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Abstract

There exist many Runge-Kutta methods (explicit or implicit), more or
less adapted to each considered problem. Some of them have interesting
properties such as stability for stiff problems or symplectic capability for
problems with energy conservation. Defining a new method, suitable to
a given problem, has become a challenge. The size, the complexity and
the order do not stop growing. This race to the best method is inter-
esting but left unresolved an important problem. Indeed, the coefficients
of Runge-Kutta are more and more hard to compute, and the result is
often expressed in floating-point numbers, which may lead to erroneous
integration schemes. We propose, in this paper, to use interval analysis
tools to compute Runge-Kutta coefficients, in particular, a solver based on
guaranteed constraint programming. Moreover, with a global optimiza-
tion process and a well chosen cost function, we propose a way to define
some novel optimal Runge-Kutta methods.
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AMS subject classifications: 34A45,65G20,65G40

1 Introduction

Many scientific applications in physical fields such as mechanics, robotics, chemistry
or electronics require solving differential equations. This kind of equation appears
e.g., when only the velocity and/or the acceleration are available in the modelling
of a system, while the location is required. In the general case, these differential
equations cannot be formally integrated, i.e., closed form solutions are not available,
and a numerical integration scheme is used to approximate the state of the system.
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2 Defining New Runge-Kutta methods with Interval Coefficients

The most classical approach is to use a Runge-Kutta scheme – carefully chosen with
respect to the problem, desired accuracy, and so on – to simulate the system behaviour.

Historically, the first method for numerical solution of differential equations was
proposed by Euler in Institutiones Calculi Integralis [8]. His main idea is based on
a simple principle: if a particle is located at y0 at time t0 and if its velocity at this
time is known to be equal to v0, then at time t1 the particle will be approximately
at position y1 = y0 + (t1 − t0)v0, at the condition that t1 is sufficiently close to t0
(then after a very short time), such that velocity do not change “too much”. Based on
this principle, C. Runge and M.W. Kutta developed around 1900 a family of iterative
methods, called now Runge-Kutta methods. While many such methods have been
proposed since then, a unified formalism and a deep analysis was proposed by Butcher
only in the sixties [5].

Almost from the beginning, after Euler, a race started to obtain new schemes, with
better properties or higher order of accuracy. It became quickly a global competition,
recently an explicit Runge-Kutta scheme at 14th order with 35 stages [9] and an implicit
Radau at 17th order with 9 stages [18] were prposed. From the beginning, methods are
discovered with the help of ingenuity in order to solve the highly complex problem,
such as polynomials with known zeros (Legendre for Gauss methods or Jacobi for
Radau) [11]; vanishing of some coefficients [11]; symmetry [9]. All these approaches,
based on algebraic manipulations, are reaching their limit due to the large number
of stages. Indeed, to obtain a new method, we need now to solve a high-dimensional
under-determined problem with floating-point arithmetic [20]. Even if some of them
use a multi-precision arithmetic, the result obtained is still not exact. A restriction to
the Runge-Kutta methods which have coefficients represented exactly in the computer
can be eventually considered [17]. However, this restriction is really strong because
only few methods can be used, and it is the opposite of our approach.

For this reason, a first application of interval coefficients for Runge-Kutta methods
is done in this paper which could be an interesting way of research for defining new
reliable numerical integration methods. In a premise, it is shown that the properties of
a Runge-Kutta scheme (such as order, stability, symplecticity, etc.) can be preserved
with interval coefficients, while they are lost with floating-point numbers. By the use
of interval analysis tools [13, 19], and more specifically the constraint programming
(CP) solver [22], a general method to build new methods with interval coefficients is
presented. Moreover, an optimization procedure allows us, with a well chosen cost
function, to define the optimal scheme. The new methods with interval coefficients,
obtained with our approach, have properties by inclusion, meaning that the resulting
interval box is guaranteed to contain a scheme that satisfies all the desired properties.
They can be either used in a classical numerical integration procedure (but computa-
tions have to be done with interval arithmetic), or in a validated integration one [2].
In both cases, the properties of the scheme will be preserved.

In this paper, a recurring reference will be done to the books of Hairer [11], which
gathers the majority of the results on Runge-Kutta theory.

Outlines. We recall the classical algorithm of a simulation of an ordinary differential
equation with Runge-Kutta methods in Section 2 as well as a brief introduction on the
modern theory of Runge-Kutta methods. In Section 3, we present the interval analysis
framework used in this work and the advantages of having Runge-Kutta methods with
interval coefficients. We analyze some of the properties of Runge-Kutta methods with
and without interval coefficients in Section 4. In Section 5, the constraint satisfaction
problem to solve in order to obtain a new scheme is presented. In Section 6, we
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present some results in experimentation, following in the Section 7 by the application
in validated simulation of the novel schemes obtained. In Section 8, we summarize the
main contributions of the paper.

Notations.

• ẏ denotes the time derivative of y, i.e., dy
dt

.

• a denotes a real values while a represents a vector of real values.

• [a] represents an interval values and [a] represents a vector of interval values (a
box).

• The midpoint of an interval [x] is denoted by m([x]).

• The variables y are used for the state variables of the system and t obviously
kept for the time.

• Sets will be represented by calligraphic letter such as X or Y.

• The real part and the imaginary part of a complex number z will be denoted by
<(z) and =(z) respectively.

• An interval with floating valued bounds is written in the short form e.g.,
0.123456[7, 8] to represent the interval [0.1234567, 0.1234568].

2 A Reminder on Runge-Kutta methods

The historical interest of Runge-Kutta methods was to compute a Taylor series ex-
pansion without any derivative computation, which was a difficult problem in 19th

Century. Now, automatic differentiation methods [10] can be used to efficiently com-
pute derivatives but Runge-Kutta methods are more than a simple technique to com-
pute Taylor series expansion. Mainly, Runge-Kutta methods have strong stability
properties (see Section 4 for a more formal definition) which make them suitable for
efficiently solving different classes of problem, especially, stiff systems. In particu-
lar, implicit methods can be algebraically stable, stiffly accurate and symplectic (see
Section 4.4). For this reason, the study of the properties of Runge-Kutta is highly
interesting, and the definition of new methods to build new Runge-Kutta methods
with strong properties is also of interest.

2.1 Numerical Integration with Runge-Kutta methods

Runge-Kutta methods can solve initial value problem (IVP) of non-autonomous Or-
dinary Differential Equations (ODEs) defined by

ẏ = f(t,y) with y(0) = y0 and t ∈ [0, tend] . (1)

The function f : R × Rn → Rn is called the flow, y ∈ Rn is called the vector of
state variables, and ẏ denotes the derivative of y with respect to time t. We shall
always assume at least that f is globally Lipschitz in y, so Equation (1) admits a
unique solution [11] for a given initial condition y0. Even more, for our purpose, we
shall assume that f is continuously differentiable as needed. The exact solution of
Equation (1) is denoted by y(t; y0).

The goal of a numerical simulation to solve Equation (1) is to compute a sequence
of time instants 0 = t0 < t1 < · · · < tN = tend (not necessarily equidistant) and a
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sequence of states y0, . . . , yN such that ∀` ∈ [0, N ], y` ≈ y(t`,y`−1), obtained by
the help of an integration scheme.

A Runge-Kutta method, starting from an initial value y` at time t` and a finite time
horizon h, the step-size, produces an approximation y`+1 at time t`+1, with t`+1−t` =
h, of the solution y(t`+1; y`). Furthermore, to compute y`+1, a Runge-Kutta method
computes s evaluations of f at predetermined time instants. The number s is known
as the number of stages of a Runge-Kutta method. More precisely, a Runge-Kutta
method is defined by

y`+1 = y` + h

s∑
i=1

biki , (2)

with ki defined by

ki = f

(
t` + cih,y` + h

s∑
j=1

aijkj

)
. (3)

The coefficient ci, aij and bi, for i, j = 1, 2, · · · , s, fully characterize the Runge-Kutta
methods and their are usually synthesized in a Butcher tableau [5] of the form

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

≡ c A

b
.

In terms of the form of the matrix A, made of the coefficients aij , a Runge-Kutta
method can be

• explicit, e.g., as the classical Runge-Kutta method of order 4 is given in Fig-
ure 1(a). In other words, the computation of the intermediate ki only depends
on the previous steps kj for j < i;

• diagonally implicit, e.g., as the diagonally implicit fourth-order method given in
Figure 1(b). In this case, the computation of an intermediate step ki involves
the value ki and so non-linear systems in ki must be solved. A method is singly
diagonally implicit if the coefficients on the diagonal are all equal;

• fully implicit, e.g., the Runge-Kutta fourth-order method with a Lobatto quadra-
ture formula given in Figure 1(c). In this last case, the computation of interme-
diate steps involves the solution of a non-linear system of equations in all the
values ki for i = 1, 2, · · · , s.

The order of a Runge-Kutta method is p if and only if the local truncation error,
i.e., the distance between the exact solution y(t`; y`−1) and the numerical solution y`
is such that:

y(t`; y`−1)− y` = O(hp+1) .

Some theoretical results have been obtained on the relation between the number of
stages s and the order p. For the explicit methods, there is no Runge-Kutta methods
of order p with s = p stages when p > 4. For the implicit methods, p = 2s is the
greater possible order for a given number of stages, and only Gauss-Legendre methods
have this capability [11].
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Figure 1: Different kinds of Runge-Kutta methods

2.2 Butcher’s Theory of Runge-Kutta Methods

One of the great ideas of John Butcher in [5] is to express on the same basis of
elementary differentials the Taylor expansion of the exact solution of (1) and the
Taylor expansion of the numerical solution. The elementary differentials are made
of sums of partial derivatives of f with respect to the components of y. Another
great idea of John Butcher in [5] is to relate these partial derivatives of order q to a
combinatorial problem to enumerate all the trees τ with exactly q nodes. From the
structure of a tree τ one can map a particular partial derivative, see Table 1 for some
examples. In consequence, one has the three following theorems which are used to
express the order condition of Runge-Kutta methods. In theorems 2.1 and 2.2, τ is
a rooted tree, F (τ) is the elementary differential associated to τ , r(τ) is the order
of τ (the number of nodes it contains), γ(τ) is the density, α(τ) is the number of
equivalent trees and ψ(τ) the elementary weight of τ based on the coefficients ci, aij
and bi defining a Runge-Kutta method, see [5] for more details. Theorem 2.1 defines
the q-th time derivative of the exact solution expressed with elementary differentials.
Theorem 2.2 defines the q-th time derivative of the numerical solution expressed with
elementary differentials. Finally, Theorem 2.3 formally defines the order condition of
the Runge-Kutta methods.

Theorem 2.1 The q-th derivative w.r.t. time of the exact solution is given by

y(q) =
∑
r(τ)=q

α(τ)F (τ)(y0) .

Theorem 2.2 The q-th derivative w.r.t. time of the numerical solution is given by

y
(q)
1 =

∑
r(τ)=q

γ(τ)ϕ(τ)α(τ)F (τ)(y0) .

Theorem 2.3 (Order condition) A Runge-Kutta method has order p iff

ϕ(τ) =
1

γ(τ)
∀τ, r(τ) 6 p .

These theorems give the necessary and sufficient conditions to define new Runge-
Kutta methods. In other words, they define a system of equations where the unkowns
are the coefficients ci, aij and bi which characterize a Runge-Kutta method. For
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Table 1: Rooted trees τ , elementary differentials F (τ), and their coefficients
r(τ) Trees F (τ) α(τ) γ(τ) ϕ(τ)

1 f 1 1
∑

i bi

2 f ′f 1 2
∑

ij biaij

3 f ′′(f , f) 1 3
∑

ijk biaijaik

3 f ′f ′f 1 6
∑

ijk biaijajk

4 f ′′′(f , f , f) 1 4
∑

ijkl biaijaikail

4 f ′′(f ′f , f) 3 8
∑

ijkl biaijaikajl

4 f ′f ′′(f , f) 1 12
∑

ijkl biaijajkajl

4 f ′f ′f ′f 1 24
∑

ijkl biaijajkakl

example, for the first four orders, and following the order condition, the following
constraints on the derivative order have to be solved to create a new Runge-Kutta
method

• order 1:
∑
bi = 1

• order 2:
∑
biaij = 1

2

• order 3:
∑
cibiaij = 1

6
,
∑
bic

2
i = 1

3

• order 4:
∑
bic

3
i = 1

4
,
∑
biciaijcj = 1

8
,
∑
biaijc

2
j = 1

12
,
∑
biaijajkck = 1

24

The total number of constraints increases exponentially: 8 for the 4th order, 17 for
the 5th order, 37, 85, 200, etc. Note also an additional constraint, saying that the ci
must be increasing, has to be taken into account, and also that ci are such that

ci =
∑
j

aij .

These constraints are the smallest set of constraints, known as Butcher rules, which
have to be validated in order to define new Runge-Kutta methods.

Additionally, other constraints can be added to define particular structure of
Runge-Kutta methods [5], as for example, to make it

• Explicit: aij = 0, ∀j ≥ i
• Singly diagonal: a1,1 = · · · = as,s

• Diagonal implicit: aij = 0,∀j > i

• Explicit first line: a11 = · · · = a1s = 0

• Stiffly accurate: asi = bi, ∀i = 1, . . . , s

• Fully implicit: aij 6= 0,∀i, j = 1, . . . , s

Note that historically, some simplifications on this set of constraints were used to
reduce the complexity of the problem. For example, to obtain a fully implicit scheme
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with a method based on Gaussian quadrature (see [6] for more details), the c1, . . . , cs
are the zeros of the shifted Legendre polynomial of degree s, given by:

ds

dxs
(xs(x− 1)s).

This approach is called the “Kuntzmann-Butcher methods” and is used to characterize
the Gauss-Legendre methods [6]. Another example: by finding the zeros of

ds−2

dxs−2
(xs−1(x− 1)s−1),

the Lobatto quadrature formulas is obtained (see Figure 1(c)).
The problems of this approach are obvious. First, the resulting Butcher tableau is

guided by the solver and not by the requirements on the properties. Second, a numer-
ical computation in floating-point numbers is needed, and because suh computations
are not exact, the constraints may not be satisfied.

We propose an interval analysis approach to solve these constraints and hence
produce reliable results. More precisely, we follow the constraint satisfaction problem
approach.

3 Runge-Kutta with Interval Coefficients

As seen before in Section 2.2, the main constraints are the order conditions, also called
Butcher rules. Two other constraints need to be considered: the sum of aij is equal to
ci for all the table lines; and the ci are increasing with respect to i. These constraints
have to be fulfilled to obtain a valid Runge-Kutta method and they can be gathered
in a Constraint Satisfaction Problem (CSP).

Definition 3.1 (CSP) A numerical (or continuous) CSP (X ,D, C) is defined as fol-
lows:

• X = {x1, . . . , xn} is a set of variables which is also represented by the vector x.

• D = {[x1], . . . , [xn]} is a set of domains ([xi] contains all possible values of xi).

• C = {c1, . . . , cm} is a set of constraints of the form ci(x) ≡ fi(x) = 0 or
ci(x) ≡ gi(x) 6 0, with fi : Rn → R, gi : Rn → R for 1 6 i 6 m. Constraints C
are interpreted as a conjunction of equalities and inequalities.

An evaluation of the variables is a function from a subset of variables to a set of values
in the corresponding subset of domains. An evaluation is consistent if none constraint
is violated. An evaluation is complete if it includes all variables. The solution of a
CSP is a complete and consistent evaluation.

In the particular case of continuous (or numerical) CSPs, interval based techniques
provide generally one or a list of boxes which enclose the solution. The approach of
CSP is at the same time powerful to address complex problems (NP-hard problem
with numerical issues, even in critical applications) and simple in the definition of a
solving framework [3, 15].

Indeed, the classical algorithm to solve a CSP is the branch-and-prune algorithm
which needs only an evaluation of the constraints and an initial domain for variables.
While this algorithm is sufficient for many problems, to solve other problems some im-
provements have been achieved and the algorithms based on contractors have emerged
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[7]. The branch-and-contract algorithm consists in two main steps: i) the contrac-
tion (or filtering) of one variable and the propagation to the others till a fixed point
reached, then ii) the bisection of the domain of one variable in order to obtain two
problems, easier to solve.

A more detailed description follows.

Contraction A filtering algorithm or contractor is used in a CSP solver to reduce
the domain of variables till a fixed point (or close to), by respecting the local consis-
tencies. A contractor Ctc can be defined with the help of constraint programming,
analysis or algebra, but it must satisfy three properties:

• Ctc(D) ⊆ D: the contractance,

• Ctc cannot remove any solution: it is conservative,

• D′ ⊆ D ⇒ Ctc(D′) ⊆ Ctc(D): the monotonicity.

There are many contractor operators defined in the literature, among them the most
notorious are:

• (Forward-Backward contractor) By considering only one constraint, this method
computes the interval enclosure of a node in the tree of constraint operations
with the children domains (the forward evaluation), then refines the enclosure
of a node in terms of parents domain (the backward propagation). For example,
from the constraint x + y = z, this contractor refines initial domains [x], [y]
and [z] from a forward evaluation [z] = [z] ∩ ([x] + [y]), and from two backward
evaluations [x] = [x] ∩ ([z]− [y]) and [y] = [y] ∩ ([z]− [x]).

• (Newton contractor) This contractor, based on first order Taylor interval exten-
sion: [f ]([x]) = f(x∗) + [Jf ]([x])([x]− x∗) with x∗ ∈ [x], has the property of: if
0 ∈ [f ]([x]), then [x]k+1 = [x]k ∩ x∗ − [Jf ]([x]k)−1f(x∗) is a tighter inclusion of
the solution of f(x) = 0. Some other contractors based on Newton have been
defined such as Krawczyk [13].

Propagation If a variable domain has been reduced, the reduction is propagated
to all the constraints involving that variable, which allows to narrow the other variable
domains. This process is repeated until a fixed point is reached.

Branch-and-Prune A Branch-and-Prune algorithm consists on alternatively br-
anching and pruning to produce two sub-pavings L and S, with L the boxes too small
to be bisected and S the solution boxes. We are then sure that all solutions are
included in L ∪ S and that every point in S is a solution.

Specifically, this algorithm browses a list of boxes W, initially W is set with a
vector [x] made of the elements of D, and for each one i) Prune: the CSP is evaluated
(or contracted) on the current box, if it is a solution it is added to S, otherwise ii)
Branch: if the box is large enough, it is bisected and the two boxes resulting are added
into W, otherwise the box is added to L.

Example 3.1 An example of the problems that the previously presented tools can solve
is taken from [16]. The considered CSP is defined such that:

• X = {x, y, z, t}
• D = {[x] = [0, 1000], [y] = [0, 1000], [z] = [0, 3.1416], [t] = [0, 3.1416]}
• C = {xy+ t− 2z = 4;x sin(z) + y cos(t) = 0;x− y+ cos2(z) = sin2(t);xyz = 2t}
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To solve this CSP we use a Branch-and-Prune algorithm with the Forward-Backward
contractor and a propagation algorithm. The solution ([1.999, 2.001], [1.999, 2.001],
[1.57, 1.571], [3.14159, 3.1416]) is obtained with only 6 bisections. �

3.1 Correctness of CSP Applied to Butcher Rules

By construction, the approach of CSP guarantees that the exact solution of the prob-
lem, denoted by (ãij , b̃i, c̃i), is included in the solution provided by the corresponding
solver, given by ([aij ], [bi], [ci]). The Butcher rules are then preserved by inclusion
through the use of interval coefficients.

Theorem 3.1 If Runge-Kutta coefficients are given by intervals obtained by a CSP
solver on constraints coming from the order condition defined in Theorem 2.3 then
they contain at least one solution which satisfies the Butcher rules.

Proof: Starting from the order condition defined in Theorem 2.3, and gathered
with more details in [2], if the Runge-Kutta coefficients are given by intervals, such
that ãij ∈ [aij ], b̃i ∈ [bi], c̃i ∈ [ci], then [ϕ(τ)] 3 1

γ(τ)
∀τ, r(τ) ≤ p. In other terms,

y(q) ∈ [y
(q)
1 ],∀q ≤ p, and then the derivatives of the exact solution is included in

the numerical one, and by the way the Taylor series expansion of the exact solution
is included (monotonicity of the interval sum) in the Taylor series expansion of the
numerical solution obtained with Runge-Kutta method with interval coefficients.

Remark 3.1 If a method is given with interval coefficients, such that ãij ∈ [aij ], b̃i ∈
[bi], c̃i ∈ [ci], there is an over-estimation on the derivatives |y(q) − [y

(q)
1 ]|. In order to

make this over-approximation as small as possible, the enclosure of coefficients has to
be as sharp as possible.

3.2 Link with Validated Numerical Integration Methods

To make Runge-Kutta validated [2], the challenging question is how to compute a
bound on the difference between the true solution and the numerical solution, defined
by y(t`; y`−1) − y`. This distance is associated to the local truncation error (LTE)
of the numerical method. We showed that LTE can be easily bounded by using the
difference between the Taylor series of the exact and the numerical solutions, which
is reduced to LTE = y(p+1)(t`)− [y

(p+1)
` ], with p the order of the considered method.

This difference has to be evaluated on a specific box, obtained with the Picard-Lindelöf
operator, but this is out of the scope of this paper, see [2] for more details. For a method
with interval coefficients, the LTE is well bounded (even over-approximated), which
is not the case for a method with floating-point coefficients. For a validated method,
the use of interval coefficients is then a requirement.

4 Stability Properties with Interval Coefficients

Runge-Kutta methods have strong stability properties which are not present for other
numerical integration methods such as multi-step methods, e.g., Adams-Moulton meth-
ods or BDF methods [11]. It is interesting to understand that these properties, proven
in theory, are lost in practice if we use floating-point number coefficients. In this sec-
tion, we show that the properties of Runge-Kutta methods are preserved with the use
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of interval coefficients in the Butcher tableau. The definition of stability can have very
different form depending on the class of considered problems.

4.1 Notion of Stability

In [11], the authors explain that when we do not have the analytical solution of a
differential problem, we must be content with numerical solutions. As they are ob-
tained for specified initial values, it is important to know the stability behaviour of
the solutions for all initial values in the neighbourhood of a certain equilibrium point.

For example, we consider a linear problem ẏ = Ay, with exact solution y(t) =
exp(At)y0. This solution is analytically stable if all trajectories remain bounded as
t→∞. Theory says that it is the case if and only if the real part of the eigenvalues of
A are strictly negative. If a numerical solution of this problem is computed with the
Euler method, the obtained system is:

y(t∗ + h) ≈ y(t∗) + Ahy(t∗) = (I + Ah)y(t∗) = Fx(t∗) .

In the same manner, explicit Euler method is analytically stable if the discretized
system yk+1 = Fyk is analytically stable.

Many classes of stability exist, such as A-stability, B-stability, A(α)-stability, Alge-
braic stability, see [11] for more details. As for the linear example above, each stability
is linked to a particular class of problems.

4.2 Linear Stability

We focus on linear stability for the explicit methods, which is easier to study and
enough to justify the use of interval coefficients. For the linear stability, classical
approach consists in computing the stability domain of the method. The stability
function of explicit methods is given by [11]:

R(z) = 1 + z
∑
j

bj + z2
∑
j,k

bjajk + z3
∑
j,k,l

bjajkakl + . . . , (4)

which can be written if the Runge-Kutta method is of order p as

R(z) = 1 + z +
z2

2!
+
z3

3!
+ · · ·+ zp

p!
+O(zp+1) . (5)

For example, the stability function for a fourth-order method with four stages,
such as the classic RK4 one, given in Figure 1(a), is:

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
(6)

The stability domain is then defined by S = {z ∈ C : |R(z)| 6 1}. This definition of S
can be transformed into a constraint on real numbers following an algebraic process
on complex numbers such as

S = {(x, y) : <
(√
<(R(x+ iy))2 + =(R(x+ iy))2

)
6 1}
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The constraint produced is given in Equation (7).(
1

6
x3y +

1

2
x2y − 1

6
xy3 + xy − 1

6
y3+

y2 +
1

24
x4 +

1

6
x3 − 1

4
x2y2 +

1

2
x2 − 1

2
xy2 + x+

1

24
y4 − 1

2
y2 + 1

) 1
2

6 1 (7)

The set S is now defined by a constraint on real numbers x, y and can be easily
computed by a classic paving method [13]. The result of this method is marked as
blue in in Figure 2 for an explicit Runge-Kutta fourth-order method with four stages,
such as the classic Runge-Kutta one (RK4).

We can study the influence of the numerical accuracy on the linear stability. If we
compute the coefficients (for example 1/6 and 1/24) with low precision (even exagger-
atedly in our case), the stability domain is reduced as shown in Figure 2.

First, we consider an error of 1× 10−8, which is the classical precision of floating-
point numbers for some tools (see Figure 2 on the left). For example, the coefficient
equal in theory to 1/6 is encoded by 0.16666667. After, we consider an error of 0.1 on
this example in order to see the impact, the stability domain becomes the same than
a method of first order such as Euler. If it seems to be exaggerated, in fact it is not
rare to find old implementation of Runge-Kutta with only one decimal (see Figure 2
on the right).

Figure 2: Paving of stability domain for RK4 method with high precision coef-
ficients (blue) and with small error (red) on coefficients (left) and large error on
coefficients (right).

4.3 Algebraic Stability

Another interesting stability of Runge-Kutta methods is the algebraic stability which
is useful for stiff problems or to solve algebraic-differential equations. A method is
algebraically stable if the coefficients aij and bi in the Butcher tableau are such that

bi ≥ 0, ∀i = 1, . . . , s : M = (mij) = (biaij + bjaji − bibj)si,j=1 is non-negative definite.

The test for non-negative definiteness can be done with constraint programming
by solving the eigenvalue problem det(M−λI) = 0 and proving that λ > 0. I denotes
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the identity matrix of dimension s × s. For example, with three stages Runge-Kutta
method, i.e., s = 3, the constraint is:

(m11 − λ)((m22 − λ)(m33 − λ)−m23m32)−m12(m21(m33 − λ)−m23m13)+

m31(m21m32 − (m22 − λ)m31) = 0. (8)

Based on a contractor programming approach [7], the CSP to solve is:

Equation (8) has no solution in ]−∞, 0[ ≡ M is non-negative definite.

A contractor based on Forward/Backward algorithm is applied to the initial interval
[−1× 108, 0], if the result obtained is the empty interval, then Equation (8) has no
negative solution, and M is non-negative definite, in consequence the studied method
is algebraically stable.

We apply this method to the three-stages Lobatto IIIC and the result of contractor
is empty, proving there is no negative eigenvalue, hence the matrix M is non-negative
definite and the Lobatto IIIC method is algebraically stable, which is conform to
the theory. By the same way, we apply it to the three-stages Lobatto IIIA and the
contractor find at least one negative eigenvalue (−0.048 112 5) and then this method
is not algebraically stable, which is also conform to the theory.

Now, if an algebraically stable method is implemented with coefficients in floating-
point numbers, this property is lost. Indeed, an error of 1× 10−9 on aij is enough to
lose the algebraically stable property for Lobatto IIIC methods (a negative eigenvalue
appears equal to −1.030 41× 10−5).

4.4 Symplecticity

Finally, another property of Runge-Kutta methods is tested, the symplecticity. This
property is linked to a notion of energy conservation. A numerical solution obtained
with a symplectic method preserves an energy quantity, without formally expressing
the corresponding law.

Definition 4.1 (Symplectic integration methods) Considering the Hamiltonian
systems, given by

ṗi = −∂H
∂qi

(p, q), q̇i = −∂H
∂pi

(p, q), (9)

have two remarquable properties: i) the solutions preserve the Hamiltonian H(p, q);
ii) the corresponding flow is symplectic, i.e., preserves the differential 2-form ω2 =∑n
i=1 dpi∧dqi. A numerical method used to solve Equation (9), while preserving these

properties, is a symplectic integration method.

Definition 4.2 (Symplectic interval methods) A Runge-Kutta method with in-
terval coefficients {[b], [c], [A]}, such that a method defined by {b, c,A} with b ∈ [b],
c ∈ [c], and A ∈ [A] is symplectic, is a symplectic interval methods.

A Runge-Kutta method is symplectic if it satisfies the condition M = 0, where

M = (mij) = (biaij + bjaji − bibj)si,j=1.

With interval computation of M, it is possible to verify if 0 ∈M, which is enough to
prove that the method with interval coefficients is symplectic. Indeed, it is sufficient
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to prove that it exists a trajectory inside the numerical solution which preserves a
certain energy conservation.

We apply this approach to the three-stages Gauss-Legendre method with coeffi-
cients computed with interval arithmetic. The matrix M contains the zero matrix (see
Equation (10)) and then this method is symplectic, which is in agreement with the
theory.

M =

[−1.3e−17, 1.4e−17] [−2.7e−17, 2.8e−17] [−2.7e−17, 1.4e−17]
[−2.7e−17, 2.8e−17] [−2.7e−17, 2.8e−17] [−1.3e−17, 4.2e−17]
[−2.7e−17, 1.4e−17] [−1.3e−17, 4.2e−17] [−1.3e−17, 1.4e−17]

 (10)

Now, if we compute only one term of Gauss-Legendre method with floating-point
numbers, for example a1,2 = 2.0/9.0 −

√
15.0/15.0, the property of symplecticity is

lost (see Equation (11)).

M = [−1.3e−17, 1.4e−17] [−1.91e−09,−1.92e−09] [−2.7e−17, 1.4e−17]
[−1.91e−09,−1.92e−09] [−2.7e−17, 2.8e−17] [−1.3e−17, 4.2e−17]

[−2.7e−17, 1.4e−17] [−1.3e−17, 4.2e−17] [−1.3e−17, 1.4e−17]

 (11)

5 A Constraint Optimization Approach to De-
fine New Runge-Kutta Methods

In the previous section, the properties of Runge-Kutta methods with interval coeffi-
cients in the Butcher tableau have been studied, and we show that these properties are
preserved with intervals while they are often lost with floating-point numbers. In this
section, an approach based on constraint optimization is presented to obtain optimal
Runge-Kutta methods with interval coefficients. The cost function is also discussed,
while the solving procedure is presented in the section 6.1.

5.1 Constraints

The constraints to solve to obtain a novel Runge-Kutta method are the one presented
in Section 2.2 and the approach is based on CSP solver based on contractors and
branching algorithm (see Section 3). The considered problem can be under-constrained
and more than one solution can exist (for example, there are countless fully implicit
fourth-order methods with three stages). With interval analysis approach, which is
based on set representation, a continuum of coefficients can be obtained. As the
coefficients of Butcher tableau has to be as tight as possible to obtain sharp enclosure of
the numerical solution, a continuum (or more than one) of solutions is not serviceable.
Indeed, in a set of solutions, or a continuum, it is interesting to find an optimal solution,
w.r.t. a given cost.

Note that using the framework of CPS, adding a cost function and hence solving
a constraint optimization problem can be done following classical techniques such as
those defined in [12].
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5.2 Cost function

In the literature, a cost function based on the norm of the local truncation error is
sometimes chosen [21].

5.2.1 Minimizing the LTE

There exist many explicit second-order methods with two stages. A general form has
been defined as shown in Table 2. With α = 1, this method is Heun, while α = 1/2
provides the midpoint one (see [5] for details about these methods).

0 0
α α

1-1/(2α) 1/(2α)

Table 2: General form of ERK with 2 stages and order 2

Ralston has proven that α = 2/3 minimizes the sum of square of coefficients of
rooted trees in the local truncation error computation [6], which is given by:

min
α

(−3α/2 + 1)2 + 1 (12)

The resulting Butcher tableau is given in Table 3.

0 0
2/3 2/3

1/4 3/4

Table 3: Ralston method

5.2.2 Maximizing order

Another way to obtain a similar result is to try to attain one order up to the desired
one. For example, if, as Ralston, we try to build an explicit second-order method with
two stages but as close as possible to the third order by minimizing:

min
aij ,bi,ci

(∑
cibiaij −

1

6

)2

+

(∑
bic

2
i −

1

3

)2

. (13)

The same result is obtained (Table 4). This way of optimization is more interesting
for us in the fact that it reuses the constraint generated by the order condition. it
also minimizes the LTE at a given order p because it tends to a method of order p+ 1
which has a LTE equal to zero at this order. It is important to note that minimizing
the LTE or maximizing the order leads to the same result, the difference is in the
construction of the cost function and in the spirit of the approach.

6 Experiments

Experiments are performed to, first re-discover the theory of Butcher and, second, find
novel methods with desired structure.
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Table 4: Ralston method with interval coefficients
[−0, 0] [−0, 0]

0.6...6[6, 7] 0.6...6[6, 7]
[0.25, 0.25] [0.75, 0.75]

6.1 Details of Implementation

To implement the approach presented in this paper, two steps need to be performed.
The first one is a formal procedure used to generate the CSP, and the second one is a
CSP solver based on interval analysis.

6.1.1 Definition of the Desired Method and Generation of the CSP

The definition of the desired method consists in the choice of

• Number of stages of the method

• Order of the method

• Structure of the method (Singly diagonal, Explicit method, dirk method, Ex-
plicit first line and/or Stiffly accurate)

Based on this definition and the algorithm defined in [4], a formal procedure gener-
ates the constraints associated to Butcher rules and to the structure (see Section 2.2),
and eventually a cost function (see Section 5.2.2).

6.1.2 Constraint Programming and Global Optimization

The solving of the problem is done with Ibex, library for interval computation with
constraint solver and global optimizer.

This library can address two major problem [1]:

• System solving: A guaranteed enclosure for each solution of a system of (non-
linear) equations is calculated.

• Global optimization: A global minimizer of some function under non-linear
constraints is calculated with guaranteed bounds on the objective minimum.

Global optimization is performed with an epsilon relaxation, then the solution is
optimal but the constraints are satisfied w.r.t. the relaxation. A second pass with
the constraint solver is then needed to find the validated solution inside the inflated
optimal solution. The solver provides its result under the form of an interval vector
such as ([bi], [ci], [aij ]).

In the following, some experiments are performed. First, the constraint solving
part, which allows us to find methods with sufficient constraints to be the only one
solution, is experimented. Second, the global optimizer is used to find the optimal
methods which are under-constrained by order conditions. Both parts are used to find
the existing methods and a potentially new ones. In the following just few methods
that can be computed are shown. Indeed, the methods that can be obtained are
numerous.
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6.2 Constraint Solving

The first part of the presented approach is applied. It allows one to solve the constraints
defined during the user interface process, without cost function. This option permits

• to find a method if there is only one solution (well-constrained problem),

• to know if there is no solution available,

• to validate the fact that there is a continuum in which an optimum can be found.

In order to prove the efficiency of this solving part, we apply it with user choices that
leads to existing methods and well-known results. After that, we describe some new
interesting methods.

6.2.1 Existing Methods

Only One Fourth-Order Method with Two Stages: Gauss-Legendre
If we are looking for a fourth-order fully implicit method with two stages, the theory
says that only one method exists, the Gauss-Legendre scheme. In the following, we
try to obtain the same result with the solving part.

The CSP for this method is defined as follows:

X = {b, c,A}

D = {[−1, 1]2, [0, 1]2, [−1, 1]4}

C =



b0 + b1 − 1 = 0

b0c0 + b1c1 −
1

2
= 0

b0(c0)2 + b1(c1)2 − 1

3
= 0

b0a00c0 + b0a01c1 + b1a10c0 + b1a11c1 −
1

6
= 0

b0(c0)3 + b1(c1)3 − 1

4
= 0

b0c0a00c0 + b0c0a01c1 + b1c1a10c0 + b1c1a11c1 −
1

8
= 0

b0a00(c0)2 + b0a01(c1)2 + b1a10(c0)2 + b1a11(c1)2 − 1

12
= 0

b0a00a00c0 + b0a00a01c1 + b0a01a10c0 + b0a01a11c1 + b1a10a00c0+

b1a10a01c1 + b1a11a10c0 + b1a11a11c1 −
1

24
= 0

a00 + a01 − c0 = 0

a10 + a11 − c1 = 0

c0 < c1


The results of the solver is that there is only one solution, and if this result is

written under the Butcher tableau form (Table 5), we remark that this method is a
numerically guaranteed version of Gauss-Legendre.

No Fifth-Order Method with Two Stages It is also easy to verify that
there is no fifth-order methods with two stages. The CSP generated is too large to be
exposed here. The solver proves that there is no solution in less than 0.04 seconds.
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Table 5: Guaranteed version of Gauss-Legendre
0.21132486540[5, 6] [0.25, 0.25] −0.038675134594[9, 8]
0.78867513459[5, 6] 0.53867513459[5, 6] [0.25, 0.25]

[0.5, 0.5] [0.5, 0.5]

Third-Order SDIRK Method with Two Stages The solver is used to obtain
a third-order Singly Diagonal Implicit Runge-Kutta (SDIRK) method with two stages.
The result obtained is gathered in Table 6. This method is known, it is the SDIRK
method with λ = 1/2(1− 1/

√
3).

Table 6: Third-order SDIRK method with two stages
0.21132486540[5, 6] 0.21132486540[5, 6] [0, 0]
0.78867513459[5, 6] 0.577350269[19, 20] 0.21132486540[5, 6]

[0.5, 0.5] [0.5, 0.5]

6.2.2 Other Methods

Now, it is possible to obtain new methods with the presented approach.

Remark 6.1 It is hard to be sure that a method is new because there is no database
gathering all the methods.

A Fourth-Order Method with Three Stages, Singly and Stiffly Accu-
rate In theory, this method is promising because it has the capabilities wanted for
stiff problems (and for differential algebraic equations), singly to optimize the Newton
solving and stiffly accurate to be more efficient w.r.t. stiffness. Our approach find a
unique method responding to these requirements, which is an unknown method. The
result is presented in Table 7.

Table 7: A fourth-order method with three stages, singly and stiffly accurate:
S3O4
0.1610979566[59, 62] 0.105662432[67, 71] 0.172855006[54, 67] −0.117419482[69, 58]
0.655889341[44, 50] 0.482099622[04, 10] 0.105662432[67, 71] 0.068127286[68, 74]

[1, 1] 0.3885453883[37, 75] 0.5057921789[56, 65] 0.105662432[67, 71]
0.3885453883[37, 75] 0.5057921789[56, 65] 0.105662432[67, 71]

A Fifth-Order Method with Three Stages, Explicit First Line With
only 6 non zero coefficients in the intermediate computations, this method could be
a good agreement between a fourth-order method with four intermediate computa-
tions (fourth-order Gauss-Legendre) and six-order with nine intermediate computa-
tions (sixth-order Gauss-Legendre). As we know, there is no Runge-Kutta method
with the same capabilities than Gauss-Legendre method, but at the fifth order. The
result is presented in Table 8.
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Table 8: A fifth-order method with three stages, explicit first line: S3O5
[0, 0] [0, 0] [0, 0] [0, 0]

0.355051025[64, 86] 0.152659863[17, 33] 0.220412414[50, 61] −0.0180212520[53, 23]
0.844948974[23, 34] 0.087340136[65, 87] 0.57802125[20, 21] 0.179587585[44, 52]

0.111111111[03, 26] 0.512485826[00, 36] 0.376403062[61, 80]

6.3 Global Optimization

In the case that the first solving part provides more than one solution, or a continuum
of solutions, we are able to define an optimization cost to find the best solution with
respect to a given cost. We decide to use a cost which implies that the method tends
to an higher order (Section 5.2).

6.3.1 Existing Methods

Ralston We obtain the same result than the one published by Ralston in [21], and
described in Section 5.2.2.

Infinitely many Second-Order Methods with Two Stages, Stiffly Ac-
curate and Fully Implicit The theory says that there is infinitely many second-
order methods with two stages, stiffly accurate and fully implicit. But there is only
one method at the third order: radauIIA.

The generated CSP for this method is defined as follows:

X = {b, c,A}

D =
{

[−1, 1]2, [0, 1]2, [−1, 1]4
}

C =



b0 + b1 − 1 6 ε

b0 + b1 − 1 > −ε

b0c0 + b1c1 −
1

2
6 ε

b0c0 + b1c1 −
1

2
> −ε

a00 + a01 − c0 = 0

a10 + a11 − c1 = 0

c0 6 c1

a10 − b0 = 0

a11 − b1 = 0


Minimize

(
b0(c0)2 + b1(c1)2 − 1

3

)2

+

(
b0a00c0 + b0a01c1 + b1a10c0 + b1a11c1 −

1

6

)2

The optimizer find an optimal result in less than 4 seconds, see Figure 9.

The cost of this solution is in [−∞, 2.89× 10−11], which means that 0 is a possible
cost, that is to say that a third-order method exists. A second pass with the solver is
needed to find the acceptable solution (without relaxation) by fixing some coefficients
(b1 = 0.75 and c2 = 1 for examples). And the RadauIIA well known method is
obtained.
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Table 9: Method close to RadauIIA obtained by optimization
0.333333280449 0.416655823215 −0.0833225527662
0.999999998633 0.749999932909 0.250000055725

0.749999939992 0.250000060009

6.3.2 Other Methods

Now, we are able to obtain new methods with our optimizing procedure.

An Optimal Explicit Third-Order Method with Three Stages There is
infinitely many explicit (3, 3)-methods, but there is no fourth-order methods with three
stages. Our optimization process helps us to produce a method as close as possible
to the fourth order (see Table 10). The corresponding cost is given in 0.00204[35, 49].
As explained before, this method is not validated due to relaxed optimization. We fix
some coefficients (enough to obtain only one solution) by adding the constraints given
in Equation 14. After this first step, the solver is used to obtain a guaranteed method,
close to the fourth order (see Table 11).

b1 > 0.195905;

b1 < 0.195906;

b2 > 0.429613;

b2 < 0.429614;

b3 > 0.37448000;

b3 < 0.37448001;

c2 > 0.4659;

c2 < 0.4660;

c3 > 0.8006;

c3 < 0.8007;

a32 > 0.9552;

a32 < 0.9553;

a31 > −0.1546;

a31 < −0.1545;

(14)

Table 10: An optimal explicit third-order method with three stages (not vali-
dated due to relaxation)

1.81174261766e-08 6.64130952624e-09 9.93482546211e-09 -1.11126730095e-09
0.465904769163 0.465904768843 -1.07174862901e-09 3.94710325991e-09
0.800685593936 -0.154577204301 0.955262788613 9.99497058355e-09

0.195905959102 0.429613967179 0.37448007372

If we compute the order conditions till fourth order, we verify that this method is
third order by inclusion, and close to fourth one. We compute the Euclidean distance
between order condition and obtained values. For our optimal method the distance is
0.045221[2775525, 3032049] and for Kutta(3,3) [14], which is known to be one of the
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Table 11: A guaranteed explicit third-order method with three stages, the closest
to fourth order

[0, 0] [0, 0] [0, 0] [0, 0]
0.4659048[706, 929] 0.4659048[706, 929] [0, 0] [0, 0]
0.8006855[74, 83] −0.154577[20, 17] 0.9552627[48, 86] [0, 0]

0.19590[599, 600] 0.42961[399, 400] 0.3744800[0, 1]

best explicit (3,3) method1, 0.058926. Our method is then closer to the fourth order
than Kutta(3,3). As we know, this method is new.

Table 12: Order condition till the fourth order
Order Result of optimal method Order condition

Order 1 [0.99999998, 1.00000001] 1
Order 2 [0.499999973214, 0.500000020454] 0.5
Order 3 [0.33333330214, 0.333333359677] 0.333333333333
Order 3 [0.166666655637, 0.166666674639] 0.166666666667
Order 4 [0.235675128044, 0.235675188505] 0.25
Order 4 [0.133447581964, 0.133447608305] 0.125
Order 4 [0.0776508066238, 0.0776508191916] 0.0833333333333
Order 4 [0, 0] 0.0416666666667

Figure 3: Paving of stability domain for RK4 method with high precision coef-
ficients (blue) and for ERK33 (green).

7 Implementation in DynIBEX Library

DynIBEX offers a set of validated numerical integration methods based on Runge-
Kutta schemes to solve initial value problem of ordinary differential equations and for

1”Von den neueren Verfahren halte ich das folgende von Herrn Kutta angegebene für das
beste.“, C.Runge 1905 [11]
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DAE in Hessenberg index 1 form. Even if our approach is not dedicated to validated
integration but also for classical numerical integration, with interval coefficients, the
validated integration allows us to obtain a validated enclosure of the final solution
of the simulation. This enclosure provides, with its diameter, a guaranteed measure
of the performance of integration scheme. Time of computation increases very fast
w.r.t. order of the method because of the LTE, its complexity is O(np+1), with n
the dimension of problem and p the order. The experiments promote the sharpest
enclosure of the final solution for the lower possible order.

We implement three new methods: S3O4 (Table 7), S3O5 (Table 8), and ERK33
(Table 11).

7.1 Experiments with S3O4

The test is based on the oil reservoir problem, which is a stiff problem, given by the
initial value problem:

ẏ =

[
ẏ0
ẏ1

]
=

[
y1

y21 − 3
ε+y20

]
, with y(0) = (10, 0)T and ε = 1× 10−4 . (15)

A simulation till t = 40s is performed. This problem being stiff, the results of the
new method S3O4 are compared with the Radau family, specially the RadauIIA at
the third and fifth orders. The results are gathered in Table 13.

Table 13: Results for S3O4
Methods time nb of steps norm of diameter of final solution

S3O4 39 1821 5.9× 10−5

Radau3 52 7509 2.0× 10−4

Radau5 81 954 7.6× 10−5

S3O4 is a singly implicit scheme to optimize the Newton solving and stiffly accurate
to be more efficient w.r.t. stiff problem. Based on experimental results, S3O4 seems to
be as efficient than RadauIIA at fifth order, but faster than RadauIIA at third order.

7.2 Experiments with S3O5

The test is based on an interval problem, which can explode very fast, given by the
initial value problem:

ẏ =

ẏ0ẏ1
ẏ2

 =

 1
y2

y31
6
− y1 + 2 sin(λy0)

 , with y(0) = (0, 0, 0)T and λ ∈ [2.78, 2.79] .

(16)
A simulation till t = 10s is performed. This problem including an interval parameter,
a comparison with Gauss-Legendre family makes sense, they have a good contracting
property. Comparison is then performed with Gauss-Legendre at the fourth and sixth
orders. Results are gathered in Table 14.

The obtained results show that S305 is more efficient than sixth-order Gauss-
Legendre method and five time faster. If fourth-order Gauss-Legendre method is two
time faster, the final solution is much wider.
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Table 14: Results for S3O5
Methods time nb of steps norm of diameter of final solution

S3O5 92 195 5.9
Gauss4 45 544 93.9
Gauss6 570 157 7.0

7.3 Experiments with ERK33

The test is based on the classical Van der Pol problem, which contains a limit circle,
given by the initial value problem:

ẏ =

[
ẏ0
ẏ1

]
=

[
y1

µ(1− y20)y1 − y0

]
, with y(0) = (2, 0)T and µ = 1 . (17)

A simulation till t = 10s is performed. This problem containing a limit circle is can
be effectively simulate with an explicit scheme. The two most famous explicit Runge-
Kutta is RK4, the most used, and Kutta, known to be the optimal explicit third-order
scheme. We then compare ERK33 with these methods, and the results are presented
in Table 15.

Table 15: Results for ERK33
Methods time nb of steps norm of diameter of final solution
ERK33 3.7 647 2.2× 10−5

Kutta(3,3) 3.5 663 3.4× 10−5

RK4 4.3 280 1.9× 10−5

Results show that ERK33 is equivalent in time consuming but with performances
closer to RK4.

7.4 Discussion

After experimentation with the three new Runge-Kutta methods obtained with the
constraint programming approach presented in this paper, it is clear that these meth-
ods are effective. Moreover, even with coefficients of the Butcher tableau expressed in
intervals with a diameter of 1× 10−10 (for S3O4 described in Table 7 and S3O5 de-
scribed in Table 8) to 1× 10−8 (for ERK33 described in Table 11), the final solution is
often narrower for the same or higher order methods with exact coefficients. A strong
analysis is needed, but it seems that by guaranteeing the properties of the method,
the contractivity of the integration schemes is improved.

8 Conclusion

In this paper, a new approach has been presented to discover new Runge-Kutta meth-
ods with interval coefficients. In a first step, we demonstrate the interest of interval
coefficients to preserve properties of scheme such as stability or symplecticity, unlike
coefficients expressed in floating-point numbers. Two tools have been shown, a CSP
solver used to find the unique solution of the Butcher rules, and an optimizer procedure
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to obtain the best method w.r.t. a well chosen cost. This cost will provide a method at
order p with a LTE as close as possible to the LTE of a method at order p+1. Finally,
the methods obtained guarantee that the desired order and properties are obtained.
These new methods are then implemented in a validated tool called DynIbex, and
some testes on problems well chosen w.r.t. required properties are performed. The
results lead us to conclude that the approach is valid and efficient in the sense that
the new methods provide highly competitive results w.r.t. the existing Runge-Kutta
methods.

In future works, we will embed our approach in a high level one, based on branching
algorithm to also verify properties such as stability or symplecticity, with the same
verification procedures than are presented in this paper.
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