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OPEN

REVIEW

Animal models to improve our understanding and treatment
of suicidal behavior
TD Gould1,2,3, P Georgiou1, LA Brenner4,5,6,7, L Brundin8, A Can1,9, P Courtet10,11, ZR Donaldson12,13,14, Y Dwivedi15, S Guillaume10,11,
II Gottesman16,17, S Kanekar18, CA Lowry5,6,19,20, PF Renshaw5,18, D Rujescu21, EG Smith22, G Turecki23, P Zanos1, CA Zarate Jr24,
PA Zunszain25 and TT Postolache1,5,6,26

Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well
documented that despite major governmental and international investments in research, education and clinical practice suicide
rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage
in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate
endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a
critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of
suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic–pituitary–adrenal
axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and
decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and
environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as
protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal
behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further
useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma
aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further
study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.

Translational Psychiatry (2017) 7, e1092; doi:10.1038/tp.2017.50; published online 11 April 2017

INTRODUCTION
Suicide is the tenth leading cause of death in the United States,
and the fifteenth worldwide, making it more lethal than common
diseases like hypertension, liver disease or Parkinson’s disease.1

For example, it has recently been documented that from 1999 to
2014, the suicide rate in the United States increased by 24%, with
the greatest increase occurring more recently, after 2006.2

Although many deaths by suicide are likely preventable, suicide
rates have been particularly resilient to multilevel interventions. In
2012, the rate of suicide among those serving in the United States
uniformed services surpassed that of combat deaths in war

zones.3,4 Clearly, suicide prevention efforts demand increased
attention. A major challenge is the broad conceptual gap between
biological research in suicidal behavior and the current clinical
practice of managing suicide risk.
Thus far, multiple research efforts in suicide prevention have

been dedicated to psychological and socioeconomic factors
leading to suicide, including better control of availability of lethal
means. In addition, there is also evidence suggesting that some
medications - lithium and clozapine - reduce the risk of suicidal
behavior.5 Clinical risk (triggers) and protective (deterrents) factors
have been extensively covered and summarized elsewhere.6–10
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There are also extensive efforts directed at understanding the
dysregulation of human brain functions11 and behavioral reper-
toire associated with ‘suicidal behavior’, which refers to a
heterogeneous outcome of suicide attempts and suicide
completions.12

Support for the study of suicidal behavior as a scientific entity is
multifold.13 Although it is well known that the nature of a suicidal
act (suicide attempt or completed suicide) may be influenced by
gender, age, availability of a lethal mean, and specific suicidal
dimensions like suicidal intent and medical lethality, these
behaviors seem to have more in common and are often
distinguished from another component of the suicidal process,
suicidal ideation. The clinical profiles of suicide attempters and
completers significantly overlap.14 In addition, a previous suicide
attempt is among the strongest predictors of future suicide.15 In
contrast, suicidal ideation, (‘suicidality’) often a major reason for
hospitalization, is a significantly weaker predictor of suicide than
attempts.
Epidemiological genetics studies indicate that suicide attempts

and completed suicides may share a common genetic basis.16

Furthermore, in contrast to suicidal behavior, there is limited
support that suicidal thoughts run in families, or that they are
predictive of suicide attempts or completions within families.17

Finally, suicide attempts and suicide completions share many
neurobiological correlates18,19 and are thus commonly studied
together. A historic turning point in suicidology resulted from the
demonstration that psychobiological abnormalities are associated
with vulnerability to suicidal behavior, independent of co-
occurring psychiatric disorders.18

Even though suicidal behavior is the ultimate negative
psychiatric outcome, the study of suicide can be difficult and
experimental procedures among vulnerable populations can be
ethically challenging. Although research at these levels of under-
standing is needed, current suicide rates suggest that additional
approaches should also be strongly considered. Despite con-
ceptual attempts to draw parallels between self-killing behavior in
nonhuman animals and suicidal behavior in humans, our position
is that suicide as it exists in humans is the outcome of a unique
cognitive process. It involves insight, planning, and intent that is
unlikely to be present in nonhuman animals, and in particular
rodent model systems that are a focus of this review.20–22

Although we do not eliminate the possibility that nonhuman
animals may engage in self-killing acts, such behavior is not the
focus of this review. We argue that the increased use of animal
model approaches with translational validity to study suicide
neurobiology would allow the testing of hypotheses, as well as
novel drug discovery leading to improved treatments for the
prevention of suicide. Hypotheses tested first in animals and then
in humans could point toward new treatments allowing a faster
and more precise identification of potential molecular pathways
and treatment targets, the avoidance of obstacles in human
studies of suicide-related ethical concerns, as well as the issues
with obtaining adequate sample sizes. Conversely, confirmation in
animals of epidemiological and clinical observations in humans
with suicidal behavior sublimated to simpler endophenotypes in
thoroughly controlled experiments increases our capability to
move associations closer toward causation, often unattainable in
humans considering the degree of potential confounding,
uncertain direction of causality, and interactions of multiple
intertwined contributory factors. The authors on this review
include both clinical and preclinical researchers, who have a
shared interest in advancing the use of preclinical animal model
approaches for the study of suicidal behavior.

ANIMAL MODELS AND SUICIDE
Terms such as ‘animal model’ or ‘model animals’ or ‘animal assay’
and ‘suicide’ are not typically used in the same sentence. Although

there are obvious limitations in assessing suicidal intent in
animals, such as reproducing conceptualization, motivation,
conscious planning, and the ultimate action of killing oneself,22

many components implicated in the neurobiology of suicidal
behaviors, and the neurobiology of circuits delineated as relevant
to ideation in humans, may be studied in animal models. Indeed,
most animal ‘models’ are only intended to recapitulate some
aspects of human diseases, or components of neurobiology
implicated in human psychiatric disorders, rather than the
disorder itself. This approach limits ‘anthropomorphizing’ by
keeping the focus on neurobiological and pharmacological
quantitative aspects that can be translated from humans to
animal studies, which commonly use rodents. For example, in
animal models of other uniquely human psychiatric conditions
such as schizophrenia or depression, experimental animals cannot
be labeled as psychotic or depressed. However, approaches that
involve the use of model systems are still invaluable in under-
standing distinct component processes relevant to the disorder,
are extensively used in the development of treatment approaches,
and are applied toward identifying genetic and environmental
influences for such conditions.23

A critically important aspect of developing an animal model
approach to the study of suicidal behavior is to be realistic
regarding what a particular model is measuring. The credibility of
specific animal models as they pertain to human mental
conditions are commonly evaluated as to whether they demon-
strate face, construct, and predictive validity.24,25 Face validity
refers to phenotypes that contain similarities to humans who have
the condition. Construct validity refers to processes that result in
human pathology and are recapitulated with the model. Predictive
validity relates to the capacity of a model to make predictions
about the human condition. A model with predictive validity is
sensitive to pharmacological and non-pharmacological interven-
tions that effectively modify the condition in humans. We do not
propose the development of animal models of suicidal behavior
with face validity. However, predictive- or construct-based
approaches can be formulated in the study of suicidal behavior,
generally using suicide risk factors, and specifically candidate
endophenotypes (quantifiable measures of neurobiological func-
tion) associated with suicide. Using this strategy, it becomes
possible to translate clinical findings related to complex human
behavior to animals and vice versa (Figure 1).26 We note that it is
humans, not nonhuman animals, who manifest suicidal behavior.
Basic studies in model animals can be used to understand
fundamental mechanisms that underlie biological phenomena,
but the biology underlying pathological dysregulation requires
validation in humans.27

An example for such an endophenotype approach can be taken
from schizophrenia research. Endophenotypes of schizophrenia,
such as deficits in prepulse inhibition and impaired working
memory performance, have been successfully translated to
rodents to assist in understanding the neurobiology underlying
the disorder, assessing the function of risk alleles, and developing
novel therapeutic approaches.28–30 Such an approach could be
used to more extensively study processes and behavior associated
with suicide, whereby endophenotypes such as neurobiological,
endocrine, neuroanatomical, and cognitive measures associated
with suicidal behavior could be translatable to model animals
(Figure 1).31–35

Suicide risk factors, such as stress and hypothalamic–pituitary–
adrenal (HPA) axis dysfunction, hormonal and neurotransmitter
system abnormalities, and endophenotypes including aggression,
impulsivity, and decision-making deficits, can be modeled
in laboratory animals. Animal models also present
opportunities to study interactions between development and
environment on critical neuronal circuits using manipulations
not possible in humans. It is logistically and ethically more
acceptable to investigate animal models than to perform human
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experimentation. For instance, moderators and modulators that
have been associated with suicidal behavior can be investigated in
relationship to endophenotypes in animal models without the risk
to human life. Here, we briefly review some of these human
biological findings. What is presented is not meant to be all
inclusive, but rather to provide salient examples of approaches
using rodent models that can be used to advance research
designed to improve our understanding of the neurobiology and
treatment of suicidal behavior.

MOLECULAR AND HORMONAL PATHWAYS
We briefly present certain molecular pathways implicated in
suicidal behavior that have been and can be studied readily in
animal models.

Genetics
The genetic risk of suicidal behavior is supported by family, twin,
and adoption studies indicating that the tendency to commit
suicidal acts has a genetic contribution that is independent of the
heritability of psychopathology.36 One of the largest epidemiolo-
gical studies, conducted by Mittendorfer-Rutz et al.,37 including
14 440 suicide attempters and 144 440 healthy controls, showed
that the risk for suicide attempts increased when either parent
died by suicide. Of course, early familial exposure to psycho-
pathology and a suicidal attempt can have a detrimental effect on
the family members, especially on those in a stage of emotional
cognitive development such as young children and adolescents,
and such effect would be unrelated to the genetic component.
Addressing this issue, twin studies strongly suggested genetic
contributions to liability for suicidal behavior with a heritability

Figure 1. Heuristic model displaying candidate genes, endophenotypes and environmental risk factors implicated in suicidal behavior that
may lend themselves to further study in animal model systems. The upper portion of the figure indicates the dynamic interplay among
genetic, epigenetic and environmental factors that produce cumulative liability to complex behaviors such as suicide.451 Although attempted
(non-successful) suicide does not always predate suicide as suggested on the reaction surface, it is a significant risk factor.15 None of the
sections of this figure are meant to be definitive: gene loci, genes, candidate endophenotypes and links among these factors remain to be
discovered, as well as factors that have not been fully evaluated. Environment, protective and harmful, includes a substantial number of
sociological events unmentioned here because of our focus on the genetic and neurobiological correlates that may be modeled in nonhuman
animals. Similarly, specific gene loci and genes were not included because of the current limitations in knowledge. TBI, traumatic brain injury.
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between 45 and 55%.38 Concordance for suicidal behavior was
significantly more frequent among monozygotic (24.1%) than
dizygotic twin pairs (2.3%). However, we cannot entirely discount
that monozygotic twins experience an intricate unique psycholo-
gical and emotional symbiosis throughout life, resulting in an
increased potential of contagion of suicidal behavior that is not
present in dizygotic twins. Adoption studies have also supported
the role of genetic risks.39–41 For instance, suicide and indicators of
severe psychiatric disorders in the biological parents were found
to be similarly related to suicide in non-adopted and adopted
children.42

There have been many single gene association studies under-
taken. Many of these have focused on genes involved in
serotonergic neurotransmission as this is crucial for the regulation
of impulsive and aggressive behavior, which highly correlates with
suicidal behavior.18 Recent years have brought an increase in
genome-wide association studies, where greater than one million
single-nucleotide polymorphisms can be studied. The first exome
or whole-genome sequencing studies are underway. The full
results of these studies are eagerly anticipated, and are expected
to provide important new leads to study the neurobiology of
suicidal behavior.

Epigenetics
There is increasing evidence that environmental cues affect
behavior through modifying gene expression; this includes
epigenetic processes, which are lasting modifications of gene
expression that do not change the coding sequence of the gene.
Epigenetic modifications include mechanisms such as DNA
methylation, histone modifications, as well as the effects of
noncoding RNAs, which have emerged as the key molecular
mechanisms that mediate brain plasticity in response to environ-
mental changes.43

Maladaptive coping to the environment is a contributing factor
to suicidal behavior in different age groups.44,45 Cohort studies
have provided data supporting predictive associations between
abuse during early childhood, and psychopathology in adulthood,
including increased anxiety, impulsivity, aggression, and increased
risk of suicide or suicidal behavior.46,47 Early-life adversity,
including severe neglect, psychological, physical, or sexual abuse
during childhood, has been consistently identified as a factor
contributing to depression, substance abuse, and suicidality.48–57

Several studies have reported an association of childhood abuse
with earlier age of onset of psychopathology, a more severe
course of illness, and poorer patient outcomes, including up to a
12-fold higher risk of engaging in suicidal behavior.55,58–64

Evidence points to specific genes, especially those involved in
the response to stress, as being epigenetically modified in
response to early-life adversity.65–71 In addition, there is a growing
literature implicating differential regulation of genes coding for
neurotrophic, astrocytic, and neuroinflammatory proteins by
epigenetic mechanisms in suicidal behavior.72–74 Epigenetic
changes could therefore be the key mediators of the long-term
effects of early-life adversity on behavior, psychopathology, and
suicide risk.
Epigenetic modifications are possibly heritable, which may

explain in part the familial aggregation of suicidal behavior, as well
as of endophenotypes associated with such behavior. Further
work exploring the inherited components of epigenetic regulation
of suicide-related genes may explain the inherited vulnerability to
mental illness and suicidal behavior in families with heavy loading
of psychiatric conditions.17,75

MicroRNAs
MicroRNAs (miRNAs), a class of noncoding RNAs, have recently
gained prominent attention for their role in neural plasticity and
higher brain functioning.76–79 These miRNAs bind to short

sequences located predominantly within the 3′-untranslated
region of messenger RNAs (mRNAs), and interfere with translation
or stability of mRNAs with the potential to modulate disease
phenotypes.80 Several miRNAs have been shown to regulate
genes that are crucial in the neurobiology of suicidal behavior. For
example, early childhood stress is significantly associated with
upregulation of miR-16 and subsequent downregulation of the
brain-derived neurotrophic factor (BDNF) gene in hippocampus.81

A strong miRNA-target interaction between miR-135 and the
sodium-dependent serotonin (5-hydroxytryptamine; 5-HT) trans-
porter and 5-HT receptor-1A transcripts has also been reported.82

Intriguingly, miR-135a levels are upregulated after the adminis-
tration of antidepressants.82 Moreover, a decrease in 5-HT1A
receptors was observed in postmortem brain samples from
depressed suicides compared with healthy controls.83 Interest-
ingly, Jensen et al.84 reported that the expression of 5-HT1B
receptors, involved in aggressive behavior in humans, a critical
endophenotype of suicide, is repressed by miR-96, which depends
on the A-element of the 5-HT1B receptor mRNA. Individuals who
were homozygous for the ancestral A-allele had more conduct
disorder behaviors than individuals with the G-allele.84 Another
study found an association of a functional polymorphism in
miR-124-1, which targets genes such as BDNF and DRDF, and
aggressiveness, which could explain the effect of this miRNA on
aggressive behavior.85 Recently, a gene-based association study
showed potential involvement of DICER1 in suicide
pathogenesis.86 DICER1 has a critical role in miRNA biosynthesis.
Regulatory roles of miRNAs in polyamine gene expression in the
prefrontal cortex of depressed suicide individuals have also been
demonstrated.87 More recently, differential expression of miRNAs
in the prefrontal cortex of patients with bipolar disorder,
depression, and schizophrenia was identified; however, when
suicides were separated from individuals who died from other
causes, a subset of miRNAs were distinctly dysregulated in suicide
subjects independent of psychiatric diagnosis.88 This raises an
interesting possibility that there are miRNAs that may be involved
in the regulation of brain circuits underlying behaviors associated
with suicide across diagnostic boundaries.
Dwivedi and colleagues examined miRNA expression in the

frontal cortex of rats that developed hopeless behavior (learned
helplessness (LH)), a risk factor for suicidal behavior in humans,
and those who did not develop such a behavior (non-learned
helplessness (NLH)), even though they received similar shock
paradigms.89,90 They found that NLH rats showed a robust
adaptive miRNA response to shocks, whereas LH rats showed a
markedly blunted miRNA response. In addition, a large core co-
expression module was identified, consisting of miRNAs that are
strongly correlated with each other across individuals of the LH
group but not with the NLH or the tested control group. The
presence of such a module implies that the normal homeostatic
miRNA response to shock is not merely absent or blunted in LH
rats; rather, gene expression networks are actively reorganized in
LH rats, which may give rise to a distinctive persistent phenotype.
It will be critical, in the future, to identify the role of miRNA in
regulating gene expression following stressful life events and
modulation of circuits essential for the development and
maintenance of endophenotypes associated with suicidal
behavior.

Serotonin system
Evidence suggests that the underlying neurobiology of suicidal
behavior involves abnormalities in the 5-HT system, with findings
supporting a downregulation of 5-HT function.18,83,91–94 For
example, cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid
(5-HIAA, the major metabolite of 5-HT) has been shown to be
lower among individuals who attempt and die by suicide than in
controls, independent of other psychiatric diagnoses such as
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depression and schizophrenia.95–97 Low CSF 5-HIAA also predicts
future suicide attempts and suicide.95–97 Irrespective of a
psychiatric diagnosis, low CSF 5-HIAA levels are associated with
aggression.95,98 An association has also been identified between
low CSF 5-HIAA levels and impulsivity, as identified by the
performance on a human delayed reward discounting task.99–101

Similarly, dysregulation of the 5-HT system, in particular decreased
5-HT neurotransmission, has been associated with aggression and
impulsivity in humans.102 Likewise, a number of preclinical studies
in rodents implicate altered 5-HT neurotransmission with aggres-
sion. Similar to human 5-HIAA findings, both 5-HT and 5-HIAA
levels, as well as 5-HT turnover, are negatively correlated with
levels of aggression in rodents.103,104 Administration of the
tryptophan hydroxylase inhibitor para-chlorophenylalanine has
been reported to increase aggression in both mice and rats.105,106

Pharmacological studies have implicated 5-HT in control of
impulsivity in the contexts of decreased latency to attack,106,107

the five-choice serial reaction time test, and other tests of motor
impulsivity,108 and some, but not all studies, indicate 5-HT-
induced changes in tests of cognitive impulsivity.108–112 Seroto-
nergic modulation of impulsive aggression implicated in suicide
vulnerability can be studied in animal model systems in a
straightforward manner within a context relevant to suicidal
behavior.
The 5-HT system is hallmarked by 14 receptors with overlapping

pharmacological properties. As such, genetic manipulation
techniques have proven invaluable for determining which
receptor populations modulate aggression and impulsivity. For
instance, the Htr1b null mice exhibit increased aggression and
impulsivity.113,114 Using conditional knockout/knockdown appro-
aches, which selectively delete specific genes in a tissue or brain
region of scientific interest,115 recent work indicates that distinct
neural circuits influence these phenotypes. The forebrain 5-HT1B
heteroreceptors determine adult aggressive behavior during
development, while adult expression of a different population of
5-HT1B heteroreceptors modulates impulsive behavior.116 Such a
dissociation of the neural circuits underlying these two suicide-
relevant endophenotypes may have important implications for
prevention strategies and pharmacotherapies targeting the 5-HT1B
receptor system.116

Animal models may also help to clarify the findings regarding
gene associations in the 5-HT system, and suicide-related
endophenotypes. Associations have been studied for various
serotonergic genes, including tryptophan hydroxylase genes:
TPH1; TPH2, encoding the rate-limiting enzyme in the biosynthesis
of 5-HT, 5-HT transporter gene: specifically, the 5-HT transporter-
linked polymorphic region in SLC6A4, 5-HT receptor genes: HTR1A,
HTR2A, HTR1B, HTR2C and monoamine oxidase A and B genes:
MAOA, MAOB. In general, the results are inconsistent, making it
difficult to draw reliable conclusions. Likewise, 5-HT receptor
meta-analyses provide a heterogeneous picture, but in some
cases, animal research can help clarify the putative role of a
particular polymorphism.117 For instance, a HTR2B premature stop
codon identified in the Finnish population is associated with
severe impulsivity. Similarly, Htr2b knockout mice exhibit
increased impulsivity and enhanced locomotor activity.118 Like-
wise, much work has been done in vitro to elucidate the putative
functional mechanism underlying a common single-nucleotide
polymorphism, rs6295, in the promoter of the HTR1A gene, which
has been inconsistently associated with increased suicide
risk.119,120 These studies suggest that the G-allele of rs6295 may
increase 5-HT1A autoreceptor expression in serotonergic neurons.
Mouse models with selectively altered 5-HT1A autoreceptor levels
have demonstrated a role for these receptors in modulating
stress-coping behaviors.121,122 Although these studies do not
demonstrate a direct, functional role for rs6295, they support the
idea that naturally occurring variation in 5-HT1A receptor levels

within the human population, such as those potentially attribu-
table to rs6295, may be behaviorally relevant.

Tryptophan degradation and the kynurenine pathway
The essential amino acid tryptophan is processed by the enzyme
tryptophan hydroxylase to form serotonin. However, the largest
part of tryptophan is broken down by the kynurenine pathway to
form the kynurenine metabolites and the end product nicotina-
mide adenosine dinucleotide. A plausible mechanism that has
been suggested to contribute to depressive symptoms is a relative
deficiency in serotonin, caused by an increased amount of
tryptophan shunted through the kynurenine pathway, instead of
being utilized for serotonin production.123 Although experimental
tryptophan depletion, as the result of experimental intake of a
specific diet enriched in certain amino acids and depleted of
tryptophan, can acutely suspend therapeutic control of depressive
symptoms and induce dysphoria, anhedonia, and hopelessness, it
has not been confirmed that such a deficiency state can occur as
part of any clinical condition or that it modulates suicidal ideation
or behavior.
It is now considered that dysregulated production of several

neuroactive compounds through the kynurenine pathway can
affect emotion and behavior. Inflammatory cytokines are potent
inducers of this enzymatic pathway. Although it is important to
point out that also, under non-inflammatory conditions, this
pathway is active and breaking down over 90% of dietary
tryptophan. Dietary and metabolic factors, such as glucose levels
and obesity, as well as hormones and inflammation, all contribute
to the regulation of the pathway, although the detailed
mechanisms still remain to be determined.124,125

Kynurenic acid and quinolinic acid (QUIN) are two metabolites
produced by this pathway with multiple effects on neuroinflam-
mation and glutamate neurotransmission in particular. QUIN is an
N-methyl-D-aspartate (NMDA)-receptor (NMDAR) agonist, activat-
ing receptors containing the NR1+NR2A and the NR1+NR2B
subunits.126,127 On the other hand, kynurenic acid blocks several
receptors, including the glycine site and the glutamate-
recognition site of the NMDAR.127 Levels of QUIN are almost
three times higher in CSF of suicide attempters than in healthy
controls, correlating significantly with the levels of interleukin-6
(IL-6).128 This indicates that the kynurenine pathway is induced in
the central nervous system of suicidal patients, presumably by an
ongoing process of inflammation, with resultant downstream
changes in glutamate neurotransmission. The imbalance of the
kynurenine metabolites is evident in patients prone to suicidal
behavior and may indicate a potential inherent vulnerability to
stress and inflammation.129 Suicide attempters show elevated
plasma kynurenine levels compared with non-suicidal depressive
patients, who have levels of kynurenine similar to controls with no
history of depression.130 There is no apparent activation of the
kynurenine pathway, at least in the peripheral blood, of depressed
patients without current suicidal thoughts.131 Consistent with
these observations, Steiner et al.132 showed increased expression
of QUIN-reactive microglia cells in the brains of depressed patients
who died by suicide.
A recent report identified that an enzyme in the kynurenine

pathway, the amino-β-carboxymuconate-semialdehyde-decarbox-
ylase (ACMSD), may govern vulnerability to neuroinflammation
through limiting the formation of the neurotoxic QUIN with
production of the neuroprotective picolinic acid.133 Suicide
attempters had trait-like decreased picolinic acid and picolinic
acid/QUIN ratios in both blood and the CSF, suggesting a reduced
activity of ACMSD. Furthermore, increased QUIN in the central
nervous system was associated with a genetic variant in the
ACMSD gene (C allele of the ACMSD single nucleotide poly-
morphism rs2121337; more prevalent in attempters than in
controls). In conclusion, the ultimate fate of inflammation may
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depend on the ultimate neuroprotective versus excitotoxic
outcome dictated by the (genetically determined) level of activity
of downstream enzymes on the kynurenine pathway, such as
ACMSD. In some individuals, the ACMSD activity may be high
enough to neutralize, and even reverse, excitotoxic consequences
of inflammation. In contrast, certain individuals, such as some
among those who attempt suicide, may have limited ACMSD
activity, with a cascading excitotoxic outcome in inflammation via
the kynurenine pathway. This may explain some of the
inconsistent findings across individual patients. ACMSD activity
could be modeled in genetically modified rodents to evaluate its
effects on endophenotypes of suicidal behavior, and screen for
potential beneficial reduction of endophenotypic measures with
ACMSD-targeting medications.

Inflammation
Accumulating evidence indicates that inflammatory mediators
are increased both in the central nervous system and in the
periphery of patients with a history of suicidal behavior. Tonelli
et al.134 found that mRNA transcription for the cytokines IL-4
and IL-13 was increased in the orbitofrontal cortex (OFC)
of individuals who died by suicide. A second postmortem
study published in the same year found pronounced microgliosis
in the brains of patients who died from suicide.135 Recently,
increased levels of IL-1β, IL-6 and tumor necrosis factor (TNF) at
both the mRNA and protein levels were observed in the anterior
prefrontal cortex of teenage suicide victims.136 Supporting the
findings of increased inflammation in the central nervous system
of suicidal patients, the cytokine IL-6 is significantly increased in
the CSF of patients who attempt suicide compared with healthy
controls.137

Suicidal behavior is also accompanied by changes in peripheral
cytokine levels. An early study (1993) revealed that levels of
soluble IL-2 receptor (IL-2R) are elevated in blood samples from
suicide attempters.138 The plasma levels of cytokines IL-6 and TNF
are increased, and those of IL-2 are decreased, in suicide
attempters compared with both non-suicidal depressed patients
and healthy controls.139 A composite inflammatory index,
consisting of the sum of z-scores for C-reactive protein, IL-6, IL-10,
and TNF, is associated with the occurrence of suicidal ideation,
independent of both the severity of depression and whether the
patients recently attempted suicide.140 Meta-analyses on this topic
concluded that there are indeed aberrant cytokine levels in blood,
CSF, and postmortem brain samples of patients who died by
suicide.141–143 Blood levels of IL-1β and IL-6 appear to be most
robustly associated with suicidal behavior143 among many
markers of inflammation. In support of these meta-analyses, a
recent gene-expression study showed that biological mechanisms
related to stress, inflammation, and apoptosis may underlie, at
least partly, suicidality and suicidal behavior.144 As a consequence,
it has been suggested that suicide-risk assessment in the clinics
might be improved by measuring peripheral inflammatory
markers. Related biomarkers that have been associated with
suicidality are blood levels of S100 calcium-binding protein B
(S100B) and C-reactive protein. Falcone et al.145 reported that
serum levels of S100B, a marker of inflammation in the central
nervous system, were related to the intensity of suicidal ideation
in teenagers with depression and psychosis.
The causal relationship between inflammation and depressive-

and depressive-like symptoms has been confirmed in multiple
animal models,146–151 as well as in studies of healthy human
volunteers who received injections of endotoxin, lipopolysacchar-
ide, to induce inflammation.152,153 Moreover, up to half of cancer
and hepatitis C patients who receive interferon-α or IL-2
treatments develop depression and suicidality.154–158 Mechan-
istically, inflammation can affect the brain in several ways to
modulate emotion and behavior. Specific cytokines are able to

bind to specific neuronal receptors and thereby regulate
neurotransmission. Endophenotypes associated with suicidal
behavior, such as aggression, have been exacerbated (at least
partially) by the effects of individual cytokines. For instance, IL-1β
injected into the medial hypothalamus or dorsal periaqueductal
gray acts on IL-1 type I receptors (IL-1RI) and 5-HT2 receptors to
potentiate aggression in a feline model.146,149,159 An alternative
pathway was uncovered by injecting IL-2 into the midbrain
periaqueductal gray, which increases aggression through neuro-
kinin NK (1) receptors.147 Moreover, TNF also appears to induce
aggression. Mice lacking the TNF receptor do not exhibit
aggressive behavior in the resident-intruder test.150 Individual
cytokines might have very specific effects in the brain, and much
still remains to be explored. In addition, as mentioned in earlier
sections, inflammatory factors are modulators of the activity of
enzymes in the kynurenine pathway producing neuroactive
metabolites with effects on glutamate receptors. Finally, inflam-
mation in the brain changes the turnover and metabolism of
monoamines, including dopamine and 5-HT, and can thus have
profound effects on several neurotransmitter systems. Impor-
tantly, several anti-inflammatory and kynurenine pathway-
targeting medications are available and are of high interest for
experimental testing in animals and then in patients with suicidal
depression, based on the above observations. These medications
may include anti-inflammatory agents, minocycline (through
decreased microglia activation), glycogen synthase kinase-3
inhibitors (expected to reduce production of proinflammatory
cytokines and aggressive behaviors), and infliximab (a monoclonal
antibody against TNF).160 Although many are already United
States FDA approved for other indications, these medications
should first undergo a battery of testing in animals establishing
their potential for improving depressive-like symptoms, aggres-
sion, impulsivity, and decision-making, to select the most suitable
drugs for subsequent clinical trials in psychiatric patients.

HPA axis
Dysregulation of HPA axis activity, as measured by the dex-
amethasone suppression test, has been associated with higher risk
of suicide in patients with major depression.161,162 Specifically,
there is a reduction in the physiological responses downregulating
cortisol levels following administration of the exogenous gluco-
corticoid dexamethasone. Evidence shows that, in humans who
have experienced early-life adversity, responses to stress are
altered163,164 with increased corticotropin-releasing hormone
levels.165,166

Studies conducted in rodents and nonhuman primates have
also shown that experiences in early-life have a long-term impact
on the HPA axis.167–170 Numerous studies conducted using a rat
model of maternal care have demonstrated that the level of
attention and care given to rat pups by dams is positively
correlated with the hippocampal expression of glucocorticoid
receptor (GR), which is a negative regulator of corticotropin-
releasing hormone expression in the hypothalamus and is
downstream of glucocorticoid-linked responses to stress.170–172

Importantly, attenuation of the response to stressful stimuli in this
model is linked to epigenetic modifications of the GR gene where
increased maternal licking/grooming is associated with decreased
methylation of the GR promoter exon 17 and increased expression
of GR in the hippocampus.170 This finding has been partly
reproduced in other models of early-life stress in rodents.68

Reports of changes in GR methylation in rats having had less
favorable early-life experiences led to investigations of such
potential mechanisms in human tissues.
Studies conducted on postmortem brain samples from indivi-

duals who had died by suicide showed that those who had a
history of childhood abuse exhibited altered DNA methylation
patterns on the GR gene in the hippocampus.65,70 Evidence of
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such epigenetic dysregulation of the HPA axis provides an
indication of ways in which early-life adversity may heighten the
risk of suicide. The production and regulation of cortisol through
this pathway is a crucial component of the organism’s response to
environmental cues. Dysregulation of cortisol can cause maladap-
tive coping behaviors; additionally, disruption of HPA activity is
associated with suicide risk.161 Overall, early-life stress may result
in dysregulation of the HPA axis and stress-coping behaviors,
which in turn may increase the vulnerability to suicide.

Gonadal hormones
Suicidal behavior has marked gender differences, including higher
rates of attempts in females and higher rates of death by suicide
in males in most countries, with China being a notable
exception.173,174 Consistent with this, evidence suggests a role
of gonadal hormones in suicidal behavior. Decreased testosterone
levels have been correlated with increased propensity for
depression175–177 and suicide attempts,178–181 whereas increased
testosterone has been associated with increased aggression in
men.182 Moreover, it has been shown that women are more likely
to attempt suicide when estrogen and progesterone levels are
low. Suicide attempts made under these conditions have greater
severity.183 Furthermore, perimenopausal women have higher
suicidal ideation rates compared with women in pre- or
postmenopause stages or compared with men, independent of
mood disorders.184 In contrast to women, increased progesterone
levels in adolescent men have been associated with increased
suicidal thoughts and behavior.185 Although clinical studies have
been designed to unravel the exact role of the menstrual cycle
and female hormones in relation to suicidal behavior, results
have been controversial with some studies reporting no
relationship.186,187 However, other studies report a higher risk of
suicide during the premenstrual phase,188–190 menstruation,190–193

or during the first and fourth weeks of the menstrual cycle.194

However, the majority of these studies based their assessment of
menstrual cycle phases on interview methods, rather than an
objective measurement. Moreover, postmortem studies investi-
gating the role of menstrual cycle phase by assessing endometrial
histology cannot avoid bias, as some suicides have been reported
as non-suicidal fatalities.195 Therefore, animal models of suicide
will be helpful to study the exact role of gonadal hormones in
suicidal behavior, or endophenotypes associated with such
behaviors.
Rodent models have been used over the years in an effort to

thoroughly understand the hormonal influences on suicide-
related endophenotypes, including impulsivity, anhedonia, and
aggression. For instance, administration of progesterone, or both
estrogen and progesterone, decreases impulsive behavior in
ovariectomized rats.196 Moreover, in male rats, gonadectomy
decreased impulsive action in the five-choice serial reaction time
task compared with intact rats, suggesting that low testosterone
levels might be associated with decreased impulsivity.197 In
contrast, ovariectomy increased impulsive action in females in
the same task.197 In addition, testosterone, dihydrotestosterone,
estradiol, and progesterone administration have been shown to
manifest antidepressant effects in rodents, as assessed by the
forced-swim test.198–200 Consistently, testosterone or estradiol
replacement prevented anhedonia phenotypes in gonadecto-
mized male rats.201 On the other hand, increased testosterone
levels are positively correlated with increased aggression in male
rodents202,203 and administration of medroxyprogesterone, a form
of progesterone, increases male–male aggression and decreases
male–female aggression in monkeys.204 Interestingly, the gene
encoding for estrogen receptor alpha (ERα) is required for high
levels of aggression in male mice ,205 whereas mice lacking the
estrogen receptor beta (ERβ) gene are characterized by a
hyperaggressive phenotype,206 further demonstrating a role of

gonadal hormones in endophenotypes associated with suicidal
behavior. Overall, the findings from both clinical and preclinical
studies suggest that circulating levels of gonadal hormones may
affect suicide-related endophenotypes and the vulnerability to
suicide.
The effects of gonadal hormones on suicide-related endophe-

notypes may be integrated with those of 5-HT dysregulation,
discussed above, as testosterone increases 5-HT transporter mRNA
expression and binding in rats and humans.207,208 In addition,
testosterone increases the neuronal firing rates of serotonergic
neurons in the dorsal raphe nucleus in rats.209 Furthermore, the
effects of testosterone on 5-HT transporter mRNA, binding, and
serotonergic neuronal firing are thought to be dependent on
aromatization of testosterone to 17β-estradiol.208,209

PERSONALITY AND COGNITIVE TRAITS
Aggression
A widely replicated association between suicidal behavior and
quantitative behavioral measures is with indicators of aggression,
also clinically observed as ‘impulsive aggression’ (see the following
refs 210,211). These measures satisfy criteria for endophenotypes
being heritable, associated with suicidal behavior, state indepen-
dent, and co-segregated with suicidal behavior in families. In
particular, retrospective studies suggest that suicide attempts are
linked with aggression.212–215 These associations also seem to
hold for death by suicide. For example, Brent et al.,216 using the
psychological autopsy method, reported that adolescents who
died by suicide have higher levels of lifetime aggression than the
healthy controls. These associations are independent of
psychopathology.217 Prospective studies confirmed an association
between higher levels of aggression and suicidal behavior.218

Moreover, the familial transmission of suicidal behavior appears to
be mediated by transmission of impulsive aggression.211,219

Family studies provide additional support for the association of
aggression and suicide. For example, first-degree relatives of
individuals with suicide attempts or ideation have a significantly
higher history or levels of aggression.219–222 Consistently, higher
ratings of aggression are documented in families with a higher
incidence of suicide attempts.17 However, the impact of witnes-
sing aggression or abuse or being a victim of aggression or abuse
cannot be disregarded. The use of animal model approaches
presents opportunities to study the role of suicide risk factors in
mediating aggression and impulsivity.

Impulsivity
Impulsivity is another personality trait that has been strongly
associated with suicidal behavior, and meets specific endophe-
notype criteria. Several retrospective studies have shown that
suicide attempters and completers score higher on measures of
impulsivity than controls.212,214,223–226 Retrospective studies asses-
sing suicide attempters have found that quantitative laboratory
measures indicate higher levels of impulsivity.227,228 In addition to
retrospective studies examining impulsivity and suicidal behavior,
several prospective studies have been carried out that look at
baseline traits in relation to future suicidal behavior. For example,
a study by Caspi et al.229 found that a group of toddlers that had
initially been labeled as impulsive showed a higher subsequent
frequency of suicidal behavior later in life. These data indicate that
impulsivity is likely to be a stable trait over time and that this
characteristic at a young age predisposes to suicidal behavior later
in life. A separate study followed patients with mood disorders for
2 years. Subjects who attempted suicide during the follow-up had
higher scores on a self-report of impulsivity at the beginning of
the study.218 In terms of genetic epidemiology, among suicidal
probands, those who had siblings who also attempted suicide
showed the highest levels of impulsivity (as well as impulsive
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aggression).230 These data indicate that suicidal behavior and
impulsivity may load together in families, thus further strengthen-
ing the impulsivity–suicidal behavior relationship.219,222 What
remains unknown is the relative contribution of kinship versus
household exposure to environmental effects. Although almost
impossible to tease apart in clinical samples, except in very special
circumstances (for example, studying suicidal behavior in Old
Order Amish), efficiently investigating ‘nature’ versus ‘nurture’ in
relationship to impulsive aggression strongly supports a need for
the use of animal models.
Although impulsivity is not a unitary construct, but rather a

collection of behaviors that likely have separate neurobiological
substrates, common definitions of impulsivity often include the
themes of decreased inhibitory control, inability to delay reward,
and impaired decision-making due to lack of consideration of
possible outcomes. There are rodent behavioral tasks capable of
measuring these behaviors, which include delay discounting
(cognitive impulsivity) and the five-choice serial reaction time task
(motor impulsivity).231

Impaired decision-making
Impaired decision-making has repeatedly been identified as a trait
of those with a history of depression and suicidal behavior in
comparison to patients with histories of depression and no
suicidal behavior, or healthy controls.232–235 Importantly, this
finding in euthymic patients, independent of comorbid psychiatric
disorders, suggests that impaired decision-making represents a
potential endophenotype of suicide vulnerability. It has been
hypothesized that poor decision-making would influence the
choice of immediately rewarding outcomes (for example, cessa-
tion of psychological pain) through long-term maladaptive
solutions (suicidal act), when experiencing distressing events.
Decreased activation of the lateral OFC during risky versus safe
choices was associated with poorer decision-making in suicide
attempters,233 suggesting that the decreased ability of these
patients to correctly learn to recognize long-term risk in
uncertain situations may represent key processes in the vulner-
ability to suicidal behavior.236 This bolsters the neuroanatomical
hypothesis proposed by the results of postmortem and imaging
studies,164,237 suggesting that impaired serotonergic input to the
prefrontal cortex may modulate the vulnerability to suicidal
behavior.18

One method of identifying and measuring decision-making
deficits in humans is using the Iowa Gambling Task (IGT) that
simulates real life decision-making, and is subserved by the
OFC.238–241 At a behavioral level, it is necessary to deconstruct this
task into component parts, that is, cognitive, motivational, and
response processes, to identify which components of the IGT
show impairment associated with suicidal behavior, as performed
previously with other disorders.242 Decisions that involve uncer-
tainty, options with multiple features, and changes over time
place particularly high demands on cognitive control.243 However,
poor decision-making and impaired cognitive control were not
strongly inter-correlated but, rather, poor decision-making and
cognitive control impairments appeared to independently, yet
synergistically, contribute to suicidal behavior.244 Thus, the two
processes may be supported by two independent pathways, the
first cognitive control/frontoparietal pathway involves an inability
to find and implement alternative solutions in a crisis. The second
‘value/paralimbic’ pathway, involves a low threshold for suicidal
acts, and a disregard of consequences and deterrents.245

Decision-making deficits are a potential endophenotype of
suicidal behavior31,246 since several genetic variants previously
related to suicidal behavior247 and interacting with early
maltreatment248 modulate the learning process necessary for
choosing the advantageous options in the task. It is hypothesized
that genetic variations alter efficiency of the neurotransmission in

key brain regions involved in the learning process necessary for
advantageous decision-making in uncertain conditions, and
consequently increase the risk of suicidal behavior.
As decision-making is a complex process, further translational

studies are needed to explore network and connectivity
characteristics of identified variations in neural substrates as well
as the molecular underpinnings of these variations. Modeling
decision-making in animal models has strong potential to address
these questions. Indeed, rodent versions of the IGT (r-IGT) exhibit
good face and construct validities.249,250 5-HT transporter levels
modulate long-term decision-making in this task in the rat (as
shown in humans).251 r-IGT impairment is associated with a
decrease in 5-HIAA levels in the OFC in a rat chronic pain
model.252 The links observed in such models between 5-HT
metabolism, OFC function, and decision-making are of relevance,
as individual deficiencies in these three parameters have been
implicated in suicide vulnerability. Reviewing studies based on the
r-IGT, van den Bos et al.253 recently proposed that two different
prefrontal-striatal networks were involved in task-progression in
the r-IGT: an emotional/limbic system involved in assessing and
anticipating the value of different options in the early stages of
the task (learning task contingencies), and a cognitive control
system involved in instrumental goal-directed behavior in later
stages (behavior directed toward long-term options, reinforce-
ment/punishment). Thus, animal models have the advantage to
define complex neurocognitive and anatomical processes
involved in decision-making and to examine developmental and
environmental influences on decision-making.254

In addition to studies of neurobiology, the r-IGT could become a
useful tool to study the biological basis of the decision-making
performance-altering effects of pharmacological treatments. For
instance, rats’ ability to perform in the r-IGT is sensitive to drugs
that modulate 5-HT and dopamine levels.255

There are growing interests in using noninvasive modulation
techniques to clarify the neurobiology of suicidal behavior. The
stimulation of the prefrontal cortex (ventromedial or dorsolateral)
using repetitive transcranial magnetic stimulation, as well as
transcranial direct current stimulation, in healthy volunteers
induce changes in decision-making,256 generates emotional
signals,257–260 and modulates healthy subjects’ ability to detect
emotional cues.261,262 Before these treatment modalities can be
applied as a therapeutic tool for decision-making deficits in
general, and suicidal behavior specifically, there is a clear need for
a better understanding of their mode of action through the
combined use of interventional clinical research and animal
models. Models of transcranial direct current stimulation and
repetitive transcranial magnetic stimulation in small animals have
been adapted and tested in a wide range of behavioral
paradigms263,264 as they provide a powerful tool to identify the
mechanisms by which transcranial direct current stimulation and
repetitive transcranial magnetic stimulation modulate neural
networks and the optimal parameters of stimulation, which could
lead to more effective clinical interventions.

ENVIRONMENTAL RISK FACTORS
Allergens and allergy
Data from large epidemiological studies have confirmed pre-
viously reported associations between asthma and suicide, and
have identified, for the first time, significant links between allergic
rhinitis and suicide after accounting for history of asthma.265

Considering that the massive peak of atmospheric pollen during
spring overlaps with highly replicated seasonal peaks of suicide,
investigators have hypothesized that inflammatory signals
induced by pollen in the airways of sensitive subjects can induce
suicidal behavior.266
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In the first study on high aeroallergen exposure and suicide, a
significant association between relative rates of suicide in women
and tree-pollen levels were identified among those living in the
continental United States.267 Although this finding was not
replicated by the same group in a subsequent study in the United
States,268 the underlying hypothesis was later confirmed in a large
population study in Denmark.269 Furthermore, increased gene
expression for allergy-related cytokines (such as IL-4 and IL-13)
was found in regions of the prefrontal cortex previously implicated
in suicide, specifically in the OFC.134 Very similar cytokine signals
were identified in the prefrontal cortex of rodents sensitized and
exposed to allergens.270 These rodents manifested increased
anxiety behavior270 and alterations in social interactions,270 both
considered risk-elevating factors for suicidal behavior.271,272 A
recent systematic review confirms an association between allergic
disease and suicidal behavior, in particular with suicide
mortality.273 Although evidence related to non-fatal suicidal
behavior was considered not as strong as for fatalities, a recent
study replicated the relationship between tree-pollen counts and
fatal suicidal behavior in women, and additionally reported a
positive relationship between grass pollen and attempted suicide
for both genders.274 It is possible that the released mediators of
allergic inflammation, rather than just symptoms of allergy, may
increase risk of suicidal behavior, as in a pharmacoecological
study, intranasal corticosteroids (known to reduce multiple
mediators of inflammation) have been associated with lower
suicide rates.275 In contrast, new generation antihistamines that
primarily act via blockade of histamine and do not reduce the
production of many other mediators of allergy, despite a similar
level of improvement in allergy symptoms as intranasal corticos-
teroids, were associated with slightly elevated suicide rates.275

This could be the consequence of antihistamines not opposing
mediators that reach the brain to the same degree, or possibly, a
result of a direct pharmacological effect. This comparative
paradigm could be used further in testing these alternative
interventions for endophenotypes of suicide in animal models.

Microbial pathogens
Pathogens are targets for and triggers of immune activation. As a
consequence, they can activate pathways leading to alterations of
emotion and behavior as described above (see ‘Inflammation’
section). However, neurotropic pathogens might also have specific
effects on neurons, or other cell types, in the brain.
A recent large Danish population study estimated that

hospitalization for infection predicts subsequent suicide attempt
with a population-attributable risk of infection accounting for
10.1% of suicide.276 Although this study identified nonspecific
associations with various pathogens, suggesting perhaps a
common denominator such as an immune mediation, other
specific associations have also been identified. For instance,
influenza B (not A) seropositivity has been associated with history
of suicide attempts.277 Now replicated by multiple groups, a
significant link was reported between Toxoplasma gondii, a highly
prevalent278 latency establishing neurotropic intracellular parasite,
and suicidal behavior across diagnostic categories.277,279–284

Importantly, in several studies, the links between T. gondii
infection and suicidal behavior have been robust to adjusting
for indicators of mental illness.280,285,286 A recent cohort study
identified a statistical trend of an association between T. gondii
and subsequent suicide attempt,287 consistent with a previous
large cohort study in Danish mothers that found a predictive
association between T. gondii infection and subsequent suicide
attempts.279 Nevertheless, causality and the direction of causality
have not been demonstrated.
The associations between chronic infection with T. gondii

and suicide endophenotypes of aggression and impulsivity
traits (gender- and age-specific) have been reported in both

psychiatrically healthy individuals283 and psychiatric patients with
clinically relevant impulsive aggression, that is, patients with
intermittent explosive disorder.288 In rodents, latent T. gondii
infection reduces and even reverses innate fear of cat odor and
other stimuli that precede predation.289 Morphologically, latent
infection with T. gondii induces dendritic retraction in the
basolateral amygdala (a finding rendering neurophysiological
support for reduced fear and anxiety-like behavior previously
reported in infected rodents).290 The reported increased
impulsivity in males, particularly younger males with T. gondii
seropositivity,283 is paralleled by the recent identification of
impulsive choices in rodents who had chronic infection with
T. gondii,291 a model that allows pharmacological probing of
impulsivity attributed to chronic infection with the parasite.

Hypoxia
Recent in vivo neuroimaging studies found that healthy residents
living at moderate altitude (1500 m, Salt Lake City, UT, USA) exhibit
significantly higher whole-brain pH, lower inorganic phosphate292

and lower creatine levels in the anterior forebrain293 than age- and
gender-matched healthy residents at sea level (Belmont, MA, USA
or Charleston, SC, USA). Both inorganic phosphate and creatine
have important roles in regulating energy metabolism, and low
brain levels of these markers in healthy people at altitude signify
low mitochondrial function, implying an altitude-related increase
in vulnerability to major depressive disorder (MDD), bipolar
disorder, and other psychiatric conditions linked to brain
hypometabolism.294

Chronic exposure to hypoxia via living at a high altitude
(hypobaric hypoxia) or with chronic hypoxic diseases, has recently
been linked to significantly higher rates of MDD and suicide.295

Living at a high altitude appears to be an independent risk factor
for suicide. In the United States,294,296–298 South Korea,298

Austria,299 and Spain,300 although all-cause mortality rates tend
to decrease with altitude,297 MDD rates increase with altitude of
residence,301,302 and suicidal ideation was found to be higher in
MDD patients at high altitude versus those at sea level.303

Similarly, the odds ratios of both MDD and suicidal behavior are
increased to ⩾ 100% for people with chronic hypoxic diseases,
such as chronic obstructive pulmonary disease,304 asthma, and
cardiovascular disease, versus in those with chronic diseases
without hypoxia (diabetes, osteoarthritis), or those without a
chronic disease.305–310 Furthermore, these odds ratios increase
with the severity of hypoxic disease311,312 and with the current
versus past status of hypoxic disease.313,314 Chronic hypoxia was
therefore proposed to worsen MDD severity and increase rates of
treatment-resistant depression.
A novel translational animal model has been recently char-

acterized to explore the etiology of high rates of MDD and
treatment-resistant depression rates at altitude.315 The rats were
housed for a week at altitude simulations of sea level, 3000 m or
6000 m or at local conditions of 1500 m (Salt Lake City, UT, USA)
and then tested for depression-like behavior in the forced-swim
test. Increasing the altitude of housing for a week, by itself, was
found to incrementally increase depression-like behavior,315 thus
providing construct validity for hypoxia-related depression. In
rodent models, hypoxia lowers brain 5-HT levels,316,317 and leads
to brain hypometabolism via a deficit in the bioenergetic marker
creatine.318,319 Brain deficits in 5-HT levels and impaired mito-
chondrial function are also linked to MDD,320,321 thus demonstrat-
ing face validity for this model.
As mortality by suicide is highly linked to unresolved

depression,322 the impact of hypobaric hypoxia on antidepressant
efficacy was also examined. Selective serotonin reuptake inhibi-
tors, the most widely prescribed antidepressants, have been
shown to lose antidepressant efficacy in other animal models of
low brain 5-HT.323,324 In this model, housing of rats at altitudes of
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1400 m or 3000 feet for a week abolished the anti-immobility
effects of the selective serotonin reuptake inhibitors (fluoxetine,
paroxetine and escitalopram) in the forced-swim test,325 but not of
the tricyclic antidepressant, desipramine.
Hypoxia has been shown to alter brain neurochemistry and

physiology towards expression of several endophenotypes of
suicidal behavior mentioned in this review. The cell culture and
animal studies show that hypoxia can alter the synthesis and
metabolism of neurotransmitters, including 5-HT, dopamine,
norepinephrine, γ-aminobutyric acid (GABA), and glutamate.326

Of particular importance, rat brain 5-HT levels drop with
hypoxia,316,317 and low brain 5-HT in humans is linked to greater
depression, impulsivity, risky behavior, and aggression, each of
which is connected to suicidal behavior (see ‘Serotonin system’).
Furthermore, hypoxia increases mitochondrial-mediated
inflammation,327 inflammatory cytokines and pro-apoptotic mar-
kers in key cortical regions,328 increases HPA axis stimulation329

and lowers brain cellular metabolic function.318,319,330

Both demographic and human neuroimaging studies suggest
that chronic hypoxia may function in myriad ways to alter brain
chemistry, physiology and behavior. Studies related to the
pathophysiology of chronic hypoxia-related brain dysfunction
connected to suicide and specifically of corrective therapeutics are
likely to derive a major benefit from the use of animal models,
with the potential of rapid translation into clinical studies and
better preventative and therapeutic options for suicidal behavior.

Traumatic brain injury
Those with a history of traumatic brain injury (TBI), including all
severity levels, are at significantly increased risk of suicidal
ideation,331,332 suicide attempts331,332 and dying by
suicide.333–336 Simpson and Tate337 reported that, in outpatients
with TBI, 23% had suicidal ideation within the previous 7 days,
independent of time post-injury. The same authors reported that
17.4% of outpatients with TBI had attempted suicide over a mean
period of 5 years. Meanwhile, Teasdale and Engberg334 reported a
fourfold higher risk of death by suicide in those with TBI. A recent
longitudinal cohort study over a 20-year period revealed that even
a diagnosis of concussion results in increased suicide risk, which
was estimated to be three times the population norm.338

TBI is associated with more extreme scores on measures of
personality and cognitive traits associated with suicidality,
including an increased sense of hopelessness, aggression,
impulsivity, and impaired decision-making. Simpson and Tate337

reported a high level of hopelessness in those with TBI, with 34.9%
scoring at moderate-to-severe levels of hopelessness, while
hopelessness was a strong predictor of suicidal ideation. Aggres-
sion is a common consequence of TBI, with prevalence estimates
of post-TBI aggression ranging from 11 to 34%,339–341 which may
present as either verbal or physical aggression. TBI results in
increased impulsivity,342–345 in association with impaired decision-
making and poor judgment.343 Based on a survey of four
dimensions of impulsivity (urgency, lack of premeditation, lack
of perseverance, and sensation seeking) in subjects with TBI, TBI
resulted in increases in multiple dimensions of impulsivity,
including urgency, lack of premeditation, and lack of
perseverance.342 Finally, studies have described impaired
decision-making or judgment abilities in those with TBI,343

including impaired decision-making in the IGT,346 in association
with abnormalities in brain circuits implicated in decision-
making.347

Neuroinflammation secondary to TBI is a cardinal feature of TBI
and may serve as an endophenotype that can be evaluated in
animal models. Mounting evidence indicates that neuroinflamma-
tory processes start immediately after the initial TBI, and persist
and worsen with time, contributing to the neurodegenerative
process. Both microglia and astrocytes have important roles in

neuroinflammation. Microglia are rapidly activated following TBI,
which is manifested in: (i) morphological changes such as
hypertrophy and de-ramification of processes; (ii) enhanced
migratory and phagocytic activities; and (iii) production of
inflammatory mediators including leukotrienes, cytokines and
chemokines.348,349 Astrocytes become reactive following TBI,
which are manifested in: (i) increased proliferation (astrogliosis);
(ii) migration towards injured tissues to form a glial scar; (iii)
hypertrophy with increased expression of intermediate filaments
(for example, glial fibrillary acidic protein); and (iv) the production
of inflammatory mediators and growth factors that act via
autocrine and paracrine signaling.348,349 Although the initial
activation of microglia350 and astrocytes is critical to wound
healing, prolonged activation can lead to a self-perpetuating cycle
of damaging events that drive the pathogenic processes under-
lying neurodegeneration. Evidence suggests that the elevation of
markers such as IL-6 and C-reactive protein within the first 24 h
post-trauma leads to worse outcomes for TBI.349,351,352 The
increase in cerebral inflammatory response, including microglial
and astroglial activation, is prolonged, lasting months or years,
and is believed to contribute to the evolving symptomatology and
pathology, thereby highlighting inflammation as a potential
treatment target long after the acute trauma.349,353,354 For
example, certain anti-inflammatory pharmacological interventions
including statins, cyclosporine A, and glucocorticoids, have been
investigated in animals and are undergoing clinical trials in TBI.355

Molecular consequences of TBI, such as cytokine activation and
elevated levels of kynurenines356,357 have been recently linked
with suicidal behavior (see 'inflammation' section). It is thus
plausible that neuroinflammation following TBI, at least in part,
biologically mediates the link between TBI and suicidal behavior,
and that anti-inflammatory interventions now studied could
reduce the excess burden of suicidal behavior in TBI. Hypotheses
exploring the links between TBI, inflammation, and suicidal
thoughts and behavior, could be studied in animal models of
TBI, focusing on endophenotypes of suicidal behavior and
potential immune-mediating mechanisms.
In summary, in humans, TBI elevates the expression of certain

endophenotypes of suicidal behavior, and increases risk of suicidal
ideation, suicidal attempts, and suicide. Of interest to the thesis of
this review, is whether or not TBI in animal models also increases
either the molecular endophenotypes or cognitive and behavioral
traits related to suicidal behavior. Neuroinflammation is a well-
documented consequence of TBI in rodents,358 and negative
behavioral outcomes of TBI, such as increased anxiety-related
behaviors, can be prevented or reversed by drugs that inhibit
microglial activation.359,360 Cope et al.361 found that a controlled
impact to the frontal cortex resulted in anhedonia, as measured in
the sucrose preference test in rats. Consistently, studies in both
mice362–364 and rats365,366 have found that TBI also increases
measures of behavioral despair as measured in the forced-swim
test. Negative findings have also been reported,367–370 but TBI
paradigms in rodents frequently involve more limited and
localized injury, and, based on studies in humans,347 behavioral
effects would only be anticipated when relevant circuits are
impacted by the injury. The tests of motor activity are consistent
with increased impulsivity in rodents following TBI (for review, see
ref. 371). In line with these findings, TBI in rats impairs impulse
control in the five-choice serial reaction time task in association
with neuroinflammation.372 Based on their findings, the authors
concluded that neuroinflammation may represent a treatment
target for impulse control impairments following injury. Few
studies have evaluated the effects of TBI on aggressive behaviors
in rodents (for review, see ref. 371), and this remains an important
area for future studies.
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MEDICATIONS THAT MODIFY RISK FOR SUICIDAL BEHAVIOR
Drugs with recognized antisuicidal or pro-suicidal effects may
provide insight (and pharmacological predictive value) to the
validity of potential animal models of suicidal behavior. Below, we
discuss evidence for lithium, clozapine, antidepressants, and
ketamine. Though not included, we also note that there is
evidence that electroconvulsive therapy may be effective in the
reduction of suicidality, and that electroconvulsive shock protocols
exist for modeling the procedure in rodents.373,374

Lithium
Lithium remains one of the most valuable treatments for bipolar
disorder and evidence indicates that lithium therapy reduces
suicide risk.375–378 Although lithium has not yet earned a United
States FDA indication for the reduction of suicidal behavior, most
of the randomized379 and nonrandomized380,381 studies that have
examined lithium’s relationship to suicidal behavior are consistent
with lithium reducing the risk of suicidal behavior in both bipolar
and unipolar depression.
Anticonvulsants are popular clinical alternatives to lithium for

the treatment of bipolar disorder. In this context, while
controversial, the United States FDA has issued warnings
regarding possible pro-suicidal effects of anticonvulsants.382 Thus,
these potential alternative treatments for treating mood disorders
do not have the evidence to support a beneficial role in reducing
suicide/suicide behavior risks that lithium does, further increasing
the need to understand whether, and what, is unique about
lithium’s impact on the neurobiological underpinnings of suicidal
behavior. Furthermore, while lithium has some antidepressant
actions, antidepressants such as selective serotonin reuptake
inhibitors, at least in some populations,383 have been associated
with an increased risk of attempting suicide in some studies. Other
observations suggest that the reduction in suicide and suicidal
behavior risks associated with lithium treatment does not appear
to result solely from improvement of the underlying mood
disorder.384

Furthermore, the association between lithium in the water
supply across geographic regions and suicide rates has been
studied. Most,299,385–390 but not all,391 of these studies associate
higher levels of lithium in drinking water with lower rates of
suicide. One enigma posed by these data is that the levels of
lithium in the drinking supply are calculated to result in daily
doses of only approximately 1%, or in some cases, close to 0.1% of
typical clinical doses.392 The results have been inconsistent
regarding possible greater effects in either males385 or
females.386 Lithium’s mechanism of action relevant to these
findings remains to be elucidated, especially considering that
most preclinical studies have been performed with lithium doses
that achieve blood levels observed with the treatment of mood
disorders.393 It is also worth considering—and could be experi-
mentally addressed in animal models—that the alternative
interpretation of these data is that low lithium levels are a risk
factor for suicide, rather than higher lithium levels being a
protective factor. Of relevance, continuous exposure to similar
concentrations of lithium to those found in drinking water, have
been shown to reduce mortality in a C. elegans model.394

Investigation is needed to explore the possibility that lithium
may interact with a unique molecular target to reduce suicide risk,
both at levels proven efficacious for the treatment of mood
disorders, and at lower doses that may have efficacy for reducing
suicidal behaviors.
There are a number of important opportunities for animal

models and animal research to advance the understanding of
lithium or lithium-like molecules related to their potential for
reducing the risk of suicide. Mood stabilizers often affect common
molecular targets395 but they do not all decrease suicide risk;
therefore, future research may identify the neurobiological

changes that lithium brings about, but which other mood
stabilizers do not.395,396 Lithium may exert its antisuicidal actions
by modifying aggressive and impulsive behaviors. This hypothesis
is supported by numerous double blind, placebo-controlled
studies suggesting an anti-aggressive effect of lithium across
various populations.397–400 The results of randomized, placebo-
controlled studies also suggest that lithium decreases human
impulsivity. However, the evidence for such an effect is not as
strong as for aggression, and concurrent diagnoses of pathological
gambling and bipolar disorder in some studies make the
interpretation complicated.398,401,402 Lithium’s attenuation of
suicide endophenotypes, including aggression and impulsivity,
can also be readily modeled in rodent models using behavioral
tests.403–405 Direct comparison with other mood stabilizers, such
as valproate, may be beneficial. For example, while valproate can
attenuate aggression in some animal tests, it is not as effective as
lithium in reducing impulsivity in certain paradigms.404,406,407

Uncovering the mechanisms leading to these differences might
help to pinpoint the specific antisuicidal actions of lithium. One
strategy has been to investigate the molecular actions of lithium
at the genetic and neurobiological levels using various inbred and
transgenic mouse models.393,408–410 Nonhuman animal studies
allow the consideration of time course and dose–response
experiments.411,412 Data indicating that environmental exposure
to lithium (based on concentrations in the water supply) is
inversely proportional to suicide rates, at least on a population
basis, suggest the utility of determining whether there is an
unusual dose response curve for lithium’s impact on aggressive
behaviors or other models of suicide endophenotypes in nonhu-
man animals. As potential molecular actions of lithium are
identified, it would be useful to examine whether dose–response
relationships are evident concerning the impact on these targets,
which might explain the apparent effectiveness at particularly low
doses as those measured in the water supply. Lithium was recently
associated with improved decision-making in bipolar patients.413

The molecular dissection of the effects of lithium on impulsivity
(potentially through modulating 5-HT neurotransmission) may
help to identify potential mechanisms underlying the antisuicidal
effect of lithium, and provide new molecular targets for
medications that reduce the risk of suicide.
Another role for animal models may exist in helping facilitate

the search for ‘lithium mimetic’ drugs with decreased potential for
adverse events. The need to address suicidal behavior risk is often
acute, while the time frame for experiencing any adverse effects
from lithium treatment is often over years to decades. Adverse
effects of lithium on end organs such as the kidneys, thyroid, and
parathyroid glands typically take years to even begin to manifest.
For instance, in some cases, such as renal insufficiency in men
under the age of 60 years, individuals receiving one or more
lithium prescriptions, and control individuals, have renal function
that appears indistinguishable for more than 20 years,414 yet, the
methodology used to examine such long time frames has
limitations. An ideal treatment for suicidal behavior should lack
any possible concern about gradually accruing end organ
damage. This is an opportunity where investigations in animals
would help advance the search for a compound that would
convey some or all of the benefit of lithium on suicidal behavior
(or at least the most appropriate endophenotypes), while not
sharing lithium’s adverse effects. Last, the possibility of ‘rebound’
mood episodes or suicidal behavior after lithium discontinuation is
a possible limitation to its use as a short-term suicide prevention
strategy.415 Animal models may allow investigation of whether
rebound aggressiveness, impulsivity, or other behaviors occur
after sudden withdrawal of lithium, but not of other medications.
Thus, it can be appreciated that animal research with lithium has
great potential to clarify its mechanisms of actions and potentially
allow the development of lithium-like, yet safer, medications,
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establish dose response and identify safety-based approaches to
mitigate side effects to be further tested clinically in humans.

Clozapine
Clozapine is the only medication with United States FDA approval
for use to reduce suicidal behavior. The indication is specifically for
reducing suicidal behavior in patients with schizophrenia. In a
large randomized controlled trial (InterSEPT study, n= 980),
clozapine was associated with a reduction in suicidal behavior
and rescue hospitalizations compared with olanzapine, although
not suicide deaths (overall, eight suicides were observed).416

Clozapine has effects on a large number of neurotransmitter
receptors, including multiple dopaminergic, serotonergic, mus-
carinic, adrenergic, and histaminergic receptor subtypes.417 It is
not known why clozapine exerts these antisuicidal behavior
effects, or for certain the degree to which they may be related to
its impact on treatment of refractory schizophrenia. It is
hypothesized that clozapine’s nonselectivity for neurotransmitter
receptors may underlie its distinct efficacy.418 Clozapine’s distinct
reduction in mood symptoms in patients with schizophrenia may
be important to its effects of reducing suicidal behaviors.419 The
impact of these or other candidate mechanisms on suicidal
behavior has yet to be elucidated. Studies with clozapine could
provide valuable clues to the neurobiology of suicide in animal
models and may include an assessment of common mechanisms
of action between lithium and clozapine. For example, similar to
anti-aggression-like effects of lithium, clozapine has also been
demonstrated to reduce aggressive behaviors in a chronically
stressed mouse model.420 As is also the case for lithium, research
concerning how to prevent some of clozapine’s sizable side-effect
burden may help make it more desirable for wider use, or identify
a clozapine-like molecule that preserves the efficacy but not the
toxicity of clozapine.

Antidepressants
Due to space considerations, we will avoid a detailed discussion
of antidepressants. However, antidepressants are the only
medication known to have a highly age-dependent effect on
suicidal behavior. Randomized trial meta-analyses have suggested
that antidepressants are associated with an increased risk of
suicidality among patients of the youngest age as noted by the
FDA black box warning,421,422 and are associated with reduced risk
of suicidality among the oldest patients.421 As such, antidepres-
sants provide an opportunity to probe the age-related changes
that occur in the brain paralleling this unusual apparent reversal of
the effects of antidepressants on suicidality. Extending research of
antidepressants of suicide endophenotypes in developmental
(young and old) animal studies could help clarify the neurobio-
logical systems important to suicidal behavior.371

Ketamine
Ketamine has been shown to have fast-acting effects to decrease
suicidal thoughts.423–425 Ketamine’s fast action makes it a
particularly valuable research tool to develop biomarkers of
response and to more precisely understand the neurobiology of
antidepressant and antisuicidal response.426,427 Indeed, recent
studies are beginning to uncover neural circuitry involved in
ketamine’s rapid effects to reduce suicidal thoughts.428 In contrast
to lithium and clozapine, for which the only available evidence
concerning suicide/suicidal behavior risk relates to patients taking
the medication for days, weeks or months, ketamine can rapidly
reduce suicidal ideation within a time frame that can be measured
in minutes and hours rather than weeks.424,429–431 Moreover, it has
been demonstrated that ketamine might have anti-aggressive
properties depending on the experimental model used,432 which
requires further investigation. Thus, it remains to be confirmed

whether ketamine has similar actions as lithium does on
impulsivity and aggression relevant to suicidal behavior. Con-
sidering the rapid-acting nature of ketamine on suicidality in
general, and suicidal thoughts, in particular, ketamine may be
impacting suicidality in a manner distinct from those of lithium or
clozapine. The recent finding that ketamine’s in vivo conversion to
a hydroxynorketamine metabolite is necessary and sufficient for
its antidepressant actions, without its side effects, in mice presents
an additional opportunity to understand the mechanism whereby
ketamine rapidly reduces suicidal thoughts.433

Drugs that may increase risk of suicide
Medications ranging from asthma to acne treatments have
received warnings about increased suicidal ideation or behavior.
Therefore, screening and/or understanding why these effects are
observed using animal models may be useful. For instance,
rimonabant, an inverse agonist for the cannabinoid receptor CB1,
was initially marketed as an anti-obesity drug.434 However, after
some time of use in clinical practice, it was removed from the
market due to concerns about increased suicide risk.435 Later
rodent studies demonstrated that chronic treatment with this
drug increased immobility time in the forced-swim test and
increased anhedonia as measured by sucrose preference.436

Rimonabant has also been shown to decrease 5-HT levels in the
frontal cortex, and to adversely affect neurogenesis and immune
function.436 Of note, effects of rimonabant on impulsivity measures in
animals have been equivocal. Although the drug increased
impulsivity in the delay-discounting paradigm, it decreased some
impulsive behaviors on the five-choice serial reaction task, which
measure different subdomains of impulsivity.437–439

Isotretinoin, used to treat severe cases of acne since the 1980s,
has been associated with an increase of suicidal behavior in
vulnerable individuals.440–442 Studies in mice showed that chronic
treatment with this drug increased immobility time in the forced-
swim test and tail suspension test, suggesting increased behaviors
or relevance to depression neurobiology.443 Surprisingly, given the
potential pro-suicidal effects of the drug, chronic isotretinoin
treatment reduced aggression in the resident-intruder test.444

Despite the mixed findings with the two drugs discussed here,
pro-suicidal properties of drugs may be partially quantifiable by
focusing on particular endophenotypes of suicide in animal
models, therefore providing detailed information about molecular
pathways related to changes in suicide risk. A systematic study of
these drugs and others that may modify risk may explain the
conflicting associations of increased suicidal risk suggested in the
past for drugs such as montelukast,445 varenicline446 and
interferon-α.447–449

CONCLUSIONS
In clinical research on suicide, understanding individual vulner-
abilities, resiliencies, deterrents, precipitating and perpetuating
factors for each patient and the vast variety of personal
circumstances leading to their suicidal behavior is a challenging
task. The effects of undergoing current and previous drug
treatments, and compensatory mechanisms in response to
comorbid substance abuse, psychiatric or medical conditions
and treatments only further complicate matters. Based on
cumulative results, a general model has been proposed postulat-
ing that vulnerability to suicidal behavior is mediated in part by an
important underlying genetic predisposition interacting with
environmental and probable epigenetic factors throughout the
lifespan. This combination of risk factors then modifies the
function of neuronal circuits involved in behavioral modulation,
thus rendering an individual more likely to engage in a suicidal
act18,450 (Figure 1). However, the factors that lead to suicide are
tremendously complex, multifaceted, and heterogeneous. Using
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animal model approaches that allow us to experimentally study
the neurobiology underlying suicide endophenotypes is a
promising and much needed layer in suicide research. The
planned expanded use of research domain criteria, versus
categorical symptom checklist-based diagnosis, presents a further
opportunity to support such an endeavor.452 Although our review
is broad, it is by no means comprehensive. We did not include
several translatable domains that are associated with increased
suicide risk and potential targets for interventions. These include
sleep impairment, substance use disorders, and mixed mood
states. Furthermore, the review did not include complex
interactive models of suicidal behavior, the modeling interactive
effects of risk factors, and the domain of helplessness that has
human and animal correlates.453 Although highly valuable for
their translational relevance, knowledge is lacking to construct
these multivariable models before answering the simpler ques-
tions proposed in this review.
Animal models for studying complex behaviors have been very

successful in guiding research in humans, which has led to
important discoveries of clinical relevance. In addition, animal
studies have been crucial in validating observations from human
samples, where studies are limited by ethical considerations and
where access to brain tissue is restricted to rare postmortem
samples. Furthermore, confounding factors, such as comorbidities,
different ages, and different life experiences, are unavoidable in
human samples. Although informative of changes associated with
patient histories, psychiatric illnesses and suicidal behavior, the
use of postmortem brain samples precludes the study of
molecular changes occurring at the onset of suicidality. The
discrete and dynamic changes occurring at the onset of disease
may be the point at which clinical intervention would be the most
beneficial. A better understanding of such changes, along with
technological or diagnostic advances to detect such changes,
would allow for faster and more effective treatments.
Considering endophenotypes as potential targets for new

treatments, tested first in animal models and then in humans,
may enable us to circumvent certain obstacles in human studies of
suicidal behavior, represented by ethical concerns, high comor-
bidity and confounding factors, as well as issues with obtaining
adequate sample sizes.454 Evaluation of new treatments for
suicidal ideation and behavior could be based on the involvement
of identified cognitive and emotional brain circuits, related to
dysfunction of subregions of the cortex and other regions
occurring in the pathophysiology of suicidal behavior.
Ultimately, animal models may provide opportunities to directly

test the functional role of genetic variants associated with suicide-
related endophenotypes, in particular, impulsivity, aggression, and
decision-making impairments. With the advent of CRISPR/Cas9
and other genome-editing technologies, it is now more straight-
forward to directly model human genetic variants in mice.455 Such
models provide an invaluable opportunity to also investigate gene
by environment interactions and identify sensitive developmental
periods, two factors that may contribute to the lack of replication of
many genetic associations. Such approaches may help clarify the
literature regarding genetic variants implicated in suicide456 and
provide insight into the circuit-based mechanisms that contribute
to different suicide-implicated endophenotypes.
Overall, research aimed at elucidating the neurobiology of

suicidal behavior in animal models that allows uncovering and
engaging novel treatment targets and discoveries, and early
screening of treatments to prevent and reduce suicidal behavior,
could be utilized to a much greater degree in suicide research.
This will take time to establish, but, in our view, will ultimately
succeed in the longer run—if integrated with efforts at multiple
levels, such as macroepidemiological, clinical (in particular
interventional), postmortem—to reduce suicide mortality, a public
health priority that has proven, so far, resilient to therapeutic
interventions and societal investments implemented to date.
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