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Abstract—This paper presents a 3-second 3D reconstruction
algorithm able to process a dense geometric approximation
of the surrounding environment. Image acquisition is done by
a stereoscopic panoramic system with two color catadioptric
cameras mounted on a mobile robot. An algorithm running on a
Graphical Processing Unit (GPU) processes the 3D reconstruction
in real-time. As the camera system moves, new views of the
scene are used to improve the model of the scene thanks to an
incremental algorithm. Then, the performance of our approach
is evaluated using a synthetic image sequence

Index Terms—GPU, CUDA, 3D reconstruction, voxel, catadiop-
tric camera, computer vision

I. INTRODUCTION

Determining the 3D geometric structure of an unknown
environment from pictures is a typical problem in computer
vision. Being able to do so in real-time can simplify a variety
of tasks like obstacle avoidance and path finding for mobile
robots or other unmanned vehicles. In the case of remote-
controlled vehicles, displaying a 3D model of the scene to the
operator can improve their awareness of the situation, it can
also help them to perform complex tasks. The two main parts
of 3D reconstruction (image acquisition and data processing)
need to be performed quickly in order to keep the 3D model
of the scene up-to-date with currently occurring events. In
order to minimize the acquisition time of visual data of the
surrounding environment, wide field-of-view imaging systems
can be used. Panoramic pictures can be taken with a variety
of vision systems, like rotating cameras [1], camera networks
[2], or catadioptric cameras [3].

Rotating cameras provide very-high resolution pictures (up
to 9000× 59000 pixels) with a low frame-rate (8 seconds per
frame)[4]. However, their mechanical moving parts make it
difficult to embed them into autonomous robots and the very
low frame-rate makes them unsuitable for real-time applica-
tions. Camera networks, where multiple perspective cameras
are combined, can be a solution for panoramic acquisition.
The main drawbacks of these systems are the synchronisation
issues and the high number of generated pictures. Using
catadioptric cameras is another panoramic imaging solution
. They are made of a perspective camera looking towards
a rotationally symmetric mirror, they are compact, without
moving parts and provide a 360° field-of-view in one shot
allowing a high acquisition rate.

To extract 3D information from a scene, at least two differ-
ent viewpoints are needed. A stereoscopic configuration can be
achieved using two identical cameras with intersecting fields-
of-view. In the case of panoramic cameras, a vertical alignment
maximizes the field-of-view common to both sensors. Images
with different viewpoints can also be taken by moving the
vision sensor, provided the new position of the cameras can
be estimated. An incremental algorithm can use these new
viewpoints to improve the model of the scene.

Processing the 3D model of the scene in real-time is another
difficult challenge. With the recent development of multicore
CPUs (Intel Core2 / AMD Phenom : 2 to 4 cores) and
many-core GPUs (nVidia GeForce 8xxx/9xxx : 96 to 240
cores) parallel algorithms using these processors can be many
times more efficient than sequential algorithms. Processing
algorithms have to be carefully adapted to the processor
architecture in order to maximize performance.

In this paper, our complete acquisition and processing
system is presented. Section II presents our stereoscopic
panoramic sensor and its calibration. The proposed 3D recon-
struction method is introduced in section III and its implemen-
tation is detailed in section IV. Experimental validation using
synthetic data is presented in section V and these results are
discussed in section VI before the conclusion.

II. STEREOSCOPIC PANORAMIC SENSOR DESIGN AND
CALIBRATION

The stereoscopic panoramic system developed for our exper-
iment is composed of two vertically stacked catadioptric sen-
sors (see Fig.1). The field-of-view of each sensor is 360°×106°
and the vertical alignment maximizes the common field-of-
view for both sensors.

Each sensor is composed of a Prosilica GC1380C camera,
a Neovision H3S hyperbolic mirror and a Fujinon HF9H1-1B
lens. The camera provides a 1360 × 1024 pixels resolution
in color, but only the central 1024 × 1024 pixels are useful
because of the mirror’s shape (see Fig. 2). It can sustain
a frame rate of 20 frames per seconds through the gigabit
Ethernet connexion.

The distance from the mirror to the camera is approximately
9 centimeters, so a single sensor measures about 20 × 6 × 6
centimeters. The baseline of the system is 228 millimeters



Figure 1. Stereoscopic catadioptric vision system

Figure 2. Sample picture from a catadioptric sensor

and the complete system measures 43 × 6 × 20 centimeters,
including the mechanical support.

Previous research provides several options for geometric
calibration of catadioptric sensors. One of these solutions
developed by [5] and [6] uses an equivalent projection sphere.
We used this model which is valid for all central catadioptric
sensors, such as our design. It relies on the acquisition of a
checkerboard calibration pattern to process the camera’s in-
trinsic parameters and the relative position of the two sensors.

Complete information on the design, construction and cali-
bration of this vision system can be found in [7].

III. 3D RECONSTRUCTION METHOD

Processing a complete 3D scene reconstruction in real-
time is a demanding task in terms of processing power and
memory bandwidth. We designed our reconstruction method
to run specifically on a nVidia GPU, exploiting its massively
parallel processor and large bandwidth memory. On these kind
of processor architectures called SIMD (Single Instruction

stream, Multiple Data streams) according to Flynn’s taxonomy
[8], it is important to carefully design the data access pattern
to avoid conflicts which can result in dramatic performance
penalties. The best way to avoid such conflicts is to split the
process into independent tasks which do not need data from
other running tasks to complete, so the algorithm is “data-
parallel”. Our method was designed, from the beginning, to
be fully data-parallel.

A. 3D Information Extraction from Pictures

The most studied 3D modelling methods in the field of
catadioptric imaging are stereo-vision methods, for example
[9] or [10]. Using two cameras or a single mobile camera,
these methods search for a set of remarkable features (points,
edges, corners) on the reference image and try to find matching
features on the other image(s). 3D position of the point is
triangulated using the coordinates of the matching features
and the cameras’ parameters. This category of methods can
be referred as “2D to 3D” methods, because matching is done
on the picture (2D) and then the scene point (3D) is determined
based on this information. While these methods provide accu-
rate results, they usually use global optimisation techniques
which are computationally intensive. Another drawback of
these methods is the inefficiency of features matching when
the cameras are widely spaced.

Other 3D reconstruction methods exist such as Voxel Col-
oring [11] and derived methods [12], [13] which can also
be referred to as “3D to 2D” methods. A virtual volume
containing the scene is sub-divided into volume elements
named voxels. Each voxel is then projected onto the images
of the scene and the projections are tested for similarities. A
typical test is the color similarity of all projections of a given
voxel. These methods perform well even with a large baseline
and randomly-distributed viewpoints. The regular 3D scene
structure lends itself to task parallelization which can improve
performance on a parallel processor.

B. Proposed Method

In order to maximize performance for the 3D reconstruction,
we decided to design a “3D to 2D” modelling method using
a regular 3D array to store the model of the scene. This data
organisation helps to improve data access speed and workload
distribution across parallel processors because the memory
address of a voxel is solely determined by its coordinates.
However, this uses more memory whereas hierarchical struc-
tures like octrees are more compact.

Our 3D reconstruction method is inspired from Voxel Col-
oring [11] and uses similar principles and hypotheses. First of
all, the scene to model is included in a Volume Of Interest
(VOI), an imaginary bounding box of the 3D scene model.
This VOI is sub-divided by a 3D regular grid into voxels.
Depending on the application, different VOI size and voxel
size can be used. In our case, voxels are cubes of all equal
size.

The reconstruction process mainly consists of labeling each
voxel as opaque (the voxel lies on the surface of a scene’s



object) or transparent (the voxel represents unoccupied space)
and determining the color of the opaque voxels. Finally, the
set of opaque voxels and their color make up the 3D model
of the scene.

The scene’s lighting is approximated using the Lambert
illumination model, meaning a voxel located on an object’s
surface is seen with the same color from every viewpoint,
except in the case of occlusions. On the contrary, a voxel
located in an unoccupied region of the scene will be seen
as different colors depending on the viewpoint. Therefore to
process the 3D model of the scene, the colors of each voxel
seen from different viewpoints are compared. This process
known as photo-consistency estimation is the key to this
reconstruction method.

Typical photo-consistency estimation methods process the
projection of a given voxel onto every picture of the scene
where it is visible. A statistical analysis of the colors in each
projection of the voxel is done and the voxel is declared
opaque if the variance (or standard deviation) is below a
certain threshold. Our experimental setup uses only two cam-
eras and a voxel is tested with only two color samples, so a
statistical analysis makes no sense. To test color similarity, our
algorithm calculates the euclidean distance between the two
colors in the RGB 3D space and compares it to a threshold.

To accurately estimate the photo-consistency of a voxel, it
is necessary to determine if the voxel can be seen by the
cameras. This is known as visibility estimation. It is necessary
to avoid taking into account the voxel’s projections that are
occluded by another opaque voxel, which may introduce errors
into the photo-consistency estimation. In order to accurately
estimate the visibility of a voxel, the state of all voxels on the
sight-line between the camera and the considered voxel must
be known; this introduces data-dependencies which must be
worked around to calculate this in parallel for every voxels.

In order to estimate the visibility of a voxel in a data-parallel
way, we developed a visibility estimator using an occupancy
map of the scene. The occupancy map is a 2D projection of
the previous state of the reconstructed scene on an horizontal
plane. The visibility of a voxel is then determined by counting
the number of occupied cells in the occupancy map between
the ground point located below the cameras and the ground
point below the considered voxel. Because it’s evaluated in
2D, this visibility estimation is less accurate but a lot faster
than a 3D visibility estimation. Furthermore, this operation can
easily be parallelized without many data-access conflicts.

IV. IMPLEMENTATION

Before the detailed description of the algorithm, an overview
is presented to outline the reconstruction process in Fig.3. The
camera system is calibrated before starting reconstruction so
the projection of a 3D scene point onto each image can be
processed. The exact position of the vision system in the scene
is supposedly known for each image acquisition.

The initialization step clears the visibility and occupation
maps, so each voxel in the scene is considered visible and
will be updated with data from the first pair of images.

Figure 3. 3D Reconstruction process

During reconstruction, only the last pair of pictures and
the previous model of the scene are used. Previous pairs of
pictures are not retained.

Here is a detailed description of each of the steps for the
3D reconstruction process.

a) Vision System Displacement: The mobile robot moves
the vision system to a known location in the scene. The robot’s
sensors, or another external measurement system, are used to
estimate the position. In the case of a simulation, the different
viewpoint locations are established when the synthetic images
are generated by the ray-tracing software.

b) Image Acquisition: Image acquisition is triggered by
the PC through the Ethernet network connecting the two
cameras. Pictures are transferred to the computer for the
reconstruction process. In the case of simulation, PovRay is
used to render an image sequence of a synthetic scene. The
3D reconstruction software reads these images in sequence,
simulating a real camera. No pre-processing is done on the
pictures, except for a conversion from the raw format to 24-
bit RGB bitmap picture format. The pictures are stored in the
GPU RAM so the CUDA program running on the GPU can
access them.

GPU hardware texturing units allow a bi-linear interpolation
to be performed on the pictures at the same time a read-access
is done. Thanks to wired logic functions this operation requires
no extra time. Using this feature, performance can be greatly
improved.

c) Visibility Map Processing: The 2D visibility map is
processed using the current camera position in the scene and



the occupancy map. The visibility information is the number
of occupied cells in the occupancy map on the straight line
from the camera to the considered voxel. The visibility map
is a 2D map so the same visibility information applies for a
column of voxels along the vertical axis. Fig.5 illustrates the
relationship between the occupancy and the visibility maps.

To accurately process the discrete path on the occupancy
map, the Bresenham line algorithm is used [14]. This incre-
mental algorithm, generally used to plot lines on computer
screens, is very efficient for finding which cells intersect with
a straight line on a 2D array. Along this line, the number
of non-empty cells on the occupancy map is counted and the
result makes an occlusion estimation. The visibility estimation
stored in the corresponding cell of the visibility map is derived
from the occlusion estimation using a simple subtraction
V isibility = 255 − Occlusion. Visibility values outside the
range [0; 255] are saturated.

Visibility map processing is performed by a CUDA kernel
(GPU program) running on the GPU. One processing thread
is launched for every cell in the visibility map. The resulting
visibility map is stored in the global memory of the GPU
which can be read and written from the GPU.

d) Scene Model Processing: The scene model processing
algorithm is detailed in Algo.1. A voxel stores two pieces of
information : a 24-bit RGB color and a visibility index which
indicates “how well” the voxel was seen when it was last
updated. In the reconstruction step, a voxel is updated only if
its current visibility is greater than the stored one, meaning
there are fewer occlusions between the camera and the voxel
from the current point of view.

The photo-consistency measure used is a simple distance in
the 3D RGB color space which is processed according to (1).
The voxel’s center is projected onto both images and the colors
of these projections are calculated with bi-linear interpolation.
A simple Euclidean distance is calculated and the result is
compared to a threshold in order to determine the state (opaque
or transparent) of the voxel. The voxel’s color is calculated by
averaging the colors of all its projections. This color is stored
as well as the new visibility index in the 3D scene model. A
transparent voxel is indicated using the color value (0; 0; 0)
and is treated specially by the program.

d(C0, C1) =
√

(R0 −R1)2 + (G0 −G1)2 + (B0 −B1)2

with Ci = (Ri; Gi; Bi) an RGB color (1)

The reconstruction is stored in the global memory of the
GPU. A typical voxel grid (500 × 500 × 200 voxels, 4 bytes
per voxel) takes about 200 MB in RAM.

e) Occupancy Map Processing: The occupancy map is
a 2D array where each cell contains occupancy information
for one vertical row of voxels, stored on an 8-bit integer. The
occupancy information is the number of opaque voxels in this
voxel column.

A sample scene with the corresponding occupancy map is
presented in Fig.4 to illustrate the processing of this informa-
tion.

Algorithm 1 Scene model processing algorithm
• FOREACH voxel V (in parallel for all voxels)

– IF current visibility for V is better than stored
visibility for V
∗ Process projections of V on both image planes
∗ Read the corresponding pixels in images
∗ Calculate voxel color
∗ Test photo-consistency
∗ IF V is transparent
· Set voxel color to (0;0;0)

∗ END IF
∗ Store new voxel color for V
∗ Store new visibility index for V

– END IF
• END FOREACH

Figure 4. Sample scene and occupancy map. Camera position in the
occupancy map is marked only for reference.

The occupancy map processing is also done in the GPU.
One thread is launched per occupancy cell which counts the
number of opaque voxels in one column, stores this value in
the occupancy map, and raises a flag if a change is made.

f) Detecting Changes: When an update of the occupancy
map is performed, the previous value is tested to detect any
changes. If there is a change, it indicates a change in visibility.

Figure 5. Sample occupancy map (left) and corresponding visibility map
(right), top view. The cross marks the position of the cameras. The gray area
indicates non-visible voxels on the visibility map.



Figure 6. Top view of the synthetic scene. The sensor path for the image
sequence appears as a black dashed line.

In this case, a software flag is raised to indicate the need to
perform another iteration of the reconstruction process in order
to take into account these changes. This is necessary to ensure
the updating of all previously hidden voxels unveiled when an
opaque voxel is updated to transparent state. The reconstruc-
tion algorithm starts a new iteration from the visibility map
processing step.

V. RESULTS

The reconstruction technique explained in this paper was
implemented on a personal desktop computer. The implemen-
tation used a nVidia 8800GTS GPU with 320MB of embedded
RAM with the help of CUDA 2.2. The PC is equipped with an
Intel Core2 Q6600 CPU with 4GB of RAM and runs Ubuntu
8.04.1 x64 server edition.

A synthetic scene was used to validate the proposed method.
The PovRay ray-tracing software was used to generate the
image sequence from the scene description. The list of sensor
positions was generated at the same time.

A. Synthetic Scene Description

This synthetic scene contains a very tall green box and a red
sphere in a gray room. The floor has a checkerboard pattern
and realistic lighting casts shadows on the walls and objects.
The green column is 150 cm tall and 20×20 cm wide and on
the ground. The sphere’s diameter is 60 cm, and it’s floating
10 cm above the ground.

A top view of the scene is presented in Fig. 6. The objects’
positions are clearly visible as well as the floor. The vision
system does not appear in this view.

Fig. 7 presents a sample pair of pictures from the sequence.
The complete sequence contains forty pairs of pictures ren-
dered from different positions along a square path around the
scene. The scene size is 5×5 m and 3 m high. Camera system
displacement is in 375 mm steps.

B. Reconstruction results

Fig.8 shows the algorithm in action. A 2D slice of the
3D reconstruction is shown at different stages during the
incremental reconstruction. Step 1 shows the scene state just

Figure 7. Camera views of the scene (left : lower camera, right : upper
camera)

step 1 step 5 step 15

step 25 step 35 step 40 (final)

Figure 8. Ongoing incremental reconstruction (top view of an horizontal
slice, at successive steps as the sensor moves around the scene). The slice
shown is 50 cm above the floor. White indicates transparent voxels. The red
cross marks the location of the cameras at each step.

after the processing of the first pair of images. The complete
sequence is composed of forty steps, only six are shown.

Fig 9 shows the final model of the scene. Horizontal slices
of the 3D model, taken at increasing heights in the scene VOI
are presented. This view allow objects measurement along the
vertical axis.

The scene VOI was set to a size of 5×5×2 m and the voxel
size was 1×1×1 cm so the VOI consisted of 500×500×200
voxels.

The reconstruction time was about 3 seconds on average
for each new view, including all the steps for the 3D recon-
struction process and data transfer to and from the GPU. A
previous implementation using only a single thread running on
the CPU needed about 20 minutes to perform the same tasks.

VI. DISCUSSION

In step 1, the reconstruction is estimated solely on photo-
consistency, as visibility and occupation information are not
yes available. This first reconstruction contains many errors,
the objects are reconstructed as long “cones” from the cam-
eras’ centers to the border of the VOI. This effect is due to
weak texturing of the objects present in this scene and is well
studied in [11]. When the camera system moves around the
scene, incorrect voxels are updated : the green voxels behind



height 10cm height 20cm height 30cm

height 40cm height 50cm height 60cm

Figure 9. Final reconstructed scene (Top view of horizontal slices taken at
increasing heights). White indicates transparent voxels.

the box disappear as well as the gray voxels in front of the
walls.

Photo-consistency performs a lot better on the sphere thanks
to the color gradient caused by the shadows, so only the
surface voxels are initially set opaque. As the camera moves
around the sphere, the previously hidden side of the sphere is
seen and reconstructed.

When the camera returns to its first position, the whole
scene has been seen and the reconstruction is complete. There
is some noise in the final reconstruction, but the shapes of
scene objects were successfully depicted.

In the reconstructed scene, the sphere object appears as a
68 × 66 × 58 cm voxel group, in the wider part (including
neighboring erroneous voxels). Considering the real size of
the sphere, this gives a measurement error of 13%.

The column is reconstructed as a 30× 30 cm object during
most steps in the incremental reconstruction, however a region
of incorrect voxels is added nearby in the last few steps.
Most of the errors in the final model of the scene came from
the poor discrimination of the photo-consistency algorithm.
The simple RGB color distance used is easily mislead by
uniformly-colored regions or non-textured objects.

VII. CONCLUSION

In this paper we presented a fast algorithm for 3D volu-
metric reconstruction of an unknown environment using cata-
dioptric cameras and a fast visibility estimator. The presented
implementation efficiently uses a massively-parallel processor
such as a GPU thanks to the fully data-parallel algorithm used.

The incremental method gradually improves the model of
the scene as new views of the scene are made available. Each
reconstruction was done in a very short time (about 3 seconds
for every new view) which can be considered real-time for
an autonomous robot with limited moving speed. While the
resulting reconstruction is not a photo-realistic representation
of the scene and contains some errors, the overall shapes of
the objects are depicted.

The main drawback of our algorithm is the necessity to
know the location of the vision system at each image acquisi-
tion. An improvement would be to develop a location estimator
using the previous state of the 3D scene model and odometry
information from the robot’s internal sensors.
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