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Abstract

A three-dimensional constitutive model is developed that describes the behavior of shape

memory alloy actuators undergoing a large number of cycles leading to the development of

internal damage and eventual catastrophic failure. Physical mechanisms such as transforma-

tion strain generation and recovery, transformation-induced plasticity, and fatigue damage

associated with martensitic phase transformation occurring during cyclic loading are all con-

sidered within a thermodynamically consistent framework. Fatigue damage in particular is

described utilizing a continuum theory of damage. The total damage growth rate has been

formulated as a function of the current stress state and the rate of martensitic transformation

such that the magnitude of recoverable transformation strain and the complete or partial

nature of the transformation cycles impact the total cyclic life as per experimental obser-

vations. Simulation results from the model developed are compared to uniaxial actuation

fatigue tests at different applied stress levels. It is shown that both lifetime and the evolution

of irrecoverable strain are accurately predicted by the developed model.

1. Introduction

Shape memory alloys (SMAs) are metals that have the ability to generate and recover

substantial deformation during a thermomechanical cycle. The physical mechanism that

drives the shape recovery in the materials is a martensitic phase transformation that results

from thermal and/or mechanical inputs, often without the consequence of significant plastic
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strain generation during formation and recovery of martensitic variants. This unique ability

has led to the development of devices for aerospace and medical applications (Hartl and

Lagoudas, 2007; Mohd Jani et al., 2014; Lester et al., 2015). The design of such devices has

required the development of constitutive models to predict their thermomechanical behavior.

A comprehensive review of SMA constitutive models can be found in works by Birman (1997),

Patoor et al. (2006), Lagoudas et al. (2006), Paiva et al. (2006), and Cisse et al. (2015).

Early models describe the behavior of conventional SMAs without considering irrecover-

able strains and damage, which is sufficient for the design of devices where operating tem-

peratures, maximum stress levels, and number of actuation cycles are all relatively low. To

expand the capabilities of such models, the evolution of transformation induced plasticity was

first considered for conventional SMAs by Bo and Lagoudas (1999b) and then Lagoudas and

Entchev (2004); these models allow calculations of accumulated irrecoverable strains caused

by cycling. The coupling between phase transformation and plasticity at higher stresses has

been considered in the literature for the simulation of shape memory alloy bodies under high

loads at low temperatures compared to their melting points (Hartl and Lagoudas, 2009; Zaki

et al., 2010; Khalil et al., 2012). A model accounting for the effect of retained martensite

(martensite pinned by dislocations) has been developed by Saint-Sulpice et al. (2009). To

predict the influence of irrecoverable strains in high-temperature SMAs (HTSMAs) where

viscoplastic creep is observed, a one-dimensional model accounting for the coupling between

phase transformation and viscoplasticity has been developed by Lagoudas et al. (2009a); a

three-dimensional extension of this model was developed and implemented via finite element

analyses (FEA) by Hartl et al. (2010b), and the cyclic evolution of irrecoverable strains

accounting for combined viscoplastic, retained martensite, and TRIP effects was later imple-

mented by Chemisky et al. (2014). blueThe evolution of the pseudoelastic response for low

cycle fatigue of SMAs has been invesigated recently (Zhang et al., 2017). A strain-energy

based fatigue model has been proposed and confronted to experiments.

These past efforts focused on the prediction of thermomechanical responses for only a

small number of cycles (e.g., up to response stabilization). However, active material actua-

tors are often subjected to a large number of repeated cycles (Van Humbeeck, 1999; Mohd

Jani et al., 2014), which induces thermally-induced fatigue in the case of SMAs (Lagoudas
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et al., 2000; Bertacchini et al., 2009). During the lifetime of an SMA actuator, the influence

of two different classes of fatigue must be considered:(i) Structural fatigue is the phenomenon

that leads towards catastrophic failure of components, while (ii) functional fatigue describes

permanent geometric changes to the detriment SMA of component performance and is asso-

ciated with the development of irrecoverable strain( Eggeler et al. (2004)). The prediction

of functional fatigue evolution allows for calculation of changes expected in a given actuator

over its lifetime, while the prediction of structural fatigue evolution allows for determination

of the actuator lifetime itself.

While the prediction of functional fatigue relies on the simulation of irrecoverable strains

upon cycling (i.e., so-called trans-induced plasticity(TRIP)) (Bo and Lagoudas, 1999b; Lagoudas

and Entchev, 2004), catastrophic structural fatigue is associated with the development of

micro-cracks during transformation. Most SMAs are herein taken to be sufficiently similar to

hardening metal materials, so as to apply the theoretical modeling of structural fatigue via

thermodynamic approaches developed in recent years. (Khandelwal and Buravalla, 2009).

Continuum damage mechanics (CDM) has been extensively utilized to predict the fatigue

lifetime of metallic materials and structures since its development and integration within the

framework of thermodynamics of irreversible processes (Bhattacharya and Ellingwood, 1998;

Lemaitre and Desmorat, 2005; Dattoma et al., 2006). The notion of damage itself concerns

the progressive degradation of the mechanical properties of materials before the initiation of

cracks observable at the macro-scale (Simo and Ju, 1987).

Contrary to approaches based on fracture mechanics, which explicitly consider the initi-

ation and growth of micro-cracks, voids, and cavities as a discontinuous and discrete phe-

nomenon (Baxevanis and Lagoudas, 2015), CDM describes damage using a continuous vari-

able associated with the local density of micro-defects. Based on this damage variable,

constitutive equations have been developed to predict the deterioration of material proper-

ties (Voyiadjis and Kattan, 1999). CDM enables fatigue life prediction in innovative superal-

loys (Shi et al., 2013) and standard aluminium alloys (Hojjati-Talemi and Wahab, 2013) alike.

Relevant models can also be implemented within FEA framework to predict the response

of structures with complex shapes (Zhang et al., 2012). Two opposing views exist in the

theoretical modeling of continuous damage. If the micro-defects and their associated effects

3



  

are considered isotropic, a simple scalar variable (i.e.,the damage accumulation) is sufficient

to describe the impact of damage on material properties. However, to comply with exper-

imental findings confirming anisotropic evolution of damage in ductile materials (Lemaitre

et al., 2000; Bonora et al., 2005; Luo et al., 2012; Roth and Mohr, 2014), researchers have

also developed anisotropic damage continuum models as proposed by Voyiadjis and Delik-

tas (2000); Brünig (2003); Desrumaux et al. (2001). In this latter case, the distribution of

micro-defects adopts preferred orientations throughout the medium. To model this behavior,

a tensorial damage variable is typically introduced, (i.e., the damage effect tensor) (Lemaitre

et al., 2000; Lemaitre and Desmorat, 2005). A set of internal variables that are characteristic

of various damage mechanisms can also be considered (Ladeveze et al., 1992; Mahboob et al.,

2017).

CDM models are also categorized based on the mathematical approach utilized. Strictly

analytical formalisms belong to the group of deterministic approaches. These utilize robust

thermodynamic principles, thermodynamic driving forces, and a critical stress threshold to

derive mathematical expressions linking the damage variable with the material properties

and other descriptions of state. The appearance of micro-defects below such stress thresholds

is not considered possible and every result represents a deterministic prediction of material

behavior. Alternatively, probabilistic approaches define probabilities attributed to the ap-

pearance of micro-defects. The damage is often thought to occur at points in the material

where the local ultimate strength is lower than the average stress. Considering the local

ultimate stress as a stochastic variable leads to calculated damage evolution that is likewise

probabilistic. Such probability can be introduced into a thermodynamic model that describes

the material properties to within margins of error (Fedelich, 1998; Rupil et al., 2011).

The probabilistic models have been built mostly to treat fracture in brittle materials, such

as ceramics (Hild et al., 2003) or cement (Grasa et al., 2005), which demonstrate statistical

scatter in direct relation with damage such as crack initiation and coalescence (Meraghni

et al., 2002). Probabilistic modeling may be a useful tool in fatigue life analysis of SMA

bodies, given the scattering observed in the thermomechanical response of nearly identical

test samples demonstrated in experimental works (Figueiredo et al., 2009; Nemat-Nasser

and Guo, 2006). Relevant experiments (Scirè Mammano and Dragoni, 2014) determine the
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number of cycles to failure in NiTi SMA wires by considering samples submitted to a series

of cyclic load fatigue tests at increasing strain rates. It is evident from such works that

the fatigue life is to some degree uncertain and the use of stochastic models might increase

prediction accuracy overall.

Several fatigue failure models for SMAs have been developed based on experimental

observations. Tobushi et al. (2000) have proposed an empirical fatigue life equation, similar

to a Coffin-Manson law, that depends on strain amplitude, temperature, and frequency of

the cycles. This first model was compared to rotating-bending fatigue tests. A modified

Manson-Coffin model was further proposed by Maletta et al. (2012, 2014) to predict the

fatigue life of NiTi SMAs under the stress-controlled cyclic loading conditions. A third

Manson Coffin-like relationship has been proposed by Lagoudas et al. (2009b) to determine

the irrecoverable strain accumulation of NiTiCu SMAs as a function of the number of cycles

to failure for different stress levels, for both partial and complete transformations.

Energy-based fatigue life models for SMAs have also been developed, and in particular

consider the dissipated energy. Moumni et al. (2005) proposed an empirical power law to

predict the fatigue life of super elastic NiTi SMAs. Kan et al. (2012) has modified the

previous model, replacing the power-law equation by a logarithmic one. Those models were

compared with fatigue tests performed on NiTi alloys under uniaxial stress-controlled cyclic

loading (Kang et al., 2012).

Song et al. (2015) has recently proposed a damage-based fatigue failure model, consid-

ering three damage mechanisms, (i.e. micro-crack initiation, micro-crack propagation, and

martensite transformation induced damage). A global damage variable is defined as the ratio

of the accumulated dissipation energy at the current number of cycles (N) with regard to the

accumulated dissipation energy obtained at the failure life (Nf ). A damage-based fatigue

failure model is proposed to predict the fatigue life, that depends on the dissipation energy

at the stabilized cycle, and the dissipation energy at the N-th cycle. It is shown that the

model predicts the fatigue life of super-elastic NiTi SMA micro-tubes subjected to uniaxial

stress-controlled load cycles. blueHigh cycle fatigue criterion have been developed recently

for SMAs. The Investigation of SMA cyclic response under elastic shakedown has led to the

definition of a Dang Van, which means type endurance limit for SMA materials (Auricchio
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et al., 2016). A Shakedown based model for high-cycle fatigue of shape memory alloys has

been developed by Gu et al. (2016). Non-proportional multiaxial fatigue of pseudoelastic

SMAs has been recently investigated by Song et al. (2017), which has led to the definition

of a multiaxial fatigue model.

Although past developments allow determination of the fatigue life of shape memory alloy

devices for uniaxial, homogeneous cyclic loadings, the present work focuses on the difficult

problem of coupling damage evolution to phase transformation, irrecoverable transformation-

induced plastic strain, and general three-dimensional thermomechanical states. To permit

the introduction of damage into a previously well-defined and widely accepted class of model

for SMA phase transformation ( Lagoudas et al. (2012)), probabilistic and anisotropic ap-

proaches are avoided. Rather, a deterministic and isotropic model for continuum damage

mechanics is proposed, which is compatible with the existing models of thermomechanical re-

sponse of SMA actuators, including those considering generated plastic strain consideration

herein ( Chemisky et al. (2014)). Such a model, even once its assumptions are considered,

provides the most comprehensive tool for calculating fatigue in SMA actuators to date.

The organization of this work follows. The motivation of the proposed model, including

the need for numerical simulations of cyclic loading in SMA bodies, has been provided in

Section 1. Observations motivating specific forms of the evolution equations for damage

and irrecoverable strains are overviewed in Section 2. The thermodynamical model is de-

veloped in Section 3, with the functional form of the various evolution equations related

to the physical mechanisms considered being clearly presented. After some comments on

model calibration in Section 4, numerical simulations and their comparison with experi-

mental demonstrations of structural and functional fatigue in SMA bodies are presented in

Section 5. Final conclusions are provided in Section 6.

2. Motivating Observations from Previous Studies

Studies of SMA actuation fatigue are not as numerous as those focusing on nearly isother-

mal (i.e., superelastic) response. This is due to both the relative importance of generally

isothermal medical devices and the difficulty of applying high numbers of thermal cycles

to SMA actuators. From those SMA actuation fatigue databases that are available in the
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literature, the experimental studies of actuation fatigue and post-mortem analyses that were

carried out on Ni60Ti40 (wt. %) (Agboola et al., 2012) and on NiTiHf (Wheeler et al., 2015)

have been selected for consideration herein. In those past studies, a widespread distribution

of cracks were found to be present in the SMA components at failure, as shown in Fig. 1.

This indicates that a progressive damage mechanism was activated during the lifetime of

the SMA body. CDM appears to be particularly adapted for modeling such fatigue damage

given the continuous and progressive evolution of multiple defects observed.

NiTiHf alloys have received an increased attention in the recent years according to their

high potential to be utilized for high temperature actuators, (e.g., those having transforma-

tion temperatures typically above 100◦C). They can operate at high stress levels without the

development of significant plastic strains (Karaca et al., 2014). From the analysis of NiTiHf

actuator fatigue tests, we see that the number of cycles to failure increases with decreasing

cyclic actuation work. Actuator work is defined as the scalar product of the constant applied

stress and the transverse strain recovered each cycle (see Fig. 2a). Further, the amount of

irrecoverable strain generated seems to be positively correlated with the number of cycles

to failure (see Fig. 2b). The development of such strains may be important in predicting

the lifetime of actuators formed from a number of SMA materials or some stress levels,

bluespecifically at higher stress levels (e.g., 300–600 MPa in (Wheeler et al., 2015)). The

study of fatigue in Ni60Ti40 actuator components also shows that the number of cycles to

failure increases with decreasing cyclic actuation work (see Fig. 2c). However, the experi-

mental results suggests that in this material loaded to lower stresses blue(e.g., 100–250 MPa

in (Agboola et al., 2012)), failure may not be correlated with the accumulation of plastic

strain, though such correlation is regularly considered in ductile metals. This is shown for

the lower stressed Ni60Ti40 samples (Fig. 2d). The consistent and clear negative correlation

between cyclic actuation work and fatigue life in both cases motivates the choice of a ther-

modynamical model to describe the evolution of damage in shape memory alloys. The fact

that generated TRIP might also be correlated to failure at higher stresses only motivates

consideration of a stress threshold effect for the coupling between damage and TRIP strains,

and this will be addressed for the first time herein.
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3. Constitutive Modeling Framework for Phase Transformation and Damage

Physical mechanisms associated with cyclic martensitic phase transformation such as

transformation strain generation and recovery, transformation-induced plastic strain gener-

ation, and fatigue damage accumulation are all taken into account within the thermody-

namically consistent constant model presented in this section. Fatigue damage is described

utilizing a scalar variable following an isotropic continuum theory of damage. The damage

growth rate has been formulated as a function of both the stress state and the magnitude of

the recoverable transformation strain such that cyclic actuation work is directly and clearly

considered. Transformation-induced plasticity is also considered as per the experimental ob-

servations described in the previous section, and its generation depends on the stress state,

the magnitude of the transformation strain, and a term that couples with plastic strain with

damage for stress levels above an assumed material-dependent threshold.

The model is based on the framework of Lagoudas et al. (2012), considering further

improvements proposed by Chatziathanasiou et al. (2016) for thermodynamical models de-

scribing phase transformation that drives multiple complex phenomena. The proposed model

focuses on the generation and recovery of transformation strains that occur as a result of

martensitic transformation (forward and reverse); martensitic reorientation is not considered

Figure 1: Examples of damage (micro-crack) in nickel-rich NiTi material after thermally-induced actuation

cycling (2840 cycles at 200MPa). Note the micro-cracks initiating within precipitates, resulting in relative

small observable strains but eventually leading to specimen failure (Agboola et al., 2012)

Figure 2: Indications of structural and functional fatigue for two classes of SMA materials. a) and c): Struc-

tural fatigue in Ni60Ti40 and NiTiHf actuators, respectively, where a strong correlation between actuation

work and cycles to failure is observed in each. b) and d): Functional fatigue of Ni60Ti40 and NiTiHf actua-

tors, respectively, where correlation between number of cycles to failure and the level of irrecoverable strains

depends on the level of stress and alloy. Data for Ni60Ti40 taken from Agboola et al. (2012). Data for

NiTiHf taken from Wheeler et al. (2015).
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given its relative unimportance in SMA cyclic actuator applications, which are obviously the

primary motivating application for this work. Concerning damage evolution, it is herein

assumed, based on observations, that microscopic crack initiation and propagation are not

explicitly linked to the appearance of large plastic strains (Bertacchini et al., 2009; Calhoun

et al., 2015), but rather that the process of martensitic phase transformation may be more

important. In fact, it has been shown the localized nucleation of martensite around crack

tips during forward transformation can decrease the fracture toughness and induce local-

ized propagation of cracks, even under moderate stresses (Baxevanis and Lagoudas, 2015).

The evolution of damage must therefore be coupled with the martensitic transformation

mechanisms directly. The framework thus adopted follows closely the work of Lagoudas and

Entchev (2004) and Chemisky et al. (2014) for the development of TRIP strain and Lemaitre

and Chaboche (2002) for the coupling between a physical mechanism such as plasticity or

phase transformation with damage.

To summarize, the following internal state variables associated with multiple inelastic

strain mechanisms are tracked during both forward and reverse transformations:

• The inelastic transformation strain εt, which considers all inelastic strains associated

with different physical phenomena occurring during transformation (i.e, it is composed

of contributions from crystallographic transformation, plasticity, and damage). Such

transformation strain is decomposed in two contributions, εF and εR, to represent

the inelastic strain induced by forward transformation and by reverse transformation,

respectively. The inelastic transformation strain is further split into a part that is

recoverable(tt) and a portion that is not (TRIP strain;tp), to obtain four total contri-

butions : εtt−F, εtp−F, εtt−R and εtp−R, such that:

εt = εF + εR = εtt−F + εtp−F + εtt−R + εtp−R. (1)

• The scalar total martensitic volume fractions induced by forward transformation (into

martensite) and by reverse transformation (into austenite) (ξF, ξR),

• The scalar transformation hardening energies induced by forward transformation and

by reverse transformation ( gF, gR ),
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• The scalar accumulated transformation-induced plastic strain accompanying forward

transformation and reverse transformation (pF, pR),

• The scalar plastic hardening energy induced by forward transformation and reverse

transformation (gtp−F, gtp−R),

• The scalar (i.e., isotropic) damage accumulation induced during forward transforma-

tion and reverse transformation (dF, dR).

Considering the point-wise model as describing a representative volume element of volume

V (Bo and Lagoudas, 1999a) and acknowledging that both forward and reverse transforma-

tions can occur simultaneously at various points within such a finite volume, the following

two rate variables are introduced : (i) ξ̇F represents the fractional rate of change of the

martensitic volume VM induced by forward transformation (Chatziathanasiou et al., 2016):

ξ̇F =
V̇ F

M

V
. (2)

Similarly,(ii) ξ̇R represents the rate of change of the martensitic volume fraction (MVF)

induced by reverse transformation:

blue

ξ̇R = − V̇
R
M

V
. (3)

The rate of the total martensitic volume fraction ξ̇ is then:

ξ̇ = ξ̇F − ξ̇R, (4)

which leads to the definition of the total volume fraction of martensite:

ξ =

t∫
0

ξ̇Fdτ −
t∫

0

ξ̇Rdτ = ξF − ξR. (5)

blueNote that ξF and ξR always take positive values, which simplifies the thermodynamic

definition of the model. The physical limitation related to the definition of total volume

fraction is expressed as:

0 ≤ ξ ≤ 1 ⇔ ξR ≤ ξF ≤ 1 + ξR. (6)
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Similarly, the rates of the various strain measures of the total accumulated plastic strain

p, the total transformation hardening energy gt, the total plastic hardening gtp, and the

total damage d are taken to be the sums of contributions from both forward and reverse

transformations:

ε̇t−F = ε̇tt−F + ε̇tp−F

ε̇t−R = ε̇tt−R + ε̇tp−R

ε̇tt = ε̇tt−F + ε̇tt−R

ε̇tp = ε̇tp−F + ε̇tp−R

ξ̇ = ξ̇F − ξ̇R

ġt = ġF + ġR

ṗ = ṗF + ṗR

ġtp = ġtp−F + ġtp−R

ḋ = ḋF + ḋR. (7)

In this way, two sets of internal variables respectively related to forward transformation

(into martensite) and to reverse transformation (into austenite) are defined:

ζF = {ξF, εtt−F, εtp−F, gF, pF, gtp−F, dF},

ζR = {ξR, εtt−R, εtp−R, gR, pR, gtp−R, dR}

ζ = {ζF, ζR}

(8)

blueTo rigorously derive a three-dimensional model for damage accumulation in SMA ma-

terials that explicitly couples actuation work to material degradation, the thermodynamics

of irreversible processes are utilized. The fundamentals are presented in Annex A.

3.1. Thermodynamic derivation of the proposed model

The total Gibbs free energy G is additively decomposed into a thermoelastic contribution

GA from regions of the RVE in the austenitic phase, a thermoelastic contribution GM from

regions of the RVE in the martensitic phase, and a mixing term Gin that accounts for
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non-thermoelastic processes: Given the state variables chosen for the description of the

thermomechanical mechanisms, the Gibbs energy for the overall SMA material is written:

G = (1− ξ)GA(σ, θ, d) + ξGM(σ, θ, d) +Gmix(σ, εtt, gt), (9)

The part of the Gibbs free energy related to the martensitic transformation only is taken from

the model of Lagoudas et al. (2012) given the conventional dependence of elastic response

on damage (Lemaitre and Desmorat, 2005), such that

Gβ(σ, θ, d) = − 1

2(1− d)
σ : Sβ : σ − σ : α(θ − θ0)

+ cβ
[
(θ − θ0)− θ ln

(
θ

θ0

)]
− ηβ0 θ + Eβ

0 , (10)

for β = A,M .

Whereas the energy of phase mixing is given as:

Gmix(σ, εt, gt, gtp) = σ : εt + gt + gtp. (11)

In those expressions above, S is the compliance tensor (4th order), α is the thermal

expansion tensor (2nd order), c0 is a material parameter that approximates as the specific

heat capacity (additional terms arising from thermo-inelastic coupling being small (Rosakis

et al. (2000))), η0 is the initial entropy, E0 is the initial internal energy, and θ0 is the initial or

reference temperature . Details about the selection of the thermoelastic contribution of the

phases, especially considering the term related to heat capacity, are given in Chatzigeorgiou

et al. (2018). It is assumed, (Lagoudas et al., 2012; Chemisky et al., 2014; Chatziathanasiou

et al., 2016), that thermoelastic parameters (including specific heat) that enter the expression

of the Gibbs free energy for each phase can be regrouped into phase-dependent parameters as

experiments warrant (i.e., S(ξ), α(ξ), c(ξ), η0(ξ) and E0(ξ)), where a linear rule of mixtures

is assumed. For example, S(ξ) is the linearly phase-dependent and, written as

S(ξ) = SA − ξ(SA − SM) = SA − ξ∆S, (12)

where SA and SM denote the compliance tensors of austenite and martensite, respectfully,

and the operator ∆ denotes the difference in any material constant as measured in the
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pure martensite and pure austenite phases. Conventionally, standard isotropic forms are

assumed sufficient for S and α in polycrystals. Recalling that the transformation strain

εt includes all deformations associated with martensitic transformation, recoverable and

irrecoverable, the following thermodynamical quantities are expressed, recalling the method

proposed by Germain et al. (1983) and invoking (8), (A.15), and (10):

ε = −∂G
∂σ

=
1

1− d
S :σ +α (θ − θ0) + εt,

η = −∂G
∂θ

= α :σ + c0 ln

(
θ

θ0

)
+ η0,

γloc = −∂G
∂εt

: ε̇t − ∂G

∂gt
ġt − ∂G

∂ξ
ξ̇ − ∂G

∂d
ḋ− ∂G

∂p
ṗ− ∂G

∂gtp
ġtp,

= σ : ε̇t − ġt − ∂G

∂ξ
ξ̇ − ∂G

∂d
ḋ− gtp,

r = −c0θ̇ − θα : σ̇ + γloc, . (13)

To proceed with the definition of the evolution equations associated with the various

physical mechanisms, we consider that the evolution of all inelastic strains is completely

related to the underlying process of phase transformation, as assumed for the TRIP effect

elsewhere (Lagoudas and Entchev, 2004; Chemisky et al., 2014) and captured herein in (A.6).

The following specific evolution equations are then considered, where all the rate quantities

are linked with the rate of change of the martensite volume fraction:

ε̇tt−F = Λtt−Fξ̇F,

ġF = f t−Fξ̇F,

ṗF = f tp−Fξ̇F,

ε̇tp−F = Λtp−FṗF = Λtp−Ff tp−Fξ̇F,

ġtp−F = Htp−FṗF = f tp−Fξ̇F,

ḋF = f td−Fξ̇F,

ε̇td−F = Λtd−Fḋ = Λtd−Ff td−Fξ̇F, (14)

and
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ε̇tt−R = Λtt−Rξ̇R,

ġR = f t−Rξ̇R,

ṗR = f tp−Rξ̇R,

ε̇tp−R = Λtp−RṗR = Λtp−Rf tp−Rξ̇R,

ġtp−R = Htp−RṗR = f tp−Rf tp−Rξ̇R,

ḋR = f td−Rξ̇R,

ε̇td−R = Λtd−Rḋ = Λtd−Rf td−Rξ̇R. (15)

blueIn the above equations, Λtt−F represents the evolution tensor (that is, the direc-

tion of the strain rate) for the recoverable part of the transformation strain during forward

transformation, while Λtp−F and Λtd−F represent the irrecoverable part related to plasticity

and damage, respectively (during forward transformation). During reverse transformation,

the three evolution tensors are denoted as Λtt−R, Λtp−R and Λtd−R. The functional forms

f tp−F and f td−F relate the magnitude of the hardening energy with the rate of change of the

martensite during forward transformation, and with the amount of damage with the rate of

change of the martensite during forward transformation, respectively. During reverse trans-

formation, those quantities are denoted as f tp−R and f td−R. the energetic conjugates to the

internal variables denoted A = −∂G
∂ζ

(cf. (A.15)), it is deducted that the generalized ther-

modynamic forces related to transformation and the associated evolutions of transformation

strain, transformation hardening energy, accumulated transformation-induced plastic strain,

and damage are given as:
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• Forward transformation (set AF):

AξF = Aξ =
1

2
σ : ∆S : σ + σ : ∆α (θ − θ0)− ρ∆c

[
(θ − θ0)− θln

(
θ

θ0

)]
+ ρ∆s0θ − ρ∆E0,

AεF = Aεtt−F = Aεtp−F = Aεtd−F = Aεt = σ,

AgF = −1

ApF = Ap = 0

Agtp−F = −1

AdF = Ad =
1

2(1− d)2
σ : S : σ, (16)

• Reverse transformation (set AR):

AξR = −Aξ = −1

2
σ : ∆S : σ − σ : ∆α (θ − θ0) + ρ∆c

[
(θ − θ0)− θln

(
θ

θ0

)]
− ρ∆s0θ + ρ∆E0,

AεR = Aεtt−R = Aεtp−R = Aεtd−R = Aεt = σ,

Agt−R = 1

ApR = Ap = 0

Agtp−R = −1

AdR = Ad =
1

2(1− d)2
σ : S : σ. (17)

3.2. Transformation limits

Since phase transformation, TRIP, and damage are assumed to be rate-independent

phenomena, a threshold for the activation of such mechanisms that depends primarily on

thermodynamic forces should be defined, (Edelen, 1974). Specifically, the evolution of all

internal variables ζ̇ should respect the following, where S is a domain in the space of the

components of A having boundary ∂S:

ζ̇ = 0 → A ∈ S + ∂S,

ζ̇ 6= 0 → A ∈ ∂S. (18)

Following the methodology introduced by Germain (1973) and referred as generalized

standard materials by Halphen and Nguyen (1975), if ∂S is a surface with a continuous
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tangent plane and if Φ (A) is a function continuously differentiable with respect to A, zero

on ∂S, and negative in S, then one can write:

A ∈ S , ζ̇ = 0

A ∈ ∂S , ζ̇ = λ̇gradΦ ⇔ ζ̇α = λ̇
∂Φ

∂Aα

, λ̇ ≥ 0. (19)

Further, if state variables are included as parameters and the domain S remains con-

vex, the second law of thermodynamics is satisfied and maximum dissipation principle as

well (Halphen and Nguyen, 1975).

Note that the processes of forward and reverse transformations are considered indepen-

dently, in the sense that dissipation related to the rate of the internal variables defined for

forward transformation ζF and ζR (cf. (16) and (17)) should be independently non-negative,

i.e.:

AF : ζ̇F ≥ 0 ; AR : ζ̇F ≥ 0. (20)

The two criteria for forward and reverse transformations are based on the ones proposed

elsewhere (Qidwai and Lagoudas (2000); Lagoudas et al. (2012); Chatziathanasiou et al.

(2015)):

ΦF = Φ̂F + AξF − f t−F (ξ) +Htpp− Y t−F,

ΦR = −Φ̂R + AξR + f t−R (ξ)−Htpp+ Y t−R. (21)

Those two functions are null on the surfaces ∂SF and ∂SR of the convex domains SF and

SR, respectively, if the important functions Φ̂F (σ) and Φ̂R (σ) are convex.

Considering (19) and assuming that λ̇ is a positive multiplier, the rate of the internal

variables are given as:
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ξ̇F = λ̇
∂ΦF

∂AξF
= λ̇, ε̇tt−F = λ̇

∂ΦF

∂Aεtt−F

= ξ̇F∂ΦF

∂σ
,

ξ̇R = λ̇
∂ΦR

∂AξR
= λ̇, ε̇tt−R = λ̇

∂ΦR

∂Aεtt−R

= ξ̇R∂ΦR

∂σ
. (22)

Comparing (14) and (15) we see:

Λtt−F =
∂ΦF

∂σ
,

Λtt−R =
∂ΦR

∂σ
. (23)

3.3. Choice of Functional Forms

3.3.1. Fully recoverable martensitic transformation

The transformation functions Φ̂F and Φ̂R are the particular terms in the transformation

criteria that consider the shape of the bounding surfaces in the six-dimensional stress hy-

perspace; here a modified Prager function is chosen that accounts for tension-compression

asymmetry but not anisotropy (Bouvet et al., 2004; Grolleau et al., 2011). The following

formulation closely follows Patoor et al. (1996), Peultier et al. (2008), and Chemisky et al.

(2011). It predicts that the initiation of SMA forward transformation depends on the stress

tensor invariants and asymmetry-related parameters. Specifically,

Φ̂F(σ) =

√3J2(σ)

[
1 + b

J3(σ)

J
3/2
2 (σ)

] 1

n
− kσ

Hcur(σ). (24)

The terms J2(σ) and J3(σ) denote the second and third invariants of the deviatoric part

σ′. These are given as:

J2(σ) =
1

2
σ′ijσ

′
ij, and J3(σ) =

1

3
σ
′

ijσ
′

jkσ
′

ki, (25)

using summation notation for repeated indices. Constants b and n are associated with

the ratio between stress magnitudes needed to induce forward transformation under ten-

sion and compression loading. Convexity is ensured under specific conditions detailed in

Chatziathanasiou et al. (2015).
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The evolution of the maximum transformation strain Hcur is represented by the following

decaying exponential function (Hartl et al., 2010a):

Hcur(σ) =

 Hmin ; σ ≤ σcrit,

Hmin + (Hsat −Hmin)(1− e−k(σ−σcrit)) ; σ > σcrit.
(26)

Here σ denotes the Mises stress and Hmin corresponds to the minimal observable transforma-

tion strain magnitude generated during full transformation under tensile loading (or the two

way shape memory strain magnitude). The parameter Hsat describes the maximum possible

recoverable full transformation strain generated under uniaxial tensile loading. Additionally,

σcrit denotes the critical Mises equivalent stress below which Hcur = Hmin and the parameter

k controls the rate at which Hcur exponentially evolves from Hmin to Hsat.

The threshold for forward transformation introduced in (3.2) is not constant and is given

as (Lagoudas et al., 2012):

Y t−F = Y crit−F +Dσ : ΛεF (27)

The variables D and Y crit−F are model constants associated with the differing influences

of stress on transformation temperatures for forward and reverse transformation. They are

calculated from knowledge of other material constants (Lagoudas et al., 2012).

During forward transformation, the transformation strain is oriented in the direction of

the applied stress, which motivates the selected J2 − J3 form of the direction tensor Λt−F.

During reverse transformation, it is assumed that the direction of transformation strain

recovery is instead governed by the average orientation of the martensite. This is represented

in an average sense by the value of the macroscopic transformation strain εtt = εtt−F +εtt−R

as normalized by the martensite volume fraction ξ. Specifically, we assume

Λt−R =
εtt−F

ξF
+
εtt−R

ξR
. (28)

Given the assumed associativity for the reverse transformation strain (see (23)), the trans-

formation function Φ̂R for reverse transformation is then expressed as:

Φ̂R = σ

(
εtt−F

ξF
+
εtt−R

ξR

)
. (29)
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After (27), the threshold for reverse transformation is expressed as:

Y t−R = Y crit−R −Dσ : ε̄t, (30)

where Y crit−R is another material constant (usually taken equal to Y crit−F).

An evolution equation also links the time rate of changes of the hardening energies (ġF

and ġR) with those of martensite (ξ̇F and ξ̇R), according to (14) and (15). Then f t−F and

f t−R are referred to as the forward and reverse hardening functions, respectively, which

define the current transformation hardening behavior. Note that gt, being a contribution

to the Gibbs free energy, cannot depend on the time derivative of the martensitic volume

fraction but only on the transformation history. As per (14) and (15), the evolution equation

associated with gt changes with the transformation direction such that, given the reversibility

of martensitic transformation in SMAs, in the absence of other dissipative mechanisms the

Gibbs free energy should take on the same value for the same state of the external variables

upon completion of any full transformation loop. If all contributions to the Gibbs free energy

with the exception of gt are returned to their original values after a full transformation loop,

the following condition must be satisfied to fully return Gr to its initial state:

∫ 1

0

f t−Fdξ +

∫ 0

1

f t−Rdξ = 0. (31)

This necessary condition restricts the choice of hardening function for forward and reverse

transformations and constrains the calibration accordingly. The specification of a form for the

hardening functions that describe smooth transition from elastic to transformation response

is another key contribution of the model proposed by Lagoudas et al. (2012):

f t−F (ξ) =
1

2
a1 (1 + ξn1 − (1− ξ)n2) + a3,

f t−R (ξ) =
1

2
a2 (1 + ξn3 − (1− ξ)n4)− a3. (32)

Here, n1, n2, n3 and n4 are real exponents in the interval (0, 1]1. This form is selected here

1If all four exponents equal 1, the original model of Boyd and Lagoudas (1996) is recovered, see Appendix

A of Lagoudas et al. (2012).
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since it is specifically adapted to the response of polycrystalline SMA systems wherein the

transformation hardening can be quite “smooth”, especially after the completion of several

cycles. Such smoothness is tuned by the adjustment of the parameters {n1, n2, n3, n4}.

3.3.2. Forms related to the evolution equations associated with damage

The damage accumulation functions f td−F(Φ̂fwd) and f td−R(Φ̂rev) are based on a linear

accumulation law (Lemaitre and Chaboche, 2002) written in terms of the integer number N

of cycles completed such that,

∆d

Dcrit

=
∆N

Nf

, (33)

where Nf and Dcrit are the number of cycles and local damage associated with local catas-

trophic failure, respectively. Note that failure will be defined as the state at which d reaches

the critical value Dcrit.

This linear accumulation law can be written to consider continuous evolutions over time:

dd

Dcrit

=
dN

Nf

⇒ ,
ḋ

Dcrit

=
Ṅ

Nf

. (34)

Considering fatigue occurs only as a consequence of transformation cycles (full or partial)

and that a full cycle corresponds in the evolution of the martensitic volume fraction from 0 to

1 and back to 0, (34) can be rewritten to consider both forward and reverse transformations

as (see(14),(15))

ḋF = ξ̇FDcrit

2Nf

= ξ̇Ff td−F

ḋR = ξ̇RDcrit

2Nf

= ξ̇Rf td−R. (35)

In this way, the damage accumulation functions are defined. blueWhile it is postulated in

Section 3 that damage may evolve actively during forward transformation, here we propose a

general formulation that considers damage evolution during both forward and reverse trans-

formation. Future experimental studies will be needed to ascertain the relative importance

of forward versus reverse transformation as mechanisms for damage evolution.

From previous experimental studies, it has been shown that the fatigue life Nf of SMA

actuators is correlated to the cyclic mechanical work they perform (Calhoun et al., 2015).
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blueDuring isobaric uniaxial fatigue testing (the main response motivating this more general

study), the actuation work per unit of volume done in each half cycle by a constant uniaxial

stress σ distributed homogeneously over a specimen generating uniaxial strain εt is the

product σεt. As an empirical measure, this so-called actuation work neglects the small

inelastic permanent strains generated during a single transformation cycle such that σεt '

σεtt−f . It was shown that a power law was sufficient to capture cycles to failure per

Nf =

(
σεtt−f

Cd

)−γd

. (36)

Examining (24) in such a case of uniaxial loading and assuming small values of b, we see

Φ̂F
∣∣∣
uniax

= σHcur(σ). For the full transformation considered in these motiviating studies,

Hcur(σ) = εtt−f by definition of (26), and thus Φ̂F
∣∣∣
uniax

= σεtt−f . Motivated by this relation-

ship in this work, we then make a generalized equivalence between the effectiveness of the

past power law and its applicability in three dimensions (pending future multi-axial studies).

Finally, noting that in the case of full transformation under proportional loading (e.g., in

the uniaxial case), it can be shown that Φ̂F = Φ̂R. This allows us to then introduce

Nf =

(
Φ̂F

Cd

)−γd

−N0
f =

(
Φ̂R

Cd

)−γd

−N0
f . (37)

Here, N0
f is a parameter linked to the actuation work required for a static failure (Nf = 0),

while Cd and γd are parameters characteristic of the number of cycles to failure dependence on

actuation work. Combining (35) and (37) and currently assuming that damage accumulates

equally during forward and reverse transformation, the final form of the damage functions

are:

f td−F(Φ̂) =
Dcrit

2

[(
Φ̂F

Cd

)−γd

−N0
f

]−1

,

f td−R(Φ̂) =
Dcrit

2

[(
Φ̂R

Cd

)−γd

−N0
f

]−1

. (38)

Such forms, obtained from observations of isobaric uniaxial experiments, substantially

defines the evolution of damage and is applicable for a wide range of thermomechanical load-

ings. Obviously, a large experimental effort is required to validate this critical extension from
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one-dimensional (uniaxial) to three-dimensional, where such conditions as non-proportional

loading or partial transformation must be considered; in this work only isobaric actuation

cycles will be considered in the discussions of experimental validation.

3.3.3. Forms of the evolution equations associated with plasticity

The transformation plasticity magnitude function f tp(ξ) is inspired by past works (Lagoudas

and Entchev, 2004; Chemisky et al., 2014). Several conclusions are drawn considering also

the experimental observations by Wheeler et al. (2015) from actuation fatigue tests where

specimens were thermally cycled under various constant stress levels (see Fig.3):2

Figure 3: Transformation and plastic strain evolution in NiTiHf actuators under various isobaric

loads (Wheeler et al., 2015) (a–c) and the comparison of these three (d). The strains are measured at

high and low temperature, with a zero reference based on the beginning of the first cooling cycle. No necking

is observed in any sample.

• For moderate stress levels (200 MPa; Fig. 3a), after a rapid increase in accumulated

plastic strain, a stable regime is observed (after 1000 cycles). The plastic strain accu-

mulates linearly from cycle to cycle during this stable regime up to the point of failure.

Similar response has been observed on Ni60Ti40 alloys (Agboola et al., 2012) and NiTi

alloys (Lagoudas, 2008).

• For higher actuation stress levels (400 MPa; Fig. 3b), a transient regime is first ob-

served, as with the moderate stress levels. While an apparent stable regime is observed,

one can observe a slight increase in plastic strain accumulation from cycle to cycle prior

to failure.

• At the highest feasible stress levels (600 MPa; Fig. 3c), the same initial transient regime

is observed; after which an apparent stabilized regime is also observed, followed by an

important and continuous increase of the plastic strain rate up to failure.

2It is important to note that all tests considered were not associated with any observed localized necking

behavior and that nearly constant applied stress can be assumed.
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blueFrom these experiments the effect of stress amplitude is clear. At high stress levels

the rate of change of the irrecoverable strain increases from about the half lifetime of the

sample. This behavior is characteristic of a change in the material’s response, and is generally

explained through stress concentration due to the development of defects (Van Humbeeck,

1991; Hornbogen, 2004). The functional form of the irrecoverable strain evolution should

therefore account for that effect by considering a coupling with damage above a critical stress

threshold, since this coupling is only observed at a high stress. The following evolution law

for plastic strains is thus proposed:

f tp−F(p) = wtpCtp
0

[(
Φ̂F

Ctp

)γtp (
Ctp

1 p+ e
−p

C
tp
2

)
+

(〈
σ − σY

tp

〉
σY

tp

)αtp

λtp

]
,

f tp−R(p) = (1− wtp)Ctp
0

[(
Φ̂R

Ctp

)γtp (
Ctp

1 p+ e
−p

C
tp
2

)
+

(〈
σ − σY

tp

〉
σY

tp

)αtp

λtp

]
, (39)

with

λtp = λtp(
d

Dcrit

, 1− Dcoa

Dcrit

, p0),= λ̂tp(d̂, D̂, p0), (40)

λ̂tp(d̂, D̂, p0) =

 p0 d̂ (1− d̂)−2 d̂ <= h

p0

(
(1− h)−2 + 2h (1− h)−3(d̂− h) + h(1− h)−2

)
d̂ > h,

(41)

with h = 1− D̂. The function λtp is a typical level set power law function that depends on

the current value of damage, the critical value for damage Dcrit, and a constant Dcoa that

indicates the change of regime of the evolution of plastic strains.

4. blueMethodology of Model Parameters Identification

The entire three-dimensional constitutive model for shape memory alloys experiencing

cycling fatigue requires four sets of parameters to be calibrated:

• The thermoelastic model parameters,

• The parameters associated with phase transformation criteria (e.g., the conventional

phase diagram),
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• The parameters characteristic of damage accumulation,

• The parameters characteristic of TRIP accumulation.

These are summarized in Table 1. The thermoelastic parameters of martensite and

austenite blue(e.g., Young’s moduli, coefficients of thermal expansion, Poisson’s ratios) are

usually calibrated from mechanical and thermal uniaxial loadings, where loads are applied

at temperatures outside of transformation regions. The parameters qualifying the phase

diagram (Ms, Mf , As, Af , C
A, CM) along with those contained in the functional form of the

maximum transformation strain Hcur are calibrated based on several isobaric thermal cycles

prior to the accumulation of substantial damage or TRIP.

The identification of the thermodynamical parameters of the model (ρ∆η0, ρ∆E0, a1, a2,

a3, Y
t
0 , D) and the material parameters for phase transformation are detailed in Lagoudas

et al. (2012). blueAccording to the complexity of the functional forms, especially for the evo-

lution of damage and TRIP, the parameters are generally identified utilizing an optimization

algorithm that minimizes a cost function, defined as a square difference between experimen-

tal measurement and the simulated response, following the methodology found in Meraghni

et al. (2011). The algorithm utilized in this work is a combined gradient based - genetic opti-

mization scheme, which is used to successfully determine the transformation characteristic of

three-dimensional SMA structures Chemisky et al. (2015). blueThe suggested identification

procedure, used to present the validation cases in the next section, consists of the following

sequence:

1. blueDetermination of the parameters for transformation strain Hcur functional form

via the optimization algorithm (objective function defined in terms of transformation

strain magnitude with respect to a stress value).

2. blueDetermination of the other phase transformation parameters with reconstruction

of the phase diagram from isobaric thermal cycles.

3. Determination of the fatigue damage parameters used the optimization algorithm to

predict the number of cycles to failure according to the actuation energy. Using uniaxial

isobaric loading, this last quantity is obtained experimentally for various stress levels.

The parameters Cd, γ
d, N0

f can be evaluated with this procedure, ensuring that these
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parameters are positive values. The parameter Dcrit has been estimated at 0.1 from the

experimental observation of crack density in the observed fatigue samples just prior to

failure.

4. blueThe parameters for the evolution of TRIP are evaluated using the evolution of the

uniaxial irrecoverable strain εp with respect to the number of cycles. In the present

approach, the parameter Dcoa has been set up to 0.05 (50% of Dcrit), since it is clear

that a change of regime occurs the mid-life of the NiTiHf actuators loaded high stress

(see Fig.3c), attributed to the evolution of damage. Note that 0 ≤ Dcoa ≤ Dcrit ≤ 1.

The parameter identification of wtp requires some specific thermomechanical loading

path and usually takes values greater than 0.5 and is constrained to stay within the

range 0 ≤ wtp ≤ 1 (Chemisky et al., 2014). Since the half-cycles were not available

in the database utilized to identify the parameters of the Ni60Ti40 and NiTiHf alloys,

this value has been arbitrarily set to 0.6.

5. blueThe remaining parameters Ctp
0 , Ctp

1 , Ctp, γtp, Ctp
2

σY
tp, αtp, p0 have been identified utilizing the optimization algorithm based on the

experimental results of the evolution of irrecoverable plastic strain as a function of the

number of cycles. All these parameters must be positive values.

Table 1: Required material parameters and associated material properties

Parameter Type Set of Constants Specific Response

Thermoelastic properties Young’s moduli, Poisson’s ratios,

Coefficients of therm. expan., etc.

Ms, Mf , As, Af , C
A, CM Phase diagram

Phase transformation Hmin, Hsat, k, σcrit Transformation strain

n1, n2, n3, n4 Smoothness of transformation

Damage Dcrit, Cd, γ
d, N0

f Evolution law for damage

TRIP
wtp, Ctp

0 , Ctp
1 , Ctp, γtp, Ctp

2

σY
tp, αtp, p0, Dcoa

First and second stage

Third stage - coupling with damage
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5. Comparison of Experimental Results

This new model for the description of functional and structural damage has been specif-

ically formulated to capture the combined effect of phase transformation, transformation-

induced plasticity and fatigue damage of polycrystalline SMAs subjected to general three-

dimensional thermomechanical loading and has been implemented in the ‘smartplus’ li-

brary (Chemisky, 2016). While the capabilities of such a modeling approach to capture the

effects of phase transformation have been already demonstrated by Lagoudas et al. (2012)

and Chatziathanasiou et al. (2016), here we specifically consider the evolution of damage

and TRIP strains.

The set of experiments utilized to validate the proposed model consider specimens loaded

uniaxially to different constant stress levels(i.e., in the austenitic condition) and then sub-

jected to thermally-induced transformation cycles up to failure. The parameters are taken

from Wheeler et al. (2015), where NiTiHf actuators were tested at three relatively high con-

stant stress levels (i.e., 200, 400 and 600 MPa., cf.Fig. 3) blueacross a temperature range

from approximately 300 K to 500 K. A fourth stress level of 300 MPa is used for validation

since the full characterization of the elastic response was not addressed in the source work,

standard values for NiTiHf alloys are applied. An average of transformation strain magni-

tudes generated over full cycles at each stress level is used to define the average experimental

value shown in Fig. 4 and Fig. 5.

Figure 4: Dependence of maximum transformation strain magnitude on applied stress for the considered

NiTiHf alloy (Wheeler et al., 2015). Data is fit using the functional form Hcur (26) based on the average

recovered transformation strain over all cycles at each stress levels considered.

The parameters that define the evolution equation for the damage internal variable have

been identified based on the number of cycles to failure of the SMA actuators thermally

cycled at different stress levels blue and are displayed in Table 2. The comparison between the

fatigue database for various stress levels and the model simulation is presented in Figure 5,
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where the actuation energy density in this one-dimensional (uniaxial) setting is equivalent

to blueΦ̂ = Φ̂F = Φ̂R = σHcur(σ).. Note that the stress levels of 200, 400 and 600 MPa have

been used for the calibration of the damage model, while data for the stress level of 300 MPa

(2 tests) are used to validate predictions.

The parameters related to the evolution of TRIP strains have been identified based on

the evolution of residual strains as measured at high temperature (i.e., in the austenitic

condition). The parameter identification algorithm used is a hybrid genetic - gradient-

based method developed by Chemisky et al. (2015) and applied here to the least-square

difference between the experimental and numerical irrecoverable strains for the three stress

levels tested (i.e, 200, 400 and 600 MPa). It is noted, according to the comparison presented

in Figure 7, that both functional fatigue (i.e., TRIP) and structural fatigue (i.e., total life)

are accurately captured by the model, since both the number of cycles to failure and the

level of irrecoverable strain are correctly described for the three stress levels tested. All three

stages of plastic strain evolution with cycles are represented, and the rapid accumulation of

TRIP strain magnitude towards the end of the lifetime of the actuator is clearly visible in

the simulated results. The typical behavior of an actuator is represented here. 3 Note in

particular that the upward shift in transformation temperatures with increasing cycle count

3The transformation temperatures, not provided in Wheeler et al. (2015), are calibrated here using

common values.

Figure 5: Number of cycles to failure as a function of the actuation energy Φ̂ for the considered NiTiHf alloy.

Results from the isobaric tests performed at 200, 400, and 600 MPa used for calibration; data from 300 MPa

tests used for validation.

Figure 6: blueSpectrum of evolution of damage with respect to the number of cycles. Number of failure from

the isobaric tests performed at 200, 400, and 600 MPa utilized for calibration in blue dot, 300 MPa validation

tests in orange.
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is captured.

Figure 7: Comparison between the evolution of irrecoverable strains in NiTiHf actuators under various

isobaric loads (Wheeler et al., 2015) with the model simulations: a), b), and c) show comparisons of the

evolution of TRIP strains for the calibration stress levels of 200, 400, and 600 MPa, respectively; d) shows

an example of a simulation of the evolution of the response of an actuator for the first, 100th, 200th, and the

last (309th) cycle prior to failure. The blue and red dots correspond to the experimentally measured strains

at high and low temperature for the considered cycles, respectively.

The second experiment (Fig. 8) used to validate the model focuses only on functional

fatigue, whereby (i.e., TRIP) an SMA actuator is subjected to 80 thermal transformation

cycles under constant load corresponding to a uniaxial stress level of 200 MPa (Lagoudas,

2008), bluewhere the derived properties are given in Table 3. The actuator is at an early

stage of its expected lifetime, so only the first and second stage of the evolution of plastic

strain are captured, see Fig. 8a). Note that the evolution of the transformation strain with

temperature is well captured, and that the shift of the transformation temperatures between

the 1st and the 80th cycle is again accurately described by the proposed model (see Fig. 8b).

Figure 8: Comparison between the evolution of irrecoverable strains of a NiTi actuator under an isobaric

load (uniaxial stress level of 200 MPa; Lagoudas (2008)) with the model simulations: a) comparisons of the

evolution of TRIP strains; b) comparison of the full strain-temperature response of an actuator for the first

and 80th cycles.

blueAdditional numerical simulations have been performed for multiaxial actuation based

on the same actuator to demonstrate the effect of the stress components on the actuation

response. In a first case the SMA actuator is subjected to 80 thermal transformation cycles

under constant load corresponding to a biaxial stress level, with (σ11 = 50, σ12 = σ21 = 100,

all other components of the stress tensor being 0). In the second case the biaxial stress level

has be set to (σ11 = 100, σ12 = σ21 = 50, all other components of the stress tensor being

0) The evolution of the non-zero total strain components with respect to temperature is
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shown in Fig. 9. While the evolution equation for irrecoverable strain is based on the Mises

equivalent stress, it is seen that the irrecoverable strain as well as transformation strain

follows the direction of the imposed stress. Also, the importance of shear stress component

versus uniaxial stress component is highlighted here, regarding the amount of irrecoverable

strain..

Figure 9: Comparison between the evolution of irrecoverable strains of a NiTi actuator of an actuator for

the first and 80th cycles, considering two multiaxial isobaric loads : 1) continuous grey line : σ11 = 50 MPa,

σ12 = σ21 = 100 MPa, all other components of the stress tensor being 0) and 2) dashed grey line (σ11 =

100 MPa, σ12 = σ21 = 50 MPa, all other components of the stress tensor being 0). The evolution of a)

comparison of the total uniaxial strain (ε11)-temperature response , b) comparison of the total shear strain

(ε12)-temperature response.
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Table 2: Identified model parameters for the NiTiHf alloy

Model Parameters Identified value

blueEA = EM 70000 MPa

blueνA = νM 0.3

blueαA = αM 0 K−1

blueMs, Mf , As, Af 293 K, 273 K, 313 K, 333 K

blueCA = CM 7 MPa.K−1

bluen1 = n2 = n3 = n4 0.2

Hmin 0.005

Hsat 0.0277

k 0.0172 MPa−1

σcrit 120 MPa

b 0

n 2

Dcrit 0.14

Dcoa 0.07

Cd 85689.2 MPa

γd 1.040

N0
f 7000 cycles

wtp 0.6

Ctp
0 0.000245

Ctp
1 0.000667

Ctp 6.144682 MPa

γtp 4.132985

Ctp
2 0.006239

σY
tp, 300 MPa

αtp 3.720168

p0 1.861436
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Table 3: Identified model parameters for the NiTi alloy

Model Parameters Identified value

blueEA, EM 47000 MPa, 24000 MPa

blueνA = νM 0.3

blueαA = αM 0 K−1

blueMs, Mf , As, Af 277.15 K, 260.15 K, 275.15 K, 291.15 K

blueCA, CM 8.3, 6.7 MPa.K−1

bluen1 = n2 = n3 = n4 0.1

Hmin 0.05

Hsat 0.05

k N/A

σcrit N/A

b 0

n 2

wtp 0.6

Ctp
0 0.019994

Ctp
1 0.086058

Ctp 22.564369 MPa

γtp 3.322290

Ctp
2 0.015947

σY
tp, αtp, p0 N/A
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6. Conclusions

To simulate functional and structural fatigue in shape memory alloy actuators, a new phe-

nomenological model has been proposed that considers the coupled accumulation of damage

and transformation-induced plasticity and is inspired by recent three-dimensional models for

phase transformation based on thermodynamics of irreversible processes. Structural fatigue

is described using an evolution equation for damage based on the rate of transformation en-

ergy relative to the martensite volume fraction Φ̂. Such a description succeeds in capturing

the number of cycles to failure of the SMA actuators thermally cycled at different stress

levels. The evolution of irrecoverable strains (i.e., functional fatigue) is described based on

the same rate of transformation energy, especially to describe the first (transient) and sec-

ond (steady-state) stages of transformation-induced plastic strain evolution. To represent

the third stage (accelerated accumulation), a power law that depends on the level of accu-

mulated damage is applied to represent the effect of structural fatigue on the development

of irrecoverable strains. It is demonstrated that this formulation can accurately describe the

accumulation of TRIP strains for the three considered actuators loaded at different stress

levels. It is finally shown that the expression of the transformation limits represent the shift

in transformation temperatures observed during cycling loading of actuators. These various

aspects combine to make this model the most complete description of shape memory alloy

fatigue to date.
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Mécanique, 14(1):39–63, 1975.

D. Hartl, D. Lagoudas, J. Mabe, F. Calkins, and J. Mooney. Use of {N}i60{T}i Shape

Memory Alloy for Active Jet Engine Chevron Application, {P}art {II}: {E}xperimentally

Validated Numerical Analysis. Smart Materials and Structures, 19(1), 2010a.

D. J. Hartl and D. C. Lagoudas. Aerospace applications of shape memory alloys. Proceedings

of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221

(4):535–552, jan 2007.

D. J. Hartl and D. C. Lagoudas. Constitutive modeling and structural analysis consider-

ing simultaneous phase transformation and plastic yield in shape memory alloys. Smart

Materials and Structures, 18:1–17, 2009.

D. J. Hartl, G. Chatzigeorgiou, and D. C. Lagoudas. Three-dimensional modeling and

numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys.

International Journal of Plasticity, 26(10):1485–1507, 2010b.

36



  

F. Hild, C. Denoual, P. Forquin, and X. Brajer. On the probabilistic-deterministic transition

involved in a fragmentation process of brittle materials. Computers and Structures, 81

(12):1241–1253, 2003.

R. Hojjati-Talemi and M. A. Wahab. Fretting fatigue crack initiation lifetime predictor tool:

Using damage mechanics approach. Tribology International, 60:176–186, 2013.

E. Hornbogen. Review Thermo-mechanical fatigue of shape memory alloys, 2004.

Q. Kan, G. Kang, W. Yan, Y. Dong, and C. Yu. An energy-based fatigue failure model for

super-elastic NiTi alloys under pure mechanical cyclic loading. page 84090F. International

Society for Optics and Photonics, apr 2012.

G. Kang, Q. Kan, C. Yu, D. Song, and Y. Liu. Whole-life transformation ratchetting and

fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading. Materials

Science and Engineering: A, 535:228–234, feb 2012.

H. E. Karaca, E. Acar, H. Tobe, and S. M. Saghaian. NiTiHf-based shape memory alloys.

Materials Science and Technology, 30(13):1530–1544, nov 2014.

W. Khalil, A. Mikolajczak, C. Bouby, and T. Ben Zineb. A constitutive model for Fe-based

shape memory alloy considering martensitic transformation and plastic sliding coupling:

Application to a finite element structural analysis. Journal of Intelligent Material Systems

and Structures, 23:1143–1160, 2012.

A. Khandelwal and V. Buravalla. Models for Shape Memory Alloy Behavior: An overview

of modeling approaches. The International Journal of Structural Changes in Solids, 1(1):

111–148, 2009.

B. Kiefer, T. Bartel, and A. Menzel. Implementation of numerical integration schemes for

the simulation of magnetic SMA constitutive response. Smart Materials and Structures,

21(9):094007, sep 2012.
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Appendix A. Appendix A: Fundamentals of Thermodynamics of irreversible

processes

blueConsidering a small strain ε at a considered material point, the strong form of the

first law of thermodynamics can be expressed as

Ė = σ : ε̇− divq + ρR, (A.1)

where q is the heat flux,R denotes the heat sources per unit mass, and σ is the Cauchy stress.

Similarly, the second law of thermodynamics is written in the strong form as (Chatzigeorgiou
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et al., 2016):

θη̇ − q

θ
·∇θ + divq − ρR ≥ 0, (A.2)

where η = ρς is the entropy per unit volume. Combining equations (A.1) and (A.2) to

eliminate extra heat sources yields

γ = σ : ε̇+ θη̇ − Ė − q
θ
·∇θ ≥ 0, (A.3)

where γ is the internal entropy production per unit volume. We can also define r as the

difference between the rates of the mechanical work and the internal energy of Q as the

thermal energy per unit volume provided by external sources, which gives

r = σ : ε̇− Ė,

Q = −divq + ρR. (A.4)

Further, the internal entropy production can be split into two contributions, where γloc is

the local entropy production (or intrinsic dissipation) and γcon is the entropy production due

to heat conduction, giving

γcon = −q
θ
·∇θ. (A.5)

The two laws of thermodynamics can then be simply expressed as

Q+ r = 0 and

γ = γloc + γcon ≥ 0. (A.6)

Combining equations (A.3), (A.5), and (A.6), one can re-express the first principle of ther-

modynamics as:

σ : ε̇+ θη̇ = γloc + Ė. (A.7)

When designing a constitutive law, especially with the aim of tracking fatigue damage and

permanent deformation in a material, it is very useful to separate the various mechanisms into

categories (e.g., elastic or inelastic, reversible or irreversible, dissipative or non-dissipative)

following the methodology proposed by Chatzigeorgiou et al. (2018). Some of these mech-

anisms are responsible for permanent changes in material microstructure. To describe all
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observable phenomena it is required to express E in terms of the proper variables capable of

expressing the material state under every possible thermomechanical loading path. Following

the approach of Germain et al. (1983), the internal energy E is taken to be a convex function

with regards to its arguments: the strain tensor ε, the entropy η and a set of internal state

variables ζ such that

E := E(ε, η, ζ). (A.8)

The following definitions for the derivatives of the internal energy are postulated:

σ =
∂E

∂ε
, θ =

∂E

∂η
. (A.9)

For the purposes of further development, it is convenient to introduce the Gibbs free energy

potential G by employing the following partial Legendre transformation (Maugin (1992)):

G(σ, θ, ζ) := E − θη − σ : ε. (A.10)

Considering (A.8),(A.9), and the chain rule one can show that

dE =
∂E

∂ε
: dε+

∂E

∂η
dη +

∂E

∂ζ
: dζ = σ : dε+ θdη +

∂E

∂ζ
: dζ. (A.11)

Further considering (A.10), we have:

dG =
∂G

∂σ
: dσ +

∂G

∂θ
dθ +

∂G

∂ζ
: dζ = dE − ηdθ − θdη − σ : dε− ε : dσ

= σ : dε+ θdη +
∂E

∂ζ
: dζ − ηdθ − θdη − σ : dε− ε : dσ

= −ε : dσ − ηdθ +
∂E

∂ζ
: dζ.

(A.12)

Thus, it can be deduced that4

ε = −∂G
∂σ

, η = −∂G
∂θ

. (A.13)

Returning to the expression of thermodynamic laws, combining equations (A.7) and (A.10)

leads to

γloc = −ε : σ̇ − ηθ̇ − Ġ. (A.14)

4The same result can be obtained by utilizing the methodology of Coleman and Gurtin (1967) for ther-

modynamics with internal state variables; however, the issues raised by Lubliner (1972) that limit the case

to the elastic response should also be considered.
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Expressing Ġ in terms of its arguments and using (A.13), the last expression reduces to

γloc = −∂G
∂ζ

: ζ̇ = −A : ζ̇. (A.15)

Equation (A.15), in conjunction with (A.6), is used to identify proper evolution equations for

the internal state variables. Usually, the mechanical and thermal dissipations are assumed

to be decoupled and non-negative, i.e. γloc ≥ 0 and γcon ≥ 0.

Appendix A. Appendix B: Numerical Resolution and Computation of the Tan-

gent Moduli

blue Such a constitutive model is intended to be applied to the scope of Finite Element

Analyses (FEA). In most FEA softwares, the variables are updated following a procedure

that include three loops. A loading step is typically partitioned in time increments and is

denoted by ∆x. The increment during the global FEA solver is denoted ðx. The increment

during the Newton-Raphson scheme in the material constitutive law, which is described

below, is denoted by the symbol δx. Such steps consist in finding the updated value of the

stress tensor and of the internal variables of the model. In a backward Euler fully implicit

numerical scheme, the value of a given quantity x is updated from the previous time step n

to the current n+ 1 per

x(n+1) = x(n) + ∆x(n+1). (A.1)

Such an implicit relation is usually solved iteratively during the FEA calculations, and the

current value is updated from iteration m to iteration m+ 1 per

x(n+1)(m+1) = x(n+1)(m) + ðx(n+1)(m). (A.2)

blueThe return mapping algorithm is used in the constitutive law algorithm and consists

of two parts: i) Initially, it is assumed that no evolution of the internal variables occurs, thus

the material behaves linearly. This allows it to consider a thermoelastic prediction of all the

fields. In such a prediction, the stress tensor and are estimated, while the internal variables

are set to their initial value at the beginning of the time increment; (ii) The stress tensor
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and the internal variables are corrected such that the solution meets the requirements of

the specified constitutive law (the forward transformation, reverse transformation, or both).

During the return mapping algorithm, the total current strain and temperature are held

constant such that:

δε(n+1)(m+1)(k) = 0, δθ(n+1)(m+1)(k) = 0, (A.3)

where k denotes the increment number during the correction loop. The system of Kuhn-

Tucker set of inequalities can be summarized as:

ΦF = Φ̂F + AξF − f t−F (ξ) +Htpp− Y t−F ≤ 0, ξ̇F ≥ 0, ξ̇FΦF0

ΦR = −Φ̂R + AξR + f t−R (ξ)−Htpp+ Y t−R ≤ 0, ξ̇R ≥ 0, ξ̇RΦR0. (A.4)

Note that the size of the system to solve might therefore depends on the activated mech-

anism(s). We utilized the Fischer-Burmeister Fischer (1992) complementary function to

replace the Kuhn-Tucker set of inequalities that typically results from dissipative mecha-

nisms into a set of equations. Such formulation results in a smooth complementary prob-

lem (Kiefer et al., 2012), which does not require the information of the number of active sets.

This methodology has already been utilized by Schmidt-Baldassari (2003) in the context of

rate-independent multi-surface plasticity, by Bartel and Hackl (2009); Bartel et al. (2011)

for martensitic phase transformation modeling, and by Kiefer et al. (2012) for the simulation

of the constitutive response of magnetic SMAs.

blueAt this point the methodology presented in Chatziathanasiou et al. (2016) is briefly

summarized here. The Fischer-Burmeister technique transforms a set of Kuhn-Tucker in-

equality into an equivalent equation :

Φm ≤ 0 ṡm ≥ 0 Φmṡm = 0→
√

(Φm)2 + (ṡm)2 + Φm − ṡm = 0 (A.5)

This equation has two sets of roots: either Φm ≤ 0; ṡm = 0, which means that the

mechanism m is not activated, or Φm = 0; ṡm ≥ 0 indicates that the mechanism m is

activated and a solution for ṡm (and consequently for all internal variables V̇ m) is searched.

Next, the elastic prediction - inelastic correction method is utilized to solve the unconstrained

system of equations using a Newton-Raphson scheme. The inelastic transformation strain is
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recalled here:

εt = εF + εR. (A.6)

During a time increment n, at the m-th iteration of the solver and the k-th iteration of the

constitutive law algorithm, the transformation strain thus writes:

ε
(n+1)(m+1)(k)
t = εF (n+1)(m+1)(k)

m + εR(n+1)(m+1)(k)
m . (A.7)

To avoid lengthy expressions in the sequel, the iteration numbers will be omitted. Any

quantity x denotes the x(n+1)(m+1)(k), the increment ∆x denotes the ∆x(n+1)(m+1)(k), the

increment δx denotes the δx(n+1)(m+1)(k) and the increment ðx denotes the ðx(n+1)(m+1). The

convex cutting plane (CCP) Simo and Hughes (1998); Qidwai and Lagoudas (2000) is utilized

to approximate the evolution of the inelastic strain as:

εt = εt (n+1)(m+1)(k−1)

+
(
Λtt−F (n+1)(m+1)(k−1) + Λtp−F (n+1)(m+1)(k−1)f tp−F (n+1)(m+1)(k−1)

+Λtd−F (n+1)(m+1)(k−1)fd−F (n+1)(m+1)(k−1)
)
δξF (n+1)(m+1)(k)

+
(
Λtt−R(n+1)(m+1)(k−1) + Λtp−R(n+1)(m+1)(k−1)f tp−R(n+1)(m+1)(k−1)

+Λtd−R(n+1)(m+1)(k−1)fd−R(n+1)(m+1)(k−1)
)
δξR(n+1)(m+1)(k)

= εt (n+1)(m+1)(k−1) + ΛF (n+1)(m+1)(k−1)δξF (n+1)(m+1)(k) + ΛR(n+1)(m+1)(k−1)δξR(n+1)(m+1)(k)(A.8)

blueThe comparison and the efficiency evaluation of the convex cutting plane and the

closest point projection has been discussed in detail in Qidwai and Lagoudas (2000), and

it has been shown that the convex cutting plane algorithm is more efficient in most cases,

even if it may require more steps to converge when strong non-proportional loadings are

considered. The total current strain and temperature are held constant in displacement

driven FEA. Assuming an additive decomposition of strains and the previously induced

constitutive relations between elastic strain and stress, and thermal strain and temperature

provides:

δM : σ + M : δσ + δαθ + δεt = 0 (A.9)
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Since the variations of elastic compliance tensor and the thermal expansion tensor are de-

pendent on the volume fraction of forward or reverse martensitic transformation:

δM = ∆M
(
δξF − δξF

)
(A.10)

and

δα = ∆α
(
δξF − δξR

)
, (A.11)

it is therefore possible to define a total stress-influence evolution tensor, such as:

κFδξF =
[
ΛF + ∆M : σ + ∆α(θ − θ0)

]
δξF

κFδξR =
[
ΛR −∆M : σ −∆α(θ − θ0)

]
δξF. (A.12)

blueThus, with the help of (A.8), (A.10) and (A.11), (A.9) is now written as:

δσ = −L :
∑
j

[
κjδsj

]
(A.13)

Recall that the transformations (forward and reverse) depend on the stress and the internal

variables through the definition of thermodynamical forces. Applying the chain rule to these

criterion yields:

δΦF =

[
−∂ΦF

∂σ
: κF + KFF

]
δξF +

[
−∂ΦF

∂σ
: κR + KFR

]
δξR

δΦR =

[
−∂ΦR

∂σ
: κF + KRF

]
δξF +

[
−∂ΦR

∂σ
: κR + KRR

]
δξR (A.14)

with:

Kljδsj =
∑
i

(
∂Φl

∂ξj
Λj

)
δsj. (A.15)

blue The numerical resolution consists of solving the following system of complementary

Fischer-Burmeister functions using a Newton-Raphson scheme:

F + δF = 0 (A.16)

with:

δF i =
∂F i

∂Φi

∂Φi

∂sj
δsj

δF i =
∂F i

∂Φi
Bijδsj. (A.17)
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In the above equations, B is a matrix containing the partial derivatives of Φ, such that

Blj =
∑

j

[
−∂Φl

∂σ
κj + Klj

]
. The iterative loops stop when the convergence criteria on all

the complementary functions has been fulfilled.

Appendix A.1. Determination of the thermomechanical quantities and tangent moduli

blueSince we require the computation of the solver iteration increments ∆ε(n+1)(m+1) =

∆ε(n+1)(m) + ðε(n+1)(m) the mechanical tangent modulus Dε is required:

ðσ = Dεðε (A.18)

. (A.19)

To compute such quantities, the criterion is utilized and uses ( A.14):

ðΦl =
∂Φl

∂σ
: L (ðε−αðθ)−

∑
j

[
κjðξj

]
+
∂Φl

∂θ
ðθ +

∑
j

Kljðξj. (A.20)

Considering now only the subset of activated mechanisms, i.e. the ones that satisfy

ðΦl = 0, (A.21)

the following holds true (the superscript l shall now refer to any activated mechanism, and

only those):

ðΦl =
∂Φl

∂σ
:

(
L (ðε−αðθ)−

∑
j

[
κjðξj

])
+
∂Φl

∂θ
ðθ +

∑
j

Kljðξj = 0

∑
j

[
∂Φl

∂σ
κj −Klj

]
ðξj =

∂Φl

∂σ
: L : ðε+

(
∂Φl

∂θ
− ∂Φl

∂σ
: L : α

)
ðθ. (A.22)

The set of non-linear equations that can be rearranged in a matrix-like format:

B̂ξ = C, (A.23)

where ξ =
[
ξF, ξR

]
. The components of the reduced sensitivity tensor B̂ that correspond to

the active load mechanism variables, with respect to the strain and temperature, are:

B̂lj =
∂Φl

∂σ
: κj −Klj (A.24)
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and

Cl =
∂Φl

∂σ
: L : ðε+

(
∂Φl

∂θ
− ∂Φl

∂σ
: L : α

)
ðθ. (A.25)

Solving this system of non-linear equations and extracting the influence of each component

of the strain tensor leads to:

ðξ = B̂−1

[
∂Φ

∂σ
: L : ðε

]
+ B̂−1

[
∂Φ

∂θ
− ∂Φ

∂σ
: L : α

]
ðθ, (A.26)

which can be written in a compact form, adopting a Voigt notation with a strain vector

ε̃ = {ε11, ε22, ε33, 2ε12, 2ε13, 2ε23}T :

ðξ = Pεðε+ Pθðθ,

Pε = B̂−1{∂Φ

∂σ
: L} , Pθ = B̂−1

(
∂Φ

∂θ
− ∂Φ

∂σ
: L : α

)
. (A.27)

Note that second-order tensors and scalar quantities can be defined for the influence of strain

and temperature, respectively, on a unique lead mechanism sj:

ðξj = Pj
εðε+ Pj

θðθ. (A.28)

If the tangent quantities are substituted into the relation between stress and strain incre-

ments, the mechanical tangent modulus is:

ðσ =

(
L−

∑
j

κjPj
ε

)
ðε+

(
−Lα−

∑
j

κjPj
θ

)
ðθ,

Dε =

(
L−

∑
j

κjPj
ε

)
, Dθ =

(
−Lα−

∑
j

κjPj
θ

)
, (A.29)
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Highlights	

This	work	presents	new	developments	in	the	thermomechanical	
constitutive	modeling	of	structural	and	functional	fatigue	of	shape	memory	alloys	(SMAs).	

It	captures	the	evolution	of	irrecoverable	strain	that	develops	during	cyclic	actuation	of	SMAs.	

It	describes	the	evolution	of	the	structural	fatigue	through	the	evolution	of	an	internal	variable	
representative	of	damage.	Final	failure	is	predicted	when	such	variables	reaches	a	critical	value.	

The	full	numerical	implementation	of	the	model	in	an	efficient	scheme	is	described.	
Experimental	results	associated	with	various	thermomechanical	paths	are	compared	to	the	
analysis	predictions,	including	fatigue	structural	lifetime	prediction	and	evolution	of	the	
response	during	cyclic	actuation.	

The	analysis	of	three-dimensional	loadings	paths	are	considered	




