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1. Introduction

Traditionally, for thousand of years, masonry techniques were commonly used for the build-
ing of homes, monuments, walls, and retaining walls. Masonry is one of the oldest construc-
tion materials. Since masonry is a composite structure, however, failure of these structures
will depend on the properties of the materials (mortar, bricks, etc.), as well as on the char-
acteristics of the bonding between the various components. Two main methods of modeling
masonry structures have been developed in the literature. The first method involves macro-
scopic models and homogenization techniques: the wall is assumed to be a single structural
element characterized by a non-linear response when it is exposed to external forces. The
second method has been developed for predicting the evolution of cracks and damage at the
interface brick-mortar or brick-brick. This chapter deals with two families for the modeling
of brick-mortar interface. The first part of this chapter deals with the experimental char-
acterization of the materials (bricks and mortar) and the brick-mortar interface. Hereafter,
we describe experimental studies on the shear behavior of masonry on the local scale, in
the case of two different assemblies composed of two and three full/hollow bricks, with or
without confinement. Two other structures are presented: a small wall made by seven bricks
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and the classical problem of a small wall under diagonal compression. The second part of
this chapter deals with a phenomenological model of interface. The mechanical modeling
approach (and in particular the RCCM [10] adhesive model adopted) is first presented. The
model is based on the concept of adhesion variable due to Frémond [12]. A variation equa-
tion of this variable is introduced and the coefficients are identified experimentally. The
numerical procedure used is then described. Lastly, some numerical examples are given
and compared with the experimental data. The third part presents a multi-scale model of
interface. The method is based on homogenization theories and asymptotic analysis. In
the present work, we assume the existence of a third material: the brick-mortar interface,
which is considered as a mixture of brick and mortar with a crack density. To obtain the
effective properties of the damaged intermediate material, three aim steps are performed.
First, we calculate the exact effective properties of the crack-free material using homoge-
nization techniques for laminate composites, and thus define a first homogeneous equivalent
medium. In the second step, we assign a crack density to the material. To model the macro-
scopic behavior of the cracked material, we use the Kachanov model [18] and then define
a new homogeneous equivalent medium. Finally, in order to be sandwiched between the
brick and mortar, this material is given a small thickness, and its mechanical behavior is
derived using asymptotic techniques to shift from the micro to the macro level. A varia-
tion law of the crack length is introduced. The numerical procedure used is then described.
Lastly, some numerical examples are given and compared with the experimental data.

2. Experimental Study of The Masonry

2.1. Introduction

The first part of this paper is dedicated to the experimental study of the mechanical behavior
of the masonry. The experimental studies were performed on the materials and masonry
specimens (single, couplet, triplet, wall) composed of full and hollow bricks in order to
identify the mechanical behavior of the bricks, mortar and bricks /mortar joint, in particular
under shear tests with and without confinement pressure.

2.2. Characterization of Materials

2.2.1. Mortar

The mortar used in this study is a ready-to-use mortar from ”Weber and Boutrin” based on
sand and cement (ciment is Portland type 52.5). The maximum size of the sand grains is
5 mm. The mortar characteristics are given in Table 1.

The standard tests following the EN 196-1 norm [5] were performed to determine the
traction and compression strength [1].

The results concerning the flexion and compression limits are summarized in Table 2.
The flexion strength is around 4, 26MPa and the compression strength is around 23MPa
[1]. The elastic modulus given in [3] is equal to (4000MPa).
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Table 1. Characteristics of the mortar

Granulometry 0− 5 mm
Dosing of bond / m3 dry sand 350 kg

Water for mixing 12.5%

or:
• 5 L/ sack of 40 kg

• 3 L/ sack of 25 kg
Density after 28 days 2.25

Contraction after 28 days 0.65

Table 2. Mechanical characteristics of the mortar

Nb. Flexural test Compression test
Traction Flexion Compression Compression

loading (kN ) strength (MPa) loading (kN ) strength (MPa)
1st half 2nd half 1st half 2nd half
prism prism prism prism

1 1.95 4.56 39.5 36.9 24.7 23.1
2 1.87 4.39 39.2 34.4 24.5 21.5
3 1.69 3.95 33.6 30.7 21.0 19.1
4 1.91 4.47 37.7 44.7 23.5 27.9
5 1.65 3.86 37.3 35.8 23.3 22.4
6 1.85 4.33 31.8 39.5 19.8 24.7

Mean value 1.82 4.26 36.5 37.0 22.8 23.1

2.2.2. Bricks

Full and hollow cooked earth bricks were used for the mechanical tests. The dimensions
of each brick are 210 mm (length), 100 mm (width), 50 mm (height). Hollow Bricks are
composed with ten holes ( 25 × 25 mm2 in size) arranged in two rows. A compressive
standard tests using NF EN 772-1 norm [6] were carried out on a series of three units
full/hollow bricks in order to identify the compressive strength, elastic modulus and Poisson
coefficient of the masonry units. Bricks are equipped with strain gauges glued in transverse
and longitudinal directions (unidirectional compression test) and an extensometric sensor.
Compressive load was applied on the upper face of the brick up to failure in two steps: the
load was gradually increased as shown in Table 3; half-way to maximum pressure within
1 min. The elastic modulus is determined from the strain-stress curve at 30 % of the
ultimate load.

Table 3. Loading rate

Expected Strength Loading rate
(N/mm2) (N/mm2)/s

< 10 0.05
from 11 to 20 0.15
from 21 to 40 0.3
from 41 to 80 0.6

> 80 1.0
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Three tests are carried out on each kind of brick [1]. The curve giving the longitudinal
deformation with respect to the normal stress and transversal deformation with respect to
the normal stress are shown in Figures 1 and 2.

The quantitative data obtained on these mechanical parameters are summarized in Ta-
bles 4 and 5.

The experimental results obtained were similar to the mean value recorded by two
gauges. The dispersion of the results was very small.

Table 4. Mechanical properties for full bricks

Nb compression strength Elastic Modulus Poisson
(MPa) (MPa) Coefficient

1 11.7 9 439 0.13
2 10.2 10 447 0.14
3 13.3 8 429 0.13

Mean value 11.7 9 438 0.13

Table 5. Mechanical properties for hollow bricks

Nb Compression strength Elastic modulus Poisson
(MPa) (MPa) coefficient

1 4.4 5 934 0.14
2 4.4 6 737 0.14
3 4.6 5 505 0.12

Mean value 4.46 6 059 0.13

2.3. Mechanical Behavior of Small Masonry Structures Under Shear Load-
ing Without Confinement

2.3.1. Experimental Procedure

In order to determine the influence of the unit volume, two kinds of prism have been tested.
The first kind is composed of two bricks, the second one is composed of three bricks (Figure
3). For each kind of unit volume, full or hollow bricks have been used. Mortar joint
thickness used for the samples is equal to 10 mm. The aim of this experimental study
is to determine the shear behavior and the rupture modes at the interface brick/mortar.

Prisms were prepared following the standard NF EN 1052-3 norm [7].
The samples were subjected to a monotonously increasing load until damage occurred

[2].
Relative displacement between the loading brick and the unloading brick is measured

by extensometric LVDT captors. Test machine and captors are connected with a PC in order
to record data during the test notably the longitudinal strain and the applied load data.

Curves giving the shear stress with respect to the relative displacement were plotted
that will determine the shear behavior law. The results are presented and commented in the
following paragraphs.
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Figure 1. Compression test on full bricks: Elastic modulus and Poisson’s coefficient
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Figure 2. Compression test on hollow bricks: Elastic modulus and Poisson’s coefficient



On the Modeling of Brick-Mortar Interface 7

Loading 

Brick 

!"#$%#&'"()$&

Loading 

Brick 

Mortar joint 

 (a)  (b) 

Figure 3. Shear test: (a) Three bricks unit (b)Two bricks unit

2.3.2. Full Bricks

Figure 4 represents the recorded displacements with respect to the shear load τ = F
A where

F is the imposed load on the upper face of the prism and A is the shear surface (A =
hight× length = 210× 100 mm2).

Figure 5 shows the different failure modes obtained under shear test for the full brick
prisms.

2.3.3. Hollow Bricks

Figure 6 represents the recorded displacements with respect to the shear load τ = F
A where

F is the imposed load on the upper face of the prism and A is the shear surface (A =
hight× length = 210× 100 mm2).

Figure 7 shows the different failure modes obtained under shear test for the Hollow
brick prisms.

2.3.4. Discussions

The experimental studies of different masonry samples presented have shown a nonlinear
behavior on the local scale. We have observed a rigid elastic behavior to the rupture. The
behavior of the specimen in full bricks is fragile in contrast to the response of the specimen
in hollow bricks which is characterized by a softening behavior followed by the sliding
movement between the adjacent bricks. The obtained results on hollow bricks samples
have shown a wide dispersion. This is due essentially to the nonuniform distribution of
the mortars spikes and local defects of the components of bricks masonry. We have noted
that the couplet and the triplet samples made by a hollow bricks possess the same behavior.
Consequently, the choices of basic cell have no influence on local scale. The rupture modes
analysis confirms heterogeneity of masonry structures. This study allows us to identify
phenomena that govern the rupture of the masonry at a local scale and to characterize the
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Figure 4. Shear test for full brick prisms

Figure 5. Failure modes - full brick prisms

0,0 

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

3,5 

4,0 

0,0  0,1  0,1  0,2  0,2  0,3  0,3  0,4  0,4  

S
h
e
a
r
 s
tr
e
s
s
 (
M
p
a
)
  
  
  
  
 .
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

Displacements(mm) 

Three hollow briks 

data 1 

data 2 

data 3 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

4 

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 

S
h
e
a
r
 s
tr
e
s
s
 (
M
P
a
)
  
  
  
  
  
 .
 

Displacements (mm) 

Two hollow bricks 

Figure 6. Shear test for Hollow brick prisms
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Figure 7. Failure modes - Hollow brick prisms

mechanical properties and the behavior law to take into account in finite elements compu-
tations [1] presented in the next section of this chapter.

2.4. Mechanical Behavior of Small Masonry Structures Under Shear Load-
ing With Confinement

Small masonry structures subjected to both shear load and lateral confinement were study in
[4]. In this section, we will focus on mechanical tests data obtained in [3, 4]. For this case,
the dimensions of hollow ceramic bricks used are (210× 100× 50mm3), composed of ten
holes. The holes sizes are 25× 25 mm2 arranged in two rows. Mean value of compression
strength and elastic modulus obtained by the standard compressive test on ten hollow bricks
are 13, 7MPa and 5820MPa, respectively. Mortar used in this study is a ready-to-use
mortar from ”Lafarge-LANKO151” based on sand and cement (ciment is Portland type
52.5). The maximum size of the sand grains is 5 mm. The mortar characteristics are
given in Table 1. Figure 8 presents the samples that were used for the mechanical tests
performed according to RILEM recommendations [8]. Eighteen prisms were tested under
loads confinement with various values between 0MPa and 1.6MPa. The mechanical
behavior of prisms showed in Figure 9 is characterized by a very rigid behavior for elastic
domain, with little displacement (order of microns). The softening behavior is observed
after the maximum stress followed by sliding movement between adjacent bricks. The
confinement stress led to softening behavior in the masonry, when the confinement stress
σ = 0MPa the failure appears immediately. Identical tests give the same curves but
with dispersion on the value of shear stress limit. This difference can be explained by
the presence of spikes in the brick holes. Figure 10 show than spicks in the holes prevents
brutal failure of a shearing prism and conditioned the shear stress limit. Analysis of the
interface brick-mortar damage can identify two phenomena which are responsible for the
prisms failure.

• spicks shearing

• rupture of the inner walls of the brick

The stress confinement σ has no significant influence on the evolution of limit shear
stresses. The experimental data of these tests identifies three main values: 1.63MPa,
1.85MPa and 2.2MPa, respectively, as the lower, middle, and maximal value.
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Figure 10. Failure modes - Hollow brick prisms

2.5. Mechanical Behavior of Small Wall in Diagonal Compression

Now we present the mechanical results of the compression diagonal test obtained on the
small wall masonry performed by Gabor [3]. This test can produce a stress and strain state
where shear and compression are predominant. It is also possible to reproduce the failure
by traction diagonal. Such loads are similar to loading developed in masonry construction
subjected to earthquake. Figure 11 shows the experimental device used for this study. Test
is monotonous with controlled loading. Wall dimensions are 870 × 840 × 100mm3; it is
made with the same materials presented in prevoius paragraphs as recommended by RILEM
[9]. Walls were tested after 28 days after manufacture. Mortar joint thickness is 10mm.
Three walls were created in this work.

To obtain a good load level during a test and produce a global stress - strains state on
masonry in the aim to produce a failure on the wall diagonal corners have been set by a
metal shoe filled with concrete. Two different values for metal shoe length were considered
in mechanical test. The first is equal to L/10 the second one is equal to L/6. The first wall
was tested with the first value in the second and third walls were tested with the second
value.

State strain was measured by the compression (resp. tense) diagonal shortening (resp.
elongation). Extensometric LVDT captors were fixed on the twice diagonal directions in
order to measure the displacement between two points in the same diagonal.

Curves load-strain Figures 12 obtained experimentally can evaluate global response of
masonry wall.

In the first test with L/10, a failure was produced by the sliding and crushing of the
joints in support zone. The maximum load is equal to 160kN and failure is located on the
three rows. In this case, the embedding conditions of corners wall ” metal shoe length ”
cannot distribute the load in wall satisfactorily.
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Figure 11. Experimental device for compression diagonal test

Cracks did not appear in the central zone of wall after test. Evolution load with respect
to the strains Figure 12 identifies a elastic linear behavior of wall except zone support.

In order to avoid these failure modes, the boundary conditions were changed to a new
length support equal to L/10 was considered for next tests. In this case, failure was ob-
served on central zone wall following the diagonals. Cracks were crossing both bricks and
mortar joint, see Figure (13).

Elastic linear behavior was observed in analysis of the curves r1 and r2 (Figure 12). The
first wall is characterized by an elastic post level which appears at 90% of the limit load that
predicts a degradation of mechanical properties. Maximal load for the first wall is equal to
215, 3kN and 251, 8kN , for the second. Strains and loading measured are summarized in
Table 6.

Table 6. Compression diagonal test data L/6

Wall and diagonal Load (kN) Strains (mm/mm)
Test Diagonal Elastic Maximal Elastic Maximal
r1 Compressive 188,3 215,3 415 520

tense 98 190
r2 Compressive 251,8 215,8 670 700

tense 170 220

Results shows a gap of 17% between maximal load obtained on the last two walls tested.
This difference can be explained by the internal structure wall. The strength is governed
essentially by the brick-mortar interfaces. That is confirmed by the experimental study
presented in the first section of this work.
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Figure 13. Cracking and failure of the wall
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3. Phenomenological Model of Interface

3.1. Introduction

In this section, we are interested in the mechanical behavior of the interfaces for masonry
modeling structures when using the materials and interfaces characteristics that were deter-
mined experimentally in the previous section [2, 1]. First, RCCM model [10, 11] that is
based on the adhesion intensity is presented. Second, this model was adopted to describe
the interfaces between mortar and full or hollow bricks in particular; in this case, triplet
assemblies subjected to shear loading. The mechanical behavior predicted by this model is
compared with the previously obtained in the experimental data.

3.2. Presentation of RCCM Model

RCCM adhesion model was adopted to model the mortar/brick interfaces [10, 11]. This
model combines the unilateral contact conditions (non-penetration between the mortar and
the brick) with friction and adhesion between two deformable solids. The local constitu-
tive equations required for this model are deduced from thermodynamic considerations and
based on a material surface hypothesis for the contact zone. The basic idea underlying this
model is to introduce a new state variable describing the contact state. This adhesion inten-
sity variable, denoted β, was initially introduced by [12]. This variable gives the relative
proportion of the active links between two bodies in contact. This variable is chosen as:

• β = 1, total adhesion

• 0 < β < 1, partial adhesion

• β = 0, no adhesion

We are working in the framework of the contact between two deformable solids. The
contact could be defined by a punctual correspondence between two surfaces in contact Γ1

c

and Γ2
c of the domains Ω1 and Ω2 of Rd (d = 2, 3), respectively. At initial time t = t0,

we assume that Γc = Γ1
c = Γ2

c . The relative displacement between two points located on
the two surfaces in contact is denoted by [u] with [u] = u1 − u2. Let R be the density
of the contact forces. We take n1 and n2 to denote the external unit normal vectors to
the boundaries of the two domains. The decomposition into normal and tangential parts is
written:

[u] = [uN ]n1 + [uT ] with [uN ] = [u].n1 (1)

R = RNn
1 +RT with RN = R.n1 (2)

The state variables for the thermodynamical description of this model are:

• Strain tensor e = (eij)

• Displacement jump [u]
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• Intensity of adhesion β

b is taken to denote the adhesion viscosity coefficient, w to denote the Dupré energy,
µ to denote the friction coefficient and CN (resp. CT ) to denote the initial normal (resp.
tangential) stiffness of the interface. In what follows, ḟ denotes the rate of the function f .
The constitutive equations of the interface are given by the following equations, as based
on state laws and complementarity laws:

Unilateral Contact With Adhesion

RN − CN [uN ]β2 ≥ 0; [uN ] ≥ 0; (RN − CN [uN ]β2)[uN ] = 0 (3)

Friction With Adhesion

||RT − CT [uT ]β2|| ≤ µ|RN − CN [uN ]β2|
||RT − CT [uT ]β2|| < µ|RN − CN [uN ]β2| ⇒ [u̇T ] = 0
||RT − CT [uT ]β2|| = µ|RN − CN [uN ]β2| ⇒ ∃λ ≥ 0,

[u̇T ] = λ(RT − CT [uT ]β2)

(4)

Evolution of The Intensity of Adhesion

bβ̇ = −(w − (CN [uT ]2 + CT |[uT ]|2)β)− if β ∈ [0, 1[

bβ̇ ≥ −(w − (CN [uT ]2 + CT |[uT ]|2)β)− if β = 1
(5)

Note that if there is no adhesion (β = 0), this model involves the classical Signorini-
Coulomb problem.

A graphic interpretation of the tangential part of this RCCM model given in figure 14
shows the changes with time in the tangential forces depending on the tangential displace-
ment jump. The changes in β lead to irreversible effects. If β decreases, the adhesive forces
will decrease and eventually disappear. In the case of pure traction ([uN ] > 0), the adhesion
resistance (RN = CN [uN ]β2) is activated (elasticity without damage). β decreases when
the displacement becomes sufficiently large for the elastic energy to become larger than the
adhesion limit w.

3.3. Implementation of RCCM Model

The numerical problem was solved using the open computer code LMGC90
(http://www.lmgc.univ-montp2.fr/ dubois/LMGC90/). This code is a numerical platform
dedicated to the modeling and simulation of dynamic multibody problems. Problems were
approached in the general framework of dynamics. Discretized equations of the problem P
are written as:

Mq̈ = F (q, q̇) + P (t) + r,
+ interface conditions
+ initial conditions and boundary conditions

(6)

with q is a parametrization of the system (degrees of freedom), M is the mass matrix,
F (q, q̇)+P (t) are the internal and external loading vectors, r is the vector of contact forces.
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adhesion 

Figure 14. Normalized tangential forces against normalized tangential jump of displacement

Problems were usually approached using θ-methods and the Non-Smooth Contact Dy-
namics (NSCD) method [13, 14, 15]. Due to the contact conditions, a fairly small time-step
is chosen and the problem is condensed in the local frame associated with the contact nodes.
The local problem is solved using a non-linear Gauss-Seidel method.

The interface is governed by the RCCM law as presented earlier in this chapter. Contact
between bodies is defined by contact nodes. Contact nodes are located between two nodes
in the mesh of an element in contact at distances of 0.2 and 0.8, respectively, along each
segment in contact (figure 15).

candidate element

mesh nodes

contact nodes

antagonist element

Figure 15. Position of contact nodes between two bodies

In this procedure, the bodies (bricks and mortar) are modeled using Q4 quadrangular
finite elements. The numerical tests are performed with a constant time step equal to ∆t =



On the Modeling of Brick-Mortar Interface 17

0.5∗10−3 s. The computations require 2000 increments in order to reach values resembling
the experimental data, and θ (in the time integration method) is fixed and taken to be equal
to 0.55.

3.4. Numerical Results: Mechanical Behavior of Small Masonry Structures
Under Shear Loading

In this section, numerical simulations carried out using LMGC90 are presented. In particu-
lar, this study deals with various structures (triplets and couplets consisting of full or hollow
bricks) previously studied [2, 1] and presented in the first section. It is attempted to model
the same conditions as those pertaining in the experimental tests, in terms of the geometries,
mechanical characteristics, boundary conditions, and loading conditions. The problems are
treated under quasi-static conditions, adopting the plane strain hypothesis. For the sake of
simplicity, the parameters used for the computations are: µ = 0.2, b ≈ 0, w = 0.9 J/mm2.
Coefficients CN and CT , the normal and tangential stiffness of the interface, will be de-
termined in the following sections. These parameters will be obtained by comparing the
experimental and numerical data.

The mechanical characteristics of the materials are as follows Table 7:

Table 7. Characteristics of Mortar and Bricks

Materials Young’s modulus MPa Poisson’s ratio
Mortar 4 000 0.3

Full bricks 9 439 0.13
Hollow bricks 6 058 0.13

3.4.1. Full Brick Triplets

In [2], we noted the occurrence of two kinds of fracture processes:

1. The fracture occurs along the interface (tests N1 and N4)

2. The fracture begins along the interface and propagates into the mortar (tests N2 and
N3).

Fracture along the interface The experimental data used here was published in [2]. The
mesh consists of 130 Q4 finite elements. For the sake of symmetry, only the half-structure
is considered. The loading on the upper part ranges from 0 to 53 kN . The first step here
consists in determining the stiffness values of the interface, CN and CT . Various results are
presented in figure 16 on pairs of CN and CT . The global behavior can be seen to depend
strongly on CN and CT . The rigidity of the assembly depends mainly on the interface
stiffness. Since the problem is highly nonlinear, even small perturbations in the stiffness
coefficients can greatly affect the numerical responses.

The results shown in figure 17 were obtained in tests numbers 1 and 4, and are most
encouraging, since the general shape of the curves is similar to that of the experimental
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Figure 16. Influence of parameters CN and CT on the behavior of full brick triplets

Figure 17. Shear tests: tests N1 (CN = CT = 4 106N/mm3) and N4 (CN = CT = 106N/mm3)

ones. This confirms that the model accounts accurately for the mechanical behavior of the
interface. This is also confirmed by the rupture modes obtained numerically (see figure 18).
The variations in the shear stresses σxy show that the stress concentration develops in the
regions containing the discontinuities, or more specifically, at the level of the interface.

Cracks developing into the mortar We now take the case where the interface and the
mortar are fractured together. The results of the tests performed in this case are not as
satisfactory as the previous ones. In this experimental part of this study, we note that the
cracks started to develop at the brick-mortar interfaces but continued into the mortar itself
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Figure 18. Shear stress in full brick triplets at steps 0, 100, 207 and 208

(tests 2 and 3).

It is therefore proposed to introduce the damage to the mortar, using a cohesive zone
model. The mortar is split into sub-bodies. Each sub-body is meshed using a quadrangular
mesh with Q4 finite elements (figure 19). The contact between sub-bodies is governed by
the RCCM model. We take adh1 and adh2 to denote the law of adherence at the mor-
tar/mortar and the brick/mortar interface, respectively (figure 19).

It can be seen from figure 20 that the behavior of the structure is sensitive to changes in
the stiffness coefficients.

The numerical results are in good agreement with the experimental data from the qual-
itative point of view. They show the degradation of the rigidity induced by the propagation
of the crack into the mortar in the two experimental tests 2 and 3 (figure 21). The model
predicted the similar occurrence of cracks in the mortar joint to those observed in practice
(figure 22).
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Figure 19. Full brick triplets: a) Mesh with cohesive mortar b) Mortar/mortar and mortar/brick adhesion

Figure 20. Influence of the stiffness parameters on the behavior of the structure (triplets with a cohesive
zone)

3.4.2. Hollow Brick structures

In the case of hollow brick structures, the experimental data show that the behavior of the
material at the interface is quite different between the hollow parts of the brick and the full
parts. At the level of the hollow parts, spikes of mortar penetrate into the voids of the brick.
It is therefore necessary to distinguish between two zones: the zone (adh1) corresponding to
the mortar/brick interface as in the case of full brick structures; and the second zone (adh2)
corresponding to the spikes. Figure 23 shows these two zones.

By suitably choosing the stiffness coefficients, this strategy makes it possible to ap-
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Figure 21. Results of numerical shear tests: tests N2 (adh1: CN = CT = 107N/mm3, adh2: CN = CT =

108N/mm3) and N3 (adh1: CN = CT = 109N/mm3, adh2: CN = CT = 108N/mm3)

proach the experimental results, as can be seen from figure 24. However, it is necessary to
find several coefficients, which reduces the efficiency of the method. This situation could
possibly be improved by averaging the two zones, but this approach has not yet been at-
tempted. The changes with time in the shear stress and in the deformed structure are shown
in figure 25.

3.5. Partial Conclusion

The adhesion model presented here was successfully used to simulate the experimental tests
described in [1, 2], which provided the coefficients required to model the interface: stiffness
parameters, viscosity coefficient, Dupré’s energy and friction coefficient. The model is
sensitive to these characteristics but the results obtained are in line with the experimental
data.

The two kinds of rupture modes observed experimentally were described using two
different adhesive characteristics. It was thus possible to model the fracture process that
occur along the interface as well as where it involves mortar.

Structures composed of hollow bricks can also be modeled in this way using two ad-
hesive characteristics. In particular, the model was used here to study the fracture process
when it occurs along the interface of a small structure that consists of three hollow bricks.
Further studies are now required on the fracture processes crossing the mortar in structures
of this kind.
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Figure 22. Shear stress in full brick triplets at steps 1, 350, 360 and 371 (cohesive zone)

4. A Multi-Scale Model for Interface Law

4.1. Introduction

In this part of the paper, one presents a multi-scale model of interface [16, 17]. The method
is based on homogenization theories and asymptotic analysis. In this context, we assume
the existence of a third material: the brick/mortar interface, which is considered as a mix-
ture of brick and mortar with a crack density. To obtain the effective properties of the
damaged intermediate material, three steps are performed. First, we calculate the exact ef-
fective properties of the crack-free material using homogenization techniques for laminate
composites, and thus define a first homogeneous equivalent medium. In the second step, we
assign a crack density to the material. To model the macroscopic behavior of the cracked
material, we use the Kachanov [18] model and then define a new homogeneous equivalent
medium. Finally, in order to be sandwiched between the brick and mortar, this material is
given a small thickness, and its mechanical behavior is derived using asymptotic techniques
to shift from the micro to the macro level. A variation law of the crack length is intro-
duced. The numerical procedure used is then described. Lastly, some numerical examples
are given and compared with the experimental data.
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Figure 23. Mortar spike modeling

Figure 24. Results of numerical shear tests (hollow bricks): tests N2 (adh1: CN = CT = 2 106N/mm3,

adh2: CN = CT = 4 107N/mm3) and N3 (adh1: CN = CT = 2.5 107N/mm3, adh2: CN = CT =

1.5 108N/mm3)

4.2. Principle of the Model

The procedure used in this paper is summarized in figures 26 and 27.

1. In the first step, we consider the masonry made by bricks and mortar at a local level
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Figure 25. Shear stress in hollow brick triplets atsteps 1, 53, 191, and 196

(Z+1). The brick and mortar are considered as elastic, homogeneous and isotropic
materials. The material characteristics are given in former sections.

2. At its local level, an inter-phase is considered a mixture of brick and mortar (Z+2).
In order to simplify, we consider the composite inter-phase as stratified.

3. The stratified is homogenized using classical theory of homogenization (H1). A new
material is obtained which is transversely isotropic [18]. The new material character-
istics are obtained directly from the materials characteristics of brick and mortar.

The constitutive equation for each material is given by:

εcij = Sc
ijklσ

c
lk =

1 + νc

Ec
σcij −

νc

Ec
σckkδij (7)

where Sc, Ec, and νc are respectively the compliance tensor, the Young’s modulus
and the Poisson ratio of phase c (c = b for the brick, c = m for the mortar). εc and
σc are the strain and the stress tensor, respectively.

The macroscopic behavior law of the laminate brick/mortar reads:

ε = S0 : σ (8)
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Figure 26. Description of the process 1

Figure 27. Description of the process 2
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where ε =
∑

c=b, m f
cεc =

∑
c=b, m f

cSc : σc, f c denotes the volume fractions
of phase c, and S0 is the effective fourth-order compliance tensor of the transversely
isotropic stratified. According to the modified Voigt notations, the macroscopic law
reads:



ε11
ε22
ε33√

2ε23√
2ε13√
2ε12


=



S0
1111 S0

1122 S0
1133 0 0 0

S0
1122 S0

1111 S0
1133 0 0 0

S0
1133 S0

1133 S0
3333 0 0 0

0 0 0 2S0
1313 0 0

0 0 0 0 2S0
1313 0

0 0 0 0 0 S0
1111 − S0

1122





σ11
σ22
σ33√

2σ23√
2σ13√
2σ12


(9)

4. We introduce a crack which is representative of the cracks included in the new ma-
terial (F1). The crack is represented by its average (half-)length l and its average
direction φ.

5. The cracked material is homogenized using the Kachanov theory [18] (H2). In this
theory, the crack is approximated by an elliptic crack. Approximated material char-
acteristics are obtained depending on the length and direction of the crack, and the
mechanical characteristics of the brick and mortar. The average strain ε in a solid
with one crack can be written in the form:

ε = S : σ = S0 : σ +
l

A
(n⊗ < b > + < b > ⊗n) = (S0 + ∆S) : σ (10)

where S is the effective compliance tensor of the cracked material, < b >= n.σ.B
is the average displacement discontinuity (COD) vector of the crack, B is the COD
tensor of the crack, n is the normal to the crack andA is the area of the representative
2D-domain.

In the plane (e1, e3) of the elementary volume, the tensor B is given by:

B = (C(1−D)e1 ⊗ e1 + C(1 +D)e3 ⊗ e3)l (11)

where


C =

π

4

√
E0

1 +
√
E0

3√
E0

1E
0
3

 1

G0
13

− 2
ν013
E0

1

+
2√
E0

1E
0
3

 1
2

D =

√
E0

1 −
√
E0

3√
E0

1 +
√
E0

3

(12)
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and E0
1 , E0

3 , ν013 and G0
13 are given by:

E0
1 =

1

S0
1111

E0
3 =

1

S0
3333

ν013 = −S
0
1133

S0
1111

G0
13 =

1

S0
1313

(13)

The tensor ∆S is given by:

∆S =
2l

A
e3⊗B⊗e3 =

2l2

A
(e3⊗ (C(1−D)e1⊗e1 +C(1+D)e3⊗e3)⊗e3 (14)

The compliance of the cracked material is thus given by:

S1111 = S0
1111

S3333 = S0
3333 + 2ρC(1 +D)

S1133 = S0
1133

S1313 = S0
1313 + 2ρC(1−D)

(15)

where ρ = l2/A is the crack density parameter. The elastic constants are given by:

E1 = E0
1

E3 = E0
3/(1 + 2ρBnnE

0
3)

G13 = G0
13/(1 + ρBttG

0
13)

ν13 = ν013

(16)

where

Btt = C(1−Dcos(2φ))l
Bnn = C(1 +Dcos(2φ))l
Btn = CDsin(2φ)l

(17)

6. The cracked material obtained is considered as the inter-phase material (Z-1).

7. The interface law is obtained, considering that the inter-phase is thin (H3). Using
asymptotic theory (the thickness of the thin inter-phase η is a small parameter), we
obtain an interface law which links the stress vector to the jump of displacement
along the interface toward which geometrically inter-phase tends [19]. The stiffness
of the interface depends on the material characteristics of the brick and mortar, and
on the length and the direction of the crack.

We take [u ] to denote the jump along the interface. If the interface is normal to the
third direction, we obtain

σi3 = Ai3 [ui]
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The stress vector σ.3 is linearly linked to the jump of displacement [u]. The second
order matrix A.. is diagonal. The terms CN and CT in this matrix, corresponding to
the normal and tangential stiffnesses of the interface are given by:


CN = C̄3333(η → 0) where C̄3333 =

C3333

η

CT = C̄1313(η → 0) where C̄1313 =
C1313

η

(18)

where the fourth-order stiffness tensor C is the inverse of the compliance tensor S.

In our case ρ = l2/η L0, where L0 denotes the joint length, it can be established that
the normal and tangential joint stiffnesses read:

CN =
L0

2C(1 +D) l3

CT =
L0

4C(1−D) l3

(19)

We obtain an explicit relation between the stiffness coefficients and the crack length
l.

8. Unilateral conditions [20] are introduced (UC). These conditions prevent the pene-
tration between the two adherents (brick and mortar, in our case). In a first approach
friction conditions are neglected.

Let F be the density of the contact forces. We take nb to denote the external unit
normal vector to the boundary of the brick. The displacement and the contact force
are decomposed into normal and tangential parts:

[u] = uNn
b + uT

with uN = [u].nb.

F = FNn
b + FT

with FN = F.nb.

The unilateral contact is given by the following relations

uN ≥ 0, FN − CNuN ≥ 0, uN (FN − CNuN ) = 0. (20)

9. An evolution law for the crack length is introduced (F2). In the first step a very simple
law is chosen (identified experimentally in practice).

We take τ to denote the shear stress along the interface.
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Table 8. Mechanical properties of the three-fold masonry constituents

Young’s moduli (MPa) of full brick 9438
Poisson ratio of full brick 0.13
Young’s moduli (MPa) of hollow brick 6059
Poisson ratio of hollow brick 0.13
Young’s moduli (MPa) of mortar 4000
Poisson ratio of mortar 0.3

if τ ≤ τc then l = lc
if τc ≤ τ ≤ τu then l = aτ + b

(21)

a =
lu − lc
τu − τc

b = lu − aτu
(22)

where τu, τc, lc and lu are four given values (In practice, lc and lu are identified).

10. The interface law can be used for a structural analysis by finite element (Z-2). In this
case, the masonry is made by bricks, mortar, and interface.

4.3. A Numerical Example

We consider two-dimensional masonry structures subjected to shear loading. The obtained
numerical results are then compared with experimental data [2]. Two cases are considered:
a triplet of full bricks and a triplet of hollow bricks, both subjected to the same nominal
loading (with no lateral confinement). Table (8) lists the material properties of the mortar
and full bricks used to simulate a triplet of full bricks under the shear loading conditions
described (see Fig. 28).

For full bricks, the compliance tensor S0 therefore reads:

10−4



1.478 −0.271 −0.348 0 0 0
−0.271 1.478 −0.348 0 0 0
−0.348 −0.348 1.639 0 0 0

0 0 0 4.444 0 0
0 0 0 0 4.444 0
0 0 0 0 0 3.499


(23)

The normal and tangential stiffnesses (N/mm2) of the interface are given by the fol-
lowing expressions:

CN = 242365/l3

CT = 127600/l3
(24)

where the direction φ is assumed to be equal a zero.
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Figure 28. Initial geometrical configuration and loading conditions imposed on the triplet
of full bricks (a), deformation of the triplet of full bricks in a shear test (b)

For hollow bricks, the compliance tensor S0 is written as follows:

10−4



1.973 −0.396 −0.456 0 0 0
−0.396 1.973 −0.456 0 0 0
−0.456 −0.456 1.985 0 0 0

0 0 0 5.115 0 0
0 0 0 0 5.115 0
0 0 0 0 0 4.740


(25)

The normal and tangential stiffnesses of the interface sandwiched between mortar and
hollow brick are given by the following expressions:

CN = 200396/l3

CT = 100490/l3
(26)

The first step in order to compare experimental data and numerical results is to identify
the parameters of the model, in particular the crack length and its evolution [16]. For the
fulls bricks, a comparison between experimental data and numerical results is given in figure
29. For the hollow bricks, a comparison is given in figure 30.

4.4. Partial conclusion

The numerical results obtained with the present model match the experimental data and are
in good agreement particularly with the test data obtained in previous sections. Thus, the
present model, with a simple crack evolution law, seems a good way to provide estimations
for the stiffness of masonry interfaces.
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Figure 29. Stress-displacement diagrams of the triplet of full bricks under shear, numerical,
and experimental results [16, 17].

Figure 30. Stress-displacement diagrams of the triplet of full bricks under shear, numerical
and experimental results [16, 17].
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5. Conclusion

In this chapter, we have presented some experimental data issued from the literature, with
a particular focus on small structures and the local behavior of brick-mortar interfaces. We
have shown that three aim modes appear in the stress-strain relationship. In the first part,
there is a linear (elastic) relationship between the stress and the displacement. After a
maximum, in a second step, the stress decreases, due to local damage, to a (quasi) constant
value (third part) corresponding to friction.
We have presented two families of models able to predict the behavior of the interface. The
first one, phenomenological, is based on the notion of the evolution of the adhesion variable.
The second one is based on micromechanics analysis and crack evolution. For these two
models, some numerical results are presented and compared with experimental data. The
results show the efficiency of these two models.
In the future, various paths are possible. The first one concerns the dynamical aspects that
is necessary to take into account, in order to approach earthquakes which generate severe
in-plane and out-of-plane forces. It is therefore necessary to generalize our methodology to
three-dimensionnal problems. A second possible way concerns the development of efficient
numerical schema which is necessary to approach large structures such as monuments. The
last line of research could involve the improvement of the models presented in this work to
introduce new physical considerations as plasticity, damage evolution, etc.
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