
HAL Id: hal-01762331
https://hal.science/hal-01762331v1

Submitted on 9 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affine consistency and the complexity of semilinear
constraints

Peter Jonsson, Johan Thapper

To cite this version:
Peter Jonsson, Johan Thapper. Affine consistency and the complexity of semilinear constraints. 39th
International Symposium on Mathematical Foundations of Computer Science (MFCS-2014), 2014,
Budapest, Hungary. �hal-01762331�

https://hal.science/hal-01762331v1
https://hal.archives-ouvertes.fr

Affine consistency and the complexity of
semilinear constraints

Peter Jonsson1? and Johan Thapper2

1 Department of Computer and Information Science, Linköping University, Sweden
peter.jonsson@liu.se

2 LIGM, Université Paris-Est Marne-la-Vallée, France
thapper@u-pem.fr

Abstract. A semilinear relation is a finite union of finite intersections
of open and closed half-spaces over, for instance, the reals, the rationals
or the integers. Semilinear relations have been studied in connection with
algebraic geometry, automata theory, and spatiotemporal reasoning, just
to mention a few examples. We concentrate on relations over the reals and
rational numbers. Under this assumption, the computational complexity
of the constraint satisfaction problem (CSP) is known for all finite sets Γ
of semilinear relations containing the relations R+ = {(x, y, z) | x+y = z},
≤, and {1}. These problems correspond to extensions of LP feasibility.
We generalise this result as follows. We introduce an algorithm, based
on computing affine hulls, which solves a new class of semilinear CSPs
in polynomial time. This allows us to fully determine the complexity
of CSP(Γ) for semilinear Γ containing R+ and satisfying two auxiliary
conditions. Our result covers all semilinear Γ such that {R+, {1}} ⊆ Γ .
We continue by studying the more general case when Γ contains R+ but
violates either of the two auxiliary conditions. We show that each such
problem is equivalent to a problem in which the relations are finite unions
of homogeneous linear sets and we present evidence that determining the
complexity of these problems may be highly non-trivial.

1 Introduction

Let X = Q or X = R. We say that a relation R ⊆ Xk is semilinear if it can
be represented as a finite union of finite intersections of open and closed half-
spaces. Alternatively, R is semilinear if it is first-order definable in {R+,≤, {1}}
where R+ = {(x, y, z) ∈ X3 | x + y = z}. Semilinear relations appear in many
different contexts within mathematics and computer science: they are, for instance,
frequently encountered in algebraic geometry, automata theory, spatiotemporal
reasoning, and computer algebra. Semilinear relations have also attained a fair
amount of attention in connection with constraint satisfaction problems (CSPs).
Here, we are given a set of variables that take their values from a (finite or infinite)
domain and a set of constraints (e.g. relations) that constrain the values different
variables can take, and the question is whether the variables can be assigned values
? Partially supported by the Swedish Research Council (VR) under grant 621-2012-3239.

such that all constraints are satisfied or not. CSPs are often parameterized by a
finite set Γ of allowed relations, known as a constraint language. All constraints
in the input of CSP(Γ) must be members of Γ . This way of parameterizing
constraint satisfaction problems has proved to be very fruitful for CSPs over
both finite and infinite domains. Since Γ is finite, the computational complexity
of such a problem does not depend on the actual representation of constraints.
The complexity of finite-domain CSPs has been studied for a long time and a
powerful algebraic toolkit has gradually formed [6]. Much of this work has been
devoted to the Feder-Vardi conjecture [7], i.e., that every finite-domain CSP is
either polynomial-time solvable or NP-complete. Infinite-domain CSPs, on the
other hand, constitute a much more diverse set of problems: every computational
problem is polynomial-time equivalent to an infinite-domain CSP [1]. Obtaining
a full understanding of their computational complexity is thus extremely difficult
and we have to contain ourselves to studying restricted cases. The main motivation
behind this paper is the following result by Bodirsky et al. [2].

Theorem 1. If Γ is a finite set of semilinear relations over R or Q that contains
R+, ≤, and {1}, then CSP(Γ) is either polynomial-time solvable or NP-complete.

Characterizing the polynomial-time solvable cases is fairly simple: we say
that a relation R ⊆ Rk is essentially convex if for all p, q ∈ R there are only
finitely many points on the line segment between p and q that are not in R. If
Γ contains essentially convex relations only, then CSP(Γ) is in P by exploiting
linear programming, and the problem is NP-complete otherwise. One may suspect
that there are semilinear constraint languages Γ such that CSP(Γ) ∈ P but Γ is
not essentially convex. This is indeed true and we identify two such cases.

In the first case, we encounter polynomial-time solvable classes that, informally
speaking, contain relations with large “cavities”. It is not surprising that the
algorithm for essentially convex relations (and the ideas behind it) cannot be
applied in the presence of this kind of highly non-convex relations. Thus, we
introduce (in Section 3.1) a new algorithm based on computing affine hulls.

In the second case, we have polynomial-time solvable classes where the
relations look essentially convex when viewed from the origin. That is, any points
p and q that witnesses that the relations are not essentially convex lie on a line
that does not pass through the origin. We show (in Section 3.2) that we can
remove the holes witnessed by p and q and find an equivalent language that is
essentially convex, and thereby solve the problem.

Combining these algorithmic results with certain hardness results (that are
collected in Section 4) yields a dichotomy: if a semilinear constraint language Γ
contains R+ and satisfies two additional properties (P0) and (P∞), then CSP(Γ)
is either polynomial-time solvable or NP-hard. Actually, CSP(Γ) is always in NP
for a semilinear constraint language Γ , cf. Theorem 5.2 in Bodirsky et al. [2].

This result immediately generalizes Theorem 1 since it implies that semilinear
constraint languages that contain R+ and {1} (but not necessarily ≤) exhibit a
dichotomy. These results and their proofs together with formal definitions of the
properties (P0) and (P∞) can be found in Section 5.

A natural goal at this point would be to determine the complexity when
one or more of the side conditions are not met. In Section 6, we prove that if
{R+} ⊆ Γ does not satisfy (P0) and/or (P∞), then CSP(Γ) is equivalent to a
problem CSP(Γ ′) where Γ ′ contains homogeneous semilinear relations only. By
a homogeneous semilinear relation, we mean that it can be defined in terms of
homogeneous inequalities. How hard it is to determine the complexity of CSP(Γ ′)
is difficult to say and, consequently, we discuss this issue in some detail.

2 Preliminaries

2.1 Constraint satisfaction problems

Let Γ = {R1, . . . , Rn} be a finite set of finitary relations over some domain D
(which will usually be infinite). We refer to Γ as a constraint language. A first-order
formula is called primitive positive if it is of the form ∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψm,
where ψi are formulas of the form x = y or R(xi1 , . . . , xik) with R the relation
symbol for a k-ary relation from Γ . We call such a formula a pp-formula. The
conjuncts in a pp-formula Φ are also called the constraints of Φ. The constraint
satisfaction problem for Γ (CSP(Γ) for short) is the computational problem to
decide whether a given primitive positive sentence Φ is true in Γ .

Definition 1. The problem CSP(Γ) is tractable (or polynomial-time solvable)
if for every finite Γ ′ ⊆ Γ , CSP(Γ ′) is solvable in polynomial time. We say that
CSP(Γ) is NP-hard if CSP(Γ ′) is NP-hard for some finite Γ ′ ⊆ Γ .

A relation R(x1, . . . , xk) is pp-definable from Γ if there exists a quantifier-free
formula ϕ over Γ such that R(x1, . . . , xk) ≡ ∃y1, . . . , yn.ϕ(x1, . . . , xk, y1, . . . , yn).
The set of all relations that are pp-definable over Γ is denoted by 〈Γ 〉. The
following simple but important result explains the importance of primitive positive
definability for the constraint satisfaction problem. We will use it extensively in
the sequel without making explicit references to it.

Lemma 1. Let Γ be a constraint language and Γ ′ = Γ ∪ {R} where R ∈ 〈Γ 〉.
Then CSP(Γ) is polynomial-time equivalent to CSP(Γ ′).

2.2 Semilinear relations

The domain, X, of every relation in this paper will either be the set of reals, R,
or the set of rationals, Q. In all cases, the set of coefficients, Y , will be the set of
rationals, but in order to avoid confusion, we will still make this explicit in our
notation. Let LEX [Y] denote the set of linear equalities over X with coefficients
in Y and LIX [Y] denote the set of (strict and non-strict) linear inequalities over
X with coefficients in Y . Sets defined by finite conjunctions of inequalities from
LIX [Y] are called linear sets. The set of semilinear sets, SLX [Y], is defined to
be the set of finite unions of linear sets. We will refer to SLQ[Q] and SLR[Q] as
semilinear relations over R and Q, respectively.

The following lemma is a direct consequence of our definitions: this particular
property is often referred to as o-minimality in the literature.

Lemma 2. Let R ∈ SLX [Y] be a unary semilinear relation. Then, R can be
written as a finite union of open, half-open, and closed intervals with endpoints
in Y ∪ {−∞,∞} together with a finite set of points in Y .

Due to the alternative definition of a semilinear relation as a relation that is
first-order definable in {R+,≤, {1}}, the set SLX [Y] is closed under pp-definitions.
Consequently, Lemma 2 is applicable to all relations discussed in this paper.

Given a relation R of arity k, let R|X = R∩Xk and Γ |X = {R|X | R ∈ Γ}. We
demonstrate that CSP(Γ) and CSP(Γ |Q) are equivalent as constraint satisfaction
problems whenever Γ ⊆ SLR[Q]. Thus, we can exclusively concentrate on relations
from SLQ[Q] in the sequel. Let Γ ⊆ SLR[Q] and let I be an instance of CSP(Γ).
Construct an instance I ′ of CSP(Γ |Q) by replacing each occurrence of R in I by
R|Q. If I ′ has a solution, then I has a solution since R|Q ⊆ R for each R ∈ Γ .
If I has a solution, then it has a rational solution by Lemma 3.7 in Bodirsky et
al. [2] so I ′ has a solution, too.

Lemma 3 (Lemma 4.3 in Bodirsky et al. [3]). Let r1, . . . , rk, r ∈ Q. The
relation {(x1, . . . , xk) ∈ Qk | r1x1 + . . .+ rkxk = r} is pp-definable in {R+, {1}}
and it is pp-definable in {R+} if r = 0.

It follows that LEQ[Q] ⊆ 〈{R+, {1}}〉 and LIQ[Q] ⊆ 〈{R+,≤, {1}}〉.

2.3 Unary semilinear relations

Given a relation R ⊆ Qk and two distinct points a, b ∈ Qk, we define

LR,a,b(y) ≡ ∃x1, . . . , xk.R(x1, . . . , xk) ∧
∧k
i=1 xi = yai + (1− y)bi.

The relation LR,a,b is a parameterisation of the intersection between the relation
R and a line through the points a and b. Note that LR,a,b is a member of
〈LEQ[Q] ∪ {R}〉 and that LR,a,b is pp-definable in {R+, {1}, R} by Lemma 3.

A k-ary relation R is bounded if there exists an a ∈ Q such that R ⊆ [−a, a]k.
If k = 1, then we say that R is unbounded in one direction if there exists a ∈ Q
such that exactly one of the following hold: for all b ≤ a, there exists a c ≤ b
such that c ∈ R; or for all b ≥ a, there exists a c ≥ b such that c ∈ R.

A unary relation is called a bnu (for bounded, non-constant, and unary) if it
is bounded and contains more than one point.

Lemma 4. Let U be a unary relation in SLQ[Q] that is unbounded in one
direction. Then, 〈{R+, {1}, U}〉 contains a bnu.

For a unary semilinear relation T ⊆ Q, and a rational δ > 0, let T + I(δ)
denote the set of unary semilinear relations U such that T ⊆ U and for all x ∈ U ,
there exists a y ∈ T with |x− y| < δ.

Lemma 5. Let U 6= ∅ be a bounded unary semilinear relation such that U ∩
(−∞, ε) = ∅ for some ε > 0. Then, 〈R+, U〉 contains a relation Uδ ∈ {1}+ I(δ),
for every δ > 0.

Lemma 6. Let U be a bounded unary semilinear relation such that U ∩ (−ε, ε) =
∅ for some ε > 0 and U ∩ −U 6= ∅. Then, 〈R+, U〉 contains a relation Uδ ∈
{−1, 1}+ I(δ), for every δ > 0.

2.4 Essential convexity

Let R be a k-ary relation over Qk. The relation R is convex if for all p, q ∈ R, R
contains all points on the line segment between p and q. We say that R excludes
an interval if there are p, q ∈ R and real numbers 0 < δ1 < δ2 < 1 such that
p+ (q − p)y 6∈ R whenever δ1 ≤ y ≤ δ2. Note that we can assume that δ1, δ2 are
rational numbers, since we can choose any two distinct rational numbers γ1 < γ2
between δ1 and δ2 instead of δ1 and δ2. We say that R is essentially convex if for
all p, q ∈ R there are only finitely many points on the line segment between p
and q that are not in R. If R is not essentially convex, and if p and q are such
that there are infinitely many points on the line segment between p and q that
are not in R, then p and q witness that R is not essentially convex. A semilinear
relation is essentially convex if and only if it does not exclude an interval.

Theorem 2 (Theorem 5.1 and 5.4 in Bodirsky et al. [2]). If Γ is an
essentially convex semilinear constraint language, then CSP(Γ) is tractable.

3 Tractability

In this section, we present our two main sources of tractability. In Section 3.1,
we introduce a new algorithm for semilinear constraint languages Γ containing
{R+, {1}} and such that 〈Γ 〉 does not contain a bnu. In Section 3.2, we show
that the algorithm in Theorem 2 has a wider applicability.

3.1 Affine consistency

For a subset X ⊆ Qn, let aff(X) denote the affine hull of X in Qn: aff(X) =

{
∑k
i=1 cixi | k ≥ 1, ci ∈ Q, xi ∈ X,

∑k
i=1 ci = 1}. An affine subspace is a subset

X ⊆ Qn for which aff(X) = X. The points p1, . . . , pk ∈ Qn are said to be
affinely independent if a1p1 + · · · + akpk = 0 with a1 + · · · + ak = 0 implies
a1 = · · · = ak = 0. The dimension, dim(X), of a set X ⊆ Qn is defined to be one
less than the maximum number of affinely independent points in X.

We define a notion of consistency for sets of semilinear constraints which we
call affine consistency. Let V be a finite set of variables. A set of constraints
Ri(xi1 , . . . , xik) with {xi1 , . . . , xik} ⊆ V is affinely consistent with respect to an
affine subspace A ⊆ QV if aff(R̂i ∩A) = A for all i, where R̂i := {(x1, . . . , xn) ∈
QV | (xi1 , . . . , xik) ∈ Ri}.

Algorithm 1 establishes affine consistency for a set of constraints and answers
“yes” if the resulting affine subspace is non-empty and “no” otherwise. In the
rest of this section, we show that this algorithm correctly solves CSP(Γ) when
{R+, {1}} ⊆ Γ is a semilinear constraint language such that 〈Γ 〉 does not contain
a bnu. Furthermore, we show how for such constraint languages, the algorithm
can be implemented to run in polynomial time.

Lemma 7. Let P = P1 ∪ · · · ∪ Pk, Q = Q1 ∪ · · · ∪ Ql ∈ SLQ[Q] be two n-ary
relations such that neither 〈LEQ[Q] ∪ {P}〉 nor 〈LEQ[Q] ∪ {Q}〉 contains a bnu.
If aff(P) = aff(Q) =: A, then aff(Pi ∩Qj) = A for some i and j.

Algorithm 1: Affine consistency
Input: A set of constraints {Ri(xi1 , . . . , xik)} over variables V
Output: “yes” if the resulting affine subspace is non-empty, “no" otherwise

1 U := QV

2 repeat
3 foreach constraint Ri(xi1 , . . . , xik) do
4 U := aff(R̂i ∩ U)
5 end
6 until U does not change
7 if U 6= ∅ then return “yes" else return “no"

Proof. The proof is by induction on the dimension d = dim(A). For d = 0, both
P and Q consist of a single point p. Clearly, Pi = {p} for some i and Qj = {p}
for some j. Now assume that d > 0 and that the lemma holds for all P ′, Q′
with aff(P ′) = aff(Q′) = A′ and dim(A′) < d. Let p0, p1, . . . , pd be d+ 1 affinely
independent points in P and let q0, q1, . . . , qd be d+ 1 affinely independent points
in Q. For 1 ≤ i ≤ d, consider the lines Lpi through p0 and pi, and the lines Lqi
through q0 and qi. Let H = {y ∈ Qn | α · y = 0} (α ∈ Qn) be a hyperplane in
Qn through the origin that is not parallel to any of the lines Lpi or Lqi . Then,
H intersects each of the 2d lines. Let H(c) = {y ∈ Qn | α · y = c} and let
B(c) = {y ∈ Qn | α · y 6∈ [−c, c]}.

Express the line Lpi as {y ∈ Qn | y = a · x + b, x ∈ Q}, for some a, b ∈ Qn.
Define a unary relation T by the formula ϕ(x) ≡ ∃y ∈ Qn.P (y)∧y = a·x+b. Note
that T ∈ 〈LEQ[Q] ∪ {P}〉. Since T contains p0 and pi, it follows that T is not a
constant and hence unbounded. By Lemma 4, T is unbounded in both directions.
By Lemma 2, B(cpi) ∩ L

p
i ⊆ T ⊆ P , for some positive constant cpi . An analogous

argument shows that that B(cqj) ∩ L
q
j ⊆ Q, for some positive constant cqj . Let

c′ be a positive constant such that p0, q0 6∈ B(c) and let c = max{c′} ∪ {cpi , c
q
j |

1 ≤ i, j ≤ d}. This ensures that for any x > c, H(x) ∩ P intersects the lines Lpi
in d affinely independent points, and that H(x) ∩Q intersects the lines Lqj in d
affinely independent points.

We now have aff(H(x) ∩ P) = aff(H(x) ∩ Q) = A′(x) with dim(A′(x)) =
dim(A) − 1, for every x > c. By induction on H(x) ∩ P = (H(x) ∩ P1) ∪
· · · ∪ (H(x) ∩ Pk) and H(x) ∩ Q = (H(x) ∩ Q1) ∪ · · · ∪ (H(x) ∩ Ql), it follows
that aff(H(x) ∩ Pi(x) ∩ Qj(x)) = A′(x) for some i(x) and j(x). This holds for
all x > c, hence there exist distinct x1, x2 > c with i(x1) = i(x2) = i′ and
j(x1) = j(x2) = j′. Since A′(x1), A′(x2) ⊆ aff(Pi′ ∩ Qj′), A′(x1) ∩ A′(x2) = ∅,
and dim(A′(x2)) = d−1 ≥ 0, it follows that aff(Pi′∩Qj′) strictly contains A′(x1),
so we have A′ ⊂ aff(Pi′ ∩Qj′) ⊆ A, and dim(A′(x1)) = dim(A)− 1. Therefore
we have the equality aff(Pi′ ∩Qj′) = A. The lemma follows. ut

For a semilinear relation R, we let size(R) denote the representation size of
R, i.e., the number of bits needed to describe the arities and coefficients of each
inequality in some fixed definition of R.

Lemma 8. Let R ∈ SLQ[Q] be a relation such that 〈LEQ[Q] ∪ {R}〉 does not
contain a bnu and let U ⊆ Qn be an affine subspace. Algorithm 2 computes a set

Algorithm 2: Calculate aff(R ∩ U)

Input: A semilinear relation R = R1 ∪ · · · ∪Rk and an affine subspace U .
Output: A set of inequalities defining aff(R ∩ U).

1 Find i that maximises di := dim(aff(Ri ∩ U)).
2 if aff(Ri ∩ U) = ∅ then return ⊥
3 Let I be the set of inequalities for Ri and J be the set of inequalities for U .
4 S := I ∪ J
5 foreach ineq ∈ I ∪ J do
6 if dim(aff(S \ {ineq})) = di then
7 S := S \ {ineq}
8 end
9 end

10 return S

of linear inequalities S defining aff(R∩U) in time polynomial in size(R)+size(U)
and with size(S) ≤ size(R) + size(U).

Proof. Let R = R1 ∪ · · · ∪Rk be the representation of R as the union of (convex)
linear sets Ri. By Lemma 7, there exists an i such that aff(R∩U) = aff(Ri∩U) and
since aff(Rj ∩U) ⊆ aff(R∩U) for all j, the algorithm will find such an i on line 1
by simply comparing the dimensions of these sets. If aff(R∩U) = aff(Ri∩U) = ∅,
then the algorithm returns ⊥, signalling that the affine hull is empty.

Otherwise, the affine hull of a non-empty polyhedron can always be obtained as
a subset of its defining inequalities (see for example [11, Section 8.2]). Here, some
of the inequalities may be strict, but it is not hard to see that removing them does
not change the affine hull. If ineq ∈ I ∪J is an inequality that cannot be removed
without increasing the dimension of the affine hull, then it is clear that ineq still
cannot be removed after the loop. Hence, after the loop, no inequality in S can be
removed without increasing the dimension of the affine hull. It follows that S itself
defines an affine subspace, US , and US = aff(US) = aff(Ri ∩ U) = aff(R ∩ U).

Using the ellipsoid method, we can determine the dimension of the affine hull
of a polyhedron defined by a system of linear inequalities in time polynomial in
the representation size of the inequalities [11, Corollary 14.1f]. To handle strict
inequalities on line 1, we can perturb these by a small amount, while keeping
the representation sizes polynomial, to obtain a system of non-strict inequalities
with the same affine hull. The algorithm does at most |I ∪ J | + k affine hull
calculations. The total time is thus polynomial in size(R) + size(U). Finally, the
set S is a subset of I ∪ J , so size(US) ≤ size(R) + size(U). ut

Theorem 3. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q]. If there is no bnu in 〈Γ 〉, then
Algorithm 1 solves CSP(Γ) in polynomial time.

Proof. Assume that each relation R ∈ Γ is given as R = R1 ∪ · · · ∪Rk, where Ri
is a (convex) linear set for each i. First, we show that the algorithm terminates
with U equal to the affine hull of the solution space of the constraints.

Assume that the input consists of the constraints Ri(xi1 , . . . , xik) over vari-
ables V , i = 1, . . . ,m. Let Z =

⋂m
i=1 R̂i denote the solution space of the instance.

It is clear that Z is contained in U throughout the execution of the algorithm.
Therefore, aff(Z) = aff(Z ∩ U) so it suffices to show that aff(Z ∩ U) = U . We
will show that aff(

⋂j
i=1 R̂i ∩ U) = U for all j = 1, . . . ,m. When the algorithm

terminates, we have aff(R̂i ∩ U) = U for every i = 1, . . . ,m. In particular,
the claim holds for j = 1. Now assume that the claim holds for j − 1. Then,
P =

⋂j−1
i=1 R̂i ∩ U and Q = R̂j ∩ U satisfy the requirements of Lemma 7 with

aff(P) = aff(Q) = U . Therefore, we can use this lemma to conclude that
aff(

⋂j
i=1 R̂i ∩ U) = aff(P ∩Q) = U .

Finally, we show that the algorithm can be implemented to run in polynomial
time. The call to Algorithm 2 in the inner loop is carried out at most mn
times, where n = |V |. The size of R̂ is at most size(R) + log n, so the size of
U never exceeds O(mn(size(R) + log n)), where R is a relation with maximal
representation size. Therefore, each call to Algorithm 2 takes polynomial time
and consequently, the entire algorithm runs in polynomial time. ut

3.2 Essential convexity

The dimension of a set is defined with respect to its affine hull, as in Section 3.1.
We give a result on the structure of certain not necessarily essentially convex
relations. It is based on the intuition that even if we do not have the constant
relation {1} to help us identify excluded intervals, we are still able to see excluded
full-dimensional holes. We follow this up by showing that we can remove certain
lower-dimensional holes and thus recover an equivalent essentially convex CSP.

Lemma 9. Let U ∈ {1} + I(c) for some 0 < c < 1 and assume that R ∈
SLQ[Q] is a semilinear relation such that every unary relation in 〈{R+, U,R}〉
is essentially convex. Then, R can be defined by a formula ϕ0 ∧ ¬ϕ1 ∧ · · · ∧ ¬ϕk,
where ϕ0, . . . , ϕk are conjunctions over LIQ[Q], and ϕ1, . . . , ϕk define convex
sets of dimensions strictly lower than the set defined by ϕ0.

Theorem 4. Let U ∈ {1}+I(c) for some 0 < c < 1 and assume that {R+, U} ⊆
Γ ⊆ SLQ[Q] is a constraint language such that every unary relation in 〈Γ 〉 is
essentially convex. Then, CSP(Γ) is equivalent to CSP(Γ ′) for an essentially
convex constraint language Γ ′ ⊆ SLQ[Q].

Proof. If Γ is essentially convex, then there is nothing to prove. Assume therefore
that Γ is not essentially convex. By Lemma 9, each R ∈ Γ can be defined by a
formula ϕ0 ∧¬ϕ1 ∧ · · · ∧¬ϕk, where ϕ0, ϕ1, . . . , ϕk are conjunction over LIQ[Q],
and ϕ1, . . . , ϕk define sets whose affine hulls are of dimensions strictly lower
than that of the set defined by ϕ0. Assume additionally that the formulas are
numbered so that the affine hulls of the sets defined by ϕ1, . . . ϕm do not contain
(0, . . . , 0) and that the affine hulls of the sets defined by ϕm+1, . . . , ϕk do contain
(0, . . . , 0). Define R′ by ϕ ∧ ¬ϕ′1 ∧ · · · ∧ ¬ϕ′m ∧ ¬ϕm+1 ∧ · · · ∧ ¬ϕk, where ϕ′i
defines the affine hull of the set defined by ϕi. Then, the constraint language
Γ ′ = {R′ | R ∈ Γ} is essentially convex since witnesses of an excluded interval
only occur inside an affine subspace not containing (0, . . . , 0); otherwise we could
use such a witness to pp-define a unary relation excluding an interval.

Let I be an arbitrary instance of CSP(Γ) over the variables V and construct
an instance I ′ of CSP(Γ ′) by replacing each occurrence of a relation R in I by
R′. Clearly, if I ′ is satisfiable, then so is I. Conversely, let s ∈ QV be a solution
to I and assume that I ′ is not satisfiable. Let L be the line in QV through
(0, . . . , 0) and s and let U be the unary relation LI,s,(0,...,0) ∈ 〈Γ 〉. All tuples in
U correspond to solutions of I that are not solutions to I ′.

Fix a constraint R(x1, . . . , xl) in I and consider the points in U that satisfy
this constraint but not R′(x1, . . . , xl). These are the points p ∈ QV on L for
which (p(x1), . . . , p(xl)) satisfies (ϕ′1 ∨ · · · ∨ ϕ′m) ∧ ¬(ϕ1 ∨ · · · ∨ ϕm). For each
1 ≤ i ≤ m, ϕ′i satisfies at most one point on L since otherwise the affine hull of
the relation defined by ϕi would contain (0, . . . , 0). Hence, each constraint in I
can account for at most a finite number of points in U , so U is finite.

There are two cases to consider: (1) U contains more than one point and
therefore excludes an interval; or (2) U is the constant {1}. Since Γ is assumed
not to be essentially convex, the relation U can then be used to pp-define a unary
relation that is not essentially convex. In either case, there is a contradiction to
the assumption that every unary relation in 〈Γ 〉 is essentially convex. It follows
that I ′ must be satisfiable. ut

4 NP-hardness

We now prove the necessary hardness result. It is based on the following simple
reduction from the NP-hard problem Not-All-Equal 3SAT [10]. We then show
that having a bnu T that excludes an interval and that is bounded away from
0 is a sufficient condition for CSP({R+, T}) to be NP-hard. This is a unified
hardness condition for all CSPs classified in this paper.

Lemma 10. Let T ∈ {−1, 1}+ I(1
2). Then, CSP({R+, T}) is NP-hard.

For a rational c, and a unary relation U , let c ·U = {c ·x | x ∈ U} ∈ 〈{R+, U}〉.

Lemma 11. Let T 6= ∅ be a bounded unary relation such that T ∩ (−ε, ε) = ∅,
for some ε > 0. Then, either 〈R+, T 〉 contains a unary relation Uδ ∈ {1}+ I(δ)
for every δ > 0; or 〈R+, T 〉 contains a unary relation Uδ ∈ {−1, 1}+ I(δ), for
every δ > 0.

Proof. If T ∩ −T 6= ∅, then the result follows from Lemma 6. Otherwise, by
Lemma 2, there exists a constant c+ > 0 such that the set T+ = {x ∈ T | |x| ≥
c+} is non-empty and contains points that are either all positive or all negative.
Similarly, there exists a constant c− > 0 such that T− = {x ∈ T | |x| ≤ c−} is
non-empty and contains points that are either all positive or all negative. Let
a ∈ T+ and b ∈ T−. Assume that both sets contain positive points only or that
both sets contain negative points only. Then, the result follows using Lemma 5
with the relation U = a−1 ·T ∩b−1 ·T (or −U if the points of U are negative). The
case when the one set contains positive points and the other contains negative
points is handled similarly using the relation U ′ = a−1 · T ∩ b−1 · (−T). ut

Lemma 12. Let T be a bnu such that T ∩ (−ε, ε) = ∅, for some ε > 0, and U be
a unary relation that excludes an interval. Then, CSP({R+, T, U}) is NP-hard.

Proof. We show that 〈R+, T, U〉 contains a unary relation {−1, 1}+ I(1
2). The

result then follows from Lemma 10. If already 〈R+, T 〉 contains such a relation,
then we are done. Otherwise, by Lemma 11, 〈R+, T 〉 contains a unary relation
Uδ ∈ {1}+ I(δ), for every δ > 0. Since U excludes an interval, there are points
p, q ∈ U and 0 < δ1 < δ2 < 1 such that p+ (q − p)y 6∈ U whenever δ1 ≤ y ≤ δ2.
Furthermore, p and q can be chosen so that δ1 < 1/2 < δ2, and by scaling U , we
may assume that |q−p| = 2. Letm = (p+q)/2. Note that T ∩(m−ε′,m+ε′) = ∅,
for some ε′ > 0. Similarly, possibly by first scaling T , let p′, q′ ∈ T be distinct
points with |q′ − p′| = 2 and let m′ = (p′ + q′)/2.

Now, define the unary relation T0(x) ≡ ∃y∃z.Uδ(y)∧z = x−y ·m∧U(z), and
the unary relation T∞(x) ≡ ∃y′∃z′.Uδ(y′)∧z′ = x−y′ ·m′∧T (z′). The relations T0
and T∞ are roughly translations of U and T , where the constant relation {1} has
been approximated by the relation Uδ. Since 1 ∈ Uδ, we have {−1, 1} ⊆ T0, T∞.
Hence, if δ is chosen small enough, then the relation T0 ∩ T∞ ∈ 〈R+, T, U〉 will
satisfy the conditions of Lemma 6. This finishes the proof. ut

5 Expansions of {R+}

We now study the class of semilinear constraint languages containing R+ and
having the properties (P0) and (P∞). These properties are defined as follows.

– (P0) There is a unary relation U in 〈Γ 〉 that contains a positive point and
satisfies U ∩ (0, ε) = ∅ for some ε > 0.

– (P∞) There is a unary relation U in 〈Γ 〉 that contains a positive point and
satisfies U ∩ (M,∞) = ∅ for some M <∞.

A relation is 0-valid if it contains the tuple (0, . . . , 0) and a constraint language
is 0-valid if every relation in it is 0-valid. We now state our main result and get
a complete classification for semilinear constraint languages containing R+ and
{1} as an immediate corollary.

Theorem 5. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a finite constraint language that
satisfies (P0) and (P∞).

– If Γ is 0-valid, then CSP(Γ) is trivially tractable;
– otherwise, if Γ does not contain a bnu, then CSP(Γ) is tractable by estab-
lishing affine consistency;

– otherwise, if all unary relations in 〈Γ 〉 are essentially convex, then CSP(Γ)
is tractable via a reduction to an essentially convex constraint language;

– otherwise, CSP(Γ) is NP-hard.

Proof. Let U be the set of all bounded, non-empty unary relations U in 〈Γ 〉
such that U ∩ (−ε, ε) = ∅ for some ε > 0. Assume that Γ is not 0-valid and
let R be a relation in Γ such that (0, . . . , 0) 6∈ R and a ∈ R. Then, the relation

LR,a,(0,...,0) ∈ 〈{R+, R}〉 is unary, does not contain 0 but does contain 1. Let
U0 ∈ 〈Γ 〉 be a unary relation witnessing (P0) and let U∞ ∈ 〈Γ 〉 be a unary
relation witnessing (P∞). Scale U0 and U∞ so that some positive point from
each coincides with 1 and let T = LR,a,(0,...,0) ∩U0 ∩U∞. If T does not contain a
negative point, then T ∈ U . Otherwise, T contains a negative point b. It follows
that T ∩ b · T ∈ U . Hence, the set U is non-empty.

Assume that 〈Γ 〉 does not contain a bnu. Then, neither does U and hence
U contains only constants. It follows by Theorem 3 that establishing affine
consistency solves CSP(Γ).

Otherwise, U contains a bnu. If all unary relations of 〈Γ 〉 are essentially
convex, then by Lemma 11 and Theorem 4, CSP(Γ) is equivalent to CSP(Γ ′) for
an essentially convex constraint language Γ ′. Tractability follows from Theorem 2.

Finally, if U contains a bnu and 〈Γ 〉 contains a unary relation that excludes
an interval, then NP-hardness follows from Lemma 12. ut

Theorem 6. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q] be a finite constraint language. If
〈Γ 〉 contains a bnu and 〈Γ 〉 contains a relation that is not essentially convex,
then CSP(Γ) is NP-hard. Otherwise, CSP(Γ) is tractable.

6 Discussion and future work

We have determined the complexity of CSP(Γ) for all finite semilinear Γ con-
taining R+ and satisfying (P0) and (P∞). Clearly, one would like to obtain a full
classification for semilinear constraint languages without side conditions but this
appears to be an extremely hard task. One may instead study cases when (P0)
and (P∞) hold (and {R+} 6⊆ Γ) or when only {R+} ⊆ Γ is required (and (P0)
or (P∞) do not hold). We will discuss these two possibilities below.

For simplicity, let SL1 denote the set of semilinear constraint languages such
that {{1}} ⊆ Γ and {R+} 6⊆ Γ . The languages in SL1 satisfy both (P0) and
(P∞). A straightforward modification of the construction in Sec. 6.3 of [9] gives
the following: for every finite constraint language Γ ′ over a finite domain, there
exists a Γ ∈ SL1 such that CSP(Γ ′) and CSP(Γ) are polynomial-time equivalent
problems. Hence, a complete classification would give us a complete classification
of finite-domain CSPs, and such a classification is a major open question within
the CSP community [7, 8]. We also observe that for every finite temporal constraint
language (i.e., languages that are first-order definable in (Q;<)), there exists
a Γ ∈ SL1 such that CSP(Γ ′) and CSP(Γ) are polynomial-time equivalent
problems. This follows from the fact that every temporal constraint language Γ ′
admits a polynomial-time reduction from CSP(Γ ′ ∪ {{1}}) to CSP(Γ ′): simply
equate all variables appearing in {1}-constraints and note that any solution
can be translated into a solution such that this variable is assigned the value 1.
The complexity of temporal constraint languages is fully determined [4] and the
polynomial-time solvable cases fall into nine different categories. The proof is
complex and it is based on the universal-algebraic approach for studying CSPs.

Let us now consider the set SL+ of all semilinear constraint languages con-
taining R+ and not satisfying (P0) or (P∞). If either (P0) or (P∞) is violated,

then we can show that the languages in SL+ are of a particular restricted type.
Let HSLQ[Q] denote the set of homogeneous semilinear relations, i.e., relations
R ⊆ Qn that are finite unions of homogeneous linear sets.

Theorem 7. Arbitrarily choose Γ ∈ SL+. CSP(Γ) is equivalent to CSP(Γ ′) for
a finite constraint language {R+} ⊆ Γ ′ ⊆ HSLQ[Q].

It seems like a difficult task to classify the complexity of subsets of HSLQ[Q]
since this would imply the previously mentioned classification of temporal con-
straint problems and also the constraint problems studied by Bodirsky et al. [3].
It is also closely connected with CSPs over domains of size 3 as demonstrated by
the following proposition.

Proposition 1. Let A be a finite constraint language over the domain {−1, 0, 1}.
There is a Γ ⊆ HSLQ[Q] such that CSP(A) and CSP(Γ) are polynomial-time
equivalent.

The complexity of CSPs on three-element domains is fully determined [5] and
the lengthy proof is based on machinery from universal algebra. One has to note,
though, that we may not need to completely classify the complexity of HSLQ[Q]
in order to classify the complexity of SL+: we have the additional condition that
R+ is a member of the languages under consideration. It is plausible that this
would simplify the task.

References

1. M. Bodirsky and M. Grohe. Non-dichotomies in constraint satisfaction complexity.
In Proceedings of the 35th International Colloquium on Automata, Languages and
Programming (ICALP-2008), pages 184–196, 2008.

2. M. Bodirsky, P. Jonsson, and T. von Oertzen. Essential convexity and complexity
of semi-algebraic constraints. Logical Methods in Computer Science, 8(4), 2012.

3. M. Bodirsky, P. Jonsson, and T. von Oertzen. Horn versus full first-order: Complexity
dichotomies in algebraic constraint satisfaction. J. Log. Comput., 22(3):643–660,
2012.

4. M. Bodirsky and J. Kára. The complexity of temporal constraint satisfaction
problems. J. ACM, 57(2), 2010.

5. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. J. ACM, 53(1):66–120, 2006.

6. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the computational complexity
of constraints using finte algebras. SIAM J. Comput., 34(3):720–742, 2005.

7. T. Feder and M. Y. Vardi. Monotone monadic SNP and constraint satisfaction. In
Proceedings of the 25th ACM Symposium on Theory of Computing (STOC-1993),
pages 612–622, 1993.

8. P. Hell and J. Nešetřil. Colouring, constraint satisfaction, and complexity. Computer
Science Review, 2(3):143–163, 2008.

9. P. Jonsson and T. Lööw. Computational complexity of linear constraints over the
integers. Artif. Intell., 195:44–62, 2013.

10. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
ACM Symposium on Theory of Computing (STOC-1978), pages 216–226, 1978.

11. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.

