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Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract. We consider a ZX-calculus augmented with triangle nodes which is well-suited to
reason on the so-called Toffoli-Hadamard fragment of quantum mechanics. We precisely show
the form of the matrices it represents, and we provide an axiomatisation which makes the
language complete for the Toffoli-Hadamard quantum mechanics. We extend the language
with arbitrary angles and show that any true equation involving linear diagrams which
constant angles are multiple of π are derivable. We show that a single axiom is then necessary
and sufficient to make the language equivalent to the ZX-calculus which is known to be
complete for Clifford+T quantum mechanics. As a by-product, it leads to a new and simple
complete axiomatisation for Clifford+T quantum mechanics.

1 Introduction

The ZX-Calculus is a powerful graphical language for quantum computing [8]. It has been intro-
duced in 2008 by Coecke and Duncan [6], and has several applications in quantum information
processing (e.g. MBQC [10], quantum codes [5,4,9,14]).

The language manipulates diagrams, generated by roughly three kinds of vertices: α
· · ·
· · ·

, α
· · ·
· · ·

and ; and which represent quantum evolutions thanks to the standard interpretation. It comes
with a set of allowed transformations that preserve the represented process. These rules can be im-
plemented in the interactive proof assistant Quantomatic [18,19]. The property that they preserve
the semantics is called soundness, and is easily verifiable. Its converse, completeness, is obtained
when any two diagrams that represent the same process can be transformed into one-another with
only the rules of the ZX-Calculus.

The first completeness result was for a restriction of the language called Clifford [2]. This result
was adapted to a smaller restriction of the language, the so-called real stabilizer [11]. Problem
was, these two restrictions are not universal: their diagrams cannot approximate all arbitrary
evolution, and they are efficiently simulable on a classical computer. The “easiest” restriction of
the language with approximate universality is the Clifford+T fragment. A first step was made
when completeness was discovered for the 1-qubit operations of the restriction [3]. A complete
axiomatisation for the many-qubits Clifford+T fragment was finally discovered in [15], and lead to
a complete axiomatisation in the general case, first in [20] where two new generators were added,
and then in [16] with the original syntax.

Thanks to its proximity to quantum circuitry, one of the potential uses of the ZX-Calculus
is circuit simplification. The usual ZX-Calculus [6] can be seen as an generalisation of quantum
circuits built with the gate set (CNot, H, RZ(α)) where α may take any value in R. Then, the
real stabilizer ZX-Calculus corresponds to the set of gates when the angles are multiples of π,
the Clifford restriction to when angles are multiples of π

2 , and the Clifford+T restriction to when
angles are multiples of π

4 .
While the Clifford+T fragment (where T= RZ(π/4)) of quantum mechanics is preeminent in

quantum information processing, Toffoli-Hadamard quantum mechanics is also well known and
widely used. The Toffoli-Hadamard quantum mechanics is the real counter-part of the Clifford+T
quantum mechanics: the matrices of the Toffoli+Hadamard fragment are exactly the real matrices
of the Clifford+T fragment. Toffoli-Hadamard quantum mechanics is also known to be approx-
imately universal for quantum computing [1,24]. The Toffoli gate is a 3-qubit unitary evolution
which is nothing but a controlled CNot: it maps |x, y, z〉 to |x, y, x ∧ y ⊕ z〉. The Toffoli gate can be
decomposed into CNot, H, and T gates [22,23] and hence can be represented in the π

4 -fragment of
the ZX-calculus, however, as pointed out in [15,21], the Toffoli gate admits simpler representations
using the triangle node:



Toffoli :=
π

[15] or Toffoli :=
π

π

[21]

and the triangle itself can be recovered from the Toffoli gate:

= Toffoli

π

The triangle itself was introduced in [15] as a notation for a diagram of the Clifford+T re-
striction, and was used as one of the additional generators in [20,21]. Since the CNOT gate is
depicted in ZX as the composition of two of its generators, we propose to add the triangle node
as a generator for a version of the ZX-Calculus devoted to represent specifically Toffoli, without
having to decompose it as a Clifford+T diagram.

We first present the diagrams of the ZX-Calculus augmented with the triangle node, and give an
axiomatisation for the Toffoli-Hadamard quantum mechanics in Section 2. We prove it is universal,
sound and complete in Section 3. In Section 4, we try and adapt a theorem from [16] which gives a
completeness result on a broader restriction of the language. We finally give in Section 5 a simple
axiomatisation for the Clifford+T fragment of the ZX-Calculus with triangles (that corresponds
to the (Toffoli, H, RZ(π/4)) gate set in circuitry), and prove it is complete.

2 ∆ZX-Calculus: A ZX-Calculus with Triangles

2.1 Diagrams and Standard Interpretation

A ∆ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m α

· · ·

· · ·

n

m

R
(n,m)
X (α) : n→ m α

n

m· · ·

· · ·
H : 1→ 1

e : 0→ 0 I : 1→ 1 σ : 2→ 2

ε : 2→ 0 η : 0→ 2 ∆ : 1→ 1

where n,m ∈ N and α ∈ R. The generator e is the empty diagram.

and the two compositions:

– Spatial Composition: for any D1 : a → b and D2 : c → d, D1 ⊗D2 : a + c → b + d consists in
placing D1 and D2 side by side, D2 on the right of D1.

– Sequential Composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in placing
D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.

The standard interpretation of the ∆ZX-diagrams associates to any diagram D : n → m a
linear map JDK : C2n → C2m inductively defined as follows:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K

r z
:=
(
1
) r z

:=

(
1 0
0 1

) t |

:=
1√
2

(
1 1
1 −1

) t |

=

(
1 1
0 1

)
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r z
:=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 J K :=
(
1 0 0 1

) q y
:=


1
0
0
1


For any α ∈ R, Jα K :=

(
1 + eiα

)
, and for any n,m ≥ 0 such that n+m > 0:

t

α
· · ·

· · ·

|

:= 2m



2n︷ ︸︸ ︷
1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα


t

α
· · ·

· · · |

:=

t |⊗m
◦

t

α
· · ·

· · ·

|

◦

t |⊗n

(
where M⊗0 =

(
1
)

and M⊗k = M ⊗M⊗k−1 for any k ∈ N∗
)
.

To simplify, the red and green nodes will be represented empty when holding a 0 angle:

· · ·

· · ·
0

· · ·

· · ·
:= and

· · ·

· · ·
0

· · ·

· · ·
:=

2.2 Calculus

∆ZX represents the general ZX-Calculus with triangle, i.e. where the angles can take any value in
R. In the following, we will focus on some restrictions of the language. We call the π

q -fragment of
the ∆ZX, the restriction of the ZX-Calculus with triangles, where all the angles are multiples of
π
q , and we denote it ∆ZXπ

q
.

Two different diagrams may represent the same quantum evolution i.e. there exist two different
diagrams D1 and D2 such that JD1K = JD2K. This issue is addressed by giving a set of axioms: a
set of permitted local diagram transformations that preserve the semantics. We give in Figure 1 a
set of axioms for the general ZX-Calculus with triangles, and we define the ∆ZXπ as the same set
of axioms where the angles are restricted to {0, π}.
Remark 1. In the following, we will freely use the notation ∆ZXπ

q
to denote either the set of

diagrams in the π
q -fragment or the set of rules given for these specific diagrams.

This set of axioms consists of the rules for the real stabiliser ZX-Calculus given in [11], aug-
mented with 5 rules that include the node ∆.

Additionally to these rules, the paradigm “Only Topology Matters” ensures we can be as lax
as we want when manipulating diagrams, in the sense that what only matters is if two nodes are
connected or not (and how many times). A distinction has to be made for ∆ where the orientation
of the node matters. For instance:

= = =
= =

= == :=

If we can transform a diagram D1 into a diagram D2 using the rules of ∆ZX or the previous
paradigm, we write ∆ZX ` D1 = D2. We said earlier that “the rules can be locally applied”. This
means that for any three diagrams, D1, D2, and D, if ∆ZX ` D1 = D2, then:
• ∆ZX ` D1 ◦D = D2 ◦D • ∆ZX ` D ◦D1 = D ◦D2

• ∆ZX ` D1 ⊗D = D2 ⊗D • ∆ZX ` D ⊗D1 = D ⊗D2

An important property of the usual ZX-Calculus is that colour-swapping the diagrams (trans-
forming green nodes in red nodes and vice-versa) preserves the equality. We made the triangle red,

and we can define a green triangle as := so that this property is preserved.
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· ·
· = α+β

β

· · ·
α
· · ·

(S1)

· · ·
· · ·

· · ·

· · ·

=
(S2g)

=
(S2r)

=
(IV)

=
(B1)

=
(B2)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

π =
(HL)

=
(T0)

π

=
(BW)

π

=
(HT)

π =
(TCX)

=
(TW)

Fig. 1. Set of rules ∆ZX for the ZX-Calculus with triangles. The right-hand side of (IV) is an empty

diagram. (...) denote zero or more wires, while ( · · · ) denote one or more wires. α, β ∈ R. ∆ZXπ is obtained
when restricting the angles α, β ∈ {0, π}.

3 Universality, Soundness, Completeness

The Toffoli+Hadamard gate set in circuitry is (approximately) universal [1,24]: any quantum evo-
lution can be approximated with arbitrary precision by a circuit with this set of gates. It is expected
that the result extends to the adequate fragment of the ∆ZX-Calculus. It does:

Theorem 1. For any matrix M ∈ 1√
2
NM2m,2n(Z), there exists a ∆ZXπ-diagram D : n→ m such

that M = JDK.

In other words, the fragment represents exactly the integer matrices of dimensions powers of two
and multiplied by an arbitrary power of 1√

2
. One inclusion is easy to notice: the diagrams represent

matrices in 1√
2
NM2m,2n(Z). Indeed, the standard interpretation of all the generators is an integer

matrix, multiplied by 1√
2

in the case of the Hadamard gate, and the two compositions preserve this

structure. The second inclusion, the fact that any matrix can be represented as a ∆ZXπ-diagram
is less trivial, and will be shown in the following.

The language is not only universal, it is sound : the transformations do preserve the represented
quantum evolution i.e. ∆ZXπ ` D1 = D2 =⇒ JD1K = JD2K. This is a routine check. The converse,
however is harder to prove. Completeness is obtained when two diagrams can be transformed into
one another whenever they represent the same evolution. This is our main theorem:

Theorem 2. The set of rules in Figure 1 makes the π-fragment of the ∆ZX-Calculus complete.
For any diagrams D1 and D2 of the fragment,

JD1K = JD2K ⇐⇒ ∆ZXπ ` D1 = D2

The proof uses the now usual method of a back and forth interpretation from the ZX-Calculus
to the ZW-Calculus, another graphical language suited for quantum processes.
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3.1 ZW-Calculus

The ZW-Calculus, introduced in 2010 as the GHZ/W-calculus by Coecke and Kissinger [7], was
completed by Hadzihasanovic in 2015 [12]. This first complete language is only universal for matri-
ces over Z. Even though it has been extended to represent any complex matrix by the last author
[13], the first version, closer to the expressive power of the π-fragment of the ∆ZX-Calculus, is the
one we will use in the following of the paper.

The ZW-diagrams are generated by:

Te =

{
, , , , , , , , ,

}
The generators are then composed using the two same – sequential and spatial – compositions.

Again, the diagrams represent quantum evolutions, so the language comes with a standard
interpretation, inductively defined as:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:=
(
1
) r z

:=

(
1 0
0 1

)

r z
:=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 r z
:=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 q y
:=


1
0
0
1

 q y
:=


1
0
0
1


t

t |

:=

(
0 1
1 0

) t |

:=


0 1
1 0
1 0
0 0


t |

:=

(
1 0
0 −1

) t |

:=

(
1 0 0 0
0 0 0 −1

)

The language also comes with its own set of axioms, given in Figure 2. Here again, the paradigm

“Only Topology Matters” is respected (except for where the ordering of inputs and outputs

is not to be messed with). Using this, we define 1-legged black and white dots as 3-legged dots

with a loop: := and := , and we can build any 2-legged or 3-legged white and

black dots. For instance: := :=

The language is of course sound, and as previously said, complete.

3.2 ZW 1√
2
-Calculus

The π-fragment of the ∆ZX-Calculus represents elements of 1√
2
NM2m,2n (Z), while the ZW-Cal-

culus represents elements in M2m,2n (Z). If the two languages had the same expressive power, it
would greatly simplify the interpretation from one another, by avoiding complicated encodings
such as in [15].

What is missing from the ZW-Calculus is merely a global scalar, which can be any power of 1√
2
.

Intuitively, adding a generator, which only represents the scalar 1√
2

should be enough, for tensoring

it to a diagram D should yield 1√
2

JDK, and the different powers should be obtained by putting

side by side enough occurrences of the new scalar. This should deal with the expressive power of
the language. It remains then to bind the new generator to the others in the axiomatisation.

Definition 1. We define the ZW 1√
2
-Calculus as the extension of the ZW-Calculus such as:

T 1√
2

= Te ∪ { }

ZW 1√
2

= ZW ∪
{

=
iv

}
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= = =

== =

0a 0b 0b′

0d′0c 0d

= =

= =

1a 1b

1c 1d

= =
2a 2b = =

3a 3b

=
4

= =

=
=

5a 5b

5c
5d

= = =
6b6a 6c

=
X

= =
7b7a

=
R3R2

=

Fig. 2. Set of rules for the ZW-Calculus.

The standard interpretation of a diagram D : n → m is now a matrix JDK ∈ 1√
2
NM2m,2n (Z)

that is an integer matrix times a power of 1√
2

, and is given by the standard interpretation of the

ZW-Calculus extended with J K := 1√
2

.

By building on top of the already complete ZW-Calculus, some results are preserved or easily
extendable. For instance, knowing that the ZW-Calculus is sound, showing that the rule iv is sound
is enough to conclude that the ZW 1√

2
-Calculus is sound. For the completeness:

Proposition 1. The ZW 1√
2

is sound and complete: For two diagrams D1, D2 of the ZW 1√
2
-calculus,

JD1K = JD2K ⇐⇒ ZW 1√
2
` D1 = D2

We now have a complete version of the ZW-Calculus, with the same – yet to be shown –
expressive power as the π-fragment of the ∆ZX-Calculus.

3.3 From ZW 1√
2

to ∆ZX, and Expressive Power of the Latter

We define here an interpretation [.]X that transforms any diagram of the ZW 1√
2
-Calculus into a

∆ZX-diagram:
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[.]X

7→

7→

7→

7→

7→

7→

7→

π7→

π7→

π7→

7→

π

D1 ◦D2 7→ [D1]X ◦ [D2]X D1 ⊗D2 7→ [D1]X ⊗ [D2]X

This interpretation preserves the semantics of the languages:

Proposition 2. Let D be a ZW 1√
2
-diagram. Then J[D]XK = JDK.

This is a routine check. The existence of this interpretation combined with the previous proposition
is enough to prove Theorem 1:

Proof (Theorem 1). Let M ∈ 1√
2
NM2m,2n (Z). There exist n ∈ N and M ′ ∈ M2m,2n (Z) such that

M = 1√
2
nM ′. M ′ is an integer matrix, so there exists D′W a ZW-diagram such that JD′W K = M ′.

We can then build the ZW 1√
2
-diagram DW := D′W ⊗ ( )⊗n and notice that JDW K = M . Finally,

we build the ∆ZXπ-diagram DX := [DW ]X and JDXK = M by Proposition 2. ut

Another very important result is that the ∆ZX-Calculus proves the interpretation of all the
rules of the ZW 1√

2
-Calculus. More specifically:

Proposition 3. For any ZW 1√
2
-diagrams D1 and D2:

ZW 1√
2
` D1 = D2 =⇒ ∆ZX ` [D1]X = [D2]X

The proof is in appendix.

3.4 From ∆ZXπ to ZW 1√
2
, and Completeness

We now define an interpretation from the π-fragment of the ∆ZX-Calculus to the ZW 1√
2
-Calculus.

[.]W

7→

7→

7→

7→

7→

7→

7→

pπ
· · ·

· · ·
7→

· · ·

· · ·

( )
p
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∀α ∈ {0, π}, α
· · ·

· · ·
7→

[ ]⊗m
W

◦

[
α
· · ·

· · ·

]
W

◦

[ ]⊗n
W

D1 ◦D2 7→ [D1]W ◦ [D2]W D1 ⊗D2 7→ [D1]W ⊗ [D2]W

Here, (
p

) either represents the identity if p = 0, or the 1→ 1 white dot if p = 1. The complexity

of the interpretation of the green dot (and subsequently of the red dot), is merely due to the
fact that we chose to present the expanded version of the ZW-Calculus [12], where spiders are
“exploded” as compositions of 2- and 3-legged dots.

Again, the interpretation preserves the semantics:

Proposition 4. Let D be a ∆ZXπ-diagram. Then J[D]W K = JDK.

And again, this is a routine check. Now, when composing the two interpretation, we can easily
retrieve the initial diagram:

Proposition 5. For any diagram D of the π-fragment of the ∆ZX-Calculus, ∆ZXπ ` [[D]W ]X =
D.

We can now prove the completeness theorem:

Proof (Theorem 2). Let D1 and D2 be two diagrams of the ∆ZXπ such that JD1K = JD2K. By
Proposition 4, J[D1]W K = J[D2]W K. By completeness of the ZW 1√

2
(Proposition 1), ZW 1√

2
` [D1]W =

[D2]W . By Proposition 3, ∆ZXπ ` [[D1]W ]X = [[D2]W ]X . Finally, by Proposition 5, ∆ZXπ ` D1 =
D2, hence proving the completeness of the ∆ZXπ-fragment. ut

4 Beyond Toffoli+Hadamard

The set of axioms in Figure 1 features two rules (S1) and (H), with parameters. In ∆ZXπ, they
are limited to {0, π}, but not in ∆ZX. We want to know what we can prove without the limitation
to α, β ∈ {0, π} in the set of rules. To do so, we are going to adapt a result that was developed in
[16], and see what is missing to prove equalities that are valid for linear diagrams with constants in
{0, π}. The following of the section will give a sketch of the proof but will not dive into its details.
For more, see [16].

We call a linear diagram, a diagram where some angles are treated as variables, and where the
parameters of the green and red dots are affine combinations of the variables, where coefficients
are in Z:

Definition 2. A ∆ZX-diagram is linear in α1, . . . , αk with constants in C ⊆ R, if it is generated

by R
(n,m)
Z (E), R

(n,m)
X (E), H, ∆, e, I, σ, ε, η, and the spatial and sequential compositions, where

n,m ∈ N, and E is of the form
∑
i niαi + c, with ni ∈ Z and c ∈ C.

For instance:

α+π

2β

= α+2β
+π

is a well-formed equation on linear diagrams, with constants in {0, π}. It is even sound, for it is
sound for any values of α and β.

The idea of the proof is to separate the different occurrences of the variables from the rest of
the diagram using the rule (S1), change their colour if they are in red nodes using (H), and change
the sign in front of the variables if needs be using the equation:

-α
=

α

π
π

-α(K)

8



Then, the scalars with -α can be remove in favour of scalars with α on the other side of the equation,

for, thanks to (IV) and Lemma 8: ∆ZX ` π

-α
D1 = D2 ⇐⇒ ZX ` D1 =

π

α
D2.

First considering the case of a unique variable, it results that for any pair of diagrams D1(α)
and D2(α) with variable α, there exists a pair of variable-free diagrams D′1 and D′2 such that:

· · ·

· · ·
D1(α) =

· · ·

· · ·
D2(α) ⇐⇒

α α
· · ·

· · ·
D′1

· · ·
=

α
· · ·· · ·
α

D′2
· · ·

We then have to find a diagram that is precisely a projector onto the span of
(
α
)⊗r

. We give

the family (Pr) of diagrams, inductively defined as:

P1 := P2 := Pr :=

· · ·

· · ·
· · ·

· · ·
Pr−1

P2

P2
· · ·

· · ·

=

· · ·

P2 · · ·

· · ·

· ·
·

··
·

P2

P2 P2

P2

P2

P2

P2 P2

One can check that JP2K =


1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 from which, thanks to [16], we can immediately deduce that

Pr is a projector onto span

{s(
α
)⊗r{

/α ∈ R
}

. It results that:

Lemma 1. For any r ≥ 1 and any α-free diagrams D1, D2 : r → n,

∀α ∈ R,

u

v
α α· · ·

· · ·
D1

}

~ =

u

v
α α· · ·

· · ·
D2

}

~

⇔
u

wwww
v

· · ·

· · ·

· · ·
Pr

D1

}

����
~

=

u

wwww
v

· · ·

· · ·

· · ·
Pr

D2

}

����
~

Hence, ∀α ∈ R,

u

w
v

· · ·

· · ·
D1(α)

}

�
~ =

u

w
v

· · ·

· · ·
D2(α)

}

�
~ ⇐⇒

u

www
v D′1

· · ·

· · ·
· · ·

· · ·
Pr

}

���
~

=

u

www
v

· · ·

D′2
· · ·

· · ·
Pr

· · · }

���
~

.

Since D′1, D′2 and Pr are ∆ZXπ-diagrams, the equality of diagrams on the right hand-side is

provable:

u

www
v D′1

· · ·

· · ·
· · ·

· · ·
Pr

}

���
~

=

u

www
v

· · ·

D′2
· · ·

· · ·
Pr

· · · }

���
~

⇐⇒
D′1
· · ·

· · ·
· · ·

· · ·
Pr

=

· · ·

D′2
· · ·

· · ·
Pr

· · ·

All we need now to finish adapting the result on linear diagrams is the following property:

Pr = α α

α α

· · ·

· · ·

· · ·
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This property is naturally obtained by induction in the general case provided it is true for the base
cases r ∈ {1, 2}. When r = 1, the result is obvious. When r = 2, it deduces easily from:

α

α
=

α α (P)

In this case:

D′1
· · ·

· · ·
· · ·

· · ·
Pr

=

· · ·

D′2
· · ·

· · ·
Pr

· · ·

=⇒

α α
· · ·

· · ·
D′1

· · ·
=

α
· · ·· · ·
α

D′2
· · ·

so finally: ∀α ∈ R,

u

w
v

· · ·

· · ·
D1(α)

}

�
~ =

u

w
v

· · ·

· · ·
D2(α)

}

�
~ ⇐⇒

· · ·

· · ·
D1(α) =

· · ·

· · ·
D2(α)

The result extends naturally to the multi-variable-case.
In conclusion, provided we have the two equations (K) and (P) as axioms, we can prove any

sound equation on linear diagrams with constants in {0, π}. With ∆ZXK,P denoting the axioma-
tisation ∆ZX augmented with the rules (K) and (P):

Theorem 3. For any ∆ZX-diagrams D1(α) and D2(α) linear in α = α1, . . . , αk with constants
in {0, π}:

∀α ∈ Rk, JD1(α)K = JD2(α)K ⇐⇒ ∀α ∈ Rk,∆ZXK,P ` D1(α) = D2(α)

We give two corollaries of this theorem:

Corollary 1.

∆ZXK,P `
α α+π

=

2α+π

Corollary 2.

∆ZXK,P `

βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β

5 Axiomatisation for Clifford+T

With the addition of the rules (K) and (P), and the result on linear diagrams (Theorem 3), we feel
like we are not far from having a complete axiomatisation for the π

4 -fragment of the ∆ZX-Calculus.
However:

Lemma 2 ([17]). ∆ZXK,P 0
−π
4

π
4

=
(E)

The language here is different than in [17], but the argument is easily adaptable.
We give a larger axiomatisation denoted ∆ZXK,P,E in Figure 3. This axiomatisation condenses

the initial one (∆ZX) and the rules (K) and (P), but also replaces (IV) by (E), though it is very
easy to show that the new axiomatisation proves the initial one:

Proposition 6. ∆ZXK,P,E ` ∆ZX.

10



· ·
· = α+β

β

· · ·
α
· · ·

(S1)

· · ·
· · ·

· · ·

· · ·

=
(S2g)

=
(S2r) −π

4

π
4

=
(E)

=
(B1)

=
(B2)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

π =
(HL)

=
(T0)

π

=
(BW)

π

=
(HT)

π =
(TCX)

=
(TW)

-α=

α

π
π

α(K)

α

α
=

α α (P)

Fig. 3. Set of rules ∆ZXK,P,E. The right-hand side of (E) is an empty diagram. (...) denote zero or more

wires, while ( · · · ) denote one or more wires.

Proof. All the equations in Figure 1 are present in the new axiomatisation, except (IV). Proving
it from (S1), (S2), (B1), (B2) and (E), however, is classical [17]. ut

As a consequence, this axiomatisation is complete for the π-fragment of the ∆ZX-Calculus. It turns
out, it is also complete for the π

4 -fragment of the ∆ZX-Calculus:

Theorem 4. The set of rules ∆ZXK,P,E
π
4

makes the π
4 -fragment of the ∆ZX-Calculus complete.

For any D1 and D2 diagrams of this fragment:

JD1K = JD2K ⇐⇒ ∆ZXK,P,E
π
4

` D1 = D2

In contrast to the axiomatisations for Clifford+T in [15,21], ∆ZXK,P,E got rid of the axioms
that were specific to particular angles outside {0, π}, except for (E), which is necessary.

We end up with an axiomatisation for an augmented ZX-Calculus that is complete for the
π
4 -fragment, as in [21]. However, the method used to achieve completeness is different: in [21], the
authors start from an axiomatisation which is complete in general, and adapt it to the π

4 -fragment,
whereas in this paper, we began with the easiest fragment of ∆ZX, and gradually built upon it. As
a result, the axiomatisation ∆ZXK,P,E uses fewer axioms (14 against ∼30) and one fewer generator.

The completeness result on linear diagrams with constants in {0, π} (Theorem 3) can be seen
as a generalisation of the completeness of ∆ZXπ (Theorem 2). Similarly, the completeness result

for ∆ZXK,P,E
π
4

(Theorem 4) can be generalised to linear diagrams:

11



Theorem 5. For any ∆ZX-diagrams D1(α) and D2(α) linear in α = α1, . . . , αk with constants
in π

4Z:

∀α ∈ Rk, JD1(α)K = JD2(α)K ⇐⇒ ∀α ∈ Rk,∆ZXK,P,E ` D1(α) = D2(α)
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A Appendix

A.1 Lemmas

Lemma 3.

=

Lemma 4.

=

Lemma 5.

=

Lemma 6.

=
π

Lemma 7.

π
=

π π

Lemma 8.

α

π

β

π

α+β

π

=

Lemma 9.

=
π

π

Lemma 10.

π
=

π

Lemma 11.

=

Lemma 12.

π

=

Lemma 13.

π

=
π

Lemma 14.

π

=

Lemma 15.

=

Lemma 16.

=

Lemma 17.

=

Lemma 18.

π

π
=

π

π
=

Lemma 19.

=
π

Lemma 20.

=
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Lemma 21.

=

Lemma 22.

=
π

Lemma 23.

=

π

π

Lemma 24.

π

=

Lemma 25.

π

=

A.2 Proof of Lemmas

Proof (Lemmas 3, 4, 6, 7, 9). By completeness of the π-fragment of the ZX-Calculus, which uses
a subset of ZX as axioms [11]. ut

Proof (Lemma 8). This proof is classical and uses 7, (B1) and (S1). The proof is the same whatever
the values of α and β are. ut

Proof (Lemma 10).

π
=

(BW)
π = π =

(BW) π

ut

Proof (Lemma 11).

=
(IV)

=
(T0)

=
6

(B1)

π
=

(T0)
π =

(HT)
=
(H)

ut

Proof (Lemma 12).

π

=
(S1)
10

π
=
11

π =
(B1)
6

ut

Proof (Lemma 13).

π

=
(S1)
10

π
=

(T0)
π =

(S1)

π

ut
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Proof (Lemma 14).

π

=
(S1)
12

π

π

=
(BW)

=
(T0)

ut
Proof (Lemma 15).

=
(S2)
(S1)

=
11

=
(TW)

=
(IV)
(B1)
(S1)

=
(S2)
11
(S1)
(IV)

ut
Proof (Lemma 16).

=
(B2)
(S1)

=
15

ut
Proof (Lemma 17).

=
(S2)
(S1)

=
15

=
11
(S1)

ut
Proof (Lemma 18).

π

π
=

(B1)
7

π

=
(TW) π

=
7

(B1)

π

π
=

(TW)

π

=
14
(S1)

=
(S2)
(S1)

=
17

ut
Proof (Lemma 19).

=
(S2)
(S1)
10
7

(H)

π

π

=
18

π

π

π

π

=
(HT)

π

π

π =
5

(S1)
(S2)

π

15



ut
Proof (Lemma 20).

=
(H)

=
19 π

=
10

π
=
12

ut
Proof (Lemma 21).

=
(S2)
(S1)

=
(IV)

(TCX)

=
11

=
(S2)
(S1)

ut
Proof (Lemma 22).

=
(S2)
(S1)
7

(H)
π

π

π
=
19

π

π

=
(H)

π

π

=
(IV)
15 π

π

=
(H)

π

π

=
19

(IV)
(S1)
(S2)

π

ut
Proof (Lemma 23). First:

=
(S2)
(S1)
(BW)

π

π

=
(H)

π

π
=
19

π

π

=
7
10

=
(S2)
(B1)
(IV)

=
(TW)

Moreover, from 19, we can easily derive:

π
=
(S2)
(S1)
19

π

π

=
(H)
7
10

and =
(S2)
(S1)
10

π

π

=
19

π

=
(H)

π

Finally:

π

π
=
(H)

π

π

= π

π

=
7

(TW)
16
(S1)

π

16



= =
(B2)
(IV)

=

ut

Proof (Lemma 24).

π

=
(S1)
10

π

=
7
10 π

π

=
7

π

π π

=
(TCX)

π

π π

=
7
10
(S1)

ut

Proof (Lemma 25).

π

=
(S1)

π

=
24

=
(T0)
(IV)
(B1)
11

ut

A.3 Two Additional Corollaries of Thorem 3

Corollary 3.

∆ZX+(K)+(P) `
α

α

−α
2α π

=

Corollary 4.

∆ZX+(K)+(P) `
βα

π

βα

=

β

β

π

α

α

A.4 Proofs for Completeness

Proof (Proposition 1). Soundness is obvious, since the rule iv is sound.
Now let D1 and D2 be two diagrams of the ZW 1√

2
-Calculus such that JD1K = JD2K. We can

rewrite D1 and D2 as Di = di ⊗ ( )⊗ni for some integers ni and diagrams di of the ZW-Calculus

that do not use the symbol. Notice that d1 = d2 mod 2. Indeed JD1K = JD2K =⇒ Jd1K√
2
n1 = Jd2K√

2
n2 .

Since JdiK are matrices over Z, n1 and n2 are either both odd or both even.

17



First, suppose ni = 0 mod 2. From the new introduced rule, we get that ZW 1√
2
` di = Di ⊗( )⊗ni2

. W.l.o.g. assume n1 ≤ n2. Then

t

d1 ⊗
( )⊗n2−n1

2

|

= 2
n2−n1

2 Jd1K = 2
n2
2 JD1K = Jd2K.

Since d1 ⊗
( )⊗n2−n1

2

and d2 are ZW-diagrams and have the same interpretation, thanks to

the completeness of the ZW-Calculus, ZW 1√
2
` d1 ⊗

( )⊗n2−n1
2

= d2, which implies ZW 1√
2
`

d1 ⊗
( )⊗n2−n1

2 ⊗ ( )⊗n2 = d2 ⊗ ( )⊗n2 i.e. ZW 1√
2
` D1 = D2.

Now, we can easily show ZW 1√
2
` D1 ⊗ = D2 ⊗ ⇐⇒ ZW 1√

2
` D1 = D2, proving the result

when ni = 1 mod 2:

ZW 1√
2
` D1 ⊗ = D2 ⊗ =⇒ ZW 1√

2
` D1 ⊗ = D2 ⊗

=⇒
iv

ZW 1√
2
` D1 = D2 =⇒ ZW 1√

2
` D1 ⊗ = D2 ⊗

ut

Proof (Proposition 3). We prove1 here that all the rules of the ZW 1√
2
-Calculus are preserved by

[.]X .
• X:

7→ =
(S1)
(B2)

=
(H)

=
22

(HL)

← [

• 0a, 0c, 0d and 0d′ come directly from the paradigm Only Topology Matters.
• 0b:

7→
π

=
7
10
(S1)

π

=
16

π

=
7
10
(S1)

π
← [

• 0b′: Using the result for rule 0b,

7→
π

=
16

π

=

π

=
16

π
←[

1 The proof is strictly the same as in [15]. We give it again here for coherence and to guarantee that all
the necessary lemmas have been proven.
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• 1a:

7→ =
(B2)
(S1)

=
(S1)
(TW)

=
(B2)

←[

• 1b:

7→ =
16

=
(IV)
(B1)
(S1)

=
11
(S2)
(IV)

=
(S1)
(S2)

←[

• 1c, 1d, 2a and 2b come directly from the spider rules (S1) and (S2).
• 3a is Lemma 7.
• 3b:

7→

π π

=
7

(S1)

π

←[

• 4 comes from the spider rule (S1).
• 5a: We will need a few steps to prove this equality.
i)

π

=
(S1)
(B2) π

=
(H)
(S1) π

=
22

π π

=
(S1)
7

π

ii)

=
16
(S1)

=
(B2)

=
(S1)
24

π
=
7

π

π

=
16
7
10

iii)

π

π

π =
(BW)

π

π

π

=
(S1)
(TW)

π

π

π

=
7

(S1)

π

π
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iv)

π

π

π
=
7

(S1)

π

π π

π

π

π

=
iii)

π

ππ

π

π
=
7

(S1)

v)

π
=
16
(S1)

π

=
(B2)

π

=
7

(S1)

π

π

π

π

=
24

π

π

π

=
7 π

vi)

π

π

π
=
(S1)
7

π

π

π

π

=
v)

π

ππ

π

=
7

(S1)

π

π

π

vii)

=
i)
16

π

π

=
23

π

π

=
iii)
7
4

π

ππ

π

=
vi)

π

π π

π

=
iv)

=
ii)

20



viii)

π

π

=
(S1)
7
10

=
(B2)

=
(S1)

=
(B2)

=
15
16

=
24

π

=
(B2)

π
=
15
16

Finally,

7→ = =
9

π

π

=
viii)
4

π

π

=
vii)

π

π

=
(S1)
(B2)

π

π
=
(S1)
viii)

π

π

← [ =

• 5b:

7→ =
(IV)
(B1)
(S1)

=
(T0)

=
(IV)
(B1)

←[

• 5c:

7→ =
(S1)
3

=
(IV)

←[
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• 5d:

7→ π =
4

π =
(S2)
(S1)

π =
24 π

π

=
(IV)
4

π

π

=
12

(IV)

π

=
(IV)
14

=
(IV)
(B1)

← [

• 6a: Thanks to the rule X we can get rid of induced by the crossing. Then,

7→
X

=
(B2)

=
(S1)

=
21

← [

• 6b is exactly the copy rule (B1).
• 6c:

7→ =
(S1)
(IV)
4

=
(IV)
(B1)
(S2)

=
(T0)

←[

• 7a:

7→ =
(S1)
(H)

=
(B2)

=
(H)

←[

• 7b:

7→
π

=
7

(H)
(S1)

π

π

← [

• R2:

7→ =
(S1)

=
4

←[
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• R3:

7→ =
(S1)

=
(S1)

← [

• iv:

7→ =
(S2)

=
(S1)

=
3

(IV)

← [

ut

Proof (Theorem 4). We remind the rules that make the π
4 -fragment complete [15]:

ZXπ/4

· ·
· = α+β

β

· · ·
α
· · ·

(S1)
· · ·

· · ·

· · ·

· · ·

=
(S2)

−π
4

π
4

=
(E)

=
(B1)

=
(B2)

=
π

α

-α

πα

π(K’)

α α+π

=

2α+π

(SUP)

π
2

π
2

−π
2

=
(EU)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW’)

We will prove that they are derivable from ∆ZXK,P,E
π
4

.

Some of the rules are already present in ∆ZXK,P,E
π
4

: (S1), (S2), (E), (B1), (B2), (H). Thanks

to Proposition 6, we can use Theorem 3. This proves that rules (C) and (SUP) are derivable from

∆ZXK,P,E
π
4

(Corollaries 2 and 1), as well as (K’). There only remain (EU) and (BW’). (BW) appears

in ∆ZXK,P,E
π
4

, but in its “triangle-form”. We need to prove that the triangle can be decomposed in

the diagram of the π
4 -fragment used in [15].
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The Euler decomposition of the Hadamard gate is derivable:

∆ZXK,P,E
π
4

`

π
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π
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−π
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π π

=
22

π

=
(B2)
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π

π
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π

π
=
22

π
=
3

π =
(B1)
6

(S1)
(S2)

We now have proven all the axioms that make the π
2 -fragment complete. We can use it in the

following (denoted π
2 -C). The decomposition of the triangle node is derivable:
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π
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=
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π
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π
4

π
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The rule (BW’) is now easily derivable from the decomposition of the triangle and the rule (BW).
ut
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