), Lebgi o (Xp(-) ™)

— g (X5, Lebgt o (X3()) 7)) - (xg?* — X3) | a.
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By convexity of g and from the identity (ﬂ:’N = Lebg1 o (X7 (-)) Yo<t<T, We end-up with:

TRI (B )gm o N-1j=1, ax) = TP (@) mo o N 1=t Ay )

1 T ) B T
+ QEOJ B0 +Ytk°\2dt+ng 81 dt + Eoby.
0 0

(96)

Proving the convergence of the remainder. We now investigate the two sequences (6% )n>1 and

(Sg 6N dt) yen+. Using once again the identity (ﬁ;’N = Lebgi o (X7 (+)) Ho<t<r together with the
regularity properties of the coefficients, we have

T
ol 4[] + Bo | 157de

0 ) - .
<C<E0[W2(E]TV,LebS1 o (X7(-NH] +L Eo[Wa (7", Lebg: o(X;(-))—l)]dt>

+ O sup Bo[|Xr () — X (@) 2] (1 + o[ | — X702]'7%)

zeSt
T 1/2 1/2
+C<J supE0[|Xt(x)—X;(x)|2]dt) {1+(J Eo[|x kO’JO—Xt*’kOF]dt) ]
0 zeS! 0
T —
+CE0J sup| A (g, — X7)(a)]dt,
0 zeSt

where, in the last line, we used the fact that the process (}_/tko)ogtg’]‘ is bounded independently of
ko, see for instance Lemma [T9]

Observe from that we can find a sequence (ex)yens#, converging to 0 as N tends to oo, such
that

T 1/2
sup Bo[ | Xr(x) — X5(2)2]"* + (JO sup Eo[| X () — Xt*(:v)|2]dt> <en.

zeSt zeS!
Now, for any t € [0, 7],

1/2

2) '

1

N

k7j _*7k
Z X =X
j=1

N—
_ S 11
Wl et 0 (501 < (1 3
So, we end up with:
T
E[|6%]] +Ef |6 |dt
0

<en (1 + sup E[|Xf°’j0 — X;’k0|2]1/2>

0<t<T (97)
N-1 N 1/2 T B
+ C sup Eo[ Z Z |Xt’J *k ] —i—CEoJ sup]A Xt — X7)(x)]dt.
0<t<T k=0 j=1 0 xeSt

Now, for any t € [0,T],

1N1
Yy o

N—-1 N

N
X b - <o 3o 3 X - s
j=1 =1

T 2
— Yho|2q CJ AW v d
+NANL Vs + Y0 %ds + (0 ESSQ\ N(X2 = Xs)(@)|ds )
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so that, by Gronwall’s lemma,
N—1 N

J *k’
sup ———
0<t<TNAN kZ]OJZ:let (98)
c (" ko (2 T (N) (% ?
< — s + Y 0%ds + C f sup|A X —Xs xds).
NANJO |’Y ‘ ( 0 xeSI;‘ ( X )( )’

We then claim from Proposition [26] below that there exists a constant ¢, only depending on 7', such

that
T _ 2 c g ko |2
E[(J sume)(X;—xt)(x){dt) ]<A2Eof e + Yot
0 xeSt N 0

from which we deduce that

N—-1 N k; 2 C T
sup E Xt ) } <——F f + YR 2q,
0<t£T 0 [( kzo .721 |Xt mln(N, AN)2 0 0 |’Yt t |

the constant C' being allowed to vary from line to line. By a similar argument, but without
averaging, we obtain

T
sup Bo[ i — ;| < OBy | e+ 7o P
0<t<T 0

Returning to , this yields to

T T ~ 1/2
EOU‘%\/H +EOJ MtN‘dt < EN -I-Cé“N(Eof ”yt-i-Y%kOPdt) R
0 0

and then, inserting into , we get:

. A 1 T _
JEI (B8 om0, N-1j=1, ay) = TP (@) gm0, No1yj=1, ay) + 2]E0J e + YtkOIth
0

—EN[H( fol% Zk0!2d8>1/2]7 (99)

the sequence (en)nen* being now allowed to depend upon (An) yens-
Obviously, we can a find constant a > 0, independent of N, such that the sum of the last two

terms in the right-hand side is positive whenever Eg Sg |vs|2ds is greater than a. In such a case, we
have

JHOP (B8 om0 V15721, Ay ) = T (@M ) V1521, A )
which is the required inequality.
Now, if Eg S(? 1vs|2ds < a, yields

Jko,jo ((’Bk’j)k:O»"' JN—=1;5=1,- 7AN) = Jk()’jo ((a*k’j>k:0»"' N—=1;5=1, 7AN) —EN (1 + al/Q)
and the result follows easily.

Stability of the interaction. In order to complete the proof, it remains to evaluate the distance
between A X*(-) and AN x(-), which is the purpose of the next statement.

Proposition 26. There exists a constant C, only depending on T, such that, with the same nota-

tions as before,
T 2 C T e
Eo[(J sup‘A - )Zt)(.f)‘dt) ] < A2E0J Iy + YO 2dt.
0 zeSt N 0
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Proof. By , we notice that, for any ¢ € [0, 77,

Xi() = () = jo =N (p(zNy — b)) ds + fo t=IAN (G2 () = By())ds
— (i) + (i),

where we have let

N-1 N—
ar() = D oy gy (- =) ( Z By "7> [k/N,(k+1)/N) ()
k=0 k=0

As for (i), using the fact that both b(i3™) and b(#Y) are constant functions of z € S! for each
€ [0, 77, it is absolutely obvious that

(i) = jo (b(e™) — b)) ds,

and then AN (7), = Returmng to ([100)), it suffices to focus on (i7);.
Letting (0:(-) = (& — B¢)(*))o<t<T and following the third step in the proof of Theorem l we
have

t
J e(t s)AWY) ( _ ,35)<>d8 _ Z <J @?-i- —2N?[1- cos(27m/N)](t—s)ds> én,i(.)’
0 neN \W0

where (72" )nen denote the Fourier coefficients of the function g, € L2(S';R?). Here we used the
identity

N-1 (k+1)/N g
) = Z Z (NJ és(ff)d!E) [k/N,(k+1)/N) Z oy~e™

neN k=0 k/N neN
which follows from the fact that g(-) is constant on each [k/N, (k + 1)/N). Then,

AN (i) = <

neN

t
J ~n, +( IN?2 [1 - COS(QW?’L/N)]) —2N2[1—cos(27rn/N)](t—s)d$> én,i(').
0

We deduce that

ot | sin(T/N)| N1 —cos(2mm/ N1
sup|ALY) 2Zf o /N (2N2[1 — cos(2mn/N)])e 2NV [i—cosZmn/N](t=s) g

zeS! neN

which we rewrite

sup|A( )zz ZJ ot W,

zeSt neN

where we have let

hn,i _ sign(@?’i) (2N2[1 - COS(27T77,/N)]) | Sln(ﬂ"l’L/N)| 672N2[17cos(27rn/N)](tfs)’

s /N
where sign(z) is understood as (sign(z1),--- ,sign(zq)) for z € R Obviously,
sup hVE? < oo,
Oss<t 2 |

so that, by Parseval’s identity,

:SSE‘A i)y ()| < L Ll 0s(z) - hs(z)dz,
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with

_ Z hn,J_renHr
s

neN

In fact gs(-) = [(7s + Yo©)/AN]L{ko/n, (ko +1)/n) () Hence, we have

t _ (ko+1)/N
j (vs + Ysko) : (J hs(:v)dx> ds|.
0

1
sup’A( (ii)e(z)| < —

zeSt AN o/ N
Clearly, by (86),
(ko+1)/N (ko+1)/N .
f hs(x)dz| = | ), h?’if " (z)de| <2 ) ot LS/ N)L
ko/N neN ko/N = ™
Then,
T
f sup|A<N> (i) () |dt
0 xeSt
2 JT Jt | 4 ?kO‘M(N?’[l _ COS(2 n/N)])€—2N2[1—cos(27rn/N)](t—s)d8 dt
AN neN 0 T (7n)? &

T
A Z f lvs + Yk0|sm((7;:;ém (NS[I — cos(2mn/N))) (J 6_2N2[1_C°S(2”"/N)](t_8)dt> ds.
N S

neN

We thus have

LT :2§|A(N)(ii)t(m)\dt < A2N<LT ot }7slc0|ds> (N Z W)

neN
2 T _ 1 & sin 2(mn/N)
< — s+ YHolq — +N
an v ) (5 2 i 5 )

So, there exists a constant C', only depending on 7', such that

T C T B
EOH sup| A (i), |dt} LK, f e + Yo 2,
0 xe$St A 0

which completes the proof. N
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