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Recognizing internal states of other agents to anticipate and 
coordinate interactions

Filipo Studzinski Perotto
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filipo.perotto@gmail.com

Abstract. In multi-agent systems, anticipating the behavior of other agents constitutes a difficult problem. 
In  this  paper  we present  the case  where a  cognitive  agent  is  inserted  into  an  unknown environment 
composed of different kinds of other objects and agents; our cognitive agent needs to incrementally learn 
a model of the environment dynamics, doing it only from its interaction experience; the learned model can 
be then used to define a policy of actions. It is relatively easy to do so when the agent interacts with static  
objects, with simple mobile objects, or with trivial reactive agents; however, when the agent deals with 
other complex agents that may change its behaviors according to some non directly observable internal 
states (like emotional or intentional states), the construction of a model becomes significantly harder. The 
complete system can be described as a  Factored and Partially Observable Markov Decision Process 
(FPOMDP);  our  agent  implements  the  Constructivist  Anticipatory  Learning  Mechanism (CALM) 
algorithm, and the experiment (called meph) shows that the induction of non-observable variables enable 
the agent to learn a deterministic model of most of the universe events, allowing it to anticipate other  
agents actions and to adapt to them, even if some interactions appear as non-deterministic in a first sight.

Keywords. Factored Partially Observable Markov Decision Process (FPOMDP), Constructivist Learning 
Mechanisms, Anticipatory Learning, Model-Based RL. 

1 Introduction
Trying to escape from AI classic (and simple) maze problems toward more sophisticated (and 

therefore more complex and realistic) agent-based universes, we are led to consider some complicating 
conditions: (a) the situatedness of the agent, which is immersed into an unknown universe, interacting with 
it  through limited sensors and effectors,  without any holistic perspective of the complete environment 
state, and (b) without any a priori model of the world dynamics, which forces it to incrementally discover 
the effect of its actions on the system in an on-line experimental way; to make matters worse, the universe 
where the agent is immersed can be populated by different kinds of objects and entities, including (c)  
other complex agents, and in this case,  the task of learning a predictive model becomes considerably 
harder.

We are especially concerned with the problem of discovering the existence of other agents' internal 
variables,  which  can  be  very  useful  to  understand  their  behavior.  Our  cognitive  agent  needs  to 
incrementally learn a model of its environment dynamics, and the interaction with other agents represents  
an important  part  of it.  It  is relatively easy to construct a model when the agent interacts with static 
objects, with simple mobile objects, or with trivial reactive agents; however, when dealing with other  
complex  agents  which may change  its  behaviors  according  to  some non directly  observable  internal 
properties (like emotional or intentional states), the construction of a model becomes significantly harder.  
The difficulty increases because the reaction of each agent can appears to our agent as a non deterministic  
behavior, regarding the information provided by the perceptive elements of the situation.

We can anticipate at least two points of interest addressed by this paper: the first one is about  
concept creation, the second one is about agent inter-subjectivity. In the philosophical and psychological 
research community concerned with cognitive issues, the challenge of understanding the capability to 
develop new abstract concepts have always been a central point in most theories about how the human 
being can deal and adapt itself to a so complex and dynamical environment as the real world (Murphy,  
2002), (Piaget, 1947). In contrast to the kind of approach usually adopted in AI, which easily slip into the 
strategy of treating exceptions and lack of information by using probabilistic methods, many cognitive 
scientists  insist  that  the  human mind strategy  looks  more  like  accommodating  the  disturbing  events 
observed in the reality by improving his/her model with new levels of abstraction, new representation 
elements, and new concepts. Moreover, the intricate problem of dealing with other complex agents has 
also  been  studied  by cognitive science  for  some time,  from psychology to neuroscience.  A classical 
approach to it is the famous “ToM” assumption (Astington, et al. 1988), (Bateson, 1972), (Dennett, 1987)  



which claims that the human being have developed the capability to attribute mental states to the others, in 
order to represent their beliefs, desires and intentions, and so being able to understand their behavior.  

In this paper,  we use the  Constructivist Anticipatory Learning Mechanism (CALM), defined in 
(Perotto, 2010), to solve the “meph problem”, where a cognitive agent is inserted into an environment 
constituted of other objects and also of some other agents, that are non-cognitive in the sense that they do 
not learn anything, but that are similar to our agent in terms of structure and possible behaviors. CALM is 
able  to  build  a  descriptive  model  of  the  system where  the  agent  is  immersed,  inducting,  from the 
experience,  the structure of a factored  and partially observable Markov decision process  (FPOMDP).  
Some positive results have been achieved due to the use of 4 integrated strategies (Perotto, 2010), (Perotto 
et  al.  2007),  (Perotto;  Alvares,  2007):  (a)  the  mechanism takes  advantage  of  the  situated  condition 
presented by the agent, constructing a description of the system regularities relatively to its own point of 
view,  which  allows  to  set  a  good  behavior  policy  without  the  necessity  of  “mapping”  the  entire  
environment; (b) the learning process is anchored on the construction of an anticipatory model of the 
world,  what  could  be  more  efficient  and  more  powerful  than  traditional  “model  free”  reinforcement 
learning methods, that directly learn a policy; (c) the mechanism uses some heuristics designed to  well  
structured universes,  where  conditional  dependencies  between variables  exist  in  a  limited  scale,  and 
where most of the phenomena can be described in a deterministic way, even if the system as a whole is  
not, representing what we call a partially deterministic environment; this characteristic seems to be widely 
common in real world problems; (d) the mechanism is prepared to discover the existence of hidden or 
non-observable properties of the universe, which cannot be directly perceived by the agent sensors, but 
that can explain some observed phenomena. This last characteristic is fundamental to solve the problem 
presented in this article because it enables our agent to discover the existence of internal states in other  
agents, which is necessary to understand their behavior and then to anticipate it. Further discussion about 
situatedness can be found in (Wilson; Clark, 2008), (Beer, 1995), and (Suchman, 1987).

Thus,  the  basic  idea  concerning  this  paper  is  to  describe  the  algorithm CALM,  proposed  in 
(Perotto,  2010),  presenting  its  features,  and  placing  it  into  the  Markov  Decision  Process (MDP) 
framework  panorama.  The  discussion  is  supported,  on  one  side,  by these  introductory philosophical  
conjectures, and on the other side, by the meph experiment, which creates a multi-agent scenario, where 
our agent needs to induce the existence of internal variables to the other agents. In this way, the paper  
presents some positive results in both theoretical and practical aspects. Following the paper,  section 2 
overviews the MDP framework, section 3 describes the CALM learning mechanism, section 4 introduces 
the  experiment  and  shows the  acquired  results,  and  section  5  concludes  the  paper,  arguing that  the 
discover and induction of hidden properties of the system can be a promising strategy to model other 
agents internal states.

2 Markov Decision Process Framework
Markov Decision Process (MDP) and its extensions constitute a quite popular framework, largely 

used for modeling decision-making and planning problems. An MDP is typically represented as a discrete 
stochastic state machine; at each time cycle the machine is in some state  s; the agent interacts with the 
process by choosing some action a to carry out; then, the machine changes into a new state s', and gives 
the agent a corresponding reward  r; a given transition function  δ defines the way the machine changes 
according to s and a. Solving an MDP is finding the optimal (or near-optimal) policy of actions in order to 
maximize the rewards received by the agent over time. When the MDP parameters are completely known, 
including  the  reward  and  the  transition  functions,  it  can  be  mathematically  solved  by  dynamic  
programming (DP)  methods. When  these  functions  are  unknown,  the  MDP  can  be  solved  by 
reinforcement learning (RL) methods, designed to learn a policy of actions on-line, i.e. at the same time 
the agent interacts with the system, by incrementally estimating the utility of state-actions pairs and then 
by mapping situations to actions (Sutton, Barto 1998).

 2.1 The Classic MDP

Markov Decision Process first appeared (in the form we know) in the late 1950s (Bellman, 1957), 
(Howard, 1960),  reaching a concrete popularity in the  Artificial Intelligence (AI)  research community 
from the  1990s  (Puterman,  1994).  Currently the  MDP framework  is  widely used  in  the  domains of 
Automated Control, Decision-Theoretic Planning (Blythe, 1999), and Reinforcement Learning (Feinberg, 
Shwartz, 2002). A “standard MDP” represents a system through the discretization and enumeration of its 
state space, similar to a state machine in which the transition function can be non-deterministic. The flow 
of an MDP (the transition between states) depends only on the system current state and on the action taken 



by the agent at the time. After acting, the agent receives a reward signal, which can be positive or negative 
if certain particular transitions occur.

However, for a wide range of complex (including real world) problems, the complete information 
about the exact state of the environment is not available. This kind of problem is often represented as a 
Partially  Observable  Markov  Decision  Process (POMDP)  (Kaelbling  et  al.,  1998).  The  idea  of 
representing non-observable elements in a MDP is not new (Astrom, 1965), (Smallwood; Sondik, 1973),  
but became popular with the revived interest on the framework, occurred in the 1990s (Christman, 1992),  
(Kaelbling et al., 1994, 1998).  The POMDP provides an elegant mathematical framework for modeling 
complex decision and planning problems in stochastic domains in which the system states are observable 
only  indirectly,  via  a  set  of  imperfect,  incomplete  or  noisy  perceptions.  In  a  POMDP,  the  set  of 
observations is different from the set of states, but related to them by an observation function, i.e. the  
underlying  system state  s cannot  be  directly  perceived  by  the  agent,  which  has  access  only  to  an 
observation  o.  The POMDP is more powerful than the MDP in terms of modeling (i.e. a larger set of 
problems can  be  described  by a  POMDP than  by an  MDP),  but  the  methods  for  solving them are  
computationally even  more  expensive,  and  thus applicable  in  practice  only to  very simple  problems 
(Hauskrecht, 2000), (Meuleau et al., 1999), (Shani et al., 2005).

The main bottleneck about the use of MDPs or POMDPs is that representing complex problems 
implies that the state space grows-up and quickly becomes intractable. Real-world problems are generally 
complex,  but  fortunately,  most of  them are  quite  well-structured.  Many large  MDPs have significant 
internal structure, and can be modeled compactly if the structure is exploited in the representation. The 
factorization of states is an approach to exploit this characteristic. In the factored representation, a state is  
implicitly described  by an assignment  to  some set  of  state  variables.  Thus,  the complete  state  space 
enumeration  is  avoided,  and  the  system  can  be  described  referring  directly  to  its  properties.  The 
factorization of states enable to represent the system in a very compact way, even if the corresponding 
MDP is exponentially large (Guestrin et al. 2003), (Shani et al. 2008). When the structure of the Factored 
Markov  Decision  Process (FMDP)  (Boutilier  et  al.  2000)  is  completely  described,  some  known 
algorithms can be applied to find good policies in a quite efficient way (Guestrin et al., 2003). However,  
the research concerning the discover of the structure of an underlying system from incomplete observation 
is still incipient (Degris et al., 2006), (Degris, Sigaud, 2010).

 2.2 Factored and Partially Observable MDP

In order to increase the range of representable problems, the classic MDP model can be extended 
to include factorization of states and partial observation, and it can be so called a  Factored Partially  
Observable Markov Decision Process (FPOMDP). In order to be factored, the description of a given state 
s in the original model will be decomposed and replaced by a set {x1, x2, ... xn} in the extended model; the 
action a becomes a set {c1, c2, ... cm}; the reward signal r becomes {r1, r2, ... rk}; and the transition function 
δ is replaced by a set of transformation functions {T1, T2, ... Tn}.

A FPOMDP (Degris; Sigaud, 2010) can be formally defined as a 4-tuple {X, C, R, T}. The finite 
non-empty set of system properties or variables X = {X1, X2, ... Xn} is divided into two subsets, X = P È H, 
where the subset  P represents the observable properties (those that can be accessed through the agent 
sensory perception), and the subset H represents the hidden or non-observable properties; each property Xi 

is associated to a specified domain, which defines the values the property can assume. C = {C1, C2, ... Cm} 
represents  the  controllable  variables,  composing the  agent  actions,  R =  {R1,  R2,  ...  Rk}  is  the set  of 
(factored) reward functions, in the form Ri :  Pi  IR, and T = {T1,  T2, ...  Tn} is the set of transformation 
functions,  as  Ti :  X  C  Xi  ,  defining the system dynamics.  Each transformation function can be 
represented  as  a  Dynamic  Bayesien  Network (DBN)  (Dean;  Kanazawa,  1989),  which  is  an  acyclic, 
oriented, two-layers graph. The first layer nodes represent the environment state in time t, and the second 
layer nodes represent the next state, in t+1 (Boutilier et al. 2000). A stationary policy π is a mapping X → 
C where  π(x) defines the action to be taken in a given situation.  The agent must learn a policy that 
optimizes the cumulative rewards received over a potentially infinite time horizon. Typically, the solution 
π* is the policy that maximizes the expected discounted reward sum, as indicated in the classical Bellman 
optimality equation (1957), here adapted to our FPOMDP notation.

V π*(x) = R(x) + maxc [ γ . Σx' P(x' | x, c) . V π*(x') ] 

In this paper, we consider the case where the agent does not have an a priori model of the universe 
where it is situated (i.e. it does not have any idea about the transformation function), and this condition 
forces it to be endowed with some capacity of learning, in order to be able to adapt itself to the system. 
Even if there is a large research community studying model-free methods (that directly learn a policy of 
actions), in this work we adopt a model-based method, through which the agent must learn a descriptive 



and predictive model of the world, and so define a behavior strategy based on it. Learning a predictive 
model is often referred as learning the structure of the problem, which is an important research objective 
into the MDP framework community (Degris et al. 2006), as well as in related approaches like Induction  
of Decision Trees or Decision Graphs (Jensen; Graven-Nielsen, 2007),  Bayesian Networks (BN) (Pearl, 
2000), (Friedman; Koller, 2003) and Influence Diagrams (Howard; Matheson, 1981).

In this way, when the agent is immersed in a system represented as a FPOMDP, the complete task 
for its anticipatory learning mechanism is both to create a model of the transformation function, and to 
define an optimal (or sufficiently good) policy of actions. The transformation function can be described by 
a  dynamic  bayesian  network,  i.e.  an  acyclic,  oriented,  two-layers  graph,  where  the  first  layer  nodes 
represent the environment situation in time t, and the second layer nodes represent the next situation, in 
time  t+1. A policy π :  X →  C defines the behavior to be taken in each given situation (the policy of 
actions). Several algorithms create stochastic policies, and in this case the action to take is defined by a  
probability.  Degris  and  Sigaud  (2010)  present  a  good  overview of  the  use  of  this  representation  in  
artificial intelligence, referring several related algorithms designed to learn and solve factored FMDPs and 
FPOMDPs, including both the algorithms designed to calculate the policy given the model (Boutilier et al. 
2000), (Boutilier; Poole, 1996), (Hansen; Feng, 2000), (Poupart; Boutilier, 2004), (Hoey et al., 1999),  
(St-Aubin  et  al.  2000),  (Guestrin  et  al.  2001),  (Sim et  al.  2008),  and  (Shani  et  al.,  2008)  and  the 
algorithms designed to discover the structure of the system (Degris et al., 2006), (Degris; Sigaud, 2010), 
(Strehl et al., 2007), and (Jonsson; Barto, 2005).

3 Constructivist Anticipatory Learning Mechanism
The  constructivist  anticipatory  learning  mechanism (CALM),  detailedly described  in  (Perotto, 

2010), is a mechanism developed to enable an agent to learn the structure of an unknown environment 
where it is situated, trough observation and experimentation, creating an anticipatory model of the world, 
which  will  be  represented  as  an  FPOMDP.  CALM  operates  the  learning  process  in  an  active  and 
incremental way, where the agent needs to choose between alternative actions, and learn the world model 
as well as the policy at the same time it actuates. There is no separated previous training time; the agent  
has an unique uninterrupted interactive experience into the system, quite similarly to real life problems. In  
other words, it must performing and learning at the same time.

The problem can be divided into two tasks: first, building a world model, i.e. to induce a structure  
which represents the dynamics of the system (composed by agent-environment interactions). Second, to 
establish a behavioral policy, i.e. to define the actions to do at each possible different state of the system, 
in order to increase the estimated rewards received over time. 

The task becomes harder because the environment is only partially observable, from the point of 
view of the agent, constituting an FPOMDP. In this case, the agent has perceptive information from a  
subset of sensory variables, but the system dynamics depends also on another subset of hidden variables.  
To be able to create the world model, the agent needs, beyond discover the regularities of the phenomena,  
also  discover  the  existence  of  non-observable  variables  that  are  important  to  understand  the  system 
evolution.  In  other  words,  learning  a  model  of  the  world  is  more  than  describing  the  environment 
dynamics (the rules that can explain and anticipate the observed transformations), it is also discovering the 
existence of hidden properties (once they influence the evolution of the observable ones), and finally find 
a way to deduce the values of these hidden properties.

If the agent can successfully discover and describe the hidden properties of the FPOMDP which it  
is dealing with, then the world becomes treatable as a FMDP, and there are some known algorithms able  
to efficiently calculate the optimal (or  near-optimal)  policy.  The algorithm to calculate the policy of  
actions used by CALM is similar to the one presented by (Degris, Sigaud, 2006). On the other hand, the 
main challenge is to discover the structure of the problem based on the on-line observation, and CALM do 
it using representations and strategies inspired on (Drescher, 1993).

 3.1 Knowledge Representation

CALM tries to reconstruct, by experience, each system transformation function Ti, representing it 
by an anticipation tree, which in turn is composed by schemas. Each schema represent some perceived 
regularity occurring in the environment, i.e. some regular event checked by the agent during its interaction 
with the world. A schema is composed by three vectors:   = (context  action →  expectation).  The 
context  vector  has  each of  their  elements  linked with a  sensor.  The action vector  is  linked with the 
effectors. The expectation represents the value expected for some specific sensor in the next time. In a 
specific  schema,  the  context vector  represents  the  set  of  equivalent  situations  where  the  schema is 



applicable.  The  action vector  represents  a  set  of  similar  actions  that  the  agent  can  carry out  in  the 
environment. The expectation vector represents the expected result after executing the given action in the 
given context. Each element vector can assume any value in a discrete interval defined by the respective 
sensor or effector. In addition, the context vector can incorporate some “synthetic elements” not linked to  
any sensor but  representing abstract  or  non-sensory properties  which the existence is induced by the 
mechanism.

Some elements in these vectors can undertake an “undefined value”. For example,  an element 
linked  with  a  binary  sensor  must  have  one  of  three  values:  true,  false or  undefined (represented, 
respectively, by ‘1’, ‘0’ and ‘#’). In both the context and action vectors, ‘#’ represents something ignored, 
not relevant to make the anticipations. There is  compatibility between a schema and a certain situation 
when the schema’s context vector has all defined elements equal to those of the agent’s perception.

In  the expectation vector,  ‘#’  means that  the element  is  not  deterministically predictable.  The 
undefined value generalizes the schema because it allows to ignore some properties to represent a set of  
situations.  Another  symbols can be used to represent some special  situations,  in a  way to reduce  the 
number of schemas; it is the case of the symbol ‘=’, used to indicate that the value of the expected element 
does not change in the specified context. 

The use of undefined values makes possible the construction of an anticipation tree. Each node in 
that tree is a schema, and relations of generalization and specialization guide its topology (quite similar to  
decision trees or discrimination trees). The root node represents the most generalized situation, which has 
the context and action vectors completely undefined. Adding one level in the tree is to specialize one 
generalized element, creating a branch where the undefined value is replaced by the different possible 
defined values. This specialization occurs either in the context vector or in the action vector. In this way, 
CALM divides the state space according to the different expectations of changing, grouping contexts and 
actions with its respective transformations. The tree evolves during the agent's life, and it is used by the 
agent, even if until under construction, to take its decisions, and in consequence, to define its behavior. 
The structure of the schemas and an example of their organization as an anticipation tree are presented in 
Figure 1.
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Figure  1:  the  anticipation  tree;  each  node  is  a  schema  composed  of  three  vectors:  context,  action  and 
expectation; the leaf nodes are decider schemas.

The context in which the agent is at a given moment (perceived through its sensors) is applied in 
the tree,  exciting all the schemas that have a compatible context vector. This process defines a set of 
excited schemas, each one suggesting a different action to do in the given situation. CALM will choose  
one to activate, performing the defined action through the agent’s effectors. The algorithm always chooses 
the compatible schema that has the most specific context, called decider schema, which is the leaf of a 
differentiated branch. This decision is taken based on the calculated utility of each possible choice. There  
are two kinds of utility: the first one estimates the discounted sum of rewards in the future following the 
policy,  the second one measures the exploration benefits.  The utility value used to take the decision 
depends on the circumstantial agent strategy (exploiting or exploring). The mechanism has also a kind of  
generalized  episodic  memory,  which represents  (in  a  compact  form)  the  specific  and  real  situations 
experimented  in  the  past,  preserving  the  necessary  information  to  correctly  constructs  the  tree.  The 
implementation of a feasible generalized episodic memory is not evident; it  can be very expensive to 
remember episodes. However, with some strong but well chosen restrictions (like limiting dependency 
representation) it can be computationally viable.

 3.2 Anticipation Tree Construction Methods

The  learning process  happens through the refinement of the set of schemas. The agent becomes 
more adapted  to  its  environment  as  a  consequence  of  that.  After  each experienced  situation,  CALM 
checks  if  the  result  (context  perceived  at  the  instant  following  the  action)  is  in  conformity  to  the 



expectation  of  the  activated  schema.  If  the  anticipation  fails,  the  error  between  the  result  and  the 
expectation serves as parameter to correct  the model.  In  the schematic tree topology,  the context and 
action vectors are taken together. This concatenated vector identifies the node in the tree, which grows up 
using a top-down strategy. The  context and action vectors are gradually specialized by differentiation, 
adding, each time, a new relevant feature to identify the category of the situation. In general there is a 
shorter  way starting with an empty vector  and searching for  the probably few relevant  features  than 
starting with a full vector and having to waste energy eliminating a lot of useless elements. Selecting the 
good set of relevant features to represent some given concept is a well known problem in AI, and the 
solution is not easy, even by approximated approaches. To do it, CALM adopts a forward greedy selection 
(Blum and Langley 1997), using the data registered in the generalized episodic memory.

The  expectation  vector  can  be  seen  as  a  label  in  each  decider  schema,  and  it  represents  the 
predicted  anticipation when the decider  is activated.  The evolution of  expectations in the tree uses a 
bottom-up strategy. Initially all different expectations are considered as different classes, and they are 
gradually generalized and integrated with others. The agent has two alternatives when the expectation 
fails. In a way to make the knowledge compatible with the experience, the first alternative is to try to 
divide the scope of the schema, creating new schemas, with more specialized contexts. Sometimes it is not  
possible and then it reduces the schema expectation. 

Three basic methods compose the CALM learning function, namely:  differentiation,  adjustment, 
and integration. Differentiation is a necessary mechanism because a schema responsible for a context too 
general can hardly make precise anticipations. If a general schema does not work well, the mechanism 
divides it into new schemas, differentiating them by some element of the context or action vector. In fact, 
the differentiation method takes an unstable decider schema and changes it into a two level sub-tree. The 
parent schema in this sub-tree preserves the context of the original schema. The children, which are the 
new decider  schemas, have their  context vectors  a  little bit  more specialized than their  parent.  They 
attribute a value to some undefined element, dividing the scope of the original schema. Each one of these 
new deciders engages itself in a part of the domain. In this way, the previous correct knowledge remains 
preserved, distributed in the new schemas, and the discordant situation is isolated and treated only in its  
specific context. Differentiation is the method responsible to make the anticipation tree grows up. Each 
level of the tree represents the introduction of some new constraint. The algorithm needs to choose what 
will be the differentiator element, and it could be from either the context vector or the action vector. This 
differentiator needs to separate the situation responsible for the disequilibrium from the others, and the 
algorithm chooses it by calculating the information gain, and considering a limited (parametrized) range 
of interdependencies between variables. Figure 2 illustrates the differentiation process.
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Figure 2. Differentiation method; (a) experimented situation and action; (b) activated schema; (c) real observed 
result; (d) sub-tree generated by differentiation.

When some schema fails and it is not possible to differentiate it in any way, then CALM executes  
the adjustment method. This method reduces the expectations of an unstable decider schema in order to 
make it reliable again. The algorithm simply compares the activated schema’s expectation and the real 
result perceived by the agent after the application of the schema, setting the incompatible expectation 
elements  to  the  undefined  value  (‘#’).  The  adjustment  method changes  the  schema expectation  (and 
consequently  the  anticipation  predicted  by  the  schema).  Successive  adjustments  can  reveal  some 
unnecessary differentiations. Figure 3 illustrates that.
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Figure 3. Adjust method; (a) experimented situation and action; (b) activated schema; (c) real observed result;  
(d) schema expectation reduction after adjust.

In  this  way,  the  schema expectation  can  change  (and  consequently the  class  of  the  situation 
represented by the schema), and the tree maintenance mechanism needs to be able to reorganize the tree 



when this change occurs. Therefore, successive adjustments in the expectations of various schemas can 
reveal unnecessary differentiations. When CALM finds a group of schemas with similar expectations to 
approach different contexts, the integration method comes into action, trying to join these schemas by 
searching for some unnecessary common differentiator element, and eliminating it. The method operates 
as shown in figure 4.

### A 0#0

0## A 0#0 1## A 0#0

(b)(a)
### A 0#0

Figure 4. Integration method; (a) sub-tree after some adjust; (b) an integrated schema substitutes the sub-tree.

 3.3 Dealing with the Unobservable

When CALM reduces the expectation of a given schema by adjustment, it supposes that there is no 
deterministic regularity following the represented situation in relation to these incoherent elements, and 
the related transformation is unpredictable. However, sometimes a prediction error could be explained by 
considering the existence of some abstract or hidden property in the environment, which could be useful 
to differentiate an ambiguous situation, but which is not directly perceived by the agent sensors.  So, 
before adjusting, CALM supposes the existence of a non-sensory property in the environment, which will 
be represented as a synthetic element. When a new synthetic element is created, it is included as a new 
term in the context and expectation vectors of the schemas. Synthetic elements suppose the existence of  
something beyond the sensory perception, which can be useful  to explain non-equilibrated  situations. 
They have the function of amplifying the differentiation possibilities.

In  this  way,  when dealing  with partially  observable  environments,  CALM has  two additional 
challenges: (a) inferring the existence of unobservable properties,  which it will represent by synthetic 
elements, and (b) including these new elements into its predictive model. A good strategy to do this task is 
looking at the historical  information. In  the case where the POMDP is completely deterministic, it  is 
possible to  find sufficient  little  pieces  of  history to  distinguish and identify all  the underlying states  
(Holmes; Isbell, 2006), and we suppose that it is similar when the POMDP in non-deterministic but well  
structured.

CALM introduces a method called abstract differentiation. When a schema fails in its prediction, 
and when it is not  possible to differentiate it  by the current set of considered properties,  then a new 
boolean synthetic element is created,  enlarging the context and expectation vectors.  Immediately,  this 
element is used to differentiate the incoherent situation from the others. The method attributes arbitrary 
values to this element in each differentiated schema. These values represent the presence or absence of 
some non-observable condition, necessary to determine the correct prediction in the given situation. The 
method is illustrated in figure 5, where the new elements are represented by card suites.

010 A 000

010 A

011

# 010 A # 0##
(a)

(b)
(d)

(c) ♣ 010 A # 000 ♦ 010 A # 011

010 A 000

010 A

011

# 010 A # 0##
(a)

(b)
(d)

(c) ♣ 010 A # 000 ♦ 010 A # 011

Figure  5.  Synthetic  element  creation  method;  (d)  incremented  context  and  expectation  vectors,  and 
differentiation using synthetic element. 

Once a synthetic element is created, it can be used in next differentiations. A new synthetic element 
will be created only if the existing ones are already saturated. To avoid the problem of creating infinite 
new synthetic elements, CALM can do it only until a determined limit, after which it considers that the 
problematic anticipation is not deterministically predictable,  undefining the expectation in the related 
schemas by adjustment. Figure 6 explains didactically the idea behind synthetic element creation.



Figure 6: discovering the existence of non observable properties;  in (a) a real experienced sequence; in (b)  
what CALM does not do (the attribution of a probability); in (c) the creation of a synthetic element in order to explain the  
observed difference.

The synthetic element is not associated to any sensory perception. Consequently, its value cannot 
be observed. This fact can place the agent in ambiguous situations, where it does not know whether some 
relevant but not observable condition (represented by this element) is present or absent. Initially, the value 
of a synthetic  element is verified  a posteriori (i.e.  after  the execution of the action in an ambiguous 
situation). Once the action is executed and the following result is verified, then the agent can rewind and 
deduce what was the situation really faced in the past instant (disambiguated). Discovering the value of a 
synthetic element after the circumstance where this information was needed can seem useless, but in fact,  
this  delayed  deduction  gives  information  to  another  method called  abstract  anticipation.  If  the  non-
observable property represented by this synthetic element has a regular dynamics, then the mechanism can 
propagate the deduced value back to the schema activated in the immediate previous instant. The deduced 
synthetic element value will be included as a new anticipation in the previous activated schema. Figure 7 
shows how this new element can be included in the predictive model.

Figure 7: predicting the dynamics of a non observable property; in (a) a real experienced sequence; in (b)  the 
pieces of knowledge that can explain the logic behind the observed transformations, including the synthetic property 
changing.

For  example, in time t1 CALM activates the schema 1 = (#0 + c → #1), where the context and 
expectation are composed by two elements (the first one synthetic and the second one perceptive), and 
one action. Suppose that the next situation ‘#1’ is ambiguous, because it excites both schemas 2 = (♣1 + 
c → #0) and 3 = (♦1 + c → #1). At this time, the mechanism cannot know the synthetic element value, 
crucial to determine what is the real situation. Suppose that, anyway, the mechanism decides to execute 
the action ‘c’ in time t2, and it is followed by the sensory perception ‘0’ in t3. Now, in t3, the agent can 
deduce that the situation really dealt with in  t2 was ‘♣1’,  and it can include this information into the 
schema activated in t1, in the form 1 = (#0 + c → ♣1). 

4 Experiment
The CALM mechanism has already been used to successfully solve problems such as flip, which is 

also used by (Singh et al., 2003) and (Holmes; Isbell, 2006), and wepp, which is an interesting RL situated 
problem. CALM is able to solve both of them by creating new synthetic elements to represent underlying 
states of the problem (Perotto, 2010), (Perotto; Álvares, 2007), (Perotto et al., 2007). In this paper, we 
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introduce an experiment that we call meph (acronym to the actions that the agent can do: move, eat, play, 
hit).

In the  meph experiment, the agent is inserted into a bi-dimensional environment (like a “grid”) 
where it should learn how to interact with other agents and objects that can be found during its life. Our 
agent needs to create a policy of actions in a way to optimize its feelings (internal rewards). When it is 
hungry,  it  feels  good  by eating some food  (which  is  an  object  that  can  be  sometimes found in the 
environment, among other non eatable objects like stones). Agents and objects can be differentiated by 
observable features, it means that our agent can sensorially distinguish what is the “thing” with which it is  
interacting. However, both food and stone have the same appearance, and in this way, to discover if the  
object  is either  food or  stone, the agent needs to experiment,  it  means,  the agent needs to explicitly  
experiment the environment in order to take more information about the situation, for example, hitting the 
object to listen what sound it makes. Figure 8 shows a random configuration of the environment.

Figure 8: the simulation environment to the meph experiment, where the triangles represent the agents (looking and 
hearing forward), and the round squares represent the objects (food or stones).

When our agent is excited, it founds pleasure by playing with another agent. However, the other 
agents also have internal emotional states; when another agent is angry, any tentative to play with results 
in an aggression, which causes a disagreeable painful sensation to our agent. Playing is enjoyable and safe 
only if both agents are excited, or at least if the other agent is not angry (and then, not aggressive), but 
these  emotional  states  are  internal  to  each  agent,  and  cannot  be  directly  perceived.  With  such 
configuration, our agent will need to create new synthetic elements to be able to distinguish what is food 
and what is stone, and to distinguish who are aggressive and who are peaceable. 

At each time step, our agent can execute one of 4 actions: move, eat, play or hit. Moving itself is a 
good strategy to scape from other aggressive agents, but it is also the action that changes the context,  
allowing the agent to search for different contexts. The agent does not control precisely the movement it  
does; the action of moving itself causes a random rotation followed by a position changing to an adjacent 
cell. Eating is the good choice when the agent is hungry and it is in front of some food at the same time, 
action that ceases the bad sensation caused by hungry. Playing is the good action to be carried out when 
the agent is excited and in frontal contact with another non-aggressive agent. Hitting is the action that 
serves to interacting with other objects without compromise; doing it, the agent is able to identify the 
solution to  some ambiguous situations;  for  example,  hitting a stone has  no effect,  while hitting food  
provokes a funny sound. The same for another agents, that reacts with a noisy sound when hit, but only if  
it is already angry.

The agent has two limited external perceptions, both focused on the cell that is directly in front of 
it; the sense of vision allows it to see if the place before him contains an object, an agent, or nothing; the 
sense  of  hearing  permits  to  listen  the  sounds  coming from there.  The  agent’s  body  has  5  internal 
properties,  corresponding  to  5  equivalent  internal  perceptions:  pain,  anger,  hungry,  excitation,  and 
pleasure.  Pleasure occurs always when the agent plays with another agent, independently of the other  
agent internal state (which is quite selfish). However, as we know, our agent can get punched if the other 
agent is angry, and in this case pain takes place. When our agent feels pain and hungry at the same time, it  
becomes angry too. Initially the agent does not know anything about the environment or about its own 



sensations. It does not distinguish the situations, and also does not know what consequences its actions 
imply.

The problem becomes interesting because playing can provoke both positive and negative rewards, 
the same for eating, that is an interesting behavior only in certain situations; it depends on the context  
where the action is executed, which is not fully observable by sensors. This is the model that CALM needs 
to learn by itself before establish the behavior policy. Figure 9 shows the involved variables, which will  
compose the schemas' identifying vectors. Figures 10 to 17 shows the anticipation trees created by the 
mechanism after stabilization.

Figure 9: the vectors that compose the context of a schema; synthetic properties, perceptive properties, and 
controllable properties (actions).

Figure 10: anticipation tree for hearing; the only action that provokes sound is hitting, it is true only if the object is food 
or the agent is hungry; when the agent hits (H) an object that is food or a non-aggressive agent, differentiated of their 
confounding pairs by the synthetic element (♣), then the agent listens a sound in the next instant; if the action is other 

(*) than hitting, then no sound is produced.

Figure 11: anticipation tree for vision; when the agent hits (H) another agent (A), it verifies the permanence of this other 
agent in its visual field, which means that hitting an agent makes it stay in the same place; however, no other actions 
(*) executed in front of an agent (A) can prevents it to go, and so the prediction is undefined (#); the same for moving 

itself (M), which causes a situation changing and the non predictability of the visual field for the next instant; in all of the 
other cases the vision stays unchanged.

Figure 12: anticipation tree for pain; the agent knows that playing (P) with an aggressive (♣) agent (A) causes pain; 
otherwise, no pain is caused.

Figure 13: anticipation tree for pleasure; playing with a peaceable (♦) agent (A) is pleasant, and it is the only known way 
to reach this feeling.
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Figure 14: anticipation tree for excitation; when the agent feels neither anger (0) nor hungry (0), it can (eventually) 
becomes excited; it happens in a non-deterministic way, and for this reason the prediction is undefined in this case (#), 

which can be understood as a possibility; otherwise (**) excitation will be certainly absent.

Figure 15: anticipation tree for hungry; eating (E) food (O♣) ceases hungry; otherwise, if the agent is already hungry, it 
will remains, but if it is not yet hungry, it can become.

Figure 16: anticipation tree for anger; if neither pain nor hungry, then anger turns off; if both pain and hungry, then 
anger turns on; otherwise, anger does not change its state.

Figure 17: hidden element anticipation tree; this element allows identifying whether an object is food or stone, and 
whether an agent is angry or not; CALM abstract anticipation method allows modeling the dynamics of this variable, 

even if t is not directly observable by direct sensory perception; the perception of the noise (1) is the result that enables 
the discovering of the value of this hidden property; the visual perception of an object (O), or the fact of hitting (H) 

another agent (A), also permit to know that the hidden element does not change.

Figure 18 shows the evolution of the mean reward comparing the CALM solution with a random 
agent, and with two classic Q-Learning (Watkins; Dyan, 1992) implementations: the first one non situated 
(the agent has the vision of the entire environment as flat state space), and the second one with equivalent  
(situated) inputs than CALM.

Figure 18: the evolution of mean reward in a typical execution of the meph problem, considering four different agent 
solutions: CALM, situated Q-Learning, Random, and Classic Q-Learning; the scenario is a 25x25 grid, where 10% of 

the cells are stones and 5% are food, in the presence of 10 other agents.
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The non-situated implementation of Q-Learning algorithm (Classic Q) takes much more time to 
start drawing a convergence curve than the others, and in fact, the expected solution will never be reached; 
it is due to the fact that Q-Learning tries to construct directly a mapping from states to actions (a policy),  
but the state space is taken as the combination of the state variables; in this implementation (because it is  
not situated) each of the cells in the environment compose a different variable,  and then the problem 
becomes quickly big; by the same cause, the agent becomes vulnerable to the growing of the board (the 
grid dimensions imply directly in the complexity of the problem). 

The CALM solution converges much earlier than Q-Learning, even taken in its situated version, 
and CALM found a better solution also; it is due to the fact that CALM quickly constructs a model to 
predict the environment dynamics, including the non-observable properties in the model, and so it is able 
to define a good policy sooner. The “pause” in the convergence that can be seen in the graphic indicates  
two moments:  first,  the  solution  found  before  correctly  modeling  the  hidden  properties  as  synthetic 
elements,  and  then,  the  solution  after  having  it.  On  the  other  side,  Q-Learning  stays  attached  to  a 
probabilistic model, and in this case, without the information about the internal states of the other agents,  
trying to play with them becomes unsafe, and the Q-Learning solution will prefer do not do it.

5 Conclusions
The CALM mechanism, presented in (Perotto, 2010), can provide autonomous adaptive capability 

to  an  agent,  because  it  is  able  to  incrementally  construct  knowledge  to  represent  the  deterministic 
regularities observed during its interaction with the system, even in partially deterministic and partially 
observable  environments.  CALM can deal  with the incomplete  observation  trough the  induction  and 
prediction of hidden properties, represented by synthetic elements, thus it is able to overpass the limit of 
sensory perception, constructing more abstract terms to represent the system, and to describe its dynamics 
in  more  complex  levels.  CALM  can  be  very  efficient  to  construct  a  model  in  non-deterministic 
environments if they are well structured. In other words, if the most part of transformations are in fact  
deterministic  relatively  to  the  underlying  partially  observable  properties,  and  if  the  interdependence 
between variables are limited to a small range. Several problems found in the real world present these 
characteristics.

The proposed experiment (meph) can be taken as an useful problem that, even if simple, challenges 
the agent to solve some intricate issues such as the interaction with other complex agents. The next step in 
this way is to insert several cognitive agents like CALM in the same scenario; it means, agents that change 
our own internal model and policy of action, and in this way, present a non-stationary behavior. Again, the 
difficulty for one agent model the other agents in this kind of condition is even harder.  

Finally, we believe that the same strategy can be adapted to several kinds of classification tasks,  
where a previous database of samples are available.  In  this case,  the algorithm learns to classify new 
instances based on a model created from a training set of instances that have been properly labeled with 
the correct classes. This task is similar to several real world problems actually solved with the computer 
aim, such as e-mail filtering, diagnostic systems, recommendation systems, decision support systems, and 
so on.
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