
HAL Id: hal-01762644
https://hal.science/hal-01762644v1

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Role of MicroRNA in the Modulation of the
Melanocortinergic System

Adel Derghal, Mehdi Djelloul, Jérôme Trouslard, Lourdes Mounien

To cite this version:
Adel Derghal, Mehdi Djelloul, Jérôme Trouslard, Lourdes Mounien. The Role of MicroRNA in the
Modulation of the Melanocortinergic System. Frontiers in Neuroscience, 2017, 11, pp.181 - 181.
�10.3389/fnins.2017.00181�. �hal-01762644�

https://hal.science/hal-01762644v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MINI REVIEW
published: 05 April 2017

doi: 10.3389/fnins.2017.00181

Frontiers in Neuroscience | www.frontiersin.org 1 April 2017 | Volume 11 | Article 181

Edited by:

Hubert Vaudry,

University of Rouen, France

Reviewed by:

Denis Richard,

Laval University, Canada

Laurent Gautron,

University of Texas Southwestern

Medical Center, USA

*Correspondence:

Lourdes Mounien

lourdes.mounien@univ-amu.fr

Specialty section:

This article was submitted to

Neuroendocrine Science,

a section of the journal

Frontiers in Neuroscience

Received: 24 November 2016

Accepted: 20 March 2017

Published: 05 April 2017

Citation:

Derghal A, Djelloul M, Trouslard J and

Mounien L (2017) The Role of

MicroRNA in the Modulation of the

Melanocortinergic System.

Front. Neurosci. 11:181.

doi: 10.3389/fnins.2017.00181

The Role of MicroRNA in the
Modulation of the Melanocortinergic
System
Adel Derghal 1, Mehdi Djelloul 1, 2, Jérôme Trouslard 1 and Lourdes Mounien 1*

1 Physiologie et Physiopathologie du Système Nerveux Somatomoteur et Neurovégétatif (PPSN), Aix Marseille University,

Marseille, France, 2Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden

The central control of energy balance involves a highly regulated neuronal network

within the hypothalamus and the dorsal vagal complex. In these structures,

pro-opiomelanocortin (POMC) neurons are known to reduce meal size and to increase

energy expenditure. In addition, leptin, a peripheral signal that relays information

regarding body fat content, modulates the activity of melanocortin pathway neurons

including POMC-, Agouti-related peptide (AgRP)/Neuropeptide Y (NPY)-, melanocortin

receptors (MC3R and MC4R)-expressing neurons. MicroRNAs (miRNAs) are short

non-coding RNAs of 22–26 nucleotides that post-transcriptionally interfere with target

gene expression by binding to their mRNAs. Evidence has demonstrated that miRNAs

play important roles in the central regulation of energy balance. In this context, different

studies identified miRNAs including miR-200 family, miR-103, or miR-488 that could

target the genes of melanocortin pathway. More precisely, these different miRNAs can

modulate energy homeostasis by affecting leptin transduction pathway in the POMC, or

AgRP/NPY neurons. This article reviews the role of identified miRNAs in the modulation

of melanocortin pathway in the context of energy homeostasis.

Keywords: microRNA, melanocortin, feeding behavior, hypothalamus, energy homeostasis

INTRODUCTION

Overweight and obesity are significant risk factors for various chronic diseases, including cancer,
heart diseases, and type 2 diabetes. In 2014, World Health Organization estimated that more than
1.9 billion adults were overweight. Of these over 600 million were obese. Dramatically, 41 million
children under the age of 5 were overweight or obese in 2014. With such a high and expanding
prevalence, and considering the associated diseases, obesity has an important economic impact on
health care systems. For instance, the global medical costs related to obesity were estimated to reach
up to 147 billion dollars per year in the USA (Bariohay et al., 2011). The direct health care costs
linked to obesity in industrialized country can exceed 7% of the total health care costs (Bariohay
et al., 2011). Environmental factors lead to an increase in the proportion of obese people. To date,
the main treatment against obesity is to decrease caloric intake combined with an increase in the
physical activity. The major limit of this treatment is the low achievement rate in the long haul,
revealing the need for additional medical approaches. Then, given the expanding number of obese
patients, obesity research is critical in the medication improvement field.

The control of energy homeostasis involves endocrine and neuronal mechanisms that
modulate the balance between caloric absorption and energy expenditure. In this context,
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the central nervous system (CNS) continuously follows
modifications in metabolic parameters (i.e., glycemia or free
fatty acids levels) or hormones (insulin, leptin, ghrelin, PYY3-36,
GLP-1, and cholecystokinin) and elicits adaptive responses
like food intake regulation or autonomic nervous system
modulation of glucose homeostasis and energy expenditure
(Figure 1). Among the brain regions involved in this regulation,
the hypothalamus, and the dorsal vagal complex (DVC) in the
brainstem play a pivotal role through specific neuronal networks
(Berthoud, 2002, 2004; Morton et al., 2005, 2006; Schneeberger
et al., 2014). More particularly, within the arcuate nucleus (ARC)
of hypothalamus and the nucleus of the solitary tract (NTS) of
DVC, pro-opiomelanocortin (POMC) neurons are important
regulators of energy, and glucose homeostasis (Morton et al.,
2006). In this context, leptin is an adipose-derived hormone
that is crucial to maintain both normal body weight and insulin
sensitivity by action in the hypothalamus (Balthasar et al., 2004;
Coppari et al., 2005; Dhillon et al., 2006; Morton et al., 2006;
van de Wall et al., 2008). This peripheral signal is detected
by hypothalamic arcuate neurons expressing the anorexigenic
peptide POMC or the orexigenic peptides Neuropeptide Y
(NPY)/Agouti-related peptide (AgRP). These neurons project
to melanocortin 3 and 4 receptor-expressing neurons located in
hypothalamus and other brain structures (Morton et al., 2006).
Together these neurons are called the melanocortin pathway
and regulate feeding behavior, energy expenditure, and glucose
homeostasis through activation of the autonomic nervous system
and higher brain structures (Berthoud, 2002; Morton et al., 2006)
(Figure 1).

One important goal of present research is to identify the
molecular mechanism and the intracellular mediators allowing
these POMC andNPY/AgRP neurons to respond to energy status
variations. Then, it appears crucial to increase our knowledge
of the mechanisms controlling the melanocortin system activity,
particularly by the discovery of new signaling pathways involved
in the control of POMC and AgRP genes expression by
leptin. Such pathways should provide beneficial pharmacological
targets, and lead to the development of new generation drugs that
can safely and effectively treat overweight and obesity linked to
leptin resistance. In this context, it has been recently discovered
new mechanisms involved in the control of the expression
of the melanocortin pathway’s genes. In particular, epigenetic
mechanisms, including DNA methylation, the modifications of
histones, and specific microRNAs (miRNAs) expression, have
been proposed to mediate the expression of the melanocortin
system (Stevens et al., 2010, 2011; Funato et al., 2011; Cansell and
Luquet, 2012; Schneeberger et al., 2015).

This review provides an insight into the new mechanisms of
the regulation of the POMC, NPY, and AgRP genes and a focus
on the function of the miRNAs in this process will be developed.

THE MELANOCORTIN SYSTEM AND
REGULATION OF ENERGY HOMEOSTASIS

As mentioned above, POMC-expressing neurons moderate food
intake, glucose homeostasis, and energy expenditure (Cowley

et al., 2001; Parton et al., 2007; Mounien et al., 2009, 2010). The
prohormone POMC is cleaved into α-melanocyte-stimulating
hormone (α-MSH) that binds to the melanocortin 3 and 4
receptors (MC3R and MC4R) on neurons located in the nucleus
of the hypothalamus as well as in the DVC (Cummings and
Schwartz, 2000; Jégou et al., 2003; Coll et al., 2004; Rossi
et al., 2011). The activation of MC4R induced a decrease of
the food intake and an increase of the energy expenditure and
this receptor is also involved in glucose homeostasis. MC4R
agonists provide therefore a potential tool for the treatment
of metabolic disorders as obesity (Rossi et al., 2011; Zechner
et al., 2013). Conversely, mutations in the POMC, MC3R, or
MC4R genes cause common or massive early-onset obesity in
humans, further supporting a crucial role for the melanocortin
pathway in energy homeostasis (Krude et al., 1998; Farooqi
and O’Rahilly, 2000; Lee, 2009). It is important to notice
that AgRP has been described as an endogenous antagonist
or inverse agonist of the melanocortin receptors (Cone et al.,
1996; Ollmann et al., 1997). Altogether, these neurons belong
to the central melanocortin system, a family of diverse cells
that comprise POMC-, AgRP-, MC3R-, and MC4R-expressing
neurons. These neurons regulate peripheral metabolism through
the activation of the autonomic nervous system and higher brain
structures to control energy homeostasis but also the arousal
and reward systems (Berthoud, 2002; Morton et al., 2006).
Recently, by using optogenetic approach, Aponte et al. found
that POMC and AgRP neurons have counter-regulatory roles
on the regulation of food intake, confirming the pivotal role
of these neurons in the control of feeding behavior (Aponte
et al., 2011). Regarding the action of leptin on this melanocortin
pathway, deletion of SOCS-3, a negative regulator of the action of
this hormone, in POMC neurons, improved glucose homeostasis
and insulin sensitivity as well as resistance to high fat diet
(HFD) (Kievit et al., 2006). Lately, the simultaneous disruption
of insulin and leptin receptors induced insulin resistance in
mice (Hill et al., 2010). Altogether, these data showed the
main role of POMC neurons in the integration of peripheral
signals, as leptin, reflecting the energy status of organism. In
addition, leptin is required for the accurate development of
the POMC neurons (Bouret et al., 2004; MacKay and Abizaid,
2014).

In addition to the communication between brain and
peripheral organs, intracellular metabolic-sensing mechanisms
in CNS neurons are also crucial for the control of the energy
balance. For instance, it has been established that AMP-
activated protein kinase (AMPK), the mammalian target of
rapamycin (mTOR), and SIRT1 deacetylase in the hypothalamus,
are essential for leptin sensing and then energy homeostasis.
More precisely, inactivation of AMPK in POMC neurons
induced obesity while SIRT1 in POMC neurons is required
for adaptations against diet-induced obesity (Claret et al., 2007;
Ramadori et al., 2010). In addition, it has also been demonstrated
that epigenetic mechanisms such as histone modifications or
DNA methylation are acknowledged to modulate POMC gene
activity under different nutritional status (Stevens et al., 2010;
Funato et al., 2011). Then, these data established that POMC
gene expression is highly and tightly controlled by different
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FIGURE 1 | The miRNAs in POMC and NPY/AgRP neurons and the central regulation of energy balance. The neurons of the melanocortin pathway integrate

peripheral signals as ghrelin or leptin that modulate the expression of POMC, NPY, AgRP, and miRNAs genes. Then the melancortin pathway elicits adaptive

responses like food intake, energy expenditure, or glucose homeostasis. AgRP, agouti related peptide; ARC, arcuate nucleus; BAT, brown adipose tissue; DMH,

dorsomedial hypothalamus; LepRb, leptin receptor type b; LHA, lateral hypothalamus area; ME, median eminence; miRNA, microRNA; NPY, neuropeptide Y; GHSR,

ghrelin receptor; POMC, pro-opiomelanocortin; PVN, paraventricular nucleus; VMH, ventromedial hypothalamus; WAT, white adipose tissue; 3V, third ventricle.

mechanisms in order to regulate energy homeostasis by the
modulation of appetite and energy expenditure.

THE MICRORNA AND THE
MELANOCORTIN SYSTEM

Gene expression can be controlled at the transcriptional or
post-transcriptional levels as well as during and after the
translation. In this context, it has recently been highlighted that
small RNAs, miRNAs, play predominantly inhibitory regulatory
roles by binding to the 3′ untranslated region (3’UTR) of

message encoding RNAs. The miRNAs are small non-coding
RNA molecules of 21 to 26 nucleotides that regulate gene
expression (Bartel, 2004; Derghal et al., 2016). They were
first discovered in Caenorhabditis elegans in 1993 and, later
on, in vertebrates and plants (Lee et al., 1993; Wightman
et al., 1993). These non-coding RNAs induced specific gene
silencing by base pairing to 3’UTR of target messenger mRNAs.
miRNAs exert their actions by inhibiting translation and by
affecting mRNA stability and degradation (Bartel, 2004; Guo
et al., 2010; Derghal et al., 2016). Based on computational
algorithms, around 60% of human transcripts contain potential
miRNA-binding sites within their 3′UTRs (Friedman et al.,
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2009). A single miRNA can potentially bind to more than
100 target mRNAs, and multiple miRNAs can cooperate to
finely tune the expression of the same transcript (Doench and
Sharp, 2004; Grimson et al., 2007; Selbach et al., 2008). The
miRNAs play key roles in numerous physiological processes
including cell proliferation, apoptosis, neurodevelopment, and
tissue differentiation but also in pathological processes as cancer
(Bartel, 2004). Interestingly, defects in miRNA biogenesis and
function have been shown to contribute to the development of
metabolic disorders. For instance, mir-14, mir-278, and let-7
are involved in the metabolism of lipid and glucose respectively
(Krützfeldt and Stoffel, 2006; Frost and Olson, 2011).

As indicated before, miRNAs are important for
neurodevelopment but also neurotransmission or synaptic
plasticity (Díaz et al., 2014). In the case of the hypothalamus,
several studies demonstrated that the miRNA transcriptome is
different at different stages of development. For instance, Zhang
et al. showed that 30 miRNAs including miR-7 and miR-191
are differentially expressed in the hypothalamus of the pig
between stages P60, P120, and/or P180 (Zhang et al., 2013). More
recently, a nice work showed robust changes in the expression of
numerous miRNAs during the period of functional organization
of the ARC and median eminence between stages P8–P14 and
stages P21–P28 (Doubi-Kadmiri et al., 2016).

As mentioned above, hypothalamus and DVC are important
for the detection of circulating nutrients and hormones and
in turn, these neuronal structures modulate the pancreas, liver,
and adipose tissue physiology through efferent pathways. The
function of miRNAs in the hypothalamus and DVC has not been
clearly addressed. However, as in the other organs involved in
energy homeostasis, miRNAs undoubtedly play a key role in
hypothalamus andDVC neurons, and particularly in the function
of melanocortin pathway. In accordance with this point, it has
been shown that in the anorexia mouse model, anx/anx, there
is an alteration of miRNA machinery expression. In particular,
an up-regulation of RISC genes (Dgcr8, Ago2, Fmr1, Ddx6, and
Pabpc1) has been observed in the hypothalamus of anx/anxmice
(Mercader et al., 2012). However, the link between the phenotype
of the anx/anxmice (anorexia, hyperactivity, and ataxia) and the
differential regulation of RISC genes need to be clarified.

A large number of miRNAs are expressed in the brain,
and deletion of Dicer, a specific enzyme involved in miRNA
maturation, in specific brain structures or neuronal cell type
can lead to behavioral defect and neurodegeneration (Schaefer
et al., 2007; Cuellar et al., 2008; Olsen et al., 2009; Hébert et al.,
2010; Tao et al., 2011). Recently, it has been shown that Dicer is
essential for the central control of energy homeostasis. In fact,
the neuron-specific deletion of Dicer induced obesity in mice
(Mang et al., 2015). Interestingly, brain transcriptome analyses in
this obese mice model identified several obesity-related pathways
as leptin signaling (Mang et al., 2015). In the hypothalamus,
deletion of Dicer in the ARC of adult mice induced hyperphagia
and obesity (Vinnikov et al., 2014). The group of Dr Claret
also showed that the hypothalamic expression of Dicer is
modulated by fasting (Schneeberger et al., 2012). In contrast,
the expression of Dicer is increased in diet-induced obesity
model and ob/ob mice (Schneeberger et al., 2012). Altogether,

these results suggest that the expression of Dicer is modulated
by nutrient availability. Interestingly, Dicer is expressed in 94%
of POMC and NPY/AgRP neurons suggesting an important
function of Dicer and Dicer-derived miRNA in the modulation
of the POMC, AgRP, and NPY genes expression (Schneeberger
et al., 2012).

It has been established that each tissue exhibit a specific profile
of miRNA expression (Babak et al., 2004; Lee et al., 2008). First
studies revealed an enrichment of several miRNAs including let-
7c, miR-7a, miR-7b, miR-124a, miR-125a, miR-136, miR-138,
miR-212, miR-338, and miR-451 in the hypothalamus of rodents
(Farh et al., 2005; Bak et al., 2008). These observations have
been confirmed in ARC and paraventricular (PVN) nucleus of
the hypothalamus by illumina sequencing technology (Amar
et al., 2012). And in particular, expression was high or moderate
for about 20 miRNAs as let-7, miR-7a and b that may be
used to define a common ARC/PVN profile of male Wistar
rats (Amar et al., 2012). In the line of this observation, it has
been demonstrated that miR-7a is expressed preferentially in
NPY/AgRP neurons (Herzer et al., 2012).

The functions of hypothalamic miRNAs are highly
investigated. In particular, potential impact of leptin on
hypothalamic miRNAs expression profile begins to be clarified.
Recently, the group of Dr Taouis performed a large-scale
expression analysis using Taqman Low Density Arrays
methodology to analyse 524 rodent mature miRNAs on the
hypothalamus of ob/ob mice (Crépin et al., 2014). They showed
that the relative expression of only 11 out of 524 miRNAs
were significantly modified in the hypothalamus of ob/ob mice
compared to the control animals (Crépin et al., 2014). They
confirmed the over-expression of miR-200a, miR-200b, and
miR-429 in ob/ob mice as compared to control animals by real
time PCR (Crépin et al., 2014). Interestingly, the expression of
these miRNAs in ob/ob mice decreased after leptin treatment
(Crépin et al., 2014). Importantly, the same group showed that
overexpression of mir-200a in ob/ob mice can down-regulate
Insulin receptor substrate-2 and leptin receptor hypothalamic
expression that are involved in the insulin and leptin pathways
(Crépin et al., 2014) (Figure 2). In other set of experiments, the
group of Dr Taouis demonstrated that the defect in the leptin
action in early life supports leptin resistance and disturbs the
hypothalamic miRNA expression pattern in adulthood (Benoit
et al., 2013). And in particular, daily injection of a pegylated rat
leptin antagonist (pRLA) in newborn rats induced a modification
of the hypothalamic miRNAs pattern expression at d28 (Benoit
et al., 2013). Interestingly, after 1 month of HFD challenge, there
is an up-regulation of miR-200a expression in the hypothalamus
of pRLA (Benoit et al., 2013). These different observations
suggest that miRNAs, and particularly miR-200a, are involved in
the effect of leptin and insulin in the hypothalamus (Figure 2).
In accordance with these studies, Sangiao-Alvarellos et al.
demonstrated the alteration of the hypothalamic expression of a
set of miRNAs, including let-7a, mir-9, mir-30e, mir-132, mir-
145, mir-200a, and mir-218, after a chronic caloric restriction
and a HFD in male rats (Sangiao-Alvarellos et al., 2014). The
predicted targets of these miRNAs include different actors of key
inflammatory and metabolic pathways, including such as nuclear
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FIGURE 2 | Function of micro-RNAs in the control of melanocortin neurons activity by leptin. Akt, serine-threonine protein kinase; IRS-2, insulin receptor

substrate 2; JAK2, janus kinase 2; LepRb, leptin receptor type b; mTOR, mammalian target of rapamycin; Pi3K, phosphatidylinositol 3-kinase; POMC,

pro-opiomelanocortin; SH2B1, Src homology 2 B adaptor protein 1; STAT3, signal transducer and activator of transcription 3; ?, unexplored pathways.

factor κβ, ILs, phosphatidylinositol 3-kinase (Pi3k)/serine-
threonine protein kinase (Akt), insulin receptor, p70S6K,
and Janus tyrosine kinase/signal transducer and activator of
transcription (Sangiao-Alvarellos et al., 2014). Vinnikov et al.
noticed that the injection of mir-103 mimic in the ARC reduced
the obese phenotype of mice lacking Dicer in forebrain neurons
(Vinnikov et al., 2014). The effect of miR-103 could be associated
to Pi3K/Akt/mTOR signaling pathway (Vinnikov et al., 2014)
(Figure 2).

Regarding the functions of miRNAs in the POMC neurons, it
has been demonstrated that specific deletion of Dicer in POMC-
expressing cells leads to obesity and diabetes which is associated
with loss of POMC neurons in the ARC (Schneeberger et al.,
2012; Greenman et al., 2013). In our group, we identified mir-
383, mir-384-3p, and mir-488 that potentially bind the 3-UTR
of POMC mRNA (Derghal et al., 2015) (Figure 2). Using in situ
hybridization, we demonstrated that these three miRNAs are
present in the POMC neurons of the ARC (Derghal et al., 2015).
In addition, there is an increase of the expression of mir-383,

mir-384-3p, and mir-488 in the hypothalamic structures of ob/ob
and db/db mice models (Derghal et al., 2015) (Figure 2). The
intraperitoneal and intracerebroventricular injection of leptin
decreased the expression of these miRNAs in the hypothalamus
of wild type and ob/ob mice suggesting a role of leptin in the
expression of mir-383, mir-384-3p, and mir-488 (Derghal et al.,
2015) (Figure 2). Altogether, these observations strongly suggest
that miRNAs are important for the central regulation of energy
homeostasis by melanocortin pathway.

CONCLUSIONS AND PERSPECTIVES

As indicated above, a large number of miRNAs are involved
in the central regulation of energy homeostasis. We postulate
that miRNAs are energy sensors involved in the hypothalamic
control of systemic energy balance (Figure 1). Moreover, we
cannot exclude a role of the miRNAs in the cortico-limbic
system involved in the interaction of organism with the
food-providing environment. The complete regulatory network
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involving miRNAs is largely unknown. However, several studies
have identified specific miRNAs that control the expression of
the melanocortin pathway genes by leptin (Figure 2). Despite
these promising observations, the specific roles of these different
miRNAs in the melanocortin pathway neurons activity upon
regulation of food intake, energy expenditure, and glucose
homeostasis remain largely unknown. Great efforts should
also be made to clarify this last point. To address this
question, CRISPR/Cas9 as emerging genome editing tool in
biology/medicine research could be used. Indeed, CRISPR/Cas9
shows a benefit in the specific control of crossing off-target
impact on miRNAs in the same family or with highly similar
sequences.
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