
HAL Id: hal-01762166
https://hal.science/hal-01762166v1

Submitted on 9 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-simulation of cyber-physical systems using a DEVS
wrapping strategy in the MECSYCO middleware

Benjamin Camus, Thomas Paris, Julien Vaubourg, Yannick Presse, Christine
Bourjot, Laurent Ciarletta, Vincent Chevrier

To cite this version:
Benjamin Camus, Thomas Paris, Julien Vaubourg, Yannick Presse, Christine Bourjot, et al.. Co-
simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware.
SIMULATION: Transactions of The Society for Modeling and Simulation International, 2018, 94 (12),
pp.1099-1127. �10.1177/0037549717749014�. �hal-01762166�

https://hal.science/hal-01762166v1
https://hal.archives-ouvertes.fr


Co-simulation of Cyber-Physical Systems using a DEVS wrapping

Strategy in the MECSYCO Middleware

Benjamin Camus∗,1, Thomas Paris1, Julien Vaubourg1, Yannick Presse2, Christine Bourjot1,
Laurent Ciarletta1, and Vincent Chevrier1

1Université de Lorraine, CNRS, Inria, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506,
France.

2Inria, 54600 Villers-lès-Nancy, France

Abstract

Most modeling and simulation (M&S) questions about
cyber-physical systems (CPS) require expert skills be-
longing to different scientific fields. The challenges
are then to integrate each domain’s tools (formalism
and simulation software) within the rigorous frame-
work of M&S process. To answer this issue, we give the
specifications of the MECSYCO co-simulation middle-
ware which enables to interconnect several pre-existing
and heterogeneous M&S tools, so they can simulate a
whole CPS together. The middleware performs the co-
simulation in a parallel, decentralized and distributable
fashion thanks to its modular multi-agent architecture.
In order to rigorously integrate tools which use different
formalisms, the co-simulation engine of MECSYCO is
based on DEVS. The central idea of MECSYCO is to
use a DEVS wrapping strategy to integrate each tool
into the middleware. Thus, heterogeneous tools can
be homogeneously co-simulated in the form of a DEVS
system. By using DEVS, MECSYCO benefits from the
numerous scientific works which have demonstrated the
integrative power of this formalism and gives crucial
guidelines to rigorously design wrappers. We demon-
strate that our discrete framework can integrate a vast
amount of continuous M&S tools by wrapping the FMI
standard. To this end, we take advantage of DEVS ef-
forts of the literature (namely, the DEV&DESS hybrid
formalism and QSS solvers) to design DEVS wrappers
for FMU components. As a side-effect, this wrapping
is not restricted to MECSYCO but can be applied in
any DEVS-based platform. We evaluate MECSYCO
with the proof of concept of a smart-heating use-case,
where we co-simulate non DEVS-centric M&S tools.

keywords: DEVS, co-simulation, FMI/FMU, QSS,
DEV&DESS, hybrid modeling, parallel simulation,
cyber-physical systems

∗Corresponding author: benjamin.camus@inria.fr

1 Introduction

In this article, we are interesting in the modeling and
simulation (M&S) of Cyber-Physical Systems (CPS).
As defined by Rajkumar et al.[1], ”CPS are physi-
cal and engineered systems whose operations are moni-
tored, coordinated, controlled and integrated by a com-
puting and communication core.”. CPS can be for in-
stance smart grids or autonomous cars.

By experimenting in a rigorous way on a simpli-
fication of a CPS (i.e. a model) instead of a real
one, the M&S process avoids cost, time and ethic con-
straints, and thus positions itself as a choice tool for
the CPS science. However, when applied in this con-
text, the M&S process faces many specific challenges.
Indeed, the expert skills required for describing a CPS
may come from different domains (e.g. for a smart
grid: telecommunications, information systems, elec-
trical grids), each of them having their own well-tried
and well-tested models and M&S tools (i.e. formalisms
and simulation software). The challenges are then
to reconcile these heterogeneous points of view,
and to integrate the models and tools of each
domain within the rigorous framework of the
M&S process.

A very promising strategy to tackle these challenges
lies in co-simulation. Co-simulation consists in per-
forming a simulation by reusing models implemented
in different simulation software, managing exchanges of
data between these software, and synchronizing their
execution in order to make their models interact. It
allows every specialists involved in the M&S process
of a CPS to keep using the tools which are popular in
his/her community while providing to each of them a
multidisciplinary context. In addition, every simula-
tor can (in some cases) be executed on an individual
machine, enabling to co-simulate very large systems.
However, co-simulations face many issues directly re-
lated to the heterogeneity of models and tools that need
to interact together.

1



Our contribution to tackle these issues is twofold in
this paper.

We give the whole operational specification of
MECSYCO (Multi-agent Environment for Complex-
SYstem CO-simulation). MECSYCO is a middleware
dedicated to the co-simulation of CPS i.e. it enables
to interconnect several pre-existing and heterogeneous
(both at the software and formal levels) M&S tools
belonging to different scientific fields, so they can sim-
ulate a whole CPS together. The co-simulation en-
gine of MECSYCO is based on the DEVS formalism in
order to integrate tools which use different modeling
formalisms. Each tool is integrated into the middle-
ware thanks to a DEVS wrapping strategy: a wrapper
must be designed in order to control the tool like a
DEVS simulator. Thus, heterogeneous tools can be
homogeneously co-simulated in the form of a DEVS
system. The choice of using DEVS as a pivotal formal-
ism is motivated by numerous scientific works which
have demonstrated over the years that DEVS can rig-
orously integrate many other M&S formalisms. A very
important practical advantage is that these works also
describe how each formalism can be integrated into
DEVS, thus giving crucial guidelines and tools for rig-
orously designing the MECSYCO wrappers.

We demonstrate that this approach can rigor-
ously integrate equation-based continuous tools
and make them interact with discrete-event
models. We take advantage of DEVS efforts of the
literature (namely, the DEV&DESS hybrid formalism
and the QSS solver strategy) to design DEVS wrap-
pers for continuous tools. We exploit the federating
FMI (Functional Mockup Interface) standard in order
to make our wrappers compliant with a vast amount
of tools. Thus, we propose DEVS wrappers for FMU
components.

We illustrate these two contributions with a proof of
concept of a smart-heating use-case, where we integrate
and co-simulate non DEVS-centric M&S tools, namely
OpenModelica and NS-3.

The paper is organized as follows. Section 2 presents
the different challenges related to the co-simulation of
CPS and existing solutions in the literature. In order
to make our proposition fully understandable for non-
specialist readers, we introduce in Section 3 the back-
ground and concepts (i.e. DEVS and FMI) we used.
Section 4 details our global proposal and discusses our
positioning with regards to the literature. The Section
5 presents our first contribution: the MECSYCO plat-
form which enables the parallel co-simulation of CPS
in a rigorous and decentralized way. Sections 6, 7 and
8 explain our second contribution: the DEVS wrap-
ping of the FMI standard. In Section 9, we discuss the
strengths and drawbacks of our solution. Finally, in
Section 10 we illustrate our proposition with a smart
heating use case.

2 Co-simulation Challenges and
Related Works

When co-simulating a CPS, the system is represented
as a set of interacting subsystems. Each of them is
modeled separately, possibly with different tools (soft-
ware and formalisms). Co-simulating consists in man-
aging the synchronization of these heterogeneous sim-
ulators as well as the exchange of data between them.
This raises two major challenges presented below.

2.1 Simulation Software Interoperabil-
ity

From a software perspective, co-simulation implies
dealing with a heterogeneous set of simulation software.
Indeed, as shown in Table 1, different domains of ex-
pertise may have different simulation software, poten-
tially implemented in different programming languages
and compliant with different operating systems (OS).
Moreover some of these simulation software must be
available only on some specific hardware (e.g. when a
private license is required). Interoperability processes
are then required[2] to synchronize these heterogeneous
software executions and manage exchanges of usable
data between them [3].

This interoperability can be achieved in an ad-hoc
way by directly modifying simulation software to make
them compliant with each other. A more generic solu-
tion consist in using a simulation middleware dedicated
to the management of the interoperability within the
co-simulation. The advantage of this solution is that it
is flexible: we can easily adding, removing and chang-
ing some simulation software without impacting the
rest of co-simulation implementation. This is feasible
because in this case, simulation software do not have
to be directly interoperable with each other, but have
to be interoperable with the middleware instead. The
co-simulation middleware can also serve as a communi-
cation middleware, enabling the distribution of the co-
simulation and the compliance with the required hard-
ware and OS diversity.

The High Level Architecture (HLA) standard [8]
gives generic guidelines and rules for building an event-
based co-simulation middleware. However, HLA does
not give the whole specification of the co-simulation
middleware. Hence, HLA does not detail the (paral-
lel or sequential) synchronization algorithm, the dis-
tributed architecture and its implementation and let
them be tool-specific. As a drawback, simulation from
one platform to another may be not reproducible, and
different implementations of HLA may be not interop-
erable and therefore can not be simultaneously used in
a co-simulation. Other co-simulation middleware such
as Mosaik [9] are based on a discrete time-step frame-
work which does not enable the rigorous integration of

2



Table 1: Example of M&S application domains and their simulation software.

Domain Simulation software Languages Operating system

Collective mo-
tion

NetLogo [4] Java API Java & Scala GNU/Linux, Windows, Mac OS
GAMA [5] Java GNU/Linux, Windows, Mac OS

Telecom net-
works

NS-3 [6] C++, Python API GNU/Linux
OMNeT++ [7] C++ GNU/Linux, Windows, Mac OS

Robotic VREP C/C++, Lua, Python, Java GNU/Linux, Windows, Mac OS

Physical system Dymola Proprietary code Windows
Matlab/Simulink Proprietary code, C/C++ API, Fortran GNU/Linux, Windows, Mac OS

models written in heterogeneous formalisms.

2.2 Multi-Formalism Integration

Because of its own heterogeneity, a CPS may exhibit
both discrete and continuous dynamics, and several
formalisms may be required to describe the whole sys-
tem [10]. For example, the cyber part is traditionally
discrete whereas the physical one is rather continuous.
Formalisms can be for instance differential or algebraic
equations for the continuous parts, but event-based,
finite-state automata or time-stepped models for the
discrete parts.

As a consequence, discrete and continuous models
may interact and co-evolve inside a same co-simulation.
At the execution level, this formalism heterogeneity im-
plies dealing with different scheduling policies: cyclic
or variable time-steps, event-based, etc. A rigorous
framework is then needed to integrate these different
models in order to have an univocal behavior of the
co-simulation [11].

Two solutions exist to integrate these different
formalisms[10]:

Translate the models in a same formalism and
perform the simulation using the abstract simulator of
this formalism. This is the solution chosen by AToM3

[12], which enables to automatically translate two mod-
els, using a sequence of transformations, to their closest
common formalism. To do so, AToM3 relies on a For-
malism Transformation Graph where every node corre-
sponds to a formalism and each arc represents an exist-
ing automatic translation. The shortcoming of this so-
lution is that it forces to rewrite and re-implement the
existing models. Thus, it does not have the advantages
of co-simulation –i.e. it requires translation and im-
plementation efforts (when not automatic) which may
introduce errors.

Use a hybrid M&S formalism which explic-
itly describes how continuous and discrete systems in-
teract and co-evolve. This super-formalism can be
DEV&DESS [13] or HFSS[14] (Heterogeneous Flow
System Specification). Both of them merge a whole
set of traditional techniques used in the field of hybrid
modeling. Such techniques notably include (1) the in-

tegration of discrete input events during the evolution
of the continuous system, and (2) the generation of two
kinds of discrete-events during the simulation: time-
events and state-events[11] generated from the contin-
uous system state. While the former consist in events
scheduled at predefined simulation times, the latter
corresponds to events whose occurrences are related to
some specific conditions on the continuous state (usu-
ally when a continuous variable crosses a given thresh-
old). From a simulation perspective, the challenge is
to integrate this discrete-event logic, in a generic way,
during the numerical resolution of the continuous sys-
tem (which is concerned with finding the best trade-off
between the accuracy of the solution and the simula-
tion efficiency[15]). Most notably, the detection and
the accurate localization in time of state-events during
the simulation is a well-known issue in hybrid simula-
tion [16].

2.3 Synthesis

To sum up, setting up a co-simulation requires to solve
a set of specific issues at the formalism and the software
levels. The solutions to provide are directly related to
the heterogeneity found at each of these levels.

Additionally in a M&S process, modularity is often
required –i.e. to be able to add/remove/change models
or simulation software and their connections without
redefining all the co-simulation from scratch [17].

In order to fulfill these requirements, ad-hoc solu-
tions should be avoided and a more generic and rigor-
ous framework is needed. In the following, we detail
the background and concepts used to meet these re-
quirements.

3 Background and Concepts

Our proposal relies both on the DEVS formalism and
the FMI standard. In this section, we describe them
in order to make our proposition fully understandable
for non-specialist reader.

3



3.1 DEVS Formalism

DEVS [18] is an event-based formalism for the M&S
of system of systems. One important feature of DEVS
is its integrative power for multi-paradigm M&S [19].
Indeed, not only DEVS appears to be universal for de-
scribing discrete-event systems [18], but it can also in-
tegrate continuous systems [20] expressed for instance
with differential equations [21]. Of particular interest
in the scope of this article is the fact that, as shown
by Zeigler[22], DEVS can also embed the DEV&DESS
formalism [13]. This formalism offers a sound frame-
work for representing hybrid systems as it describes
how continuous systems interact and co-evolve with the
discrete world.

Besides, DEVS can encapsulate differential and al-
gebraic equation solvers by relying on a quantized in-
tegrator approach like the Quantized State Systems
(QSS) method [23]. This approach is based on state
quantization instead of the time discretization used by
traditional integration methods. This strategy shows
in some cases [24] better performances than traditional
methods [25]. QSS is well-suited for hybrid modeling
as it makes the continuous component equivalent to a
DEVS model, which naturally integrates input events,
and makes state-events detection trivial and costless
[26].

As summarized by Quesnel[21], the integration of
a formalism in DEVS can be performed either by a
mapping or a wrapping. While the former consists in
establishing the equivalence between the formalisms,
the latter implies bridging the gap between the two
abstract simulators [27]. The advantage of the wrap-
ping strategy is to enable reusing pre-existing models
already implemented in some simulation software [28].

The following part is a formal description of DEVS
in order to fully understand our proposal, especially
concerning the wrapping of continuous models.

DEVS distinguishes atomic from coupled models. A
DEVS atomic model i describes the behavior of the
system and corresponds to this structure:

Mi = (Xi, Yi, S, δext, δint, λ, ta) (1)

where:

Xi = {(p, v)|p ∈ InPortsi, v ∈ VXi
} is the set of input

ports and values. These ports can receive external
input events,

Yi = {(p, v)|p ∈ OutPortsi, v ∈ VYi
} is the set of out-

put ports and values. These ports can send exter-
nal output events,

S is the set of the model states,

δext : Q×Xi → S is the external transition function
(describing how the model reacts to input events)
where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state
of the model,

e is the elapsed time since the last transition,

δint : S → S is the internal transition function describ-
ing the internal dynamic of the model –i.e. the
function processes an internal event which changes
the model state,

λ : S → Yi is the output function describing the out-
put events of the model according to its current
state,

ta : S → R+
0,∞ is the time advance function describing

how long the model will stay in the same current
state (in the absence of input event). The function
is used to get the date of the next internal event.

A coupled model describes the structure of the sys-
tem. It corresponds to the following structure, describ-
ing a set of interconnected atomic models:

N = (X,Y,D, {Md|d ∈ D}, EIC,EOC, IC) (2)

where:

X = {(p, v)|p ∈ InPorts, v ∈ VXi
} is the set of input

ports and values

Y = {(p, v)|p ∈ OutPorts, v ∈ VYi} is the set of out-
put ports and values,

D is the set of models id,

EIC = {((N, ipN ), (d, ipd))|ipN ∈ InPorts, d ∈
D, ipd ∈ InPortsd} is the set of external input
couplings,

EOC = {((d, opd), (N, opN ))|opN ∈ OutPorts, d ∈
D, opd ∈ OutPortsd} is the set of external output
couplings,

IC = {((a, opa), (b, ipb))|a, b ∈ D, opa ∈
OutPortsa, ipb ∈ InPortsb} is the set of in-
ternal couplings,

The closure under the coupling of DEVS is an im-
portant property which enables hierarchical modeling
by proving that a coupled model is equivalent to an
atomic one. Therefore, a DEVS coupled model can be
composed of a set of interconnected atomic and cou-
pled models (these latter may be at their turn com-
posed of coupled models, etc.). DEVS proposes se-
quential and parallel abstract simulators and coordi-
nators for respectively simulating atomic and coupled
models. Thanks to the closure under the coupling of
DEVS, these abstract simulators and coordinators can
be controlled in a unified way using the DEVS simula-
tion protocol.

4



3.2 The FMI Standard

FMI [29] is a standard of the MODELISAR Consor-
tium and the Modelica Association which proposes a
generic software interface for manipulating equation-
based models and their solvers. These models may be
composed of a mixture of differential, algebraic and
discrete-time equations. FMI aims at (1) defining a
generic way of exchanging and using models designed
with different equation-based simulation tools, and (2)
protecting the intellectual property of these models by
ensuring that they are seen as black-boxes.

A model implementing the FMI standard is called
a Functional Mock-up Unit (FMU). The FMU in-
terface differentiates the output variables whose val-
ues are accessible from the outside (i.e. equivalent
to output ports of the model), from the input vari-
ables whose values can be set from the outside (i.e.
equivalent to input ports of the model). From a soft-
ware perspective, this interface is composed of a set
of C functions, and an XML file. C functions en-
able controlling the FMU, whereas the XML file de-
scribes the FMU and its interface. More precisely,
the XML file describes names, types (i.e. Real/In-
teger/Boolean/String), variability (constant/discrete/-
continuous) and causality (input/output/parameter)
of the variables, as well as the continuous states vector.

So far around 52 simulation tools (e.g. Dymola,
MATLAB/Simulink, OpenModelica) claim to be com-
pliant with FMI v2.0 (80 with FMI v1.0), including 23
tools officially certified (29 with FMI v1.0)1. Several
of these tools are based on Modelica [30] which is an
object-oriented language adapted to the modeling and
simulation of hybrid systems. In order to support the
standard, a tool need either (1) to be able to export
its own models as FMUs, or (2) to be able to import
existing FMUs and use them as components in mod-
els. FMI allows two ways of exporting and importing a
model: FMI for co-simulation (FMI-CS) and FMI for
model-exchange (FMI-ME).

With FMI-ME, the model is exported without its
solver. The FMU must be then associated with an
external solver in order to be simulated. For that pur-
pose, the solver can especially use the following C func-
tions of the FMU API:

• fmi2GetReal/Integer/Boolean/String returns
the current value of a given output variable.

• fmi2SetReal/Integer/Boolean/String sets a
specific input variable to a given value.

• fmi2SetTime sets the clock of the model to a given
simulated time.

• fmi2GetContinuousStates returns the continu-
ous state vector.

1According to https://www.fmi-standard.org/tools on
2/16/2017.

• fmi2SetContinuousStates sets a continuous
state vector.

• fmi2GetDerivatives returns the derivative vec-
tor of the continuous state.

• fmi2CompletedIntegratorStep indicates that
the integration step is finished, and evaluates if
internal events have to be processed.

• fmi2GetEventIndicators returns indicators of
state-events occurrences.

• fmi2EnterEventMode enters into the discrete
event mode, i.e. makes the discrete-time equa-
tions active. While the FMU is in this mode,
the integration of the continuous state is stopped
but discrete-events (time, state or external) can
be processed.

• fmi2EnterContinuousTimeMode enters into the
continuous-time mode, i.e. disable the discrete-
time equations. In this mode, the continuous state
of the FMU can be solved, but the discrete state
has to remain constant (i.e. events can not be
processed).

• fmi2NewDiscreteStates evaluates the discrete-
time equations (should therefore only be called in
event mode) –i.e. processes the potential time and
state events. Information returned by this func-
tion includes (1) the date of the next time-event
(when scheduled), (2) indication if the processed
event(s) has changed the continuous state (creat-
ing a discontinuity in the state trajectory), and
(3) indication if the discrete state has to be im-
mediately re-evaluated (e.g. to solve an internal
algebraic loop).

With FMI-CS, a model is exported with its solver.
As this solver has a passive behavior, an FMU for co-
simulation (FMU-CS) is considered as a slave, and pro-
poses in particular the following C functions in order
to be controlled by a master algorithm[31]:

• fmi2DoStep performs an integration for a given
duration.

• fmi2SetReal/Integer/Boolean/String sets a
specific input variable to a given value.

• fmi2GetReal/Integer/Boolean/String gets the
current value of a given output variable.

• fmi2GetFMUState and fmi2SetFMUState are op-
tional (but essential[32]) functions used to ex-
port/import the model state. They enable to per-
form a rollback during the simulation of the model.

5

https://www.fmi-standard.org/tools


FMI gives generic guidelines on how a master should
manage a set of interconnected FMUs in order to
jointly solve their equations: FMU executions are syn-
chronized thanks to communication points. These
communication points, shared by every involved FMU,
correspond to points in the simulated time where (1)
the FMU simulation must be stopped, and (2) ex-
changes of data have to be performed between FMUs
according to their output-to-input links.

Aside from these guidelines, FMI does not give spec-
ifications for a master algorithm. Consequently, dif-
ferent master algorithms are currently developed, like
FIDE[33] (FMI Integrated Design Environment) and
DACCOSIM[34] (Distributed Architecture for Con-
trolled CO-SIMulation). Numerous issues related to
the distributed numerical resolution of the system[32]
are still under investigation by the community (e.g.
How to determine the best communication point inter-
val during the simulation? How to manage algebraic
loop between FMUs?).

4 Proposal and Positioning

On the one hand, a co-simulation middleware is re-
quired to manage the interoperability of different M&S
tools. On the other hand, we need a formal solution to
rigorously integrate heterogeneous formalisms.

We propose to tackle these two requirements by
defining a modular co-simulation middleware called
MECSYCO. We integrate tools which are formally het-
erogeneous by using DEVS as a pivotal formalism in
the following way:

1. Integrate the different tools in DEVS by using a
wrapping strategy –i.e. instead of directly writing
or transforming the models in DEVS, provide ad-
ditional mechanisms in order to bridge the gap be-
tween the tools and the DEVS abstract simulator.
Hence, each tool can be controlled like a DEVS
simulator and we do not have to implement the
model again.

2. Connect these wrapped tools within a DEVS cou-
pled model.

3. Simulate the DEVS coupled model using the
DEVS simulation protocol, in order to perform a
co-simulation in an unified way.

We choose DEVS because of its striking capacity to
integrate the formal heterogeneity of a co-simulation.
Other M&S formalisms which enables the integration
of continuous and discrete dynamics could have been
used. For instance the HFSS formalism provide several
interesting properties for hybrid system modeling (such
as the dynamic structure[14]), and has some advan-
tages over DEVS (e.g. the possibility to represent geo-
metrical solvers [35]). However, DEVS benefits from a

greater amount of scientific works which have demon-
strated over the years its integrative power. These
works are essential in the context of co-simulation be-
cause they also describe how each specific M&S formal-
ism should be integrated in a rigorous way, thus giving
crucial guidelines and tools for rigorously designing our
wrappers.

So far, we successfully defined DEVS wrappers for
discrete modeling tools like the MAS simulator Net-
Logo [36], and the telecommunication network simu-
lators NS-3 and OMNeT++/INET [37]. Aside from
several difficulties met when wrapping NS-3 and OM-
NeT++/INET (mainly due to the high level of mod-
eling details offered by these platforms, as well as to
the complexity of the opening and the distribution of
their telecommunication models), making these dis-
crete modeling tools compliant with the DEVS sim-
ulation protocol was a straightforward process. The
reason is that these platforms have a discrete modeling
paradigm very close to DEVS.

However, according to our experience with
MECSYCO, several difficulties may arise when
wrapping a simulation tool in DEVS. These problems
depend mainly on two criteria:

• The M&S formalism used by the tools may
not be explicitly defined by the software specifica-
tions, and/or may be very different from DEVS.
Accordingly, the challenge is to answer the ques-
tions: what is the formalism used by the tools?
How to bridge the formal gap between this for-
malism and DEVS?

• The software interface with the middleware
may be difficult to produce as the tools API and
the software architecture are not always docu-
mented and fully compliant with the DEVS sim-
ulation protocol. Moreover, the software may not
be conceived to be externally manipulated.

Things getting especially complex with equation-
based tools as their continuous modeling paradigm is
very different from the discrete DEVS one. Thus, we
need to bridge the gap between the discrete and the
continuous paradigms, and a more complex wrapping
strategy based on the hybrid capacity of DEVS is re-
quired. Regarding this issue, wrapping each of these
equation-based tools (e.g. OpenModelica, Dymola,
Matlab/Simulink) separately would be very inefficient.

However, most of these tools are compatible with
the FMI standard which brings a generic API to
manipulate equation-based models and their solvers.
Thus, in order to integrate continuous tools
into MECSYCO in the more generically pos-
sible way at the software level, we propose to
define DEVS wrappers for the FMI standard.
We base this wrapping on the DEV&DESS formal-
ism to handle the interactions between the continuous

6



equation-based model and the discrete event paradigm
of DEVS. Since FMUs for co-simulation and FMUs
for model exchange do not have the same API and
do not convey the same constraints, we specify a dif-
ferent wrapper for each of them in order to be fully
compliant with the standard. Thanks to these wrap-
pers, continuous equation-based models are integrated
in MECSYCO in the following way:

1. The model is specified in a dedicated equation-
based tool (such as OpenModelica).

2. The model is exported as an FMU using the built-
in export features of the tool2.

3. This FMU is linked to the wrapper and integrated
in the co-simulation.

Please note that rather than focusing on the dis-
tributed numerical resolution aspects which arise when
several FMUs are directly interconnected, we focus in
this paper on the hybrid simulation issues which arise
when an FMU interacts with a discrete-event compo-
nent (e.g. a NS-3 model). Indeed, in a hybrid context,
the communication points simulation strategy of FMI
faces the following issues:

• State events occurring between two points of com-
munication are localized at the upper communi-
cation point, pending improvements of the hybrid
co-simulation in the FMI standard.

• New inputs are only taken into account at the next
communication point, no matter when they are
received.

As a result, an effort is required to integrate the oper-
ational software in such a way as to respond to events.

To summarize, our proposition is twofold and can
be seen at two levels of detail. On the most generic
level, MECSYCO is a co-simulation middleware which
focuses on the formal integration of pre-implemented
models by using a DEVS based wrapping strategy.
This strategy is supported by all the integrative work
around DEVS [10]. In this way, our proposition re-
sponds to both the formal integration and the software
interoperability requirements of CPS co-simulations
(detailed in Section 2). On a more specific level, we
propose a way to integrate equation-based continu-
ous tools into MECSYCO by defining DEVS wrappers
based on the hybrid formalism DEV&DESS and the
QSS solver strategy. We use the emerging standard
FMI as a generic way to integrate continuous models
at the software level. It is important to note that our
purpose here is more focused on the rigorous integra-
tion of heterogeneity in co-simulations rather than the
co-simulations efficiency.

2Consequently, this feature is mandatory. When not avail-
able, only ad-hoc wrappings are possible.

Comparing to the related works of the literature, the
focus on reuse of pre-existing models distinguishes our
proposal from multi-paradigm approach like AToM3

(see Section 2.2). Unlike the other DEVS based tools
of the literature (like VLE[38]) whose primary pur-
pose is to design and simulate models in DEVS, our
platform is dedicated to the DEVS wrapping and the
co-simulation of already existing models and simula-
tors. In contrast to HLA (see Section 2.1), the formal
integration of MECSYCO is driven by DEVS wrap-
ping. We also specify the whole software architecture
and synchronization algorithm (Section 5.3) making
two implementations of MECSYCO interoperable. In
contrast to the Mosaik co-simulation middleware [9],
we can integrate rigorously M&S tools which are for-
mally heterogeneous thanks to our DEVS framework.
Furthermore, in contrast with other master algorithms
which are dedicated to the co-simulation of FMU com-
ponents (e.g DACCOSIM [34]), MECSYCO is not lim-
ited to a specific simulation software or norm.

5 The MECSYCO Platform

5.1 Generalities

MECSYCO [36] is a middleware dedicated to the co-
simulation of Cyber-Physical Systems (CPS) that en-
ables to interconnect several pre-existing and hetero-
geneous (both at the software and formal levels) M&S
tools. For this purpose, MECSYCO manages the data
exchanges between these tools, and synchronizes their
executions in a parallel and fully decentralized way.

The co-simulation engine of MECSYCO is based on
the DEVS formalism in order to integrate tools which
use different modeling formalisms (e.g. discrete-event,
ODE). Each tool is integrated into the middleware
thanks to a DEVS wrapping strategy: a wrapper must
be designed so the tool can be controlled like a DEVS
simulator. Thus, heterogeneous tools can be homoge-
neously co-simulated in the form of a DEVS system.

MECSYCO is based on the AA4MM (Agents & Arti-
facts for Multi-Modeling) paradigm [39] (from an origi-
nal idea of Bonneaud [40]), proposing to see an hetero-
geneous co-simulation as a multi-agent system. Within
this scope, each couple model/simulator corresponds to
an agent, and the data exchanges between the simula-
tors correspond to the interactions between the agents.
Thus, the co-simulation of the system corresponds to
the dynamics of interaction between agents. Agent au-
tonomy enables encapsulating legacy software by the
use of wrappers[41]. Originality with regard to other
multi-agent multi-model approaches is to consider the
interactions in an indirect way thanks to the concept
of passive computational entities called artifacts [42].

MECSYCO implements the AA4MM concepts ac-
cording to the DEVS simulation protocol for coordi-

7



nating the executions of the simulators and managing
interactions between models. By following the multi-
agent paradigm from the concepts to their implemen-
tation, MECSYCO ensures a modular, extensible (i.e.
features can be easily added such as an observation
system) decentralized and distributable parallel co-
simulation. The MECSYCO middleware is completely
modular and can be distributed on several machines
which may run on different OS (e.g. GNU/Linux, Mac
OS, Microsoft Windows). It is currently used to study
green cloud computing [43] and for the M&S of smart
electrical grids in the context of a partnership between
LORIA/Inria3 and EDF R&D (main French electric
utility company) [44].

In the following, we describe these concepts and their
specifications.

5.2 MECSYCO Concepts

MECSYCO relies on four concepts to describe a co-
simulation.

A model mi is a partial representation of the target
system implemented in a simulation software si (cf.
corresponding symbol in Figure 1a). A model has a
set of input ports x1..ni and output ports y1..mi .

An m-agent Ai (cf. corresponding symbol in Fig-
ure 1b) manages a model mi and is in charge of the
interactions of this model with the other ones. There-
fore, the m-agent is equivalent to a parallel abstract
simulator for the models.

Each m-agent Ai sees its model mi as a DEVS
atomic model thanks to its model artifact Ii (cf. cor-
responding symbol in Figure 1d). Therefore, Ii acts as
a DEVS wrapper for mi - i.e. it implements the DEVS
simulation protocol functions for controlling mi evolu-
tion through si.

Each interaction from an m-agent Ai to an m-agent
Aj is reified by a coupling artifact Cij (cf. corre-
sponding symbol in Figure 1c). A coupling artifact
Cij works like a mailbox: the artifact has a buffer of
events where the m-agents can post their external out-
put events and get their external input events. Ac-
cordingly, a coupling artifact plays two roles: for Ai, it
is an output coupling artifact, whereas for Aj it is
an input coupling artifact. Coupling artifacts can
transform data exchanged between the models using
operations that can be for instance, spatial and time
scaling operations (e.g. converting kilometers to me-
ters or hours to minutes).

According to the multi-agent paradigm, m-agents
only have a local knowledge of the coupled model in-
terconnections. The set of internal couplings between
coupled model IC is split such as an m-agent Ai only
knows which input coupling artifacts correspond to its
model input ports, and which output coupling artifacts

3French computer science research institutes.

(a) model (b) m-agent (c) coupling ar-
tifact

(d) model ar-
tifact

Figure 1: Symbols of the MECSYCO components.

Figure 2: Bloc diagram view of a DEVS coupled model.

correspond to its model output ports. We define the set
of input links INi of Ai as being composed of the cou-
ples (j, k) mapping the input coupling artifact Cji with
the input port xki . We define the set of output links
OUTi of Ai as being composed of the couples (n, j)
mapping the output port yni with the output coupling
artifact Cij .

The connection of the output ports of a model mi

with the input ports of a model mj is done by the cou-

pling artifact Cji . The link from a model mi to a model

mj (noted as Lij) corresponds to the tuple (n, k, oi,nj,k). It

maps the output port yni with the input port xkj and ap-
plies the onk operation to transform the event between
these two models representation. By default, an opera-
tion corresponds to the identity operation id. The Ta-
ble 2 and the Figure 3 illustrate how a DEVS coupled
model (showed in Figure 2) is described in a decentral-
ized and distributable way thanks to MECSYCO.

5.3 Operational Specifications

The behavior of each m-agent corresponds to the
DEVS conservative parallel abstract simulator, based

Figure 3: Graphical representation of the MECSYCO
co-simulation of Table 2.

8



Table 2: Decentralized MECSYCO co-simulation of
the DEVS coupled model of Figure 2.

Descriptions Notations

Output links of m1 OUT1 = {(1, 2), (2, 3)}
Input links of m1 IN1 = {(2, 1)}
Output links of m2 OUT2 = {(1, 1)}
Input links of m2 IN2 = {(1, 2), (3, 1)}
Output links of m3 OUT3 = {(1, 2)}
Input links of m3 IN3 = {(1, 1)}

Links from m1 to m2 L12 = {(1, 2, o1,12,2)}
Links from m1 to m3 L13 = {(2, 1, o1,23,1)}
Links from m2 to m1 L21 = {(1, 1, o2,11,1)}
Links from m3 to m2 L32 = {(1, 1, o3,12,1)}

on the Chandy-Misra-Bryant (CMB) algorithm [45,
46]. This algorithm is proven to be deadlock free and
to respect the causality constraint [18] –i.e. to ensure
that the ”execution of the simulation program on a par-
allel computer will produce exactly the same results as
an execution on a sequential computer” [47].

As we focus on the rigorous formal integration in-
stead of performances, a conservative algorithm is cho-
sen because it does not impose specific ability like roll-
back to the model we want to integrate.

Within this behavior, each m-agent Ai shares its
Earliest Output Time estimate noted EOTi in its envi-
ronment. EOTi corresponds to the date (in simulation
time), below which Ai guarantees it will not send new
external output events. Ai shares EOTi as the link
time of each of its output coupling artifact. The link
time of a coupling artifact Cij is noted LTi

j and corre-
sponds to the simulated time (initially equals to 0) up
to which Ai has simulated the links from mi to mj [45].

Every m-agent Ai uses the link times of all of its
input coupling artifacts to compute its Earliest Input
Time estimate noted EITi. This EITi corresponds to
the date (in simulated time) below which Ai will not
receive any new external input event. EITi corresponds
to the minimum link time of all of Ai’s input coupling
artifacts.

For each m-agent Ai, all events (internal or external)
with a timestamp inferior or equals to EITi are said
to be safe to process. In order to fulfill the causality
constraint, each m-agent must process only safe events
and in an increasing timestamped order.

Each EOTi is given by the Lookaheadi function:

Lookaheadi() = min{nti,EITi +Di, tini+Di} (3)

with nti the next internal event time of mi, tini the
time of the earliest event waiting to be processed in
Ai’s input coupling artifact, and Di(Di > 0) the min-
imum propagation delay of mi. This minimum prop-
agation delay corresponds to the minimum delay (in

simulated time) below which the processing of an ex-
ternal event can not schedule a new internal event in a
model mi. Di has to be determined for each model mi

in the co-simulation.
This behavior, enabling to simulate a model until a

time Z, is formalized within the MECSYCO paradigm
by the Algorithm 1. This algorithm is based on the
artifact specifications detailed below.

A coupling artifact Cij proposes six functions to Ai

and Aj :

• post(enout, ti) stores in the artifact buffer and
transforms (according to the Cij operation) the ex-
ternal output event enout generated at the (simu-
lated) time ti trough the output port yni .

• getEarliestEvent(k) returns the earliest exter-
nal input event for the kth input port of mj , x

k
j .

• getEarliestEventTime(k) returns the time of
the earliest external event for xkj .

• removeEarliestEvent(k) removes the earliest
external event for xkj , from the artifact buffer.

• setLinkTime(ti) sets LTi
j to ti.

• getLinkTime() returns LTi
j .

In order to manipulate mi, each model artifact Ii
proposes the following DEVS simulation protocol func-
tions to Ai (they have to be defined for each simulation
software):

• init() initializes the model mi. It sets the pa-
rameters and the initial state of the model.

• processExternalEvent(eini
,ti,x

k
i ) processes

the external input event eini
at simulation time ti

in the kth input port of mi, x
k
i .

• processInternalEvent(ti) processes the internal
event of the model mi scheduled at time ti.

• getOutputEvent(yni ) returns enouti , the external
output event at the nth output port of mi, y

n
i .

• getNextInternalEventTime() returns the time
of the earliest scheduled internal event of the
model mi.

5.4 Implementation

MECSYCO is currently implemented in Java (available
at http://mecsyco.com under AGPL) and C++. In
order to make these two versions interoperable together
and to perform distributed co-simulations, MECSYCO
relies on the JSON format and the OpenSplice imple-
mentation of the OMG standard DDS (Data Distribu-
tion Service). Using Opensplice, coupling artifacts are
divided into two parts – reader and writer – in order

9

http://mecsyco.com


Algorithm 1 Ai m-agent’s behavior.

INPUT: INi, OUTi, Dti
OUTPUT:

nti ← Ii.getNextEventTime()
tini
← +∞

EOTi ← 0
EITi ← 0

. While the end of simulation.
while (¬endOfSimulation) do

EITi ← +∞
tini
← +∞

for all (j, k) ∈ INi do
if Cji .getLinkTime() < EITi then . Compute EITi.

EITi ← Cji .getLinkTime()
end if
if Cji .getEarliestEventTime(k) < tini

then . Take the next external event.

tini ← C
j
i .getEarliestEventTime(k)

eini ← Cji .getEarliestEvent(k)
p← k . Save the corresponding input port.
c← j . Save the corresponding coupling artifact.

end if
end for

. Compute EOTi and update output coupling artifact.
if EOTi 6= Lookaheadi(nti,EITi,tini

) then
EOTi ← Lookaheadi(nti,EITi,tini

)

∀(k, j) ∈ OUTi : Cij.setLinkTime(EOTi)

end if
. Find the next secured (internal or external) event.

if (nti ≤ tini
) and (nti ≤ EITi) and (nti ≤ Z) then . If the event is internal.

Ii.processInternalEvent(nti) . Process the event.
for all (k, j) ∈ OUTi do . Send the resulting external output event.

eoutki ← Ii.getOutputEvent(yki )
if eoutki 6= ∅ then
Cij.post(eoutki , nti)

end if
end for
nti ← Ii.getNextInternalEventTime()

else if (tini
< nti) and (tini

≤ EITi) and (tini
≤ Z) then . If the event is external.

Ii.processExternalEvent(eini, tini , x
p
i ) . Process the event.

Cci .removeEarliestEvent(p)
nti ← Ii.getNextInternalEventTime()

end if
end while

10



Figure 4: Distribution of a MECSYCO co-simulation.

to split the co-simulation. DDS being based on the
publish-subscribe communication pattern, writer cou-
pling artifacts play the role of publishers while reader
coupling artifacts act as subscribers. Each writer cou-
pling artifact sends data to its reader coupling artifact
using a dedicated DDS topic (see Figure 4).

The UML diagram of Figure 5 shows how we imple-
ment the MECSYCO concepts following an object ori-
ented programming. This implementation is in keep-
ing with our multi-agent paradigm as each MECSYCO
concept corresponds to a class of object, and each au-
tonomous m-agent corresponds to a thread. We retain
then the advantages of our paradigm: the software ar-
chitecture is composed of a set of modular software
bricks, enabling decentralized and parallel simulations.

In the following section, we detail how we wrap the
FMI standard in DEVS using the hybrid M&S capacity
of DEV&DESS.

6 DEVS Wrapping of the FMI
Standard

As with any tools in MECSYCO, integrating an FMU
requires to connect it to the co-simulation with a model
artifact. This one exposes a DEVS view of the FMU,
and makes the FMU handle discrete-events. To define
such a model artifact, we can rely on the DEV&DESS
formalism as it can be embedded into DEVS, and as it
offers a sound framework for describing hybrid systems.

As defined by Zeigler [22], the DEVS version of a
DEV&DESS model is composed of three components,
each of them formalized as a DEVS atomic model.
With this structure, a DEV&DESS model can be in-
corporated into a larger DEVS schema as a coupled
model. Consequently, the DEV&DESS model can be
simulated using the DEVS simulation protocol. The
three components composing the model are:

• A continuous component describing the evolu-
tion of the continuous part of the system according
to continuous inputs, and producing continuous
outputs.

• An event-detection function determining

when state-events occur, based on the continuous
states of the model (i.e. the FMU state in our
case).

• A discrete-event component describing the
evolution of the discrete part of the system. This
component describes the behavior of the model in
the discrete-world, that is to say how it schedules
internal events, how it produces and reacts to dis-
crete inputs (i.e. external events), and what are
the impacts of state-events. Potentially, for each
of these events, the event-based component can
change the whole DEV&DESS states, meaning (1)
its own state, (2) the continuous component state
(creating a discontinuity in the state trajectory)
and (3) the event detection function.

As two versions of FMI exist, we propose two strate-
gies to wrap FMUs in DEVS using DEV&DESS. The
main difference between these strategies, which are de-
tailed below, is the location of the continuous system
solver: it is embedded into the FMU with FMI-CS,
whereas it is implemented in the wrapper with FMI-
ME. Each of these wrappers have pros and cons making
them complementary.

• FMI-ME proposes primitives able to handle hy-
brid models. Moretheless, as stated in Section 3.2,
an FMU for model-exchange (FMU-ME) needs to
be associated with a solver to be simulated. Then,
our DEV&DESS wrapper plays the role of an hy-
brid solver for this FMU-ME. In order to man-
age the continuous state simulation, the original
Zeigler’s DEVS version of DEV&DESS relies on
a quantized integrator approach. The rationale
behind this choice is that, quantized integrators
have a discrete-event behavior as they quantize
the state space instead of discretizing the time di-
mension. Thus, a quantized integrator naturally
bridges the gap between the continuous and the
discrete-event worlds [26]: its working principle is
already based on the integration of inputs events
and on the detection of state-events[23] (i.e. lo-
calizing when the state trajectory crosses a given
threshold). As a result, it makes perfectly sense to
keep this choice and to implement a quantized in-
tegrator in our wrapper. More precisely, we choose
the QSS approach[23] (mainly developed by Kof-
man) as it offers some of the most advanced math-
ematical solutions for solving equation-based sys-
tems, while exhibiting striking simulation perfor-
mances under some conditions. We currently have
implemented QSS1 [48] (i.e. first order numerical
method) and QSS2 [25] (i.e. second order numer-
ical method) solvers for FMU.

• FMI-CS embeds a solver but does not yet include
the primitives required for managing discrete-
event behaviors [49, 32, 33] (e.g. the date of the

11



Figure 5: UML description of the MECSYCO software architecture.

next scheduled time-event can not be obtained
from a FMU). Therefore, we consider that FMI-CS
only specifies the continuous behavior of the sys-
tem. We need then to specify its discrete behav-
ior (i.e. the equivalent of the DEV&DESS event-
detection function and the discrete-event compo-
nent) within our wrapper. Additionally, specifying
the discrete-event behavior outside the FMU en-
ables a more flexible wrapping: different discrete-
event behaviors can be associated with a single
FMU depending on the co-simulation context (e.g.
the discrete-event component can produce a dis-
crete output signal by regularly sampling the con-
tinuous output of an FMU, or send events when
the continuous output signal of the same FMU
reaches a given threshold). Besides, when wrap-
ping an FMU-CS in DEVS, we have to take ac-
count of an additional constraint: the FMU is
exported with its solver, and this solver
can not belong to the QSS family because,
as stated before, FMI-CS can not handle such a
discrete-event behavior. In consequence, we can
not use a QSS solver anymore here, and so
we need to adapt the original DEVS version
of DEV&DESS in this model artifact.

The two next sections detail our wrappers and their
assessments.

7 Wrapping of FMU for Model-
Exchange

Figure 6a shows the architecture of our QSS2 solver for
FMU. This architecture mainly follows the one defined
by Kofman, but also has slight differences because two
criteria were not handled by the original QSS specifica-
tions: (1) due to the FMU nature, the model is clearly

separated from its solver, and (2) discrete-events may
cause discontinuities in the continuous state trajectory.
In the following sections we highlight these differences.
First, in order to be understandable by non-specialist,
we give an overview of the QSS working principle (Sec-
tion 7.1). Then, we describe how our QSS solver works
(Section 7.2) and how it interacts with the other com-
ponents of DEV&DESS: the state-event detector (Sec-
tion 7.3) and the discrete-event behavior component
(Section 7.4). This whole structure of the wrapper is
detailed in Figure 6b and corresponds to a DEVS cou-
pled model, managed by a classic DEVS coordinator
(not detailed here for sake of concision). This coordina-
tor is directly controlled by the API of the MECSYCO
wrapper. Finally, Section 7.5 details the assessment of
the wrapper.

7.1 The QSS solver strategy

In order to explain the QSS method and to highlight
its originality, we compare the behaviors of a first order
quantized integrator (i.e. QSS1) and of a classical first
order time-discretization integrator (i.e. Euler):

• Given the state x of a continuous system at a
current time ti, an Euler solver considers the
first derivatives to remains constant during a time
∆t. Based on this assumption, the solver infers
the state of the system at the time tj = ti + ∆t.
Hence, the solver has a discrete time-stepped be-
havior with a time-step equals to ∆t (see Figure
7a).

• Given the state x of a continuous system at a cur-
rent time ti, a QSS1 solver considers the first
derivatives to remain constant until the system
trajectory reach one of the thresholds x ± ∆x.
Based on this assumption, the solver infers the

12



(a) QSS2 solver for FMU-ME. (b) global view

Figure 6: bloc diagram view of the DEVS wrapper for FMU-ME.

time tj (ti < tj) when the system state and deriva-
tives needs to be updated. Hence, the solver has
a discrete-event behavior (which can be described
by a DEVS model) where events correspond to
continuous state updates (see Figure 7b).

QSS2 uses a strategy similar to QSS1, but it per-
forms a second order approximation. Hence, it con-
siders that the second derivatives remains constant
between events. Then, between events the system tra-
jectory is approximated by a parabolic trajectory. An
event now occurs when this parabolic trajectory differs
from a linear one (which may correspond to a first order
approximation of the system trajectory) of a quantity
∆x (see Figure 7c).

7.2 Continuous Behavior Simulation
with QSS

In the original QSS specifications, the solver interacts
with two clearly separated function blocks which re-
spectively define the output and the input behaviors
of the model. In our wrapper, these blocks are di-
rectly embedded inside the FMU. Therefore, the out-
puts (both discrete and continuous) of the solver cor-
respond to the FMU ones. The output ports of our
wrapped coupled model are directly linked to the FMU
ones. However, according to the standard, the FMU
discrete output ports produce piecewise-continuous sig-
nals –i.e. these signals are always present no matter the
time instant [33]. In order to generate discrete-event
output signals (i.e. signals that are present only at

some instants in time) for these discrete ports, we pro-
pose an optional mode in our wrapper which filters the
output of the FMU in order to generate signals (i.e. ex-
ternal events) only at the moments of the time-events
and/or the state-events.

According to the QSS approach, each variable xi of
the FMU continuous state vector is associated with a
DEVS quantized integrator

∫
i
. Each integrator

∫
i

takes
in input the first and second derivatives of xi respec-
tively noted ui and mui, and produces in output the
new values and slopes of xi, respectively noted qi and
mqi. These integrators numerically solve the equation
in an asynchronous way. A DEVS atomic model f is
in charge of computing the derivative slopes, handling
the inputs of the equation-based system -therefore, the
model has a set {in1..inm} of input ports, correspond-
ing to the FMU ones- and interacting with the integra-
tors. In the original QSS specifications, the equation-
based system is directly embedded into f . This is not
feasible in our case because the system is already em-
bedded in an FMU. As a consequence, our solver f also
manages the interaction with the FMU in the following
way:

• When it has to update the FMU continu-
ous state (e.g. when it receives new val-
ues and slopes for a continuous state vari-
able, from an integrator), f first switches
the FMU into the continuous mode (using
fmi2EnterContinuousTimeMode) if it was not al-
ready, and call the fmi2SetContinuousStates

function.

13



(a) Euler. (b) QSS1 (c) QSS2

Figure 7: Comparison of different solvers strategies

• When it has to update the value of an input vari-
able of the FMU (i.e. when it receives input events
through ini ports), f first checks the variability
of the variable into the XML description file.
Depending if this variability is continuous or dis-
crete, f calls the fmi2EnterContinuousTimeMode

or fmi2EnterEventMode function in order to set
the FMU in the appropriate mode (if it was not
already). Then, f checks the input variable type
in the XML file, and updates its value in the FMU
using fmi2SetReal/Integer/Boolean/String

function. If the updated variable is discrete,
f asks (several times if required by the FMU)
the FMU to re-evaluate its discrete state using
fmi2NewDiscreteStates.

• When it receives any event at its input ports (e.g.
from the integrators or at a ini port), f updates
the clock of the FMU to the timestamp of the
events using the fmi2SetTime function.

• When it has to get the derivative ui (e.g. in order
to compute its slope mui and to forward these
two values to

∫
i
), f uses the fmi2GetDerivatives

function of the FMU.

As shown in Figure 6b the solver interacts with two
atomic models in order to simulate the discrete behav-
ior of the FMU. These models correspond to the ones
defined by Zeigler in the DEVS version of DEV&DESS.

7.3 State-Event Detector

The state-event detector atomic model is in charge
of the accurate localization of state-events during the
simulation of the continuous equations. In order to
take advantages of the QSS approach for detecting
state-events, we make the hypothesis that the state-
event thresholds of the FMU are a priori known (ei-
ther because this information can be obtained from the
model designer or from the XML description file). In
the original hybrid QSS specifications[26], Kofman sug-
gests two ways of feeding the state-event detector from
the QSS solver:

1. It can receive the variable values q and derivatives
u and mu. This way, as stated by Kofman, the
detector only ”has to find the roots of a second
degree polynomial”[26] in order to find the time of
the next state-event (in the absence of new state
and derivative updates received from the solver).
Then, the detector schedules an internal event at
the time of this state-event in order to produce an
output, notifying the occurrence of the event.

2. Or it can only receive the derivatives u and their
slopes mu directly from the output ports of f .
In this case, in addition to find the time of the
next state-event and schedule the resulting inter-
nal event, the detector has to integrate (in parallel
of the system resolution) the variables concerned
with the thresholds.

Kofman opts for the second option because it does not
imply any modification of the QSS solver. However,
the drawback of this option is that the detector can
not be aware of the discontinuities in the continuous
state trajectory caused by discrete-events processing
(time, state or external). This is why we choose the
first option in our wrapper: the model f forwards im-
mediately to the detector all the updates of the con-
tinuous states vector q and its derivatives u and mu,
through a dedicated output port.

7.4 Discrete-event Behavior Simulator

The DEVS atomic model is in charge of managing
the occurrences of discrete events (state, time and ex-
ternal). After each modification of the discrete state
of the FMU –i.e. after each external/time/state-event
processing in the FMU-, this component (1) retrieves
the time tn of the next time-event scheduled in the
FMU, and (2) checks if the event processing has cre-
ated a discontinuity in the continuous state trajectory
(by checking the information returned by the last call
of the FMU fmi2NewDiscreteStates function). The
DEVS component schedules an internal event at each
tn. It also receives notifications of state-event occur-
rences from the detector. Moreover, all discrete in-

14



puts of the FMU are first sent to the DEVS compo-
nent before being immediately forwarded to the QSS
solver. This enables the DEVS component to be aware
of discrete-input occurrences, and so to interact with
the FMU (i.e. to update tn and check discontinuities)
after the discrete input was processed by the solver.
Therefore, as shown in Figure 6b, we distinguish in the
QSS solver interface between:

• The set {inc1, ..., inc
k} of input ports, correspond-

ing to the continuous inputs of the FMU. These
ports are directly connected to the input ports of
the wrapper. This way, the solver can directly re-
ceive continuous inputs of the FMU from the other
simulation tools of the co-simulation.

• The set {ind1, ..., ind
l } of input ports, corresponding

to the discrete inputs of the FMU. These ports are
duplicated in the DEVS component interface.

As soon as it computes a time event or it receives a
state-event notification, the DEVS component sends an
internal event notification to the QSS solver through a
dedicated port. The solver processes this notification
in the same way it does with discrete inputs: it sets
the FMU to the discrete mode and asks the FMU to re-
evaluate its discrete state, thus causing the time/state-
event to be processed. The only difference is that, as
no discrete input of the FMU corresponds to this inter-
nal event notification port, the solver does not change
any input variable of the FMU. Finally, as soon as
the DEVS component detects a discontinuity in the
continuous state trajectory, it sends immediately a re-
set event to the QSS solver through a dedicated port.
According to Zeigler’s DEV&DESS specifications, this
event resets both the quantized integrators and the f
model state, enabling the QSS solver to handle the dis-
continuity.

7.5 Implementation and Assessment

We have implemented this wrapper in the Java version
of MECSYCO. In order to interact with the FMU, we
rely on JavaFMI[50]. As this library only covers FMU-
CS, we proposed an extension to interact with FMU-
ME. We check the behavior of our wrapper by repro-
ducing two QSS2 use cases proposed by Kofman[26].
The first one corresponds to an DC-AC inverter circuit
equipped with switches controlled by discrete-inputs,
which are sent according to a Pulse Width Modulation
(PWM) strategy. The second example corresponds to
a ball bouncing downstairs, with state-events occurring
twice each bounce (one when the ball hits the ground
and one when it leaves it). Note that, with this exam-
ple, state-event occurrences depend on two continuous
state-variables: when both x and y positions match the
stairs location (i.e. when y = floor(h + 1 − x)). We
translated Kofman’s models into Modelica language

(see Figures 8a and 9a) and exported them in FMUs for
model-exchange, using OpenModelica. We found (vi-
sually) similar simulation results (see Figures 8b and
9b) and performances (i.e. a similar number of internal
events) with our solver and with the Kofman one.

As these two models do not include discontinuities
in the continuous state trajectory, we also propose an-
other use case to test this aspect with our solver (see
Figure 10a). This use case corresponds to the simula-
tion of a barrel-filler factory inspired by the one pro-
posed by Praehofer[13]. In this factory, we consider
a queue of barrels waiting to be filled, on a conveyor.
The factory fills only one barrel at a time. As soon as
the water reaches a given level in the barrel, the barrel
is carried away by the conveyor, and the filling process
starts again for the next empty barrel. A tank stores
the water to fill the barrels. The flow rate of water
filling the barrel decreases with the level of water in
the tank. A valve controls the flow of water between
the tank and the barrel. The valve can only be in two
states ”open” (water goes from the tank to the barrel)
or ”close” (the filling process is stopped). The contin-
uous dynamics of the model corresponds to the level
of water in the current barrel and in the tank. The
model receives discrete inputs controlling the valve.
State-events correspond to the moment were the cur-
rent barrel is full. At this point, the level of water
in the current barrel is reset, to represent the barrel
switching. The model produces a discrete output sig-
nal corresponding to a regular sampling of the level of
water in the barrel. This signal can be for instance sent
to a controller for monitoring the filling process. We
found (visually) similar results when simulating this
model with our QSS2 solver (see Figure 10b) and with
OpenModelica solvers.

8 Wrapping of FMU for Co-
Simulation

As stated in Section 6, we need the three components
of DEV&DESS to integrate an FMU into DEVS. An
FMU-CS provides the continuous behavior and we need
to define the two remaining components (i.e. the state-
events detector and the discrete-behavior component)
in the wrapper. These components are dependent of
the wrapping context:

• The discrete-behavior component has to specify
the behavior of the FMU in the discrete world.
This component corresponds to a DEVS atomic
model able to interact with the FMU component.
For example, this component can sample a con-
tinuous output of the FMU by regularly schedul-
ing internal events, and producing external output
events, according to the current values of the FMU
variables, using fmi2GetReal.

15



model BouncingBall
output Real x(start = 0.575) "horizontal position (m)";
output Real y(start = 10.5) "vertical position (m)";
output Real vx(start = 0.5) "horizontal speed (m/s)";
output Real vy(start = 0) "vertival speed (m/s)";
discrete Integer sw(start = 0) "discrete position ";
parameter Real k = 100000;
parameter Real m = 1;
parameter Real b = 30;
parameter Real ba = 0.1;
parameter Real g = 9.80665 "gravity (m/s^2)";
parameter Real h = 10 "first step height (m)";

equation
vx = der(x);
vy = der(y);
der(vy) = (-g) - ba * vy / m - sw * (b * vy / m + k / m * (y - floor(h + 1 - x)));
der(vx) = -ba / m * vx;
when y <= floor(h + 1 - x) and pre(sw) == 0 then

sw = 1;
elsewhen y >= floor(h + 1 - x) then

sw = 0;
end when;

end BouncingBall;

(a) Modelica code of the model. (b) MECSYCO simulation results.

Figure 8: Simulation of the bouncing ball system.

model InverterCircuit
parameter Real R = 0.6 "Resistance (ohm)";
parameter Real L = 0.1 "Inductance (H)";
parameter Real Vin = 300 "Input Voltage (V)";
Real iL(start = 0) "Current (A)";
discrete input Integer sw(start = -1) "switch ";

equation
der(iL) = (-R * iL + sw * Vin) / L;

end InverterCircuit;

(a) Modelica code of the model (b) MECSYCO simulation results.

Figure 9: Simulation of the DC-AC inverter circuit.

model barrel
discrete input Boolean valve(start = true);
parameter Real qmax = 7 "initial tank water (L)";
Real q(start = qmax) "water in the tank (L)";
Real flow(start = 0) "flow of water";
parameter Real gain = 0.3;
parameter Real value = 0.025;
output Real x(start = 0) "water in the barrel ";
parameter Real xmax = 1 "wanted barrel water(L)";
parameter Real f = 10 "sampling frequency ";
discrete output Real y(start = 0) "output sampling ";
equation

flow = if valve and q > 0 then q*gain+value else 0;
der(q) = -flow;
der(x) = flow;
when x >= xmax then

reinit(x, 0);
end when;
when sample(0, 1 / f) then

y = x;
end when;

end barrel;

(a) Modelica code of the model. (b) MECSYCO simulation results.

Figure 10: Simulation of the barrel-filler factory.

16



• The state-events detector has to specify the con-
dition of occurrence of state-events, according to
the FMU state. This detector corresponds to a
boolean function S → {true, false} with S the
set of the FMU states. For example, this function
should return true (i.e. a state-event occurs) only
when a variable of the FMU is superior or equals
to a given value.

In the following, we detail how we implement the
main DEVS primitives into the wrapper.

8.1 Time of the Next Internal Event

In our DEVS wrapper for FMU-CS[51], we rely on the
FMI specifications to simulate the continuous output
of the component: we consider that the FMU produces
outputs at a sequence of pre-defined communication
points. From our DEVS point of view, these commu-
nication points are seen as internal events producing
external output events. In the same way, from our
DEVS point of view, we see updates of the continuous
input values received by the FMU as input events.

According to the DEVS semantics, the
getNextInternalEventTime() function must re-
turn the date of the earliest scheduled internal event
in the model. In the DEV&DESS context, this date
corresponds to the minimum between:

• the date of the next internal event scheduled in
the discrete-event component;

• the date of the next communication point of the
FMU,

• and the date of the next state-event.

Getting the first two dates is trivial as they are a
priori known. Things get more complex for the state-
events: because of the numerical resolution of the equa-
tional model, state-events can only be detected after
each integration step of the FMU, and their localiza-
tion in time can only be approximated.

In order to get the date of the next state-event, we
need to perform an exploration with the FMU to see
if a state-event will occur before its next communi-
cation point. As a consequence, the component will
always be ”in the future” compared to the current
simulation time. According to the DEVS semantics,
the getNextInternalEventTime() function must not
change the state of the model. Indeed, it is imperative
to be able to come back to the previous state of the
FMU, corresponding to the only legitimate state from
the simulation point of view. The rollback capability
of the FMU assures this feature as long as no new in-
tegration step is performed.

When a state event is detected during an explo-
ration, we perform a bisectional search [16, 52] in order
to localize the state-event as precisely as possible in

the time. This search is formalized by the Algorithm 2
which, given the initial integration step ∆T and a num-
ber of iterations m (formalizing the search precision),
positions the FMU as close as possible to the state-
event occurrence. The algorithm basically progresses
by a succession of integration steps whose duration δt
is adapted according to state-event occurrences, and
following a dichotomous strategy. As the original state
must always be accessible, and as only one integration
step can be canceled at a time, the algorithm always
goes back to the legitimate state before performing a
new integration step.

Algorithm 2 Bisectional search for state-event local-
ization.

INPUT: ∆T ∈ R+
0 ,m ∈ N+

0

δt← 0
∆t← ∆T
for 1 to m do

fmu2RollBack()

∆t← ∆t/2
fmi2DoStep(δt+ ∆t)
if ¬stateEventOccurence() then

δt← δt+ ∆t
end if

end for

8.2 Events Processing

According to the DEV&DESS semantics, when an
event (internal, external or state-event) occurs at sim-
ulated timet, the equational component describes the
continuous evolution of the system until t, and the
event is processed by the discrete-event component.
This behavior is translated in our model artifact as
follows.

When the processExternalEvent(eini
,t,xki ) func-

tion is called to report the occurrence of an external
input event eini

into the xki input port, the first step
consists in rolling back the FMU to its previous state
(using the fmu2RollBack() method). This one corre-
sponds to, as stated in the previous section, the only le-
gitimate state from the simulation point of view. Then,
the FMU performs an integration step until t (using
the fmi2DoStep method) in order to reach the point
where the event occurs. Finally, when xki is a continu-
ous port, the FMU is parametrized accordingly (using
the fmi2SetReal/Integer/Boolean/String method).
If xki is a discrete port, the external transition function
of the discrete-event component is triggered in order to
process eini

.
Similarly, when the processInternalEvent(t)

function is called to process the next internal event,
the FMU is rolled back to its previous state and
an integration step is performed until t (using the
fmi2DoStep method). On the one hand, if the

17



next internal event corresponds to a communica-
tion point of the FMU, then the model artifact re-
trieves the continuous output ports values (using
the fmi2GetReal/Integer/Boolean/String method),
and produces the external output events accordingly.
On the other hand, if the next internal event corre-
sponds to a state-event or the next internal event of the
discrete-event component, then the internal transition
function of this latter is called, which could produce
external output events.

9 Discussion

We have presented in Section 5 the whole specifica-
tion of the MECSYCO middleware dedicated to the
co-simulation of CPS using a DEVS wrapping strategy.
MECSYCO relies on the formal guarantees offered by
DEVS and on the practical guidelines offered by the
numerous integrative works around DEVS in the liter-
ature to rigorously integrate models written in different
formalisms.

As a consequence, MECSYCO inherits the DEVS
limitations –i.e. if a M&S tool uses a formalism that
can not be integrated in DEVS, then the tool can not
be integrated in MECSYCO. We also stress that in
order to ease the wrapping of tools, we use the classical
version of the DEVS formalism (i.e. we do not consider
the Parallel DEVS formalism here): this prevents to
make assumptions on how an existing model reacts to
simultaneous event. As a consequence, simultaneous
events may not be taken into account in a reproducible
way (i.e. their processing order may vary, which may
impact the results).

The MECSYCO co-simulations are coordinated in
a decentralized and conservative way with a parallel
execution thanks to the Chandy-Misra-Bryant algo-
rithm. Having a conservative algorithm ease the in-
tegration of tools by not requiring the roll-back fea-
tures. However, it is worth noting that depending on
the co-simulation characteristics, parallel optimistic or
sequential co-simulation execution can be more effi-
cient.

Even though the models can be interfaced from
a software and formal perspective with MECSYCO,
there is no guarantee that they can be composed in a
meaningful way (i.e. resulting in a co-simulation se-
mantically valid) [53]. Hence, every MECSYCO co-
simulations and every DEVS wrappers must be care-
fully validated and verified in order to bring exploitable
results. The verification of the MECSYCO implemen-
tation was done empirically through several use cases
(notably in collaboration with EDF which was able to
check the results against a real system [44], and when
studying green cloud computing [43]), but no formal
verification were performed.

In Section 6, we showed how FMU components can

be wrapped into DEVS. The integration of the FMI
standard gives a way (in term of software interface)
to integrate at once continuous models developed us-
ing various tools (e.g. Dymola, MATLAB/Simulink).
We stress that, according to our wrapping strategy, we
do not directly map an FMU into a DEVS model but
rather provide additional mechanisms (using QSS and
DEV&DESS) in order to control an FMU like a DEVS
simulator. We stress that as we base this wrapping di-
rectly on the DEVS protocol, this work is not limited
to the MECSYCO platform, but can be implemented
in any DEVS-based platform. We proposed two wrap-
pers in order to integrate two complementary kinds of
FMU proposed by FMI (namely Model-Exchange and
Co-simulation).

With our DEVS wrapping of FMU-ME, we define a
hybrid QSS solver tailored to the FMI standard. At
this point, other QSS versions of the literature [54, 55]
which can simulate hybrid Modelica models deserve to
be cited. Our solver can also simulate models written
in Modelica, as soon as they are exported into an FMU-
ME. However, the originality is that our QSS solver
can also solves models written in any of the numerous
software compliant with FMI for model- exchange (e.g.
MATLAB/Simulink). Yet, it is important to note that
FMI prevents us to fully exploit all the performances
of the QSS method. Indeed, FMI does not allow to
decompose the continuous system in order to individu-
ally update the continuous state vector elements. As a
result, the QSS algorithm (i.e. the integrators) can not
solve the system asynchronously. Hence, this limit of
the FMI standard could make QSS inefficient for solv-
ing large ODE systems. Moreover, as so far we only
provided a QSS2 solver which is only of order 2, we are
still strongly limited to simple non-stiff equation-based
models. In order to be able to simulate more realis-
tic use cases, we plan in future works to implement
other QSS methods such as QSS3 [56] (of order 3), and
LIQSS2[57] (of order 2, but for stiff systems).

In the case of FMU-CS, we would like to underline
the fact that, whereas our wrapping of FMU for model
exchange is adapted both for FMI 1.0 and 2.0 versions,
our wrapping of FMU-CS is only adapted for FMI 2.0.
This is because we needed the rollback capacity of the
FMU which is only available in the latest version of
the standard. Besides, this rollback capacity is only
optional in FMI 2.0. Consequently, our DEVS wrap-
per is unable to handle an FMU-CS which does not
implement this feature. It is also worth noting that
we made the assumption that FMUs for co-simulation
always accept the desired integration step. This as-
sumption is not trivial because the FMI standard does
not prescribe an FMU to reject the required integration
step to to prematurely stop the numerical integration
of the system [32]. Depending on the solver exported
within the FMU, it could happen for instance when the
estimated error becomes too large or when the solver

18



has a fixed step size incompatible with the required
integration step. Thus, our wrapper may not be com-
pliant with all FMU-CS behaviors. As a result, when
exporting a model into an FMU-CS for a MECSYCO
wrapping purpose, the solver must be carefully selected
(when available). In particular, solvers with fixed step-
size should be avoided here.

These two wrappers can be considered as comple-
mentary:

• FMU-ME wrapper can be used to integrate any
hybrid system whose continuous behavior can be
simulated by a QSS solver.

• FMU-CS wrapper can be used to integrate any
purely continuous system which can be simulated
with a solver compliant with FMI and the afore-
mentioned assumptions. An ad-hoc discrete be-
havior can be specified in the wrapper if needed.

Please note that, if some continuous/hybrid model does
not comply to any of these two wrappers, an ad-hoc
wrapping of its tool may still be performed.

In the following section, we show the features of our
solution, through a proof of concept of a smart heating
M&S.

10 Use Case

Our use case is inspired by different works around
smart-heating [55][58]. We want to simulate the evo-
lution of the temperature and the power consumption
of two buildings equipped with electric heaters. Using
this simulation, we are interested in the design of a
controller for limiting the consumption peaks duration
in the building. To do so, this controller temporarily
disables some heaters according to the information it
receives on the building temperatures and power con-
sumption. This controller interacts with the build-
ings system through an IP telecommunication network.
Such a goal could lead to a typical iterative M&S pro-
cess driven by the following series of questions:

1. What are total the power consumption and the
temperatures evolution in the buildings, without
a controller?

2. Does the controller actually achieve its goal, with-
out considering delays and perturbations poten-
tially induced by the telecommunication network?

3. What is the impact of the telecommunication net-
work presence, on the controller performances?

This leads to three major steps in the M&S process.
In order to answer to the first question, we need to

simulate the thermic system. We use three models.
One describes the outside temperature evolution. The

two others describe the power consumption and tem-
perature evolution of each building, according to the
outside temperature evolution. We perform the co-
simulation of these three models by feeding the build-
ing models with the outside temperature trajectory.

In order to answer the second question, we build the
model of the controller. We use this model twice (one
for each building) in the co-simulation. Each controller
model is fed with the outputs of its building model
(i.e. room temperatures and heater power consump-
tion). When needed, it produces the heaters switch
off/on orders as output, sent to the building model as
inputs.

In order to answer the last question, we add a model
of the telecommunication network between the build-
ings and their controller. Outputs of the buildings
models now first pass through the network model be-
fore arriving to the controller models. Reciprocally, the
controller orders transit through the network model be-
fore delivery. The network model adds delays and per-
turbations (i.e. packet loss and noise) to the system.

This ”toy” use case does not claim to be realistic.
We keep the atomic models of the use case simple
since we are here focused on demonstrating the follow-
ing MECSYCO properties, rather than on presenting
a credible use case:

• Modularity: The use case development follows
an iterative M&S process. We first begin the co-
simulation with the thermic model of the building.
Then, we add step by step the models of the con-
troller and the telecommunication network. We
show that passing from one of these steps to an-
other does not require to rebuild the co-simulation
from scratch.

• Software interoperability management:
Each model of the co-simulation is implemented
in a different simulation software. The thermic
model is defined in Modelica and exported into
FMUs for model-exchange and co-simulation, the
telecommunication model is defined using the
NS-3 simulator, and the controller model is imple-
mented in an ad-hoc way using the Java language.
We show that MECSYCO properly handles
exchanges of data between these heterogeneous
software.

• Multi-formalism integration: The models of
the co-simulation are defined in different for-
malisms. The thermic model is an hybrid model
composed of differential and discrete equations.
The telecommunication model is a discrete event
model whereas the controller model is a discrete
time-stepped model. We show that MECSYCO
enables the rigorous integration of these heteroge-
neous models.

19



Figure 11: Architecture of the building

• Multi-representation integration: The mod-
els evolve at different temporal scales: seconds
for the controller and the thermic models, and
nanoseconds for the telecommunication network.
We show that MECSYCO rigorously synchronizes
these model executions during the co-simulation.

• Distributed multi-platform execution: We
execute the co-simulation on two computers con-
nected on a LAN. These two computers use differ-
ent operating systems, and different implementa-
tions of MECSYCO. The telecommunication net-
work model is executed on GNU/Linux Debian
with the C++ version of MECSYCO, whereas the
other models are executed on Microsoft Windows
10 with the Java version of MECSYCO.

In order to make this use case reproducible and to
describe in a transparent way all its heterogeneity, we
detail all models and their implementation in the fol-
lowing sections. Finally, in Section 10.4 we describe
the different co-simulations made with these models,
we discuss the simulation results, and we highlight the
benefits offered by MECSYCO.

10.1 Thermic System Models

We create two kinds of models for the thermic system.
The first one corresponds to the outside temperature
trajectory. For sake of simplicity, this model generates
a simple sinusoidal signal representing day/night tem-
perature cycles. The second one corresponds to the
temperature and power consumption evolutions of one
building. As the two buildings are identical, we use
this model twice.

Each building of the thermic system is composed of
ten rooms linked by a corridor, following the Figure 11.
Each room is influenced by the outdoor temperature,
by the adjacent rooms, and contains an electric heater
with an internal thermostat. This one turns on when
the temperature inside the room falls under a minimal
value and turns off when this temperature reaches a
maximum value. For sake of simplicity, we assume here
that all heaters have the same features (i.e. setpoint
temperatures, powers and tolerances).

We use OpenModelica to define these models. The
following list presents the interface of the building
model used to interact with the other models of our
use case.

Inputs:

• blackouti is a discrete boolean input. When set
to true, the electric heater of the room i is shut
down.

• Tout is the continuous outside temperature in K.

Outputs:

• RiTemp is a discrete variable sampling the tem-
perature of the room i. This signal is updated ev-
ery period of time, and represents the information
sent regularly by a thermometer to the controller.

• RiPow is the instantaneous power consumption
inside the room i. It is a discrete variable updated
each time the heater starts and stops.

The building model is an hybrid system which com-
bines continuous and discrete behavior. The simu-
lation of this model requires to solve the differential
equations system describing the temperatures evolu-
tion while taking account of discrete time and state-
events. These discrete events correspond to the Mod-
elica ”when” statements. Each update of the dis-
crete output portsRiTemp corresponds to a time-event
scheduled in advance by the model, for regularly sam-
pling the continuous temperature evolution. On the
contrary, a state-event occurs each time the tempera-
ture of a room reaches one of the two heaters thresholds
–i.e. each time Ti = Twanted ± bandwidth

2 . Considering
the 11 rooms of the building, 22 state-event thresholds
have then to be simultaneously monitored. Moreover,
the continuous inputs of the outside temperature and
the discrete inputs corresponding to the blackout or-
ders of the controller have to be integrated during the
simulation. More details about this model can be found
in Appendix A.

10.2 Controller Model

The controller model is built in an ad-hoc way in Java
following the DEVS functions of our model artifacts.
As the two buildings do not interact together (i.e. no
temperature exchanges occurs between the buildings),
the controller can manage each building separately.
Then, we define here the model of the controller for
managing only one building. This model can be dupli-
cated in order to control both buildings.

Recall that the goal of the controller is to limit power
consumption peaks duration in the building. To do so,
the controller temporary disables some heaters when
the total power consumption of the building is equal or
higher than a given threshold Powmax. Hence we ac-
cept to lower the temperatures of some rooms beneath
the setpoint, for a specific period of time. Nevertheless,
in order to maintain a minimum of comfort in every
room, the controller makes sure that the temperature

20



is above a given threshold Tempmin in K (assumed to
be lower than the temperature setpoint of the heaters).

The controller maintains a set of variables Tempi
and Powi for saving respectively the last temperature
and the last instantaneous power consumption values
received from the sensors of each room i of the build-
ing. This controller is described by a discrete time-
stepped model where each time-step corresponds to an
evaluation point. Each Powi and Tempi variable can
be updated by specific input ports of the model. The
controller order to the heater of each room i corre-
sponds to a boolean sent through a specific output port
blackouti. From our DEVS wrapping perspective, we
consider each time-step as an internal event and each
input/output as an external event. More details about
this model can be found in Appendix B.

10.3 Telecommunication Network
Model

The IP network is modeled with NS-3 [6], a popular
discrete-event IP network simulator. NS-3 models can
be wrapped into DEVS, as a coupled model composed
of network components [37]. From the perspective of
the IP network, each room corresponds to two net-
work devices. A heater sends information about its
power consumption to the controller, and receives com-
mands from this latter, asking them to stop heating for
a while. A thermometer regularly sends the current
temperature of the room, to the controller too. More
details about this model can be found in Appendix C.

10.4 Co-Simulations and Results

This section details the co-simulations and their re-
sults. The parameters used in the different co-
simulations are provided in Table 3.

In order to answer to the first question, we export
the thermic building model into an FMU-ME, to han-
dle discrete-events. As said previously, we use two in-
stances of this model, one for each building we want to
simulate. We export the outside temperature model as
an FMU-CS called Out.

According to our wrapping strategy, each building
FMU is associated with an instance of our QSS solver.
Each of these QSS solves the 11 differential equations
of its models and monitors its 22 state-event thresh-
olds. We set the quantization of all the integrators of
the solvers to 0.0001. As shown in Figure 12b, we inter-
connected the wrapped models in MECSYCO in order
to form the DEVS coupled model of Figure 12a.

The co-simulation is executed on a single computer
using Windows 10 and the Java implementation of
MECSYCO. We simulate one day of the system evolu-
tion.

The co-simulation results are shown in Figure 15a.
For the sake of concision, these results only show the

state trajectory of the first building. These results are
similar to the ones obtained with OpenModelica, and
perfectly match the expectation: state-events are han-
dled at the right times (i.e. heaters start and stop just
when the temperatures evolution reaches one of the
two thresholds), and we can see the influences of the
building symmetry with room 1 to 10 in the state tra-
jectory (e.g. the rooms 1 and 10, or the rooms 5 and 6,
which receive similar thermal influences, have similar
trajectories).

In order to answer the second question, we add the
two controller models (one for each building) to the
co-simulation. According to the co-simulation param-
eters, the controller considers that consumption peaks
occurs when the total power consumption of the build-
ing is higher than the power consumption of one active
heater (i.e. when at least two heaters are active at
the same time). We configure the models in order to
have the controller evaluating the building states every
minute. 30 seconds after each evaluation point (and its
potential orders sent to the heaters), the controllers re-
ceive new information from the building sensors, and
wait another 30 seconds until the next evaluation point.
We connect the wrapped model in order to form the
coupled model of Figure 13a.

The Figure 15b shows the simulation results for
the first building. In this graph, grey areas repre-
sent periods of time during which the heaters should
be shut down according to the controller model out-
puts. Again, the simulation results are in accordance
with the expected model behaviors. Indeed, we can see
that the controller model outputs are well integrated
into the building model: when the controller sends the
shut down orders, the heaters immediately stop work-
ing, and the corresponding room temperatures start
decreasing according to the wall heat transfers. On
the contrary, as soon as the controller sends starting
orders to the heaters, the corresponding temperatures
immediately start increasing and oscillate as expected
between the two state-event thresholds.

In order to answer the last question, we add the
telecommunication model to the co-simulation, as indi-
cated by the Figure 14. As NS-3 works at a nanosecond
timescale whereas the FMUs use a second time scale,
we use transformation operations in the coupling ar-
tifacts between NS-3 and the FMUs (converting the
timestamps of the exchanged events).

It is important to note that the models are compliant
with different OS: FMU components we have generated
are only compliant with Microsoft Windows, whereas
the NS-3 model works on GNU/Linux. Moreover, we
used different implementations of MECSYCO to wrap
our models: the FMU components and the controller
model are wrapped using the Java version whereas the
NS-3 model is wrapped using the C++ version. As a

21



consequence, we have to distribute the co-simulation
on two computers:

• The first one runs on Windows 10 and uses the
Java version of MECSYCO to simulate the FMUs
and the controller model.

• The second one runs on GNU/Linux Debian and
uses the C++ version of MECSYCO to simulate
the NS-3 model.

When we configure NS-3 for simulating a TCP pro-
tocol on the network without any error model, the sim-
ulation results are similar to the previous ones (shown
on Figure 15b) –i.e. the network does not impact the
system behavior. This is because, in this case, the net-
work only introduces very small delays (on a second
time scale) in the communications between the build-
ings and the controller. However, when we configure
NS-3 with perturbations introduced in the simulated
communications (i.e. packets losses or corruptions),
the simulation results change as shown by Figures 15c
and 15d. Perturbations are introduced by using in NS-
3 an UDP protocol without checksums and an error
model of one bit altered respectively every 10000 ones,
then every 1000 ones. We can see that, as one can ex-
pect, the more noise we add in the network, the more
different the system trajectory becomes. It is interest-
ing to note that in the results shown by Figure 15d,
the noise is so high that some controllers orders (for
instance the shutdown order for the heater of room 1
at time 8370) do not even reach the building. Note
that Figures 15c and 15d only display an example of
simulation results, as the NS-3 error model introduces
a stochastic process.

10.5 Synthesis

With this use case, we have shown that MECSYCO
can rigorously integrate different kinds of heterogene-
ity. At each step of this use case, we introduced a new
heterogeneity at the software, formalism and represen-
tation levels.

• The first step shows that MECSYCO handles the
FMI standard (both co-simulation and model ex-
change), and hybrid dynamics (i.e. continuous
evolution with state and time events).

• The second step shows that MECSYCO enables
the interaction of continuous and time-stepped
models, and properly manages the data exchanges
between FMUs and ad-hoc simulators.

• The last step shows that the NS-3 discrete-event
simulator can rigorously interact with FMUs and
ad-hoc models in a distributed multi-platform ar-
chitecture within MECSYCO.

Through this iterative proof of concept, we have
shown that MECSYCO enables the modular M&S of
a CPS. Indeed, it is important to note that, at each
next co-simulation step, we only add and connect the
new models to the previous co-simulation. Hence, we
do not have to modify neither the models nor their
MECSYCO wrappers: we only have to change the co-
simulation structure (i.e. models interconnections and
co-simulation distribution).

11 Conclusion

In this work, we gave the specifications of the
MECSYCO middleware. MECSYCO tackles the
numerous and difficult challenges of the CPS co-
simulation. For this purpose, it relies on a DEVS
wrapping strategy. The middleware performs the co-
simulation in a parallel, decentralized and distributable
fashion thanks to its modular multi-agent software ar-
chitecture.

In this article, we illustrated how the DEVS liter-
ature and tools (namely the DEV&DESS hybrid for-
malism and the QSS solver strategy) can be used to
rigorously integrate pre-existing equation-based tools
into the MECSYCO discrete environment to perform
hybrid co-simulations. In order to make this integra-
tion the more generic possible at the software level, we
defined DEVS wrappers for the FMI standard. As a
consequence, this DEVS wrapping of the FMI standard
is reproducible in any DEVS-based platform.

We developed a proof of concept of a smart-heating
use-case, where we integrate and co-simulate non
DEVS-centric M&S tools, namely OpenModelica and
NS-3. We showed that our middleware is modular:
there is no need to change the middleware specifica-
tions when a model is changed/added/removed in the
co-simulation. Moreover, our middleware is fully spec-
ified from the concepts, till their implementation, mak-
ing different implementations of MECSYCO interoper-
able.

Our approach is grounded on choices at different lev-
els with resulting properties and limitations:

Using DEVS enables MECSYCO extensions based
on DEVS literature. For example, dynamic structure
and other synchronization algorithm (e.g. optimistic)
could be implemented. The DEVS wrapping strategy
offers two advantages: (1) pre-existing legacy M&S
tools and their models can be re-used (2) we bene-
fits from all the integrative works around DEVS in
order to rigorously integrate tools using different for-
malisms. However, MECSYCO also inherits of DEVS
limitations: if a formalism or a solver can not mapped
(directly of indirectly) into DEVS, it can not be in-
tegrated in MECSYCO. On a more specific level, by
relying on sequential DEVS instead of Parallel DEVS,

22



(a) Bloc diagram view of the DEVS model. (b) MECSYCO view of the co-simulation.

Figure 12: Co-simulation of the building system without controller.

(a) Bloc diagram view of the DEVS model. (b) MECSYCO view of the co-simulation.

Figure 13: Co-simulation of the building system with a controller but no network

(a) Bloc diagram view of the DEVS model. (b) MECSYCO view of the co-simulation

Figure 14: Co-simulation of the building system with a controller and a network.

23



(a) Simulation results without a controller. (b) Simulation results with a controller but no network.

(c) Example of simulation results with UDP and 1 bits
altered every 10000 ones.

(d) Example of simulation results with UDP and 1 bits
altered every 1000 ones.

Figure 15: MECSYCO co-simulation results of the building-controller system.

24



we ease the wrappers design but we may not take ac-
count of simultaneous events in a reproducible way.

Using a parallel conservative co-simulation al-
gorithm simplifies the integration of tools because of
limiting assumptions (e.g the roll-back features is not
mandatory) but it forbids to take advantage of opti-
mistic or sequential ones.

Using the FMI standard to integrate continuous
systems, enables to have a more generic software com-
patibility: we can use all the tools compatible with
FMI. However FMI is still not natively supported by
all the equation-based tools (e.g. PowerFactory). As a
consequence, ad-hoc wrappers must be developped for
these tools. We proposed two complementary kinds of
wrappers for FMI:

• In the case of FMI-ME, we have to code the solver
in the wrapper. Thus, with this strategy, we can
not reuse already implemented solvers. However,
the advantage is that we can integrate and simu-
late hybrid models (e.g. with continuous AND dis-
crete behaviors). In our case, we used QSS solver
of order 1 or 2 to simulate the model. As we only
provide a QSS2 solver we are limited to simple non
stiff equation system even if other QSS solvers can
be implemented in the platform. This approach
may also be inefficient for large ODE system be-
cause FMI prevents us from fully exploit the QSS
method.

• In the case of FMI-CS, we have to use the solver
embedded in the FMU. This means that, when
exporting a model as a FMU from a continuous
tool, any solver compliant with the standard and
our assumptions can be chosen. Thus, we are only
limited by the integrative power of FMI and our
assumptions. Nonetheless, the discrete behavior
has to be rewritten in the wrapper. Also, note
that we are limited to FMUs 2.0 which provide
a roll-back capacity and must always accept the
desired integration step.

In future works, we plan to propose extensions of our
approach in order to have MECSYCO supporting the
whole M&S process, from the definition of the exper-
imental plan to the simulation results analysis. This
includes the verification of the wrappers to guarantee
the correctness of tools integration in the platform. We
also plan to enhance the capacity of MECSYCO by im-
plementing other DEVS co-simulation algorithms (e.g.
optimistic or centralized). Finally, we would like to
develop a Domain Specific Language approach within
MECSYCO, to define co-simulations directly using the
language of experts. Such an approach could indeed
make MECSYCO accessible outside the M&S experts
circle.

Acknowledgements

This work was partially funded by EDF R&D through
the strategic project MS4SG.

References

[1] Rajkumar RR, Lee I, Sha L et al. Cyber-physical
systems: The next computing revolution. In Pro-
ceedings of the 47th Design Automation Confer-
ence. DAC ’10, New York, NY, USA: ACM, 2010.
pp. 731–736.

[2] Dahmann JS, Fujimoto RM and Weatherly RM.
The department of defense high level architecture.
In Proceedings of the 29th conference on Winter
simulation. 1997. pp. 142–149.

[3] Diallo SY, Herencia-Zapana H, Padilla JJ et al.
Understanding interoperability. In Proceedings of
the 2011 Emerging M&S Applications in Industry
and Academia Symposium. EAIA ’11, San Diego,
CA, USA: SCS, 2011. pp. 84–91.

[4] Wilensky U. Netlogo.
http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Model-
ing, Northwestern University, Evanston, IL., 1999.
URL http://ccl.northwestern.edu/netlogo/.

[5] Taillandier P, Vo DA, Amouroux E et al. GAMA:
a simulation platform that integrates geographi-
cal information data, agent-based modeling and
multi-scale control. In Principles and Practice of
Multi-Agent Systems. Springer, 2012.

[6] Henderson TR, Roy S, Floyd S et al. NS-3 project
goals. In Proceeding of WNS2 ’06. 2006. p. 13.

[7] Varga A and Hornig R. An overview of the OM-
NeT++ simulation environment. In Proceedings
of ICST. 2008. p. 60.

[8] Dahmann J and Morse K. High level architec-
ture for simulation: an update. In Distributed In-
teractive Simulation and Real-Time Applications,
1998. Proceedings. 2nd International Workshop
on. pp. 32–40.

[9] Schütte S. Simulation model composition for the
large-scale analysis of smart grid control mecha-
nisms. PhD Thesis, BIS der Universität Olden-
burg, 2013.

[10] Vangheluwe H, De Lara J and Mosterman PJ.
An introduction to multi-paradigm modelling and
simulation. In Proc. AIS2002. 2002. pp. 9–20.

25

http://ccl.northwestern.edu/netlogo/


Table 3: Parameters used in the smart heating co-simulation use case.

Models Parameters Descriptions Values

thermic building

temperature setpoints of the heaters, Twanted 293.15 K
tolerance of the heaters, bandwidth 5 K
electrical resistance of the heaters, R 2 Ω
power supply voltage, U 230 V
thermal capacities of rooms 1 to 10 112.5 kJ/K
thermal capacities of rooms 11 600 kJ/K
thermal conductances of the outside walls of rooms 1 and 10 2 J/K
thermal conductances of the outside walls of rooms 2 to 9 1.25 J/K
thermal conductance of the outside wall of room 11 7.5 J/K
thermal conductances of the inside walls between rooms 1 to 10 3.75 J/K
thermal conductances of the inside walls between rooms 11 and room 1 to 10 2.25 J/K
rooms initial temperature (NB: identical for all the rooms) 293.15 K
temperature evolution sampling period 60 s

outside temperature evolution

amplitude 5K
offset 278.15 K
period 1 day
phase −π/2

controller

consumption peaks occurrence threshold, Powmax 735 W
minimum temperature threshold, Tempmin 288.15 K
evaluation points period (i.e. model time step) 60 s
initial evaluation point time (i.e. evaluation points offset) 30 s

[11] Cellier FE. Combined continuous/discrete system
simulation languages–usefulness, experiences and
future development. Methodology in systems mod-
elling and simulation 1979; : 201–220.

[12] Lara J and Vangheluwe H. AToM3: A tool for
multi-formalism and meta-modelling. In Kutsche
RD and Weber H (eds.) Fundamental Approaches
to Software Engineering, Lecture Notes in Com-
puter Science, volume 2306. Springer Berlin Hei-
delberg, 2002. pp. 174–188.

[13] Praehofer H. System theoretic formalisms for
combined discrete-continuous system simulation.
International Journal of General System 1991;
19(3): 226–240.

[14] Barros FJ. Dynamic structure multiparadigm
modeling and simulation. ACM Trans Model
Comput Simul 2003; 13(3).

[15] Esquembre F and Christian W. Ordinary differ-
ential equations. In Fishwick PA (ed.) Handbook
of dynamic system modeling. CRC Press, 2007.

[16] Mosterman P. Hybrid dynamic systems: Modeling
and execution. In Fishwick PA (ed.) Handbook of
dynamic system modeling, chapter 15. CRC Press,
2007. pp. 1–26.

[17] Argent RM. An overview of model integra-
tion for environmental applications-components,
frameworks and semantics. Environmental Mod-
elling and Software 2004; .

[18] Zeigler B, Praehofer H and Kim T. Theory of Mod-
eling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Aca-
demic Press, 2000.

[19] Vangheluwe H. DEVS as a common denominator
for multi-formalism hybrid systems modelling. In
Proc. of CACSD ’00.

[20] Barros FJ and Zeigler BP. Model interoperability
in the discrete event paradigm: Representation of
continuous models. In Modeling and Simulation:
Theory and Practice. Springer US, 2003. pp. 103–
126.

[21] Quesnel G, Duboz R, Versmisse D et al. DEVS
coupling of spatial and ordinary differential equa-
tions: VLE framework. In Proc. OICMS ’05. 2005.

[22] Zeigler BP. Embedding DEV&DESS in DEVS.
In Proc. DEVS Integrative M&S Symp, volume 7.
2006.

[23] Cellier FE, Kofman E, Migoni G et al. Quantized
state system simulation. Proc GCMS’08, Grand
Challenges in Modeling and Simulation 2008; :
504–510.

[24] Bergero F, Fernandez J, Kofman E et al. Time
discretization versus state quantization in the sim-
ulation of a one-dimensional advection-diffusion-
reaction equation. Simulation 2016; 92(1): 47–61.

26



[25] Kofman E. A second-order approximation for
devs simulation of continuous systems. Simula-
tion 2002; 78(2): 76–89.

[26] Kofman E. Discrete event simulation of hybrid
systems. SIAM Journal on Scientific Computing
2004; 25(5).

[27] Kim YJ and Kim TG. A heterogeneous simulation
framework based on the DEVS BUS and the high
level architecture. In Proc. of WSC ’98, volume 1.
1998.

[28] Mittal S, Ruth M, Pratt A et al. A system-of-
systems approach for integrated energy systems
modeling and simulation. In Proc. of SummerSim’
15. SCS/ACM, 2015. pp. 1–10.

[29] Blochwitz T, Otter M, Åkesson J et al. Functional
mockup interface 2.0: The standard for tool inde-
pendent exchange of simulation models. In Proc.
9th International Modelica Conference. 2012. pp.
173–184.

[30] Fritzson P and Engelson V. Modelica—a unified
object-oriented language for system modeling and
simulation. In European Conference on Object-
Oriented Programming. 1998. pp. 67–90.

[31] MODELISAR Consortium and Modelica As-
sociation. Functional mock-up interface for
model exchange and co-simulation – version
2.0, july 25, 2014. retrieved from https://www.

fmi-standard.org.

[32] Broman D, Brooks C, Greenberg L et al. De-
terminate composition of FMUs for co-simulation.
In Proceedings of the Eleventh ACM International
Conference on Embedded Software. EMSOFT ’13,
Piscataway, NJ, USA: IEEE Press, 2013.

[33] Cremona F, Lohstroh M, Tipakis S et al. FIDE –
an FMI integrated development environment. In
ACM (ed.) SAC’16. 2016.

[34] Galtier V, Vialle S, Dad C et al. FMI-based dis-
tributed multi-simulation with DACCOSIM. In
Proc. of TMS/DEVS 15. SCS, 2015. pp. 39–46.

[35] Barros FJ. A modular representation of asyn-
chronous, geometric solvers. In Proceedings of the
Symposium on Theory of Modeling & Simulation.
TMS-DEVS ’16, San Diego, CA, USA: Society for
Computer Simulation International. ISBN 978-1-
5108-2321-1, pp. 27:1–27:8. URL http://dl.acm.

org/citation.cfm?id=2975389.2975416.

[36] Camus B, Bourjot C and Chevrier V. Combining
DEVS with multi-agent concepts to design and
simulate multi-models of complex systems (WIP).
In Proc. of TMS/DEVS 15. SCS, 2015.

[37] Vaubourg J, Chevrier V, Ciarletta L et al. Co-
simulation of IP network models in the cyber-
physical systems context, using a DEVS-based
platform. In SCS/ACM (ed.) Communications
and Networking Simulation Symposium (CNS’16).
2016.

[38] Quesnel G, Duboz R and Ramat É. The
virtual laboratory environment – an op-
erational framework for multi-modelling,
simulation and analysis of complex dynam-
ical systems. Simulation Modelling Practice
and Theory 2009; 17(4): 641 – 653. DOI:
http://dx.doi.org/10.1016/j.simpat.2008.11.003.
URL http://www.sciencedirect.com/

science/article/pii/S1569190X08002165.

[39] Siebert J, Ciarletta L and Chevrier V. Agents and
artefacts for multiple models co-evolution: build-
ing complex system simulation as a set of inter-
acting models. In Proc. of AAMAS ’10. AA-
MAS/ACM, 2010.

[40] Bonneaud S. Des agents-modèles pour la
modélisation et la simulation de systèmes com-
plexes - Application à l’écosystémique des pêches.
PhD Thesis, 2008.

[41] Jennings NR. An agent-based approach for build-
ing complex software systems. Commun ACM
2001; 44(4): 35–41.

[42] Ricci A, Viroli M and Omicini A. Give agents
their artifacts: the A&A approach for engineering
working environments in MAS. In AAMAS ’07.
ACM, 2007.

[43] Camus B, Dufossé F and Orgerie AC. A stochastic
approach for optimizing green energy consump-
tion in distributed clouds. In SMARTGREENS
2017 - Proceedings of the 6th International Con-
ference on Smart Cities and Green ICT Systems,
Porto, Portugal, April 22-24, 2017. pp. 47–59.
DOI:10.5220/0006306500470059.

[44] Vaubourg J, Presse Y, Camus B et al. Multi-
agent multi-model simulation of smart grids in the
MS4SG project. In Proc. PAAMS 15. Springer,
2015. pp. 240–251.

[45] Chandy KM and Misra J. Distributed simula-
tion: A case study in design and verification of
distributed programs. IEEE Trans Software En-
gineering 1979; .

[46] Bryant RE. Simulation on a distributed system. In
Proc. of the 16th Design Automation Conf. 1979.

[47] Fujimoto RM. Parallel simulation: parallel and
distributed simulation systems. In Proceedings of

27

https://www.fmi-standard.org
https://www.fmi-standard.org
http://dl.acm.org/citation.cfm?id=2975389.2975416
http://dl.acm.org/citation.cfm?id=2975389.2975416
http://www.sciencedirect.com/science/article/pii/S1569190X08002165
http://www.sciencedirect.com/science/article/pii/S1569190X08002165


the 33nd conference on Winter simulation. WSC
’01, IEEE Computer Society, 2001.

[48] Kofman E and Junco S. Quantized-state systems:
a devs approach for continuous system simula-
tion. Transactions of The Society for Modeling
and Simulation International 2001; 18(3): 123–
132.

[49] Tavella JP, Caujolle M, Tan C et al. Toward an
Hybrid Co-simulation with the FMI-CS Standard,
2016. Research Report.

[50] Hernández-Cabrera JJ, Évora Gómez J and
Cortès-Montenegro J. JavaFMI. SIANI. Univer-
sity of Las Palmas, Spain.

[51] Camus B, Galtier V, Caujolle M et al. Hy-
brid Co-simulation of FMUs using DEV&DESS
in MECSYCO. In Proceedings of the Symposium
on Theory of Modeling & Simulation - DEVS In-
tegrative M&S Symposium. 2016.

[52] Moler C. Are we there yet? Zero crossing and
event handling for differential equations, Matlab
News & Notes 1997; .

[53] Petty MD and Weisel EW. A composability lexi-
con. In Proceedings of the Spring 2003 Simulation
Interoperability Workshop. 2003. pp. 181–187.

[54] Bergero F, Floros X, Fernandez J et al. Simulat-
ing modelica models with a stand-alone quantized
state systems solver. In Proc. 9th International
MODELICA Conference. 076, 2012. pp. 237–246.

[55] Floros X, Bergero F, Ceriani N et al. Simulation
of smart-grid models using quantization-based in-
tegration methods. In Proceedings of the 10 th
International Modelica Conference; March 10-12;
2014; Lund; Sweden. 096, Linköping University
Electronic Press, pp. 787–797.

[56] Kofman E. A third order discrete event method
for continuous system simulation. Latin American
applied research 2006; 36(2): 101–108.

[57] Migoni G and Kofman E. Linearly implicit dis-
crete event methods for stiff ode’s. SciELO Ar-
gentina, 2009. pp. 245–254.

[58] Gilpin L, Ciarletta L, Presse Y et al. Co-
simulation Solution using AA4MM-FMI applied
to Smart Space Heating Models. In 7th Interna-
tional ICST Conference on Simulation Tools and
Techniques. Lisbon, Portugal, 2014. pp. 153–159.

Appendices

A Thermic System Model De-
tails

In order to describe our thermic system, we need to
build models for rooms to get the temperature, for
walls to get the heat flow between two rooms (or be-
tween a room and the outside temperature) and for
electric heaters to get the instantaneous power con-
sumed to heat.

We use the standard library of Modelica to build
our models. The thermal part of the building is
built using the Modelica.Thermal.HeatTransfer li-
brary and the electric heater model is built with the
Modelica.Electrical.Analog library.

Rooms are modeled as heat capacitors. Each room
is seen as a volume of air with a temperature. The
different influences (from the walls and from its heater)
are modeled as heat flow exchanges. The behavior of
the model of a room i is characterized by the equation:

Ci ∗
dTi
dt

= Qini
+Qheateri

Where:

• Ci is the constant thermal capacity of the room in
J/K.

• Ti is the temperature of the room in K.

• Qini
is the sum of the heat flows received from the

walls connected to the room.

• Qheateri is the heat flow received from the electric
heater. We consider here that it is equal to the
instantaneous power consumption of the room in
W –i.e. RiPow = Qheateri .

The heat flows are computed in the following way.
The model of the wall determines the heat flows be-
tween the two air volumes k and l it is connected with.
Note that in our case, an air volume can be a room or
the outside environment. The heat flows depends on
the temperatures of k and l as well as on the thermal
conductance of the wall. This is represented by the
following equations:

Qkl = Gi ∗ (Tk − Tl)
Qlk = −Qkl

Where:

• Gkl is the constant thermal conductance of the
wall in J/K.

• Qkl (resp. Qlk) is the heat flow from the volume
k (resp. l) to the volume l (resp. k) in J.

28



Figure 16: Heated room model “Ri”

Qheateri is determined by the behavior of the electric
heater which is modeled as a basic electrical circuit
with a constant voltage, an electrical resistance and a
switch. This is represented by the following equation:

if orderi and not blackouti

then Qheateri =
U2

R
else Qheateri = 0

Where:

• U is the constant voltage in V.

• R in Ω is the constant electrical resistance of each
heater in the building.

• orderi is a boolean representing the command of
the internal controller of the heater. When it is
equals to true, the heater is on.

orderi is set to true when the temperature inside the
room is below a minimal value, and to false when this
temperature reaches a maximal value. This behavior
corresponds to the conditional statement:

when Ti ≤ Twanted −
bandwidth

2
then orderi = true

else when Ti ≥ Twanted +
bandwidth

2
then orderi = false

Where:

• Twanted is the desired temperature in every room
of the building.

• bandwidthi is the temperature tolerance of every
heater in the building.

Each discrete port RiTemp samples the continuous
temperature evolution of the room i according to the
following Modelica code:

when sample(0 , period) then

RiTemp = Ti

end when;

Where period is a constant interval of time in s. The
Modelica function sample(0 , period) is used to update
RiTemp each period of time in order to represent the
discrete signal regularly sent by the thermometers to
the controller.

The model of a room with its heater and controller
can be described in bloc diagram by Figure 16. Using
this model, the whole building can be described by the
bloc diagram of Figure 17. According to OpenModel-
ica, this model is composed of 1622 equations including
11 differential equations.

B Controller Model Details

The controller maintains a set of variables Tempi and
Powi for saving respectively the last temperature and
the last instantaneous power consumption values re-
ceived from the sensors of each room i of the building.
Basing on these variables, the controller regularly eval-
uates at a given frequency if some heaters need to be
disabled or enabled. If so, it sends the corresponding
orders to the heaters.

The policy used to determine these orders at each
evaluation point is the following:

1. The controller checks for each room i if Tempi ≤
Tempmin. If so, the controller immediately en-
ables the corresponding heaters.

2. In order to check if some heaters have to be shut
down, the controller computes the building total
instantaneous power consumption Powtot accord-
ing to the following equation:

Powtot =

(
11∑
i=1

Powi

)
+
U2

R
∗Non

With:

• Non the number of heaters that have just
been enabled by the controller in step 1.

• U the constant voltage of the heaters in V.

• R the constant electrical resistance of the
heaters in Ω.

If Powtot ≥ Powmax, then the controller com-
putes the number Noff ∈ N of heaters which have
to be shut down in order to lower Powtot below
Powmax. The controller disables then the heaters
of the Noff rooms having the highest tempera-
tures. Noff is computed according to the follow-
ing equation:

Noff = int

(
Powtot − Powmax

U2/R

)
+ 1

With int : R→ N the integer typecasting function
which truncates a decimal number to zero digits.

29



Figure 17: Building model

Figure 18: IP network topology, with three rooms a
building, and with DEVS ports on the sides.

C Network Model Details

The IP network topology is shown on Figure 18 (with
only three rooms a building instead of eleven). We con-
sider that there is one switch (S) a building, connecting
all heaters and thermometers in a same local area net-
work. Then, each building is connected to the Internet
with its own router (R). The Internet is just modeled
with one big central router, and the controller is itself
connected to it. Network devices are connected to ex-
ternal models through input and output ports (marked
on the sides of the figure), for receiving and transmit-
ting data. In this case, external models correspond to
the application layer of the devices.

Heaters and thermometers can exchange measures
and commands with the controller over the fake Inter-
net, thanks to TCP or UDP connections, depending on
the choice of the experimenter. Choosing TCP (reliable
protocol) or UDP (unreliable protocol) is important
due to the error model installed on the links between
the building routers and the Internet, used for mod-
eling some noise on the network. Experimenters can
configure this error model, choosing a bit error rate

(e.g. one incorrect bit for every thousand bits sent).
The network model is build using the standard NS-3
component library.

30


	1 Introduction
	2 Co-simulation Challenges and Related Works
	2.1 Simulation Software Interoperability
	2.2 Multi-Formalism Integration
	2.3 Synthesis

	3 Background and Concepts
	3.1 DEVS Formalism
	3.2 The FMI Standard

	4 Proposal and Positioning
	5 The MECSYCO Platform
	5.1 Generalities
	5.2 MECSYCO Concepts
	5.3 Operational Specifications
	5.4 Implementation

	6 DEVS Wrapping of the FMI Standard
	7 Wrapping of FMU for Model-Exchange
	7.1 The QSS solver strategy
	7.2 Continuous Behavior Simulation with QSS
	7.3 State-Event Detector
	7.4 Discrete-event Behavior Simulator
	7.5 Implementation and Assessment

	8 Wrapping of FMU for Co-Simulation
	8.1 Time of the Next Internal Event
	8.2 Events Processing

	9 Discussion
	10 Use Case
	10.1 Thermic System Models
	10.2 Controller Model
	10.3 Telecommunication Network Model
	10.4 Co-Simulations and Results
	10.5 Synthesis

	11 Conclusion
	A Thermic System Model Details
	B Controller Model Details
	C Network Model Details

