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Abstract

The full field measurement of 8 vibration modes of a cantilever plate, up to the

kHz frequency is performed using a single standard camera. The image acquisition

is carried out at low rate but using fast exposure time (1/4000 s) that "freezes" a

part of the motion. A deflectometry setup coupled with digital image correlation

analysis allows angle fields, then deflection fields, to be measured. An out of plane

displacement database is generated from all stored fields. This snapshot library is

finally post-processed using principal component analysis techniques and adapted

weights that enable space vibration fields to be extracted. A test case is performed

on a reflecting cantilever steel plate. 370 deflection fields are measured allowing

8 space vibration fields to be extracted. The natural frequencies of those modes

are estimated using the Rayleigh ratio. A coarse and visual comparison with a

numerical simulation shows similar results for 6 of the 8 space modes.

Keywords: Full field measurement, Deflectometry, DIC, Modal analysis,

Principal Component Analysis

1. Introduction

The analysis of the displacement fields of a sample during a mechanical test is

a key element for model validation and identification. One of the developed full

field measurement procedure is Digital Image Correlation (DIC) [1] that provides
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2D displacement fields from a series of images. This technique is now widely used

in laboratories because of its robustness, its accuracy and the generally accessible

required experimental setup. Based on reduced predefined kinematic solutions

(e.g., finite element mesh kinematic with global DIC [2]), this method has been

applied for complex measurements and identifications (e.g., measurement on im-

ages with poor texture, with gray level and blur changes [3], localized motions as

crack initiation and propagation [4] or shear bands etc. ). It provides accurate

displacement fields, up to centi-pixel, with well characterized uncertainties [5].

Nevertheless, DIC is generally limited to the analysis of in plane displacement

fields. To circumvent this limitation, an extension of DIC for the measurements

of 3D surface motions called stereo-DIC has been developed.

In stereo-DIC methods, the different views of the same surface enable, in ad-

dition to the in-plane motion, the out of plane displacement to be measured.

Stereo-DIC has been applied in many fields including kinematic identification,

material characterization [6], surface topology measurement [7, 8] etc. Stereo-

DIC also appears to be an efficient tool for the analysis of non-flat structures with

complex 3D shapes. Different experimental setups have been studied in the liter-

ature, generally combining multiple cameras, but also with a stereo-setup based

on a single camera with multiple mirrors (mirror based single-camera stereo-DIC

methods [9, 10]) or a prism [11] in order to have multiple views of the same charac-

terized surface. Combined with fast cameras, stereo-DIC has been developed for

the measurement of vibration displacement fields [12, 13, 14] (often applied for the

study of the deflection of beams or plates). Nevertheless, those stereo-approaches

may require a setup composed of multiple fast cameras [15] and a complex pro-

cedure for the calibration and DIC measurement. The analysis is also limited to

the first vibration modes until the deflection become too small (particularly with

fast cameras that often have low spatial resolutions).
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Deflectometry is an experimental method that allows small out of plane dis-

placements to be assessed [16, 17, 18]. A grid or fringe pattern is imaged through a

reflective sample by a camera. The deflection of the sample deforms the acquired

grid patterns that are analyzed from phase measurements. This method is a gra-

dient measurement technique that provides a full field slope identification of the

surface. The height can then be obtained after integration. This method has been

developed for different applications such as topography measurements [19, 20, 21],

dynamic measurements for vibration, damage detection [22], mechanical identifi-

cation [23, 24].

A similar method to deflectometry has been developed in the field of fluid

mechanics in the past few years [25, 26]. An angle field is measured from the

refraction of water instead of mirror samples. The bottom face of a water tank

is covered by speckle patterns. A camera is located outside, at the top of the

reservoir and images this bottom face throughout the water. A change of the

fluid height (generated by wave propagation) distorts the acquired images and

hence can be read as surface angle using digital image correlation and geometrical

relations. The surface heights can thus be obtained from the integration of the

measured angle fields. The method has also been used for transparent film motion

analysis [27].

Many models and data reduction techniques [28, 29] (e.g., Principle Com-

ponent Analysis (PCA), Singular Value Decomposition (svd), Karhunen-Loeve

decomposition) provide modal decomposition of a problem with separated vari-

ables. The analysis of space-time fields allows modes, product of separated space

and time functions, to be generated. This may constitute when truncated up to

a certain number of modes a reduced basis. The relationship between vibration

modes and PCA decomposition [29, 30] has been studied. It has been shown that,

considering a light damping system composed of an identity mass matrix (that
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can be easily obtained from a change of variable), the space eigenmodes of the

PCA decomposition could be confused with vibration modes [31, 32]. For an ac-

curate modal measurement, the number of snapshots used for the decomposition

has to be large [33].

It is proposed in this article a modal measurement of a vibrating plate using

a deflectometry setup and a single standard camera. A series of speckled images

are acquired at a slow rate and fast exposure time. The global DIC post-process

gives a series of slope measurement snapshots with a very high sensitivity to

the deflection. The slope fields are then integrated in height fields and stored

in a database. Then a modal basis composed of the space modes associated to

natural frequencies can be obtained using PCA decomposition techniques with

a particular attention on the experimental uncertainties. An application on a

vibrating cantilever plate is carried out. The 420 acquired images with a standard

digital camera allows 8 vibration modes (space and time) to be identified up to

1 kHz frequency. A comparison with the 8 first modes from a finite element

simulation gives 6 similar space shapes.

2. Method

2.1. Deflectometry

The out of plane measurement method used in this article is based on deflec-

tometry [16, 17, 18]. Instead of measuring the displacement field on the surface of

a sample, as it would be done in DIC, it is proposed to work on the reflection of a

fixed speckled image by a mirror specimen. With the deflection of the sample, the

reflected image captured by the camera is distorted. Contrary to standard full

field measurement methods as DIC, the deflectometry fields are slope fields that

can be integrated in one single height field. For the experimental measurement
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on non-reflecting materials, a thin mirror film could be added on the surface. A

drawing of the deflectometry setup is shown figure 1

Figure 1: Principle of deflectometry based on a mirror sample that reflects a speckled image.

The bending of the measured plate deforms the acquired images.

A very high out of plane sensitivity is expected, related to the geometrical

parameters (i.e., length from the mirror to the speckled image). It can be noted

that this length is easily adaptable depending on the required angle amplification

and allowing to avoid caustic effects (the size of the speckles can also be adjusted).

Multiple sources of image distortion may appear in this procedure and can be

corrected

• distortion of the image due to the deformation of the mirror sample. This is

the identified distortion, related to the bending of the imaged surface. The

slope fields have then to be post-processed in order to obtain the deflection.

• distortion introduced by the imaging device and setup (tilted position of the

camera, conic angle of view etc. ). This can be measured and corrected for

example with geometric models or with the comparison of a known speckled

target (calibration printed sample) with its distorted acquisition.

• distortion introduced by an initial curvature on the reflecting sample. This

can be identified using a calibration sample.
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The two last distortions can be identified experimentally or analytically (with

assumptions on the geometry). Because the following application is the measure-

ment of an assumed plane sample (a steel cantilever plate), the last distortion is

not considered.

2.2. Digital image correlation

Digital image correlation [1] relies on the registration of an image f(x), de-

fined for every pixels of the selected region of interest x = [x, y] in the reference

configuration and a series of pictures g(x) in the deformed configurations. The

registration operation consists of minimizing the sum of squared differences be-

tween the deformed image corrected for its displacement and the reference image.

Hence

u(x) = Argminu∈E
1

2σ2Nx

∑
x

(f(x)− g(x+ u(x)))2 (1)

with E, a subspace composed of a reduced kinematic basis, σ the standard devia-

tion of the supposed white Gaussian noise and Nx the number of pixels per image.

With global DIC [2], the motion is described on a finite element mesh kinematic

basis using standard shape functions φi(x) and a reduced number of unknowns

ui such that

u(x) =

Ndof∑
i=1

uiφi(x) (2)

with Ndof the total number of degrees of freedom (2 displacements per node). The

minimization of the functional is carried out with a Newton descent algorithm.

The DIC is carried out using the Correli-3.0 framework [34] with an update at

each iteration l of the displacement field {u}l = {u}l−1 + {δu}. The correction

of the displacement {δu} for the linearized problem can be written

{δu} = [H ]−1{b} (3)
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with [H ] the Hessian function with respect to {u} and {b} the second member

vector

Hij =
1

2σ2

∑
x

(∇f(x)φi(x)) (φj(x)∇f(x)) (4)

bj =
1

2σ2

∑
x

ηl(x)φj(x)∇f(x) (5)

with ∇ the gradient operator and ηl(x) the residual field at iteration l that rep-

resents what has not been captured by the kinematic correction. This residual

allows the procedure to be (in)validated

ηl(x) = f(x)− g(x+ ul(x)) (6)

From geometrical or experimental relations, the measured displacement fields

on the deformed surface can be read as angle fields. With {θ} = [θx, θy]
t the

angles in x and y directions

{θ} = Γ({u}) (7)

This function will be expressed for the test case in the application part considering

a simple cone field of view correction.

2.3. Integration of the measured field

The measured bending angles of the plate θx(x) and θy(x) can be integrated

into the out of plane displacement of the plate {h}. The bending angles can easily

be related to the height variations (deflection of the plate)

[θx, θy]
t =

[
∂h

∂y
,
∂h

∂x

]t
(8)

The two terms are written in matrix notation

{θ} = [S]{h} (9)
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where [S] of size [Ndof, Ndof/2] defines the linear operation on {h} to produce the

gradient of {h} in y and x direction. As proposed in [25], the integration of the

two previous equations is performed through a linear least square minimization

{h} = Argminh‖[S]{h} − {θ}‖2H (10)

where ‖.‖H denotes the [H ] norm thus weighted by the correlation matrix of

the DIC procedure [35, 36]. The result is hence weighted by the measurement

uncertainty. The linear system that has to be solved is

{h} = [Hh]−1[S]t[H ]{θ} (11)

with [Hh] = [S]t[H ][S] the Hessian matrix that corresponds to integration un-

certainty.

It can be noticed that the integrated displacement field is composed of an

unknown constant. Its value can be obtained with additional out of plane mea-

surement points (at least one) such as a LVDT (if the constant motion is expected

to be in the sensor acquisition frequency range), accelerometer behind the surface,

an orthogonal camera etc. or with assumptions on the displacement field. In our

application, the mean displacement at the fixed boundary condition of the plate

has been globally subtracted.

2.4. Modal measurement

Space measurements: The previous analysis and integration enables the

measurement of the deflection of the plate for each acquired time step. These

out of plane displacement fields are then stored and can be post-processed in

order to obtain the main spatial modes. Form [31, 33, 32], it has been shown

that the PCA converges to linear normal modes in multi-modal free responses of

symmetric linear systems, but only if the mass matrix [M ] is proportional to the
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identity matrix (which can be achieved by a coordinate transformation if the mass

distribution is known) and when the system is lightly damped. The equation of

an unforced, undamped linear multi-degree-of-freedom vibration system, with an

identity equivalent mass matrix is

∂2 ˜{h}
∂t2

+ [M ]−1/2[K][M ]−1/2 ˜{h} = 0 (12)

with the displacement field {h} = [M ]−1/2 ˜{h} and [K] the stiffness matrix,

defined (as for the mass matrix) using the same global-DIC finite element mesh.

A large set of images is required to correctly catch the first modes. In order

to take into account the measurement and the integration uncertainty, the PCA

decomposition can be weighted by the square root of the Hessian function [Hh]

(as proposed in [37]). Then the weighted displacement fields {h(x, t)} composed

of few different loading steps (indexed by t, a dimensionless number) are expressed

as the sum over Nn modes, product of two functions with separate variables, one

is a "temporal" evolution {τ n(t)} (that is not considered in the following) and

space function {qn(x)} such that

[Hh]1/2[M ]1/2{h(x, t)} =
Nn∑
n=1

[Hh]1/2[M ]1/2{τ n(t)}{qn(x)} (13)

The amplitudes of the mode may be applied on {τ n(t)} or {qn(x)} (it has been

chosen in the following a norm for {τ n(t)} of 1 hence the norm of {qn(x)} is the

mode amplitude).

Instead of working with all the Nn modes, it is possible to truncate the sum

and generate a reduced basis composed of few main modes (with the highest

eigenvalues). Looking at the residual field (i.e., the sum of all removed modes)

allows the truncation to be (un)validated if it has low values and does not contain

space correlation (i.e., would be considered as a white noise).
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Temporal evolution: In this procedure, it is proposed to capture snapshots

of the vibrating plate. The images are acquired few order of magnitudes slower

than the mode frequency and at random time. Hence the temporal evolution of

the PCA decomposition will not be considered. Because the PCA analysis deals

with a L2 norm, weighting the displacements by the square root of the mass matrix

corresponds to an energetic norm. The resulting eigenmodes are also orthogonal

with respect to the system mass.

Another approach is to compute the natural frequencies from the Rayleigh

ratio. With known spatial modes of the plate and both mass and stiffness matrix

(computed on the same finite element mesh as the one used in the global DIC),

it is possible to compute the natural frequency of each mode. The Rayleigh-Ritz

ratio (based on the equality between the kinematic and potential energy) can be

expressed considering the eigenvectors {qn}

(ωn)2 =
{qn}t[K]{qn}
{qn}t[M ]{qn}

(14)

The more PCA mode studied, the more the spatial function is expected to be com-

posed of high noise frequency patterns. The Rayleigh ratio is highly sensitive to

this noise that pollutes the natural frequency estimation. Smoothing constraints

could be added using Integrated-DIC [35] approaches where the solution is directly

expressed on a highly reduced kinematic basis, generated from a vibration model.

Local elastic regularizations [2] would also give lower frequency fields depending

on the chosen regularization length.

The entire procedure, from image acquisition to modal analysis can be sum-

marized by the 5 successive steps shown in table 1.
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Step Outputs

Acquisition of all images f(x) and g(x, t)

DIC measurement {θ(x, t)} and [H ]

Integration of the angle {h(x, t)} and [Hh]

Space mode analysis {q(x)n}

Natural frequency computation ωn

Table 1: Summarized successive steps of the entire procedure with the output quantities

3. Application to the modal analysis of a plate

3.1. Test case presentation

The test case is the vibration of a rectangular stainless steel plate (145×85×1.0 mm3),

fixed at one of the 4 edges, excited in the back side with a hammer at different

and random space positions. The surface of the plate has been polished to reflects

a printed speckled image, located between the camera and the mirror. The dis-

tance between the sample and the speckled image is d = 26.0 cm and the distance

between the speckled image and the imaging device is D = 48.0 cm. A picture

of the experimental setup is presented figure 2. The elastic mechanical properties

for the stiffness matrix are the Young modulus E = 205 GPa and the Poisson

ratio ν = 0.27 and the density for the mass matrix is ρ = 8050 kg.m−3.

Figure 2: Experimental deflectometry setup for the modal analysis of a plate

11



The camera is a Canon 60D with a 50 mm objective, exposure time 1/4000 s,

f-10 with a LED panel for a diffuse light. 420 images are taken at random times,

for different hammer shock positions (acquired few seconds after the shock to

avoid transitory phenomenon). The resolution, measured (i) on the speckled

image is 1 pixel → 218 µm and (ii) on the mirror sample is 1 pixel → 161 µm.

Because the images are taken with a detector parallel to the sample and speckled

image, the Region Of Interest (ROI) is located in the bottom part (see figure 2).

The top part of the acquired image is thus composed of the black background and

is cropped. It is noteworthy that the camera could also be tilted with an angle

in order to capture the mirror image with a larger detector zone. A geometric

correction of this angle distortion would have to be performed.

The acquisition frequency is approximately 1-2 Hz thus is not fast enough

to capture the vibration of the structure (first mode at approximately 123Hz).

Nevertheless, the exposure time is chosen so that the images are "frozen" and

not blurred by the vibration of the searched modes (1/4000 s was enough and is

a standard available setting for most of the commercial digital camera otherwise

1/8000 s would have also been selected with a higher luminosity or ISO sensitivity).

One of the acquired image is shown figure 3(a) with 3 free edges and one fixed

boundary condition at the bottom edge by a clamping device (that finally was

found from the following results to not be perfect).

3.2. Radial distortion correction

Considering the flat mirror sample, the distortion by the camera can be eval-

uated and corrected analytically. The measured point, figure 1, is defined at a

position r2 = x2 + y2 from the vertical projection of the camera. Hence the

deflection angle can be related to the identified displacement field (identified

using the resolution at the speckled image). The angle fields can be written
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Figure 3: Reference of the reflected speckled image f(x) with the selected mesh on the ROI.

Note that the bottom boundary condition does not look straight but is in fact the reflect of the

front grip thickness.

θ(x) = Γ[{u(x)}] = tan−1 [u(x)/F (x)] with

F (r) = 2d

(
1 +

(
r

D + 2d

)2
)

(15)

It is noteworthy that this cone distortion correction is quite small (because the

solid angle is small).

3.3. Dynamic deflection measurements

A static validation of the procedure has been performed and is shown in an

appendix. The DIC procedure is applied in the ROI of the acquired images, cor-

responding with the black mesh added on figure 3. Only a small band around the

ROI is not considered in order to remove the correlation on the edges that may

disappear because of convex bending. The T3 (3 nodes elements with bi-linear

shape functions) element mesh size used for the global DIC procedure is approx-

imately 30 pixels (for a total of 611 elements). The procedure does not converge

for 50 images because of high displacements and blur on the image. Finally, 370

displacements fields are measured. 30 of these fields have been acquired without

vibration of the plate, in the reference configuration, in order to quantify the
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uncertainty. The standard deviation of the measured displacements on those 30

reference fields is 0.032 pixel.

Long wave spatial patterns are expected for the first modes hence a finner DIC

mesh is not required. The two angle fields θx(x) and θy(x) at convergence are

shown figure 4(a-b).

(a) θx(x) (b) θy(x)

(c) h(x)

Figure 4: Measured deflection angle fields, at step 98 for (a) θx(x) (b) θy(x). The two fields

are expressed in radian and (c) the integrated field corresponding to the height, expressed in

pixels. The amplitude of the deflection is less than one pixel ( 1 pixel measured on the sample

↔ 161 µm). Note that this field is defined by an unknown constant.

The mean norm of the final residual fields decreases from 9.4% of the gray level

dynamic to 2.1% that corresponds to the residual value of the 30 first unloaded

images (1.9%)). No localized patterns are visible on the residual fields. The

captured kinematic and the DIC procedure can thus be validated. These angular

fields can be numerically integrated using the weighted least square method. The
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result is a single out of plane field per state. The deflection of the plate, in pixel

(i.e., resolution of the mirror sample), is shown for step 98 in figure 4(c). It can be

noted that because this field is the result of an integration, it is not very sensitive

to the noise. Two other fields of the database that are clearly different from the

field time 98 are presented figure 5.

Figure 5: Two other deflections of the plate h(x, t) at step t = 30 and t = 65, expressed in

pixel. All deflections fields constitute a deflection database then post-processed to extract the

principal components.

The same DIC analysis is hence carried out for the 420 images that provides

370 converged fields. Those fields are stored in a library that has to be post-

processed to extract the principal space fields related to vibration modes.

4. Modal measurement

4.1. Space modes

From the stored out-of-plane displacement fields of the 370 time steps, vibra-

tion modes can be extracted. The PCA decomposition of the data gives the first

space modes of the plate. As expected by the standard elasticity, the more modes

the higher the spatial frequency. Finally 8 modes can be identified easily until

the function became too much affected by high frequency spatial patterns (see

figure 6). The 9th mode does not contain low spatial coherency but is composed

of noise.
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(1) q(x)1 (2) q(x)2

(3) q(x)3 (4) q(x)4

(5) q(x)5 (6) q(x)6

(7) q(x)7 (8) q(x)8

Figure 6: The eight first experimental space fields with the highest eigenvalues q(x)n. A sym-

metric divergent color map has been used to highlight the positive and negative values (except

for mode 1 and 5).
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The analysis of modes 3 and 6 shows that the applied boundary conditions are

not a corresponding to a perfect cantilever plate but some displacement fields are

seen in the bottom edge of the ROI. Although the clamping device was tight, the

shapes of the two grips were slightly curved leading to boundary conditions that

were not applied uniformly.

It can be noticed that the last identified modes are composed, in addition to

the expected wave shape, of high frequency patterns (with a length much smaller

than the expected deformation shape) that will pollute the Rayleigh ratio. Using

regularized approaches or applying a filter would allow the different frequencies

to be separated.

A simple elastic finite element simulation in order to extract the first numeri-

cal modes enables a coarse and visual experimental/numerical comparison to be

carried out. The simulation is performed on a slightly larger mesh in order to

model the entire plate and not only the ROI (it corresponds to a larger rectangle

25 pixels outside the three free edges and 50 on the fixed edge). The field is then

plotted on the DIC mesh for a better comparison. The first identified modes have a

natural frequency of respectively [123, 213, 443, 772, 859, 935, 1256, 1586] Hz. The

numerical results are shown figure 7.

On the eight presented modes, 6 can be directly compared, namely the numer-

ical modes [1− 2− 3− 4− 5− 7] to the experimental modes [1− 2− 5− 4− 8− 7].

The last modes are measured with an out of plane displacement amplitude of 0.1

pixel (29 µm) amplitude that highlights the huge sensitivity of the method (note

that this amplitude is related to the temporal function amplitude whose L2 norm

is 1).
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 7: The eight first numerical space fields. The same color maps dynamic as the experi-

mental results are used.

18



4.2. Temporal modes

With the identified spatial modes, the Rayleigh ratio allows the natural fre-

quency to be obtained from the mass and stiffness matrices. Table 2 shows the

frequencies associated to each modes and their comparison with the equivalent

numerical modes.

Table 2: Computed natural frequency using Rayleigh ratio compared with the 6 corresponding

numerical modes.

Experimental PCA mode 1 2 3 4 5 6 7 8

Experimental frequency [Hz] 113 241 456 666 476 2945 2496 1672

Corresponding numerical mode 1 2 – 4 3 – 7 5

Numerical frequency [Hz] 123 213 – 772 442 – 1256 859

There is a good correlation between the natural frequencies of the experimental

modes 1−2−4−5 and the equivalent shapes of the finite element model for modes

1 − 2 − 4 − 3. The natural frequency of the experimental mode 4 is higher than

mode 5 as expected from the simulation (also for mode 7 and 8 even if the accuracy

of the value can be discussed).

As previously discussed, the last modes (after mode 5) are polluted by high fre-

quency patterns that affect the natural frequency computation from the Rayleigh

ratio. A more regularized approach would consist of identifying a smooth model

(composed of long wave functions for example) and find the natural frequencies

of this model.

Experimental mode 7 clearly corresponds to an equivalent numerical mode

(number 7) of 1255 Hz. For a standard full field measurement of this mode, a

stereo camera setup with a acquisition frequency of at least 5 to 10 kHz would

have been required.
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5. Conclusion and discussion

The measurement of the 8 first modes of a vibrating cantilever plate has been

performed using a deflectometry setup composed of a single standard camera. Set

with a fast exposure time (1/4000 s), a Canon 60D camera acquires a printed

speckled image through a vibrating stainless steel mirror sample. This fast expo-

sure time "freezes" the apparent deformation. A global digital image correlation

procedure allows this apparent deformation of the plate to be measured and re-

lated to the curvature of the sample. Then the height fields are computed from the

integration of these angle fields and stored for all acquisition steps. This database

is finally weighted by the adapted measurement uncertainties and mass matrix to

be post processed in order to extract the principal components that correspond to

the space vibration fields. From the Rayleigh ratio, the natural frequencies of all

these experimental modes can be estimated. Modes with a very small amplitudes

and frequencies higher than 1 kHz are identified. With standard stereo-DIC ap-

proaches, this would have required fast stereo cameras much more expensive and

arduous to carry out.

A comparison with the numerical modes obtained from a finite element simu-

lation highlights the relevance of the measured modes even if the boundary condi-

tions may not have been perfectly modeled. Similar space results can be noted for

6 modes. The natural frequencies of those 6 equivalent modes are corresponding

for 4 of them.

The space results show that the fixed boundary conditions are not perfect and

some out of plane displacements are visible. Because this boundary conditions

have been modeled as perfect in the finite element simulation, two experimental

modes (number 3 and 6) cannot be compared with the numerical simulation.

The accuracy of the PCA method is based on a large database (i.e., a large
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number of fields). In the presented application, the same analysis performed on 75

images gives similar results. Nevertheless, the reason why the eigenvalue positions

of two space modes were inverted compared with the numerical results and the

Rayleigh ratio may be related to the image sampling that was not important

enough , wrong model of the boundary conditions or the excitation that was not

really random.

It can be seen that the last identified modes are polluted by high spatial

patterns considered as noise. This noise affects the Rayleigh ratio. This problem

could be circumvented by adding regularization with predefined fields or a local

elastic constraint with an adequate regularization length.

To go further than a visual comparison between the experimental results and

the numerical simulation, an identification procedure could be performed. The

mechanical parameters as well as the real boundary conditions could be identified

using for example Finite Element Method Updating or Integrated-DIC [35].
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Appendix: Static validation

A static validation of the procedure on the same sample is performed. The

sample is loaded with an out of plane force at the top left corner. 10 reference

images and 3 steps under small loads are acquired: 0.31, 0.40 and 0.50 N. The

distance between the sample and the speckled image is d = 50.2 cm and the

distance between the speckled image and the imaging device is D = 41.0 cm. The
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same imaging device is used. The resolution measured (i) at the speckled pattern

is 287 µm and (ii) at the mirror sample 197 µm.

The T3 element mesh size used for the global DIC procedure is approximately 50

pixels (for a total of 287 elements). A finite element simulation of the bending,

with fixed boundary conditions is performed on a fine mesh and projected on the

DIC mesh (i.e., smaller than the real plate as in figure 3).

(1) (2)

Figure 8: Deflection fields for the load at 0.50 N, expressed in pixels (1 pixel ↔ 197 µm) for the

static test case for (1) the measured field with the proposed method and (2) the simulated field

A comparison between experiment and numeric is presented figure 8 for the

third loading step (0.50 N). A good agreement between the two fields can be

noted. For the two other steps, the deflection field has the same shape but the

amplitudes are slightly different between the measured and simulated fields. A

mean variation of 9% and 4% for the first and second step can be noted. Those

variations may come from uncertainties of the load measurement (±0.01N), wrong

model of the boundary conditions, elastic parameters.
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