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Logarithmic foliations *)

DOMINIQUE CERVEAU (V) AND ALcIDES LiNs NeTO (2

ABSTRACT. — The purpose of this paper is to study singular holomorphic folia-
tions of arbitrary codimension defined by logarithmic forms on projective spaces.

RESUME. — Nous étudions dans cet article les feuilletages holomorphes singuliers
de codimension arbitraire définis par des formes logarithmiques sur les espaces pro-
jectifs.

1. Basic definitions and results

Recall that a logarithmic form on a complex manifold M is a meromorphic
g-form 1 on M such that the pole divisors of n and dn are reduced. It is
known that a holomorphic form on a compact Kéhler manifold is closed.
This statement were generalized by Deligne in the context of logarithmic
forms as follows:

THEOREM 1.1. — Let i be a logarithmic q-form on a compact Kéhler
manifold M. Assume that the pole divisor (n)s of 1 is an hypersurface with
normal crossing singularities. Then n is closed.

In the case of germs of closed meromorphic 1-forms there are “normal
forms” describing them in terms of the poles and residues (cf. [7]). These
normal forms can be translated to the projective spaces and in the logarith-
mic case they are of the type

df; . .
n= Z /\jf—jj, A; € C*,  f; holomorphic.
J
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One of our purposes is to generalize the above normal form for p-forms,
> 2, in a special case. We need a definition.

DEFINITION 1.2. — Let X C (C™,0) be a germ at 0 € C™ of holomorphic
hypersurface and f € O,, be a reduced germ f = f1... fr, defining X: X =
(f =0). We say that X has strictly ordinary singularities outside 0 if 0 € C"
is an isolated singularity of f; (i.e. (fi = 0)\ {0} is smooth), V1 < i <r,
and X 1is normal crossing outside the origin.

It is important to note that Definition 1.2 is different from the usual
definition of a germ of hypersurface having normal crossing outside 0. For
example, is f is irreducible then (f = 0) has strictly ordinary singularities
outside 0 if, and only if, f has an isolated singularity at 0.

Our first main result (see Theorem 2.1) is a generalization of Cerveau—
Mattei theorem on normal forms for germs of closed meromorphic 1-forms [7].
For instance, in the case of 2-forms it says that a germ of a closed 2-form 7
with poles at the strictly ordinary singularities hypersurface X = (f1 ... f, =
0) can be written as

n=y_ X\ i df]+2d A3 +d

ij
= " fi
where \j; € C, 1 <i<j<7r gi,....9- € Oy and a € QY(C",0). The
numbers \;; are the residues and can be calculated by integral formulas (see

Section 2). In Section 2 we will see a precise statement of Theorem 2.1 for
germs of closed logarithmic p-forms on (C™,0).

As a consequence of Theorem 2.1 in the general case we get normal forms
in the case of logarithmic p-forms on P™:

COROLLARY 1.3. — Let 5 be a logarithmic p-form on P, p < n — 1.
Assume that the divisor of poles (n)oo is given in homogeneous coordinates
by f1... [, where the fis are irreducible homogeneous polynomials on C*+1.
Furthermore suppose that the hypersurface X = (f1...fr = 0) has strictly
ordinary singularities outside 0 € C"*1. Then r > p + 1 and there are
numbers Ay, I € SF, such that in homogeneous coordinates we have

dfi dfi
n= Y. A—=tA- (1.1)
oo fis flp
I=(i1<-+<ip)

where ign = 0.

Notation. — Let us fix homogeneous polynomials fi,...,f. € Clz,
z,]. The projectivization of the vector space of p-forms 7 that can be
written as in (1.1) (not satisfying ign = 0 necessarily) will be denoted by
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LP(f1,..., fr). The subspace of forms n € LP(fy,..., f.) such that ign =0
will be denoted by L%, (f1,. .., fr). Note that L%, (f1,..., fr) € LP(f1,..., fr)-

We now turn our attention to p-forms defining codimension p foliations.
A holomorphic p-form w, on an open subset U C C", defines a codimension
p distribution, outside its singular set Sing(w) = {z € U|w(z) = 0}, if
it is locally totally decomposable on U \ Sing(w). This means that for any
z € U\ Sing(n) there are holomorphic 1-forms ws,...,w,, defined in some
neighborhood V of z, such that w|y = wi A -+ Aw,. The distribution D is
then defined on U \ Sing(w) by the codimension p planes

D, =ker(w(z)) :={v e T,U | iyw(z) =0} = n ker(w;(2)).
1<gi<p
DEFINITION 1.4. — A holomorphic p-form w will be said integrable if it
is locally totally decomposable outside its singular set and satisfies Frobenius
integrability condition. In this context it means that, if wly = w1 A--- Awp
as above then dwj Aw =0 forallj=1,...,p.

Remark that if w is closed and locally totally decomposable then the
Frobenius condition is automatic:

wjAw=0,Vj = dwj Aw=d(w; Aw) =0, Vj.

In particular, if w is a closed logarithmic p-form then it is integrable if, and
only if, it is locally totally decomposable outside (w)eo U Sing(w).

Example 1.5. — Let f1,..., fr be irreducible homogeneous polynomials
on C"*!. Then any 1-form 6 € LkL(f1,..., f.) defines a logarithmic codi-
mension one foliation on P", denoted by Fy. Let 61,...,0, € LL(f1,..., fr)
and 1 := 01 A---A0,. If n £ 0 then n € LY,(f1,..., fr) and defines a singular
codimension p foliation on IP", denoted by F,,. The leaves of F,,, outside the
pole divisor fi...f, = 0, are contained in the intersection of the leaves of

Fo,5---,Fg,- By this reason, F,, is called the intersection of the foliations
.7:91,...,]:920.
Notation 1.6. — We will use the notation

LY(fr, . fr) ={ne L%(f1,..., fr)|n is integrable}.
Remark 1.7. — We would like to observe that £%(f1,..., f) is an alge-
braic subset of L% (f1,..., fr). The proof is left as an exercise to the reader.

DEFINITION 1.8. — We say that n € LP(f1,..., fr) is totally decom-
posable into logarithmic forms if n = 61 A --- A 0,, where 61,...,0, €
LY(f1,. .., fr). We will use the notation

71 1s totally decomposable
Efd(fhu-,fr):{ﬂeﬁﬁ(fhm,fr) :

into logarithmic forms
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Observe that £,(f1,..., fr) is an irreducible algebraic subset of L%(f1,
o f)-

PROBLEM 1.9. — When LV, (f1,..., fr) = L%(f1,..., fr) ? In other words,
does a foliation on P™ defined by a logarithmic p-form, 2 < p < n, is an
intersection of p codimension one logarithmic foliations?

A partial answer to Problem 1.9 is given by Theorem 1.10 (see Section 3):

THEOREM 1.10. — Let fi1,..., f. be homogeneous polynomials on C**+!
and assume that (fi...f. = 0) has strictly ordinary singularities outside
0 € C™*!. Then:

(a) Ifp=2, orr e {p+1,p+2} then LV, (f1,..., fr) = L% (f1,.. ., fr).

(b) If2<p<n—2andr>p+2 then Etd(fl,...,fr) is an irreducible
component of L% (f1,..., fr). In particular, if L%(f1,..., fr) is ir-
reducible then LV, (f1,..., fr) = L%(f1,. .., fr)-

An interesting consequence of Theorem 1.10 is the following:

COROLLARY 1.11. — In the hypothesis of Theorem 1.10 if r = p+ 1
and n € L%(f1,..., fp+1) then the foliation F, in P™ is a rational fibration
of codimension p on P™. In other words, F, has a rational first integral
F: P"— — PP that in homogeneous coordinates can be written as

Epi1
F= ( B e )
where ki.deg(f1) =+ = kpt1.deg(fp+1) and ged(ky, ..., kpy1) = 1.

Remark 1.12. — We would like to observe that the statement of Theo-
rem 1.10 cannot be true in the case of p =n — 1.

In fact, if p = n — 1 then L% ' (f1,..., fr) = L% "(f1,..., fr), because
any (n — 1)-form on C™ is locally decomposable outside its singular set.
Moreover, if r > p 4+ 2 then £?d71(f1, ..., fr) is a proper algebraic subset of
L?_-_l(fl, ..., fr). The reason is that if n is decomposable, n =601 A--- A6,
where 64, ...,0, are logarithmic 1-forms as in Theorem 1.10, then n cannot
have isolated singularities outside its pole divisor. A specific example on P3
is given in homogeneous coordinates by the logarithmic 2-form

E

’Lje -
J

1<i<j<6

where \;; € C, 1 < i < j <6, and ¢; € Clz,..., 23] is homogeneous of
degree one, 1 < j < 6. If we choose the lijrs and Ay generic then the
foliation F,, defined by n has degree three and 40 = 3% + 3% + 3 + 1 isolated
singularities. Each plane /; is JF,-invariant and the restriction J,[,, also
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defines a degree three foliation and so contains 13 = 3% + 3 + 1 singularities,
1 < j <6, each line ¢; N ¢; contains 4 = 3 + 1 singularities, 1 <7 < j < 6,
and each point ¢; N ¢; N ¢}, one singularity, 1 < ¢ < j < k < 6. In particular,
there are 13 X 6 —4 x #(¢; N¢;) + #(¢; N¢; N {;,) = 38 singularities contained
in U?:l ¢; and so 2 = 40 — 38 singularities not contained in the pole divisor.
If n was decomposable as in Theorem 1.10 then these two singularities could
not be isolated.

As a consequence of Theorem 1.10 we can assert that if G is a codimension
two logarithmic foliation on P* D P? such that G|ps = F,; then G cannot be
tangent to P3 outside the pole divisor J ; £;. As a consequence G will be a

pull-back IT*(F,), where IT is induced by a linear map II: C5 — C4.

In fact, the example of Remark 1.12 has motivated Theorems 5.1 and 5.2
that will be proved in Section 5. These results give necessary conditions
for a codimension p foliation F to be a local or global product in terms
of the codimension of the singular set of its intersection with a (p + 1)-
plane: if there is a (p + 1)-plane ¥ such that cod(Sing(F|s)) = 3 then
F = F*(Flg), where F: P"— — PP*! is induced by a linear map of maximal
rank f: C"*! — CP*2 (Theorem 5.1). Theorem 5.2 is a local version of
Theorem 5.1.

Another kind of result that we will prove concerns the “stability” of log-
arithmic foliations on P™, n > 3. In order to precise this phrase we recall the
definition of the degree of a foliation on P".

DEFINITION 1.13. — Let F be a holomorphic foliation of codimension
p on P" 1 < p < n. The degree of F, deg(F), is defined as the degree of
the divisor of tangencies of F with a generic plane of complex dimension p
of P™.

Remark 1.14. — In the particular case of codimension one foliations the
degree is the number of tangencies of the foliation with a generic line P! C
P™. More generally, a codimension p foliation F on P™ can be defined by a
meromorphic integrable p-form on P, say 7, with codc(Sing(n)) > 2. If we
consider a generic p-plane ¥ ~ PP C P" then the degree of F is the degree
of the divisor of zeroes of 7.

Note that, if II: C**! \ {0} — P" is the canonical projection, then the
foliation IT*(F) can be extended to a foliation F* on C"*1. This foliation is
represented by a holomorphic p-form n whose coefficients are homogeneous
polynomials of degree deg(F)+1 and such that ign = 0, where R is the radial
vector field on C"*1. We say that the form 7 represents F in homogeneous
coordinates.
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A consequence of the definition, is that if T': P™— — P" is a linear map
of maximal rank, where m > p, then deg(T*(F)) = deg(F). In particular,
if P™ C P™ is a generic m-plane, where m > p, then the degree of Flpm is
equal to the degree of F.

The space of dimension k (codimension p = n — k) foliations on P"
of degree d will be denoted by Fol(d; k,n). Note that Fol(d;k,n) can be
identified with the subset of the projectivisation of the space of (n — k)-
forms 7 on C™*! such that: 7 is integrable, n has homogeneous coefficients
of degree d + 1, cod¢(Sing(n)) > 2 and ign = 0.

When k£ = 1 the integrability condition is automatic and Fol(d;1,n) is
a Zariski open and dense subset of some projective space PYN. However, if
k > 2 then the integrability condition is non-trivial and Fol(d; k,n) is an
algebraic subset of some Zariski open and dense subset of a projective space.

Ezxample 1.15. — Let F be the logarithmic foliation on P™ defined in
homogeneous coordinates by an integrable p-form 1 on C**! as below:

dfi, dfi,
= A ARERWA , 1.2
7 Igs:f " fi, (1.2)
I=(i1 <+ <ip)

where f1,..., f» are homogeneous polynomials on C"*! with deg(f;) = d;,
1 < j < r. We assume also that fi,..., f, are normal crossing outside the
origin and A; # 0, V I € SP. With these conditions then the holomorphic
form i := f1...f-n has singular set of codimension > 2 and so defines

F in homogeneous coordinates. Since the degree of the coefficients of 7 is

> -1 dj — p we obtain

deg(F) = dj —p—1:=D(ds,...,d,p)
j=1
= F € Fol(D(dy,...,dr,p);n —p,n)

Notation 1.16. — The space of dimension & = n — p logarithmic fo-
liations of P" defined by a closed p-form as in (1.2) will be denoted by
Lr(dy,...,d;k,n). Note that

Lr(di,...,dr;k,n) CFol(D(dy,...,dr,p);k,n).
The sub-space of Lx(dy,...,d;k,n) of foliations that are defined by
totally decomposable into logarithmic forms p-forms will be denoted by
Ltd(dla B 7d7“; ]{},TL)

Our main result generalizes a theorem by Calvo-Andrade [3]:
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THEOREM 1.17. — If k > 2 and r =2 p+2 = n — k + 2 then
Lia(dy,...,dr;k,n) is an irreducible component of Fol(D(dy,...,d,,p);k,n)
forallr >p and dq,...,d. > 1.

Remark 1.18. — The above result is also true in the case r = p+ 1. In
fact, in [8] it is proven the stability of foliations induced by rational maps. On
the other hand, by Corollary 1.11 the set Lz(ds, ..., dp+1;n—p,n) coincides
with the set of foliations induced by a rational map

F=(ffr,..., fahy. vt — vt
where deg(f;) =d; and ky.dy = -+ = kpy1.dpy1.

Theorem 1.17 and Problem 1.9 motivate the following question:

PROBLEM 1.19. — When Lz (dq,...,dr; k,n) = Liq(d1, ..., drk,n)?

Finally, in the appendix we give a proof of Theorem 2.10. This result,
which is used in the proof of Theorem 2.1, gives sufficient conditions for
the extension of forms defined in a hypersurface X with an strictly ordinary
singularities to the ambient space.

Remark 1.20. — Just before finishing this paper we have found a work
by Javier Gargiulo Acea [11] in which he studies some of the problems that
we have treated in our paper. For instance, he obtains the same results
(decomposability and stability) of our Theorems 1.10 and 1.17 in the case
p = 2 (2-forms). He also proves the normal form for logarithmic p-forms on
P™ if the pole divisor is normal crossing and p < n — 1 (our Corollary 1.3).
The local case and the logarithmic foliations of codimension > 3 are not
treated by him. We would like to observe that his proof of the stability
of logarithmic 2-forms is purely algebraic: he computes the Zariski tangent
space at a generic point.

2. Normal forms

The aim of this section is to prove Theorem 2.1 and its corollary (see
Corollary 1.3).

THEOREM 2.1. — Letn be a germ at 0 € C" of closed logarithmic p-form
with poles along a hypersurface X = (f1...fr = 0) with strictly ordinary
singularities outside 0 € C"*1. Assume that n > p+ 2. Then:

(a) If r < p then n is exact; n = dO, where © is logarithmic non-closed
and has the same pole divisor as 1.
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(b) If r > p then there are numbers \; € C, I € S}, such that

dfi df;
_ PP > 4 4o, 2.1
7 IEZSf f’Ll fip ( )

I=(ir<-<ip)

where, either © = 0, or © is logarithmic non-closed and has pole
divisor contained in X .

Remark 2.2. — In the above statement, if » = 0 then X = () and 7 is
holomorphic and closed. In this case it can be written as n = d©, where O is
a holomorphic (p — 1)-form, by Poincaré lemma. On the other hand, if p = 1
and r > 1 then n can be written as

—ZA +dg, g€ Oy,

whereas when p = 2 and r > 2 then Theorem 2.1 implies that

=3 X\ dfi df]+2d N +da

ij
i<j fi

where ¢g1,...,9- € O, and a € Ql((C’HO).

Remark 2.3. — The numbers A; in (2.1), I € S}, are called the numerical
residues of 7 (see Section 2.1.1). Given I = (i; < --- < ip,) then A; can be
calculted by integrating n as follows: since 1 < p < n the germ of analytic
set X7 := (fi, = -~ = fi, = 0) has dimension n — p > 1. Moreover, by the
normal crossing condition the set X := X; \ Uj¢r(f; = 0) is not empty. If

we fix m € )~(1 then there are local coordinates z = (z1,...,2,) such that
z(m) = 0 and f;; = z; for all j = 1,...,p. Given € > 0 small, consider the
real p-dimensional torus

TP ={z]|zj] =€if 1 <j<p,and z; =0if j > p}.

It follows from (2.1) that
1
A pu—
1= @iy /Tf?7

As a consequence, a logarithmic p-form n on P, p < n — 1, with pole
divisor given in homogeneous coordinates by fi ... f, = 0, where the f;/ s are
irreducible and the hypersurface X = (f; ... f, = 0) has strictly ordinary
singularities outside 0 € C™*! can be written as in Corollary 1.3:

d i d [
n= > A i o a Yo irn = 0.
[ear fir fi,
T=(i1<<ip)
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Another observation is that Theorem 2.1 is false if p=n —1and n > 3
as shows the following example in C”, n > 3:

Ezxample 2.4. — Let P be an irreducible homogeneous polynomial of de-
gree n on C™ and set

Cip(der A Adzy) | g (F1 T pdz A Adz A A dzy
! P(Zl,...,Zn) P(Zla"'vzn) ’

where in the symbol d/z\] means omission of dz; in the product.

We would like to observe that the same example shows that Corollary 1.3
is false in P™ = P! if p = m: the form 7 represents in homogeneous
coordinates a closed logarithmic m-form on P which is not like in the
statement of the corollary.

2.1. Preliminaries

Let  be a germ at 0 € C™ of meromorphic p-form with reduced pole
divisor X = (f1...fr =0), r > 1. At the begining we will not assume that
7 is closed.

It follows from the definition that 7 is logarithmic if, and only if,
fi ... fr.dnis holomorphic. Since (7)o = (f1 ... fr) We can write n = ﬁw
where w € QP is a germ of holomorphic p-form. We would like to observe
that the following assertions are equivalent:

(a) n = 1w is logarithmic.

e Jr

(b) f; divides df; Aw, for all 1 < j <.

In particular, we have:

(©) lf w is logarithmic, for all s < 7.

In fact:
(a) = fl...fr.dn:dw—cw/\w:uis holomorphic
1. Jr
— fl...fr.zdfﬁm:fl...fT(dw—u)
J

& f;dividesdf; Aw,1 <5<
The proof of Theorem 2.1 will be based in the following;:
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LEMMA 2.5. — Let n = ——w be a germ of at 0 € C™ of logarithmic
p-form, where 1 < p < n— 2 Assume that the pole divisor of n is X =
(fi-oifr=0),1r= 1, has strictly ordinary singularities outside 0. Then n
can be written as

n—ao+z Zamdf“ coop I +> g AT fjp,(2.2)

A\ &M f ) AR,

ar € W5 if I €S2, s<p,and gr € O, if J € SP.

where ag € QP
The proof of Lemma 2.5 relies in the concept of residue of a logarithmic
form along an irreducible pole (cf. [10]).

2.1.1. Residues of a logarithmic form

Let n = ﬁw be a germ at 0 € C" of logarithmic p-form with pole
divisor X = (f1...fr = 0). Let us define the residue along Yy := (fx = 0),
1<k<Lr

Fix representatives of fi,..., f, and 7, denoted by the same symbols,
on some polydisc Q). We will assume that the f;/; are irreducible in @, and
that the divisor fi ... f, has strictly ordinary singularities on @ \ {0}. In
particular, the f;, have isolated singularity at 0 € Q). We have seen that fj
divides dfy, A w. In particular, we can write dfy A w = fi.0 where § € QP+L
This implies that dfi A8 = 0. Since d f; has an isolated singularity at 0 € @
and p+ 1 < n — 1, it follows from de Rham’s division theorem [21] that
0 = dfxA\Bk, where By € QP(Q). Therefore, we can write d fy A(w— f.0k) = 0
which implies, via the division theorem [21], that there exists ay € QP~1(Q)
such that w = apAdfr+ fx.0k. The residue of fikw along Y}, is the (p—1)-form

along Y}, defined as Res( w Yk) := agly, - Finaly, the residue of n = ﬁw

along Y}, is defined as Res(n, Yy) = akly, , where fi, means omission

1
frofro fr
of the factor fi in the product.

Remark 2.6. — Let n and Y}, be as above. It is well known that Res (1, Y)
does not depend on the particular decomposition w = ap A dfy + fxBr and
on the particular equation of Y}, (cf. [10]).

The above remark allow us to define the residue of a logarithmic form
1 on a arbitrary complex manifold M along any codimension one smooth
irreducible submanifold Y contained in the pole divisor of 5. In particular,
we can define the iterated residue. Given I = (i; < --- < i) € S¥, set
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=(fi, == fi, =0) and X7 = X\ {0}. We define Res(n, X1) induc-
tively. If kK = 1 then Res(n, X1) = Res(n,Y;,) and for k > 2, Res(n, X1) =
Res(Res(n, Yi.)s XI\{Z-,C}). This definition depends only of the ordering of the
fjrs, that we will assume fixed.

Ezample 2.7. — If n = aAn dffn A- dffi‘
'k

Res(n,X;) =alx,, I=(i1 <--- < zk) We leave the proof to the reader

Remark 2.8. — Let ) = == f w be logarithmic as above, Y, = (fr = 0),
where we assume n > p + 2. We would like to observe the following facts:

(a) If Res(n,Yr) = 0 then fj divides w, or equivalently fj is not con-
tained in the pole divisor of 7.

(b) If p =1 then Res(n,Y%) is a holomorphic function on Y.

(¢) If p > 2 then Res(n,Y%) is logarithmic on Yj. Moreover, the pole
divisor of Res(n,Y3) is f1... fi .. frlve-

(d) dn is logarithmic and Res(dn, Yi) = dRes(n, Y). In particular, if 7
is closed then Res(n,Y%) is closed.

We will prove (b) and (c). The proofs of (a) and (d) will be left to the
reader. Write w = ap Adf,+ frBk (resp. w = gpd fr+ fx Ok if p = 1) as before.
It is sufficient to prove that if ¢ # k then fy|y, divides ax Adfely, (resp. fely,
divides gily, if p = 1). Note that dim(Y; NY;) > 1, because n > p+2 > 3.
Therefore we can fix a point m € Y;, N'Y; where dfi(m) A dfe(m) # 0. Let
(U,z = (#1,...,2n)) be a coordinate system around m such that fi|y = 2
and foly = z2. Write w = w1 Adz1 +wa Adza +wia Adzy Adze + 6, where wy
does not contain terms with dzs, wo does not contain terms with dz; and 6
does not contain terms in dz; or dzg (resp. w = Ej hjdz; if p=1).

Let us consider the case p > 1. In this situation, w A dz; = wa A dzg A
dzy + 6 A dz; and @ A dz; does not contain terms with dz; A dzs, so that
z1 divides wso and @. Similarly, zo divides wy and 6. Therefore, we can write
w = 29w Ndz1 + 21w + wia2 Adzy Adze + 21225, which implies

w = (zow01 A —w12 Adze) Adz1 + 21 (@2 + 225)
= aply,nu = (2201 A —wi2 Ad22) |ynu
= o Ndz|y,nu = 2202 A d2aly, v,
which implies (c).
In the case p = 1, since z; divides w A dz;, V j, then 2, divides h; if
j > 1 and zy divides hy, so that w|y = z2h1dz; + 21 Zj>1 hjdz;. Hence,
glekﬁU = Z2h1|YkﬂU7 which implies (b)
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2.1.2. Proof of Lemma 2.5 in the case p =1

Since the proof of Lemma 2.5 is rather technical in the general case, we
give first the proof in the case p = 1 which contains essentially the idea of
the general case.

As before, write n = T f w. The proof will be by induction on the
number 7 of components of the pole divisor.

Formula (2.2) of Lemma 2.5 is true ifr =1 andp > 1. — Whenn = T
is logarithmic we have seen in Section 2.1.1 that w = ay Adf1 + f1.81 (resp.
w=gidfi+ f1f1 if p=1). Hence n = oy A 3 4 By (vesp. = g1 98 + By if

p = 1), as we wished.

If p =1 and (2.2) is true for r — 1 > 1 then it is true for r. — Let
n= ﬁw and Q C C" be a polydisc where f1,..., f, and w have repre-
sentatives as before. As before we set Y; = (f; =0) C Q C C". We will use
the following well known result in the case n > 3:

LEMMA 2.9. — Any holomorphic function h € O(Y;\{0}) has an exten-
sion g € O(Q).

In fact, Lemma 2.9 is a particular case of Theorem 2.10 stated below and
that will proved in Section 6 (see Remark 2.11).

Let h = Res(n,Y;) € O(Y; \{O}) By Lemma 2.9, h has an extension

gr € O(Q). The form g, f{. (gr ffr, +) = h. Therefore,
dfr

the form 7 =n—g, 7 is also logarithmic and Res (77, Y;.) = 0. In particular,
fr is not a pole of i by Remark 2.8. Since the pole divisor of 77 has r — 1
irreducible components, by the induction hypothesis we can write

df, -
n—9r ff =n=ay+ Zgj ffj = Lemma 2.5 in the case p = 1.
r J

2.1.3. Proof of Lemma 2.5 when p > 2

The case p > 2 is more involved, but the idea of the proof is the same as
in the case p = 1. Before given the details let us sketch the proof.

Given s € {0,1,...,r} set Yy = (fs =0)if s > 1, Xg = Q and X, =
Yin---NY,if s > 1. Set also X = X, \ {0}, 0 < s < r. Note that X, = {0}

if s > n. On the other hand, if 1 < s < n —1 then X is an analytic reduced
germ of codimension s and X} is a complex smooth manifold of dimension
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n — s. The proof will involve two induction arguments. In order to state
properly these arguments we need a definition.

Given 1 < s < p < n—2 and ¢ > 1, we will say that X satisfies
the g decomposition property if any logarithmic g-form 6 on X} with pole
divisor on the zeroes of fei1 ... fr] X 1= f3+1 .. fr can be decomposed as
in formula (2.2):

q—1 rs s s s

df; df; df; df;

s ol S a,A;lA...AJﬁ + Y g Ya Y
i1

k)
(=1 \1es8!_ fie Jes?_, Ji qu

s

where g is a holomorphic g-form, the ajss are holomorphic (¢ — ¢)-forms
on X} and the g5 are holomorphic functions on X}. We resume below the
main steps in the arguments.

1%t step. — If 0 < s < p— 1 then X satisfies the 1 decomposition
property.
2 step. — If 2 < g < p—s, where s > 0, and X7, satisfies the ¢ — 1

decomposition property then X satisfies the ¢ decomposition property.

The 1% and 2"¢ steps above will be proved by induction on the number
of r > 1 of factors in the pole divisor f ... f.. In the proof we will use the
following result:

THEOREM 2.10. — Let Xs and X7 be as above, where s = n — k and
2 <k <n—1 (dimc(Xs) = k). Then there are representatives of X5 and
XY in a polydisc Q C C", denoted by the same letters, such that:

(a) If 0 < g < k — 2 then any form & € QI(X}) can be extended to a
form a € Q1(Q).
(b) Ifg=1,0>0and 1 < g+ < k—2 then HY(X,Q) = 0.

Remark 2.11. — Note that Lemma 2.9 is a particular case of Theo-
rem 2.10(a).

Theorem 2.10 implies that, if X} is as before and 0 < ¢ < n—s— 2, then
any holomorphic ¢-form on X} can be extended to a holomorphic g-form on
Q. The proof of Theorem 2.10 will be done in Section 6. Let us finish the
proof of Lemma 2.5 assuming Theorem 2.10.

Proof of the 1% step. — It is similar to the case p = 1 done above
with Lemma 2.9 (which corresponds to the case ¢ = 0 in Theorem 2.10).
Therefore, we will assume 1 < s < p — 1. Note that the 1% step is trivially
true if r = s, because in this case the pole divisor is empty and the 1-form
is holomorphic.
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Assume that the assertion is true for any logarithmic 1-form on X7 with
pole divisor containing £ — 1 > 0 functions in the set {fj filx= s +1<

< r}. Let 0 be a logarithmic 1-form on X} with pole divisor fst1 ... fstes-
By Remark 2.8, go41 := Res(0, X}, ;) € O(X}, ). By Theorem 2.10, gs;+1
admits an extension g1 € O(Q). In particular, gs;1 := gs11|x+ is a holo-

morphic extension of gs41 on X. Let 0= Js+1 ffﬁ“ Then 6 is logarithmic

and Res(6, X¥ 1) =Res(0, X7, ). In particular, fes+1 is not contained in the

pole divisor of § — 5, by Remark 2.8 (a). By the induction hypothesis, 6 — ]
can be decomposed as in (2.2):

Proof of the 2% step. — The proof is again by induction on the number
r — s of factors of the pole divisor. The assertion is trivially true if r = s.
Assume that the assertion is true for any logarithmic ¢-form, 2 < ¢ < p—s,
on X! with pole divisor containing ¢ —1 > 0 functions in the set {]?J =
filx:1s+1 < j < r}. Let 0 be a logarithmic ¢-form on X with pole
divisor fei1 ... fess. By Remark 2.8 the (q — 1) form p := Res(9 X¥q)is
logarithmic on X7, ; with pole divisor Fovo o Fort = fopa.. fs+g|Xs+1 (or
holomorphic if £ = 1). Since X7, satisfies the ¢ — 1 decompostion property,
we can write

df spi,— Afspi,—
pmont 3 e n Lot Ui
t=17IeSt fs+117 fs+it71

n Z df3+]1_ /\._./\dfsﬂ‘(q—l)—l

Jesi— 1 fs+j17 fs+j(q,1)71

where ag and the o, are holomorphic forms on X}, , and the g are
holomorphic functions on X7, ;. By Theorem 2.10 each a; (resp. each g;) has
a holomorphic extension &y (resp. ;) on X . Therefore, u has a logarithmic
extension g on X7,

q—2 rs s
o  Afp Afsri,—
M:%JFZZWAMA...AM

=1 fest Ssviz—1 Ssti—1
+ > g orinot o g Yetieon=t
sesit Tstn Fotiqon—1

- 574 —



Logarithmic foliations

Therefore, 61 := i A % is logarithmic on X} and
s+1
Res(01,X7,,) = Res(0, X7, ) = Res(0 —01,X7,,) =0.

Hence, fs+1 is not contained in the pole divisor of § — #;. By the induction
hypothesis, §—6; := 02 admits a decomposition as in (2.2), and so 8 = 61 +65
admits a decomposition as in (2.2). This finishes the proof of Lemma 2.5. O

2.2. Proof of Theorem 2.1

In the proof of Theorem 2.1 we will use Theorem 2.10 and Hamm’s gen-
eralization of Milnor’s theorem (cf. [13], [14], [20] and [23]):

THEOREM 2.12. — Let X = (f1 =--- = fr =0) be a germ at 0 € C™ of
a complete intersection with an isolated singularity at 0, so that dimc(X) =
m — £ :=n. Then there exist representatives of f1,..., fe and X defined in
a ball B. = B(0,¢€), denoted by the same letters, such that:

(a) X* = X \ {0} 4s rectratible to the link K := X NS2m~1 §Zm-1 =
OB..

(b) Ifn > 3 then K is (n—2)-connected. In particular, X* is connected
and HE o(X*) = {0} if 1 <k <n-2.

(¢) If n =2 then X* is connected.

When n =1, X* is not necessarily connected, as shows the example X =
(22 +y? +22=2=0) Cc C>

Let 7 be a germ at 0 € C™ of a closed logarithmic p-form, 1 < p <
n — 2, with pole divisor fi ... f, with a strictly ordinary singularity outside
0. According to Lemma 2.5 we can write n as a sum of a holomorphic p-

form «ap, and “monomial” p-forms of the type ajy A dff“ Ao A Y op
1

fig
g7 f“ ARERWA f“’ , where I € §7 and J € SP.

Given a monomial u = aj A dff” A dff“ we define the pseudo depth of

W as dep( ) =s. Given n = ijl tt;, where the p; are monomials as above,

we set dep(n) = max{dep(y;)|1 < j < m}.

Observe that cflé?), as defined above, is not well defined. For instance, if
g € (f1,-.., [p), the ideal generated by fi,..., fp, g = 17:1 h;.f;, then

P dfp % af;  df,
9= A Z aj AN AL A

f] fp
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where a; = £h;df;, 1 < j < p. Therefore, if n is a logarithmic form as
above, then we define its depth as

depth(n) = min dep Z i lln= Z tj, where the 11,5 are monomials .
J J
When 7 is holomorphic we define depth(n) = 0.
CLAIM 2.13. — Let n be a germ at 0 € C" of logarithmic closed p-form,

1 <p < n—2. Ifdepth(n) = p there exists a collection (\j) jesr, Ay € C,
such that

depth | n — Z AJ%A---A dffjp <p—1
Jes? J1 Jp
Proof. — If depth(n) = p then the decomposition of 1 as in (2.2) contains
at least one monomial of the form p; = g; df]; jll ARERIA dfi':’, where g; ¢
(firr---+1j,)- As before, set X := (fj, =--- = f;, =0)and X} = X,\{0}.

We assert that gJ|X; is a constant \; € C*.

In fact, since dim¢ X; = n —p > 2, X} is connected, by Theorem 2.12.
Note that Res(uy, Xj) = Res(n, Xj) = g]lX} (see Example 2.7). Since 7 is
closed, we have Res(dn, X ;) = ng|X; = 0. Hence, gJ\X; = Ay € C. On the
other hand, if A; = 0 then ¢gs|x, = 0 and since X s is a complete intersection

we get gy € <fj1, N fjp>, a contradiction.
Let py:= XAy dff_"l ARERWA dffj” . Note that n — u is still logarithmic, closed
J1 Jp

and does not contain terms multiples of dff“ /ARERWAN ff"’ . By repeating this
J1 Jp

procedure finitely many times we can find the collection (Aj)jcsr as in the
statement of the claim. O

CramM 2.14. — Let n be logarithmic closed p-form with pole divisor
fi-- fr =0, with a strictly ordinary singularities at 0 € C™. If depth(n) < p
then n is exact: n = dO, where © is either zero, or is logarithmic with pole
divisor contained in fi ... f. =0.

Proof. — The proof will be by induction on the depth of 5. If depth(n) =
0 then 7 is holomorphic and so it is exact by Poincaré lemma. O

Assume that any closed logarithmic p-form w with depth(w) < ¢—1 <
p—1is exact: w = df with 6 logarithmic as above. Let n be a logarithmic p-
form with pole divisor fi ... f, = 0 with depth(n) = ¢ < p. By the definition
of depth, when we write n as in (2.2) then we get

n= Za[/\ J{l/\~--/\ J{q-i-@
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where £ is logarithmic and depth(5) < ¢. Recall that, if I = (i1,...,i,) € SZ
then X; = (fi, =--- = fi, = 0) and X7 = X7\ {0}. As the reader can check,
we have
ReS(T],X]) = 04[|X1 =aqy € Qpiq(X;‘), VIE Sg,

where aj is closed, by Remark 2.8. Now, we use Theorem 2.12 and Theo-
rem 2.10 (b): since dim(X}) = n—q we get HE ,(X*) =0if 1 <k <n—q—2.
But,p<n—2andsop—q<n—qg—2=dimc(X*)— 2 which implies that
ay € QP71(X7) is exact: ay = dEI, where EI is in principle a C*°(p— ¢ —1)-
form. However, the fact that H3"(X7) ~ H"(X7,Q°) =0ifr+s=p—q—1
implies that we can assume ; € QP~971(X7) (cf. [12]).

Therefore, there are (p — g — 1)-forms 3; € QP~9~ L(X7) such that a; =

dﬁ;, VI € §1. By Theorem 2.10(a) each form ,6’1 admits an extension (; €
OP=971(Q), where Q is some polydisc of C® where X; has a representative.
Define a logarithmic form p by

dfi
M_ZBI/\df“ A A fq

Ies? f’Ll fiq
so that
d i1 dfiq
du= S g A nn s Res(d, X)) = dBilx, = Res(n, X1),
IESq fll fiq

for all I € S2. In particular, Res(n — du, X;) = 0 for all I € S, and
this implies that depth(n — du) < ¢. Finally, since n — dp is closed the
induction hypothesis implies that n — dy = df, where either # = 0, or 6
is logarithmic with pole divisor contained in fj ... f, = 0. This finishes the
proof of Claim 2.14 and of Theorem 2.1. O

2.3. Proof of Corollary 1.3

Let n be a logarithmic p-form on P", where p < n—1, with pole divisor in
homogeneous coordinates (fi ... f, = 0) with strictly ordinary singularities
outside 0 € C"*1. Let IT: C**1\ {0} — P" be the canonical projection and
7 = II*(n). We want to prove that 7 can be written as

oS e Y

IESP f’Ll fip

where A\; € CV I € S?. We know that 7 is closed (Deligne’s theorem 1.1).

The pull-back 77 = IT*(n) can be extended to a closed logarithmic p-form
on C™*! which is called the expression of 7 in homogeneous coordinates. The
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pole divisor of 7 is of course the pull-back of the pole divisor of n, and by
assumption it is fi ... f,, where f; is a homogeneous polynomial of degree
dj, 1 < j < r. In particular, we can write

1= g

where dz/ = dzj; A -+ A dzj, and g; is a homogeneous polynomial. Us-
ing that 7 is invariant by any homothety H;(z) = t.z, V t € C*, and
with a straighforward computation we see that g; is homogeneous of degree
deg(gy) = deg(f1 ... fr) —p. This implies that the coefficients g;/f1 ... f» of
7 are meromorphic homogenous of degree —p.

Now, the hypothesis on the pole divisor of 1 implies that the pole divisor
of 7, f1 ... fr, has strictly ordinary singularities outside 0 € C"**'. Therefore,
by Theorem 2.1 we have

df“ dfi
=\ L 4 de,
IeS? i,

where O is logarithmic with pole divisor contained in (7). It is enough to
prove that d© = 0.

The proof of Theorem 2.1 implies that the monomials of ® have depth

. i df; .
< p and are, either of the form a A dff“ AR fj;]: ) sa (p—q—1)-
d
form, or of the form g. f’ LA-A ff“’ L where g is a holomorphic function. In

; df;
particular, the monomlals of dO are, either of the form da A —dff LA A ff_‘“‘ ,
J1 Jq

or of the form dg A df]i ARRRWAN dffﬂ In both cases, the meromorphic degree
J1 Ip1

of the coefficients of the monomial is > —p and this implies that d©® = 0.

The proof that igny = 0 follows from the fact that DII(z).R(z) = 0 for all

z € C"*1\ {0}. Finally, ig7) = 0 implies that r > p + 1, as the reader can

check. 0

3. Decomposition of logarithmic foliations

The purpose of this section is to study the question posed in Problem 1.9:
is an integrable logarithmic p-form on P" totally decomposable into logarith-
mic 1-forms?

The main theorem to be proved here gives a partial answer to the above
problem:
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THEOREM 1.10. — Let fi,..., f, be homogeneous polynomials on C™+1
and assume that the pole divisor fy ... f. =0 has strictly ordinary singular-
ities outside 0 € C"*1. Then:

(a) Ifp=2, orr e {p+1,p+2} then LY, (f1,..., fr) = L% (f1,..., fr).

(b) If2<p<n—2andr>p+2then LL,(f1,..., fr) is an irreducible
component of L% (f1,..., fr). In particular, if L%(f1,..., fr) is ir-
reducible then LV, (f1,..., fr) = L% (f1,. .., fr)-

An interesting consequence of Theorem 1.10 is Corollary 1.11: when r =
p+ 1 in Theorem 1.10 then F, is a rational fibration (see Section 1). Since
the case r = p+ 1 is the easier one, we will do it, together with the proof of
Corollary 1.11, in Section 3.1.

In Section 3.2 we prove the theorem in the case p = 2. In Section 3.3 we
will see that the proof of (b) can be reduced to the case of 2-dimensional
foliations (in which p = n—2). The proof of the case r = p+2 will be done in
Section 3.4. We note that item (b) is an easy consequence of Theorem 1.17
and so it will be not done in this section.

3.1. Proof of the case r = p+ 1 and of Corollary 1.11

The proof will be based in the remark that a p-vector €2 in a vector space
V of dimension p + 1 is always decomposable. In fact, if {vi,...,vp41} is a
basis of V, then we can write

p+1
Q:Zajvl/\~~/\6}/\-~-/\vp+1, a; € K, 1<j<p+1L
j=1

Since 2 # 0, we can assume that a; # 0. Dividing Q by a; if necessary, we
can assume that a; = 1.

Let {g1,...,9p+1} be dual basis of the basis {v1,...,vp+1}; g;(v;) = d;5.
X =9+ E?E(—l)j_lajgj then Q = ixv1 A+ Avpp1. Now, if we set
0; :==v;+(—1)ajv1, 2 < j < p+1, then ix6; = 0 and the reader can verify
that Q:92A~~/\0p+1.

Let 77 be the extension of IT* (1) to C"!, as in Corollary 1.3. Let fi ... fy41
be the pole divisor (7)., so that

p+1 i
~ df dfj dfp-i-l
:E Mot Aee e A =L Ao p 2P 3.1
" et T f fi fpt1 (3.)
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By the above remark 7 is decomposable: if we assume A; # 0 then there
df;

exist pa, ..., tp+1 € C such that, if we set §; = T dfll then
77: /\192/\"'/\9p+1.

We assert that p; € Q4, 2 < j < p+ 1. In fact, from ign = 0 we get

p+1
iR(OUA A1) =0 = > (=1)ip(0;)02 A+ AO; A+ Nbpiy =0
j=2
— ir(0,)=02<j<p+1
deg(fj) _ d;
= €
M7 dee(f) T di O
In particular, the rational function fdl/flj is a first integal of Hj;d(ffl/ffj)/\
0; =0, 2 < j < p+ 1. This of course implies that F' = ( e I’fjfll) is a
first integral of 77 if k; :==dy ... dp+1/d;. O

3.2. Proof of Theorem 1.10 in the case p = 2: foliations of codi-
mension two

Let F be a logarithmic foliation of codimension two on P" defined by a
logarithmic 2-form 77 € L%(fi,..., f-). Note that the hypothesis p = 2 <
n — 2 implies that n > 4.

Remark 8.1. — The condition of local decomposability of 77 outside the
singular set is equivalent to 77 A7) = 0. This is a consequence of the fact that
a two vector 6 on a complex vector space is decomposable if, and only if,
NG =0.

In particular, we have

LE(f1,.. ) ={w e LA(fr,..., fr)|wAw=0}.

As we have seen, a form w € £L%(f1,..., fr) can be written as
dfi \ df
W= Z 1hij 7 fﬂ (3.2)
1<i<j<r v

As the reader can check,
d d dfy  dfe
wAw= Z 2W (Lij, fhoes Miks Ihjes fits [hjk) ffl A % A fi A fi7
1<i<j<k<f<r i J k ¢
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where U(a,b,¢,d, e, f) =ab—cd+ ef. If wAw =0 their numerical residues
must vanish (see Remark 2.3). This implies that £%(f1, ..., f.) is isomorphic
to the algebraic subset A of C"("~1)/2 defined by

A ={(Nij)1<ici<r | Wi, Akes Niks Ajes Mgy Ajr) =0, V1< i< j <k <l<r},

where the isomorphism is given by

df; d j
()‘ZJ)1<z<]<7" €A— Z Ai f f]

ij ]
1<i<j<r fz f]

On the other hand, if we fix a base {e1,...,e,} of C", a 2-vector § on C”

can be written as
0= E ajje; N\ ej.
1<i<j<r

Since

ONO = Z 2\I/(aij,akg7aik,aj¢,aig,ajk)ei NejNeg ey,

1<i<j<k<f<r

we obtain 8 A § = 0 if, and only if, (aij)1<i<j<r € A. Now, if # A § = 0 then
0 is decomposable: 8 = a A 3, where o, 5 € C". In fact, if 6 = 0 let u, v be
in the dual of C" and such that §(u,v) # 0. Then

0=14,(0N0)=20,(0) NO = 0 =c.i,(0)Ni,(0), c=1/0(u,v).
Finally, if w is as in (3.2) and satisfies w A w = 0 then the 2-vector § =
Ziq pije; Aej is decomposable: 0 = aAf, =", ae; and f = Zj bjej, so
that w = wi Awg, w1 =), aidff; and wy = Ej bjdf—’;j. Moreover, if ipw = 0
then 7rw; = igws = 0 because

OZ’iR(wl /\WQ)ZiRwl.WQ—iRWQ.wl = jRwW1 = tpwo =0 O
3.3. Some remarks

From now on, we fix homogeneous polynomials fi,..., f. € Clzo, ..., zn],
where 7 > p + 1, the divisor fi,..., fr has strictly ordinary singularities
outside 0 € C"*! and deg(f;) = dj, 1 < j < r. Recall that LP(f1,..., fr)
denotes the set of logarithmic p-forms that can be written as below:

d d i
7= A f f Ar€C, VIeS?. (3.3)
P
Given a base {duy,...,du,} of C™ there exists an unique linear map

oP: A\P(C™) — LP(f1,..., fr) such that
, df;
%/\.../\L

@p(duil/\~-~/\duip)= f f .
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LEMMA 3.2. — ®P is an isomorphism for all p > 1. Moreover, if a €
AN’ (C™) and B € N'(C™) then

PPHi(a A B) = ®P(a) A DU(B). (3.4)

Proof. — On one hand, it is clear that ®” is surjective. On the other hand,

ifg= Zlesp )\I f” A A dff”” then each numerical residue A7, I € S, can

be calculated by an integral as in Remark 2.3:

1
Al = ———
" (@miyp /Tg’ !

d’L K2
ppY: Jir p .. f"50<:>>\1:0,v1€8£
IESP fll flp

and so PP is injective.

It follows that

Finally, formula (3.4) is consequence of
PP ((dugy, A--- Adug,) A (dug, A Aduy,))
A df; A df;
— df“ Ao A f" /\dfjl A A ‘qu
f’il fip f]l f]q
zibp(duil/\---/\duip)/\¢’q(duj1/\~-~/\dujq) O

Remark 3.3. — Given a p-form o € AP(C™) its kernel is defined as
ker(a) = {v € C" | i, = 0}.

We say that o € AP(C™) is totally decomposable if there are p 1-forms
o1,...,ap such that &« = a1 A -+ A ay,. It is well known that:

(a) a = a1/ - -Aqy, is totally decomposable if, and only if, dim (ker(a)) =
r—Dp.

(b) If o= cy A~ A then ker(a) = (;_, ker(ay).

(¢) The projectivization of the set of totally decomposable p-forms of
AP(C™) is isomorphic to the grassmanian of p planes through the
origin in C". In particular, it is an algebraic subset of P (A”(C™)).

Recall that 7 € L},(f1,..., fr) if it is totally decomposable into loga-
rithmic forms (totally decomposable into logarithmic forms). An easy con-
sequence of Lemma 3.2 and of Remark 3.3 (c) is the following:

COROLLARY 3.4. — Let p = 2. A p-form 77 € LP(f1,...,[fr) is to-
tally decomposable into logarithmic forms if, and only if, there are 1-forms
at,...,ap € C™ such that

n==a" (a1 A Aay).
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In particular, LV (f1,...,fr) is an algebraic irreducible subset of LY f1,..., fr)-

Another consequence of Lemma 3.2 is that Theorem 1.10(b) can be re-
duced to the case of 2-dimensional foliations. Let ¥ ~ P9 be a g-plane linearly
embedded in P”. We say that 3 is in general position with respect to the
divisor fy ... f, if for all J = {j1,...,55} C {1,...,r} then ¥ is transverse
to (e II(f; = 0). By transversality theory, the set of g-planes of P" in
general position with respect to fi... f, is a Zariski open and dense subset
of the grassmanian of g-planes on P".

Remark 3.5. — Let 1 € L%(f1,..., fr). Let ¥ be (p + k)-plane of P" in
general position with respect to f1 ... fr, p <p+k < n, and Y bea p+k+1
plane through 0 € C"! such that II(X) = X. Then 7l is a logarithmic
p-form on Y. An easy consequence of Lemma 3.2 and Corollary 3.4 is the
following:

COROLLARY 3.6. — Let 1, ¥ and Y be as in Remark 3.5. Then N is
totally decomposable into logarithmic forms if, and only if, 7| is totally
decomposable into logarithmic forms.

Taking k£ = 2 in the above statement, we reduce the proofs of the case
r = p + 2 and of Theorem 1.10(b) to the case of 2-dimensional foliations.
From now on, we will assume that 7 = II*(n) € L%(f1,..., f,) and that
n = p + 2. By Section 3.1 we will assume also that » > p + 2. As we have
seen, we can write

= A;df“ oo Yo (3.5)

Iesp fll fln 2

The foliation F,, is defined in homogeneous coordinates by the (n-2)-form
w = f1...fr7. As a consequence, the part of Sing(Fj;) contained in the
pole divisor contains an union of curves: given J = (j1,...,5,_1) € S* ! let
Sy =1I(f;,=---= f;._, =0). By the assumption on the pole divisor f ... f;,
Sy is a smooth complex curve and

Sing(Fy) NI(fr... fi-. . fr=0D ] S

Jesr—t

A point ¢ = I(p) € Sy, for a fixed J € S*~ !, will be said generic if
for all i ¢ J then f;(p) # 0. Otherwise, ¢ will be said non-generic. By the
assumption on the pole divisor, if ¢ = II(p) is non-generic and f;(p) = 0 then

fe(p) #0 for all £ ¢ JU {i}.

Let us fix J = (j; < --- < jn_1) € S* ! and a point ¢ = II(q) € Sy.
After an automorphism of P™ we can assume that ¢ = (0, ...,0) in the affine
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chart (zg = 1) ~ C™. In this chart, the pole divisor of 7 is g; ... g,, where
gj(x) = g;j(x1,...,2n) = fj(1,21,...,2,). Since the equation of the curve
Syis (9j, =+ = gj._, = 0), there exists a holomorphic coordinate system
(U,z = (z1,...,2,)) around ¢ such that g;,|v = z;, 1 <t <n—1.

Remark 3.7. — Let ¢ € Sy and (U, z) be as above. We would like to
observe that:

(a) If g is a generic point of S; then we can write

n—1

d d- dz,—
n\U—Zuy AN A AT e, (3.6)

Zj Zn—1

where, either © = 0, or O is a non-closed logarithmic (n-3)-form with
pole divisor contained in = 21 ... 2,1, and p; = Ar,, I; = J\ {4}

(b) If ¢ € Sy is a non-generic point then there exists j ¢ J such that
9j(q) =0 and g;(q) # 0if i ¢ JU {j}. In this case, we can assume
that gj\U = z,. Moreover, we can write

d dze dz, dzp,
o = e SN NN AN A Lde, (37)
21 Zk K74 Zn
1<k<t<n
where O is as in (a) and ke = Mg, Tee = JU{G}\ {Jk, Je} if € < n,
n=J\ {jx}-

The proof can be done directly by using (3.5) or Theorem 2.1.

3.4. Proof of the case r=p+2

In this case r = p+ 2 = n and the non generic points of Sing(F,) N

II(f1... fn = 0) are in the finite set II(f; = --- = f, = 0). In particular,
if we fix a non-generic point ¢ € I(f; = --- = f, = 0) there exists a
local coordinate system (U, z = (z1,...,%,)) around ¢ such that g;|v = z;,

1 < j < n. In particular, by (3.5) we have

dz dzp, dz dz
> uu—l Ao AN AN "
2k zZ0 Zn

nlu =
1<k<t<n

Since n € E;;‘Q(fl,...,fn) then 7|y is locally decomposable outside the
polar set 21 ...z, = 0. The foliation F,, is defined in U by the holomorphic
form

wi=2z1...2.My = Z /J,ng}Cngzl/\"-/\(T,Z\k/\"-/\(IZ\[/\'-'/\dZn. (%)
1<k<t<n
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Remark 3.8. — Let « be a holomorphic (n-2)-form on an open subset
V CC" Given 1 <j <nandp €V such that af.,—., () # 0 we can define
a vector field X7, tangent to the hyperplane (z; = z;(p)), by

Oz|(zj:Zj(p)) =iyilj,Vj = dzg A--- /\d/Z\j A ANdzy,.
p
This procces defines a holomorphic vector field X7 on V, tangent to the
fibration (z; = cte), by
X (p) = X} (p),p e V.
Altough iyjal.;—2,(p)) = 0, in general ix;a # 0. However, if the form « is

locally decomposable outside its singular set then iyx;a = 0, so that X7 is
tangent to the distribution defined by «. The proof is straightforward and
is left to the reader.

If we apply Remark 3.8 to the (n-2)-form w in (*) we obtain X7 = z;.YJ,

where
;0
= Z PRk 377
Py
and p] = (=1)*=1py;, with the convention ji,s = —pus, ¥ 7, 8. Since Fy, has

dimension two, at least two of the linear vector fields above, that we can
suppose to be Y! and Y2, are not identically zero and generically linearly
independent. In this case, the form w = iy1iy2v, v = dz; A--- Adz,, defines
the same distribution as w. The reader can check that

w= Z (=) (php2 — pipd)zrzedzy A -+ A dzg Ao Adzg A Adzy,.
1<k<t<n

Since the coefficients of w and w are homogeneous of degree two it follows that

@ = c.w, where ¢ € C*. From pi = (—1)#"!p; and the above expression,

we get

Mi1fbe2 — o1 k2 = C- e kzzg C = p12.

Now, consider the n-2 closed logarithmic 1-forms 53, ey gn defined by
~ 5dz; 1 dzo ! dzj

0;=pi— — p;— .
J p] 2 p] 29 P2 zj
Using that pl —ps we get zy19 = ’Ly29 =0, 3 <j < n, and this 1mphes
that O3\« - A0, = k. Nlu, k € C*. Comparing the coefﬁments of dz3 A---Ndzn

Zn
of the two members of the relation we get k = (p3)"~3 = ul; 3. Fmadly7 if

we define 6; —pidfil pjldff —i—pldf’ then 63 A --- A6, then
O3 A - A O, = pts 37,

which proves that E;fz(fl, o f) =L f)-
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4. Proof of Theorem 1.17

The purpose of this section is to prove the following:

THEOREM 1.17. — If k > 2 and r > p+2 = n — k + 2 then
Lig(dy,...,dr; k,n) is an irreducible component of Fol(D(dy,...,d,,p); k,n)
forallr >panddy,...,d. > 1.

The proof of Theorem 1.17 will be done first in the case of foliations of
dimension two. The general case will be reduced to this one by using the
following result:

THEOREM 4.1. — Let F be a codimension p holomorphic foliation on P™,
n > p+ 1. Assume that there is an algebraic smooth submanifold M C P",
dimc(M) = m, where p+1 < m < n, such that:

o The set of tangencies of F with M has codimension = 2 on M.
e Fl|nr can be defined by a closed meromorphic p-form on M, say 1.

Then n can be extended to a closed meromorphic p-form n on P™ defining
F. Moreover, if n is logarithmic so is 1.

In fact, Theorem 4.1 is a generalization of a result in [4] (see also [16]).

The proof of Theorem 1.17 in the two dimensional case will be reduced
to a result that we state next (Theorem 4.3). In order to state it properly
let us recall the definition of a Kupka or generalized Kupka singularity for
two dimensional foliations (see also [17]).

Let w be a germ at p € C™ of integrable (n—2)-form with w(p) = 0. Recall
that the rotational of w is the vector field X = rot(w) (cf. [17]) defined by

dw=ixv,v=dz; A--- ANdz,.

The singularity p of w is of Kupka type if X (p) # 0 and it is of generalized
Kupka type (briefly ¢.K) if X(p) = 0 and p is an isolated singularity of X.
When X (p) =0 and the linear part of X at p is non singular (det(DX (p)) #0)
we say that p is non degenerated g.K.

The Kupka set of F,, is the set of Kupka singularities of F,.

If p is of Kupka or g.K type then the division theorem [21] implies that
there exists another germ of holomorphic vector field, say Y, such that w =
iyixu.

Remark 4.2. — If p is of Kupka type then there exists a local coordinate
system z = (z1,...,2,) around p such that z(p) = 0, X = a% and Y =
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(z1,... vzﬂ—l)a%j’ Y (0) = 0. In particular, the foliation F,, has the

structure of a local product, the germ of curve v = (21 = -+- = 2,1 = 0) is
contained in the Kupka set of F,, and the vector field Y defines the normal
type of F,, along v [17].

In the next result we will consider the following situation: let F be a two-
dimensional foliation on P™ n > 4. Assume that Sing(F) contains a smooth
irreducible curve, say S, with the following properties:

M

(IT)

(I11)

There is a finite subset F' = {p1,...,pr} C S such that S\ F C

K (F), the Kupka set of F. Since S \ F' is connected, the normal

type of F is the same at all points of S\ F. We will denote by YV

a germ at 0 € C"~! of holomorphic vector representing this normal

type.

The eigenvalues of the linear part of Y, say p1,...,pn_1, are in the

Poincaré domain and satisfy the following non-resonant conditions

(%) pj # Dipymipi for all m = (ma,...,mj,...,my_1) € Z;gz

In particular, we have p; # p; if i # j. Recall that p1,..., pn—1 are

in the Poincaré domain if there exists a # 0 such that Re(a.p;) > 0,

1 < j < n— 1. With these conditions the germ of vector field Y is

linearizable and semi-simple (cf. [1] and [19]).

Given p € F let w be a germ of (n-2)-form defining the germ of

F at p. We will assume that there is a local coordinate system

(U,z=(21,.-.,2n)) around p with the following properties:

(i) z(p) =0and SNU = (21 =+ = 2zp_1 = 0).

(ii) Set X = rot(w), so that dw = ixv, v = dz; A --- A dz,. Let
AL, ..., An be the eigenvalues of the linear part DX (p). We will
assume that there exists a # 0 such that Re(a.\,) < 0 and
Re(a.A\;) >0,V 1< j <n—1. Moreover, we will assume that
the eingenspace of DX (p) associated to the eigenvalue ), is
the tangent space T,,S.

(iii) Setting p, = 0, we will assume that A;p; —Ajp; #0,V1<i<
Jj<n.

THEOREM 4.3. — If F satisfies conditions (I), (II) and (III) above then
there exist homogeneous polynomials g1, ..., g, such that F € £fd72(gl, ey Gr)-

A crucial fact that will be used in the proof of Theorem 4.3 is that, if r > n
then there are foliations F € Ly4(d1, ..., d,;2,n) with a curve S C Sing(F)
that satisfies conditions (I), (IT) and (III) above:
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LEMMA 4.4. — If r > n then there are 0a,...,0,_1 € LY(d1,...,d;
n —1,n) such that, if n, == 02 A --- A O,_1, then F,, satisfies (I), (II) and
(III) along the curve S =1I(f1 =--- = fn_1 =0).

Since the proof of Lemma 4.4 is not difficult we begin by it.

4.1. Proof of Lemma 4.4

Let fi,..., fr be homogeneous polynomials on C"** with deg(f;) = d;,
1 < j < r, and such that (fy...f, = 0) has strictly ordinary singularities
outside 0 € C"*1.

When r =n—1and S =II(f; = -+ = fn—1 = 0) we have seen in the
proof of Corollary 1.3 in Section 2.3 that the foliation Fy € L#(f1,..., fn—1)
is unique and defined by 63 A - - - 98717 where

ooodf; d d;
gézi_ dfr Ai=-2L 2<ji<n—1, (4.1)

i 4 T Ay
with d; = deg(f;). In a neighborhood U of any point p € S we can find
local coordinates z = (z1,22,...,%,) such that filg = 2z;, 1 < j < n-1,
— 0= dj] — A;9 and F,, is defined by w = z1... 2y 103 A+ AGF o

Since the 6Y,_ are closed we get

j's

d dzp,—
dw:zl...an(h+"'+ Fn—l

)/\93/\~ ATy = pdzi Ao Ad 2y,
21 Zn—1

where p = d% > ;4 = 0, as the reader can check. Therefore, all points in .S
are of Kupka type and S is a Kupka component of F,. The normal type of

Fno at p can be defined by the linear vector field Y = Z d 1255 8 - because

it satisfies iy 6} = 0,V 2 < j < n — 1. In particular, the elgenvalueb p; =dj,
1< j<n-—1,arein the Pomcare domain: Re(p;) >0,V1<j<n—1

When r > n we will consider small deformations of the forms 06 above.
For instance, if r = n then the non-generic points of S are the points of the
set F=SNII(f, =0).

Let us consider the case r = n. Given 7 = (t2,...,t,_1) € C"~2 consider
the family of 1-forms
- dfs dfi dfn .
0. = =L — A;(1)— — Bj(1)==,2<j<n—1,
where A4,(1) = —ft and B; (7 )—td1 Note that igl =0,V 2 < j <n—1,

so that 67 €£1 (fl,...,fn) VreCr2v2gj<n—1 Let]—' be the
foliation defined by 1, = 62 A--- A G271,
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If p € S is a generic point then f,(p) # 0 and there are local coordinates
at p, (U,z = (z1,...,2n—1,2n)), such that f;|ly = z;, 1 <j <n—1.In these
coordinates we have SNU = (21 = -+ = z,-1 = 0) and the normal type
can be calculated by considering the restriction of F,. to a normal section,
for instance ¥ := (f, = fn(p)) N U. The foliation F.|5 is defined by the
(n-2)-form

21 Zn—1Nr|s

d d dz,_ d
— (Z2_A2(T);1>/\.../\< oty () z1>

Zn—1 z21

In particular, the normal type can be defined by the vector field

Yr _ij Zjaz

where p1(7) = d; and p;(1) = d;j — t;dy, because iy, 0L =0,V 2 <i<n—1.

If |7| is small enougth then the genereric points of S are of Kupka type
and the eigenvalues of the normal type are in the Poincaré domain (these are
open conditions). Moreover, the parameter 7 can be chosen in such a way that
the eigenvalues pi(7),..., pn—1(7) satisfy the non-resonance conditions (%)
of (II). This is a consequence of the fact that the set {(p2,...,pn-1) €
C"2|dy = p1,p2,-- -, pn_1 satisfy conditions (x)} is dense in C"~2.

At a point p € F we can find local coordinates (U, z = (z1,. .., zj)) such
that z(p) = 0 and the foliation is defined by the form w, = 21 ... 2,02 A+ A
671, where
~. dz; dz; dz
0l = =L — A;(r)—L — Bj(r)—=2.

1= oA -Bm T
Since the forms 537 are closed, we get

dw, = (dzl—i--“-l—dzn)/\wT.

21 Zn

The rotational X, of w, is defined by dw, = ix,dz; A--- A dz, and so
Xe =370 1N (T)q% is linear and must satisfy ix, (9 +---+%2) = 0 and
ix.05 =0,¥2<j<n—1 It follows that the eigenvalues Ay (7), ..., An(7)
must satisfy the homogeneous system

it 2, =0
T+ +x ' (4.2)
xj —Aj(T)x1 — Bj(T)z, =0, 1<j<n—2

When 7 = 0 we are in the situation of the case r = n — 1 and a solu-
tion of (4.2)isz; =d; >0,if 1 <j<n—-1and z, = —(di +--- +
dp—1) < 0. Therefore, A1(0),...,A,(0) satisfy condition Re(a.A,(0)) < 0
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and Re(a.2;(0)) > 0,1 < j < n—1, for some a # 0. Of course, this im-
plies that for small |7| the eigenvalues of X, has eigenvalues that satisfy
Re(ar.An (7)) < 0 and Re(a-.A;(7)) > 0,1 < j < n—1, for some a, # 0. It
remains to verify that F, satisfies condition (iii) of (III) near p.

First of all, recall that X, and Z, =Y, = Z;le pj (T)zja%j are tangent
to F,. Moreover, since X, A Z; Z 0 these vector fields generate the foliation
in a neighborhood of p = 0. In particular, we must have w, = b.ix_iz_v for
some b # 0. If we set p,(7) = 0 then the coefficient of % A (%j in X, ANZ,.
is Ai(T)p; (1) — Aj(T)ps (1) # 0 if i < j. Therefore (iii) is equivalent to prove
that all coefficients of w, are not zero.

Seta=21... zn,lgg/\o . -/\5871. By the case r = n—1 we have Sing(a) =
SNU = (21 =-+=2z,-1 =0). Since wy = z,.a we have

Sing(wo) = (20 =0)U (21 ="+ = 2,1 =0).
On the other hand, if 7 # 0 then the form w, can be written as
Wy = zZp.ar +dz, A B
where ag = «, «, has linear coefficients and
/67-: Z AU(T)zzzjdzl/\/\(@/\/\dfz\]/\/\dzn_l,
1<i<j<n—1
where A;;(17) = £(Ai(7)B;(1) — A;j(7)B;i(7)), if 4,5 > 1 and Ay,(1) =
+B;(7), if 2 < j < n — 1. We leave this computation for the reader. If
tj 7é 0 then Alj(’r) = :tBJ(T) = :l:t]dl/dn 7£ 0. If i, > 1 then

d
A7) = id*l(tjdi — tidj).

Hence, we can choose 7 small so that ¢;d; —t;d; #0,V1<i<j<n-—1L1

2<5<n—1 54

In the case r > n we consider the parameter 7 = (), 7S,

07 = JTJ — Aj(r)== =) Bji(r) =+

J

where Aj(T) = % — Zz:ntji and Bji(T) = %tji, 2 g] <n-— 1. It can be
checked directly that 77 = 0,V j. The proof of the lemma in this case can
be done by induction on r > n. We leave the details for the reader. O

4.2. Proof of Theorem 1.17 in the case of two dimensional folia-
tions

In the proof we will use Lemma 4.4 and Theorem 4.3. Theorem 4.3 will
be proved in the next section.
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We want to prove that for all » > n and di,...,d. > 1 then
Lia(dy,...,dr;2,n) is an irreducible component of Fol(D;2,n), where D =
Zj d; —n—+1. To avoid confusion we assume d; < dp < --- < d,. Recall that
the definition implies

Etd(dlv"wdr;Qan): U K?(;Q(fla"'af'r‘)'

dg(f;)=d;
1<5<r

Since E?dfz(fl, ...y fr) is irreducible for all polynomials fi,...,f, with
deg(f;) = dj, 1 < j < r, it is clear that L4(di,...,dr;2,n) is an ir-
reducible algebraic subset of Fol(D;2,n). The idea is to exhibit a folia-
tion Fo € Lig(dy,...,dr;2,n) such that for any germ of holomorphic de-
formation ¢ € (C,0) — F; € Fol(D;2.n), with Fi|;=o = Fo, then F; €
Lea(dy,. .. dn;2,n) ¥ t € (C,0).

In order to do that, first of all let us fix homogeneous polynomials f1,..., f,
in C"*! with deg(f;) = d;, 1 < j < r, such that the hypersurface (f ... f. =
0) C C™*! has a strictly ordinary singularity outside 0 € C"**. In particular,
for any J = (1 < ji < -+ < jn—1 < 1) then the curve S; =II(f;, = -+ =
fin_1 =0) C P™ is a smooth complete intersection.

From now on we fix J = (1,2,...,n—1) and set S; = S. By Lemma 4.4
there exists n, = 02 A--- AO"~1 € L772(f1,..., fr) such that the foliation
Fn. defined by n, satisfies (I), (II) and (III) along the curve S. The finite
set of (I) is F' = SN U;s, II(f; =0).

Remark 4.5. — The parameter 7 = (tﬂ)féjéﬁfl in Lemma 4.4 can be

chosen in such a way that if 7, € Li4(dy,...,d,;2,n), where d| < dy <
.- < d. then d} = d;, ¥ i. Recalling the definition of the 7%, an example
in which F,,_ belongs to two different L.y is when Bj, (1) = Bj,41(7) for
all 2 < j < n— 1. In this case, in the sum that defines 67 there are terms as

below
¢ dfn dfn+1 - B. (7_) d(fnfn-l—l)

Bj (T)fT * Bjn-i-l(T) fn+1 ! fnfn+1

In this case
]:177 € £td(d17 ceydy 2,D) ﬂﬁtd(dl, ceydp_1,dy + dn+1, . 7d7-;2,D).

On the other hand, if we choose the parameters ¢;; linearly independent
over Z then the required property is true. From now on, we will assume this

propety.

Since F,,, satisfies property (III) along the curve S, all points of the finite
set F' are non degenerated g.K singularities of 7, . Fix any holomorphic germ
of deformation t € (C,0) — F; € Fol(D;2,n). The main fact that we will
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use is that the curve S admits a C* deformation ¢ € (C,0) — S(t) such
that S(t) C Sing(F;) and the foliation F; satisfies properties (I), (II), (III)
along S(t).

LEMMA 4.6. — There exists a germ of C* isotopy ®: (C,0) x S — P,
such that, if we denote S(t) := ¢(t,5), then:

(a) S(0) =S and S(t) C Sing(F;) is smooth ¥V s € (C,0). In particular,
S(t) is an algebraic complete intersection, ¥ t € (C,0).

(b) If r =n —1 then all poins of S(t) are of Kupka type.

(¢) If r > n—1 then any point p € F = SﬂU,@"H(fk =0),n—-1<
k < r, has a holomorphic deformation t € (C,0) — P,(t) such
that P,(t) € S(t) is a non degenerated g.K singularity of F;. Set
F(t) = {P,(t) | p € F}.

(d) The points of S(t) \ F(t) are in the Kupka set of F(t). Moreover,
if we denote by Y: the normal type of Fi along S(t) \ F(t) then the
correspondence t € (C,0) — Y; is holomorphic.

Proof. — The argument for the proof of (c) uses the stability under de-
formations of the non degenerated g.K points [17, Theorem 6]. The argument
for the existence of the isotopy ® is similar to [16, Lemma 2.3.3, p. 83] and
uses essentially the local stability under deformations of the Kupka set [9]
and of the non degenerated g.K singular points [17]. The fact that the de-
formed curve S(t) satisfies (I), (II) and (III) for the foliation F(¢) is a con-
sequence of the fact that these conditions are open. We leave the details for
the reader. O

Let us finish the proof. We will assume that F,, satisfies Remark 4.5.
Lemma 4.6 implies that the foliation F(¢) has a curve S(¢) in the singular
set that satisfies (I), (II) and (III). In particular, there are homogeneous
polynomials g1(t),...,gsw) (t) such that F; € Lr2(g1(t), ... y sty (t)). Set
deg(g;(t)) = d;j(t). We assert that s(t) = r and that we can assume d;(t) =
dj, 1 < j <r

In fact, since D = Z;(:t)l d;(t) —n+1 we have s(t) < D+n —1 and
the number of possilities for the degrees d;(t), 1 < j < s(¢) is finite. In
particular, there is a germ of non-contable set A C (C,0) such that the
functions t € A — s(t) and t € A — d;(t), 1 < j < s(t), are all constants,
say s|a =1’ and d;|4 = d}. In particular, F(t) € Lya(d}, ..., d;,;2; D) for all
t € A. Since 0 is in the adherence of A we get F,,, € La(d),...,d.,;2,D).
Hence, 7" = r and dj = d;j, 1 < j <r, and F(t) € L44(dy,...,dr;2,D). O
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4.3. Proof of Theorem 4.3

Let F be a two dimensional foliation on P, n > 4, having a curve S in
the singular set and that satisfies (I), (II) and (IIT). The idea is to construct
closed logarithmic 1-forms 6s, ..., 0, _1, defined in a neighborhood U of the
curve S, such that 65 A -+ A 0,_1 defines the foliation F|y. By using an
extension theorem of meromorphic functions (cf. [2] and [22]), each form 6,
can be extended to a global closed meromorphic 1-form on P”, denoted again
by 8;, 2 < j < n— 1. The fact that 6;|y is logarithmic implies that 6; is
also logarithmic: there are homogeneous polynomials in C"*1, say g1, ..., g,,
such that 0; € Lk(g1,...,9-),V1<j<n—-2 = F¢€ ﬁ?dfz(gl, ces Gr).
The following result will be usefull:

THEOREM 4.7 (Parametric linearization). — Let (Wr) ¢(ck,0) be a germ
at 0 € C* of a holomorphic family of germs of holomorphic vector fields at
0 e C™. Assume that:

(a) The linear part L. = DW,(0) is diagonal of the form L, =
E;n:l pj(T)zja%j in some local coordinate system z = (21,...,2m)
around 0 € C™.

(b) p1(0),...,pm(0) are in the Poincaré domain and satisfy the non-
resonance condition (%) in (II).

Then there exists a holomorphic family of germs of biholomorphisms
(Vr)re(ck,0) such that DU, (0) = I and

(W, ZPJ wja

Theorem 4.7 is a parametric version of Poincaré’s linearization theorem.
Its proof can be found in [1] or [19].

Let us continue the proof of Theorem 4.3. First of all, we will prove
that there are n-2 closed logarithmic 1-forms 65, ...,60,,_1, defined in some
neighborhood W of S\ F, such that n =63 A --- A 0,_1 defines F|y .

Fix p € S\ F. Since p € K(F) there are local coordinates (V,z =
(21,.-.,2n)), with p € V', such that

(ii) Fly is defined by a holomorphic (n-2)-form w that can be written
= ZY,LXV Where X = 6z ’ Y = Zn 1 (le"?zn—l)aizj- is

the normal type and v = dz, Adzy A--- Adzp_1.
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Since the eigenvalues p1, ..., pn—1 of DY (0) satisfy the non-resonance con-
ditions (x), by Theorem 4.7 (without parameters) we can assume that Y is

linear
n—1 a
Y = Z ijjai,
- Zj
7j=1

which implies

n—1
w = Z(—l)j_lpjzjdzl VANRERWA de VANEERIVAN dZn_l.
j=1
i o 1 ; . .
In particular, the form ny = T wWis logarithmic
n—1 —
; dz dz; dz,—
-1 1 g n—1
ny = 1) pj— A A—= A A )
;( ) Pj ) % o

Note that 1y can be decomposed as ny = p10% A -+ A 9371, where
de Pj le

J
0, = :
Zj P1 21

(4.3)
because iy 0], =ixt, =0,V2<j<n— 1.

The above argument implies that there exists a covering V of S\ F, by
open sets, such that

(iii) For each V' € V there exists a coordinate system zy = (z1,...,2,) :
VoC withV ={z]]z;] <1,1<j<n}and SNV =(z1 =--- =
Zn—1 — 0)

(iv) If 0{} is as (4.3), 2 < j < n—1, then the logarithmic form 62, A--- A
07! defines Fly .
(v) The vector fields Xy = 52 and Yy = Z;:ll pjzja%j generate Fy.

Zn

We assert that if V, V €V are such that VNV # () then ¢, = 9{7 onVNV.
In fact, first of all let us remark that

(vi) For all j € {1,...,n — 1} the hypersurface ¥, := (z; = 0) C
V is invariant by F|y. Moreover, if ¥/ C V is another smooth
hypersurface which is F|y invariant and is tangent to ¥, along S
then X7 C X,
Note that (vi) above is equivalent to the fact that the hyperplane (z; = 0)
is Y-invariant, 1 < j < n—1. Moreover, it is the unique smooth hypersurface

which is Y-invariant and tangent to (z; = 0). This is well-known and is a
consequence of the fact that p1, ..., p,—1 satisfy (x) (see [1]).
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Let zv = (21,...,%) and zy = (21, ..., 2,) be the coordinate systems of
V and V on which (iv), (v) and (vi) are true. We assert that z; = u;.z; on
VNV, where u;(z) #0VzeVNV,Vi<j<n—1

In fact, if we fix 1 < j < n —1, by (vi) we must have Z; = u.z;, where

u(z) A0V z € VNV, for some 1 <i < n— 1. However, the fact that p, # P;

if £ # j implies that i = j. It follows that

43, 4z dzs d ,

Hézé—p—]é:ﬁ—&ﬁ+dv:9{,+dv,2<j<n—l,
Zj P1 21 Zj P1 21

where v = log(u;) — % log(uy) is holomorphic. Now, (iv) and (v) imply that

ix 0, = ix, 0 = iv, 07, =iy, 0y =0
E=4 Xv(’l}) = Yv(’l}) =0
—> v is a first integral of both vector fields Xy and Yy

Since Xy = Béz)n we get v = v(21,...,2,—1). Since the eigenvalues of Yy,
are in the Poincaré domain v(z1, ..., 2,—1) must be a constant and dv = 0.
Hence, 9{7 = 0{/ on VQ‘A/, as asserted. Therefore there are closed logarithmic
1-forms 6s,...,0,,_1, defined on W = |J,,V, such that F|y is defined by
O2 A\ -+ A by_1, as asserted. Let us prove that the forms 6; extend to a
neighborhood of any point in F'.

Given p € F' let w be a germ of (n-2)-form defining the germ of F at p.
Let (U,z = (x = 2z1,...,2n)) be a coordinate system around p as in (III),
so that z(p) = 0and SNU = (21 = --+ = z,—1 = 0). The rotational X of
w has eigenvalues A1, ..., A, and there exists a # 0 such that Re(a.\,) <0
and Re(a.A;) > 0,V 1 < j <n—1 Since p = 0 is an isolated singularity
of X there exists another germ of vector field Z such that w = izixv,
v =dz; A--- Adz,. The vector fields X and Z generate the germ of F at 0.

LEMMA 4.8. — There are germs at p of vector fields X and Z that gen-
erate the germ of F at p and a holomorphic coordinate system (Up,w =
(wi,...,wy)) around p, with the following properties:

(a) wp)=0and SNU; = (wy =+ =wp_1 =0).

(b) Z(w) = Z;:ll pjwjaiwj. In particular, Z is the normal type of F
along S\ F.

(c) X = Z?:l Ajw;(1 —ﬁ—gbj(wn))aiwj, where $;(0) =0,V1<j<n—1

Proof. — Let W, be the hyperplane of T},P" generated by the eigenspaces
of DX(p) associated to the eigenvalues A1, ..., A\,_1 and W be the eigenspace

associated to A,. Recall that we have assumed W = T},S, which implies that
W, is transverse to S at p. The conditions Re(a.\,) < 0 and Re(a.A;) > 0
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implies that the vector field a.X has an unique invariant smooth hypersurface
>, tangent to W,, which meets S transversely at p. This is a consequence
of the existence of invariant manifolds for hyperbolic singularities of vector
fields (see [15]). The hypersurface %, is the unstable manifold of the vector
field a.X. We assert that 3, is also Z-invariant. For simplicity, we will assume
a=1.

In the proof we will use the relation:
[Z,X] =hX (4.4)

where h € O,, and h(0) = 0. Let us assume (4.4) and prove that ¥ is Z-
invariant.

Take representatives of Z, X and h defined in some small ball B around
0. Let Z; and X; be the local flows of Z and X, respectively. Since ¥, is the
unstable manifold of X the real flow X; of X satisfies lim;_, o, X¢(2) =0V
z € ¥ N B. Integrating (4.4) we get

Z5(X) = 6,.X, where ¢y(2) = exp ( /O t h(Zs(z))ds> .

The above relation implies that Z; sends orbits of X on orbits of X. Given
z € ¥ N B denote O(z) = {X(2) |t < 0}. Since lim; oo X¢(2) = 0 we get
O(z) = O(z) U{0}. Let O(z) be the germ of O(z) at 0. Note that O(z) C ¥
and that Z,(O(z)) is a germ of curve through 0 such that Z,(O(z)) \ {0}

is an orbit of X. This of course implies that Z,(O(z)) C X. Hence, ¥ is
Z-invariant.

Proof of (4.4). — Since dw = ixv and w = igzixv we have
Lzw=iz(dw) +d(izw) =w
= Lz(dw) =dw
= ixv = Lz(ixv) =iz x)W +ixLzv =iz xw+ V(Z)ixv,
where V(Z) = >, gf]f is the divergence of Z. From this relation we get
[Z,X] = hX, where h =1— V(Z). We assert that h(0) = 0.
In fact, let X; = DX(0) and Z; = DZ(0). Relation (4.4) implies that
[Z1, X1] = h(0).X;.

The above relation implies that if A(0) # 0 then X; is nilpotent, so that
A1 ==\, =0, a contradiction (see [17]). In particular, we have proved
that X; and Z; commute. O

Let us continue the proof of Lemma 4.8. After a holomorphic change of
variables, we can assume that ¥, C (z, = 0). Since (z, = 0) is invariant
for both vector fields, in the new coordinate system we can write the n*”
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component of X and Z as A\, z,(1 + h1(2)) and z, f(z), respectively, where
h1(0) = 0. If we set ¥ := —% then the n'" Cgmponent of Z :=
Z 4+ WX vanishes. Moreover, w = izixv = izixv and [Z, X] = gX, where
g=h—X(¥) and g(0) = 0. We assert that there are coordinates (W, w =
(wi,...,Wp_1,wy,)) around p such that

(i) wlp) =0, E,NW = (w, =0) and SNW = (w1 =+ =wp—1 = 0).
(i) Z = p(wn). Y 02) pjwj g, where ¢(0) # 0.

In fact, since the n'" component of A vanishes, the hyperplanes X, :=
(zn = c) are Z-invariant. On the other hand, if ¢ # 0 then 3. is transverse
toS=(21=--=2,-1=0) and so Z|EC represents the normal type of F
in the section .. Therefore, the eigenvalues of DZ (0, ¢) are proportional to
P1,- -+, Pn—1- In other words there exists a ¢ € O such that the eigenvalues
of DZ(0,¢)|s, are ¢(c).p1,...,d(c).pn_1. Considering Z as a 1-parameter
family of germs of vector fields at 0 € C*~! and applying Theorem 4.7 to
this family we get (ii) of the assertion. Now, we assert that there exists
® € O,, such that if we set X :=¢®.X then

[Z,X]=0. (4.5)

In fact, if & € O,, then
[Z,X]=[Z,e®.X] = e®.Z(®).X +e®.[Z,X] = e2(Z(D) + g) X.

Therefore, we have to prove that Z(®) = —g has a solution ® € O,.
Recall that Z = ¢(w,).L, where L = 377~ fpjwj o+ Set w = = (z,wy),
x = (wi,...,wy—1). We can write

g(xz,wy) Zb wy,).

VvhelreJ:(01,...,0,L,1)EZ>O , by € 01 and 27 = wi' ... w3t

Let g = (0, ...0). We will prove below that b,, = 0. Assuming this fact,
the equation Z(®) = —g has a formal solution ® = " ¢, (wy )z where

_ bo(wn) ”
% (Wn) = Sy (90} Zp”

Since p1,...,pn—1 are in the Poincaré domain we have

lnf{|<p’ |U€Z>O O 7&(0770)}207
where C' > 0. This implies that the formal series converges; ® € O,,.
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Proof that by, (wy,) = 0, or equivalently g(0,w,) = 0. — First of all, the
nt component of [Z, X| is Z(X,), where X,, = \yw, (1 + hy(z,w,)) is the

n'" component of X. Hence, [Z, X] = ¢gX implies that

gAwn(1+ h1) = Z (Awn(1+ h1)) = Mwn Z(hy) = Mwpo(wy,)L(he)

P(wn) Z?;ll PjW; 232
14 hy
= ¢(0,w,) =0 O

g g(x7wn) =

From Z = ¢(w,).L we get that (4.5) implies:

(1) DX(0) commutes with L. In particular, DX (0) is diagonal in the

coordinate system w and we can write X = 2?21 X7 (w)+2-, where

Qw; "’
X (w) = Ajwj + hot, 1<j<n.
(2) L(X™) = 0. Since the first integrals of L are functions of w,, we get
X" = Awp(1 —|—@n(wn)), Uy, € O1.
(3) d(wy).L(X?) = X(p(wn)pjw;), 1 <j<n—1 <

¢’ (wn)

Note that (4.6) implies that w;|X7 if j < n and so X7 = \jw;u, where
u(0) = 1. But, in this case we get that ﬂ%(L(Xj) — p;X;) € OF which can
happens only if ¢’ = 0 and L(X7) = pJ:Xj. We can assume that ¢ = 1.
Finally, the solutions of L(X7) = p; X7 with linear part Ajw; are of the
form X7(w) = A\jw;(1 + ¥j(wy)), ¥;(0) = 0. This finishes the proof of
Lemma 4.8. |

L(X7) = p; X7 =

(1 + ¢n(wn))pnpjijn7 1 < .] < n. (46)

Let us finish the proof that the forms 6;, 2 < j < n — 1, extend to a

neighborhood of p € F'. Define closed logarithmic 1-forms 6;,2 < j <n -1,
by

where
A+ ¢(wn)) — EEA(1+ 61 (wn))
i) = 30+ 0uw1)
Note that (;(0) # 0, because p1A; — pjA1 # 0. In particular, the pole divisor
of gj contains w,, with multiplicity one.

The reader can check directly that izgj = i)g6‘~j =0,V2<j5<n—-1,s0
that 77 := 03 A -+ - A0, _1 defines the germ of F at p. Taking representatives,
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we can assume that the 93/5 are defined in some polydlsc W contammg D
andw1thFﬂW—{p} Weassertthat0 =0, onWnNW,2<j<n—1

In fact, fix a point ¢ € S AW NW. We have seen that there are coordinates
(V,z = (21,.+,2n-1,2n)) around ¢ such that z(¢) = 0, SNV = (2, =
- = zp—1 = 0), F|v is generated by the vector fields X = %ﬂ and Y =

dz; ; ,
Py fpjzjaz and 0|y = Zi;f%dz—zll, 2 < j < n— 1. Note that w,|y €
O*(V) and that wjly = vj.z5, where v; € O*(V), 1 < j < n—1. This implies
that 6]y = 6,|v + df;, where f; is a primitive of the closed holomorphic
form

Uj pP1 V1 Wp,

Finally, the fact that ix6; = iy6; = ix0; = iy0; = 0 implies that X (f;) =
Y (f;) =0 and so f; is a constant and 6|y =6,|y,2<j<n—1

We have proved that there are closed logarithmic 1-forms 6s,...,60,_1
defined in a neighborhood U of S such that n := € A --- A 0,1 defines
F|u. By the extension theorem in [22] the form 6, can be extended to closed
meromorphic 1-forms on P”, 2 < j < n—1, denoted by the same symbol. The
pole divisor of ; must be reduced because the pole divisor of the restriction
0;|v is reduced. Therefore 6; is logarithmic, 2 < j < n — 1, and 7 is totally
decomposable into logarithmic forms. In particular, there exist g1,..., g,
such that n € E?dfl(gh ..., gr). This finishes the proof of Theorem 4.3. O

4.4. Proof of Theorem 4.1

Let M C P™ be a m-dimensional smooth algebraic submanifold, where
m < n, and F be a codimension p holomorphic foliation on P"™, where
p+ 1 < m. Assume that:

(a) The set of tangencies of F with M has codimension > 2 on M.
(b) F|a can be defined by a meromorphic closed p-form 7.

We want to prove that 1 admits a closed meromorphic extension 77 defining F
on P™. In fact, this proof is similar to the proof of the extension theorem of [4]
(see also [16, Proposition 3.1.1]). The idea is to prove that n admits a closed
extension 7, defined in a neighborhood U of M, such that F|y is represented
by 7). After that, by [2] and [22], the form 7) admits a meromorphic extension
7 to P™. Since U is an open non-empty subset of P, it is clear that 7 is
closed and defines F on P™.
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Let X = Sing(F|as). Note that X = Tang(F, M) U (Sing(F)N M), where
Tang(F, M) denotes the set of tangencies of F and M. By (a) we have
codps (X) > 2. We begin by extending 1 to a neighborhood of M \ X.

Extension to a neighborhood of M\ X. — By definition, the foliation F
is transverse to M at the points of M \ X. In particular, given ¢ € M \ X
there exists a local coordinate system around ¢, z = (21,...,2,): W — C™,
with z(W) a polydisc of C", z(q) = 0 € C™, and such that

(i) MNW = (zpa1 == 2, =0).
(ii) The leaves of F|w are the levels 21 = ct1,..., 2, = ctp.

In particular, F|w is defined by the form Qu = dz; A --- A dz,. Since
Flwanu is also defined by n|w s we must have nlwan = f-Qw|wnar, where

f=f(z,-..,2zm) is meromorphic on W N M. Since n and Qy are closed we
get df A Qu = 0, which is equivalent to
of

— =0, Vp+1<j<m
82’]‘

= f(z1,...,2m) = f(21,..., %) : f depends only of z1,..., 2.

In particular, n|wnas admits an unique closed meromorphic extension to W
defining Flw: fw = f(21,...,2p)dz1 A --- A dzp. This proves that 1|y x
admits an unique closed meromorphic extension 7 to a neighborhood V' of
M \ X representing Fy.

Eztension of 7] to a neighborhood of M. — Since cody (X) > 2, given
q € X we can find a Hartog’s domain H C V such that g € PAI, the holomor-
phic closure of H (for the details see [16]). Therefore, 7 admits a meromorphic
extension to a neighborhood of ¢, by Levi’s extension theorem [24]. In par-
ticular, 7 can be extended to a closed meromorphic p-form 7 defining F on
P™ by [2] and [22].

Let us assume now that 7 is logarithmic and let (7)s = 3'71“ ... Sk be
the decomposition of the pole divisor of 7 into irreducible components. The
pole divisor of n will be then (7)o = (7)o N M, which is reduced because 7
is logarithmic. Hence, k1 = -+ = k. = 1 and 7 is logarithmic. O

4.5. End of the proof of Theorem 1.17

Recall that we want to prove that, if k >3, n>5andr >2n—k+2:=
p+ 2 then L4(d1,...,d;k,n) is an irreducible component of Fol(D, k,n),
where D = Ej dj —n+k —1. Fix fi,..., f» homogeneous polynomials on

C™*! with the following properties:
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(i) deg(fj) =dj, 1<j<r
(ii) the hypersurface (fy...f, = 0) has strictly ordinary singularities
outside 0 € C"*1.

Set m =n —k+ 2 and let P ~ ¥ C P" be a m-plane such that:

(iii) If ™+ ~ B =TI-Y(S)u{0} c C"*' and f; = filp, 1 < j <7,

then (fl ... f~ = 0) has strictly ordinary singularities outside 0 € E.

Such m-plane E exists by transversality theory. In fact, it is sufficient to
choose FE in such a way that for any sequence I = (i; < --+ < i5) € S, where
1 < s < n—1, then the algebraic smooth set II(f;, =--- = fi, =0) C P"
meets transversely ¥ = II(E) (see Definition 1.2). We leave the details for
the reader.

Since m —2 = n — k = p, then for any F € LV (f1,..., fr) we have

Fls € E;Z_Q(fl, R fr), so that Fl|y is a two dimensional foliation. Given
df; 5 df;
a l-form 6 =3 )‘jfij] € L:(f1,...\ fr), we set § = > i1 )\jfijj.

Choose F, € LV,(f1,...,[r) defined by a logarithmic form n, = 62 A
-+ A Opt1, where 6o,...0,41 are as in Lemma 4.4. We assume also F,|x
satisfies Remark 4.5: if Fo|s € L1a(d), ..., d5;2,m) then s = r and d} = dj,
I<j<r.

Let (F¢)te(c,0) be a germ of holomorphic 1-parameter family of foliations
in Fol(D, k,n) such that F|;—g) = F,. Consider the germ of 1-parameter
family of two dimensional foliations F; := Fi|s, t € (C,0). By the proof in
Section 4.2 we get F; € Lig(dy,...,d;2,m), Vit e (C,0),so that F: can be
defined in homogeneous coordinates by a m — 2 = n — k logarithmic form
e € L™ 2(f1ey. .., fre), where fjtli—0 = f;, 1 < j < r. By Theorem 4.1
the foliation F; € Fol(D, k,n) is logarithmic, V ¢t € (C,0), so that F; €
L(d1(t),...,ds,(t);k,n). We assert that s, =r and d;(t) =d;, 1 <j <.

In fact, since F; € L(dy(t),...,ds,(t);k,n) we get Fy € L(di(t),...,
ds, (t);2,m). Therefore, as in the proof of the two dimensional case, we have
s =rand d;(t) =dj, 1 < j<r, Vte (C0). Finally, by Corollary 3.6
we get Fy € Lyg(dy,...,dr;k,n), ¥V t € (C,0). This finishes the proof of
Theorem 1.17. (|

5. Linear pull-back foliations

The purpose of this section is to prove a result of “trivialisation” of holo-
morphic foliations on projective spaces:
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THEOREM 5.1. — Let G be a codimension p foliation on P™, where n >
p+ 2. Assume that there is a p + 1 plane ¥ ~ PPL such that the foliation
F :=G|s has singular set Sing(F) of codimension > 3. Then G is the pull-
back of F by some linear projection T : P""— — . In particular, there exists
an affine coordinate system (z,w) € CP*1 x C"=P~1 = C™ C P" such that G
is represented in these coordinates by a p-form depending only of z and dz:

p+1
U—ZP Ydzi A Adz A Adzprr = dxdz A Adzy,

where X = Z?i%(—l)j_le(z)a%j.

Theorem 5.2, that will be used in the proof of Theorem 5.1, is a local
version of it. Let Z, # 0 be a germ at (CP*! 0) of holomorphic vector field,
where p 4+ 1 > 3. The germ of foliation defined by Z, is also defined by the
germ of p-form 7, = iz, v, where v = dz; A- - -Adzpy. If Z, = Zpﬂ -(z)a%j
then

pt1
Mo = Z(—l)j_lfj(z)dzl A Adzp A Adzpg.
j=1

We will assume that there is a germ of integrable holomorphic p-form n at
0 € C", where C" = CPT! x C" P~ n > p+ 1, such that 7, = i*n, where i
is the inclusion CP*! s CPTL x Cn—P—1,

THEOREM 5.2. — In the above situation, assume that cod (Smg(Z ) =
3. Then there exists a local coordinate system (z,w) € (CPH1xC"~P~1 (0,0))
and an unity ¢ € OF such that

pt1
’7—¢Z 177 fi(z)dz Ao Adzj A Adzpgg = giz,dz A Adzpy.

In partzcular, the foliation generated by n is equivalent to the product of
the singular one dimensional foliation generated by Z, by the non-singular
foliation of dimension n — p — 1 with leaves z = constant.

We begin with the proof of Theorem 5.2.

5.1. Proof of Theorem 5.2

Let 1, = iz, v be the germ of p-form on (CP*!,0) which can be extended
to a germ of integrable p-form 7 on (C™ = CP*1 x C*~P~1 (0,0)). As in the
hypothesis of Theorem 5.2 we will assume that cod(Sing(Z,)) > 3.
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The points in C"* = CPT x C*~P~! will be denoted (z,y), where z € CP+!
and y € C"P~!. We will consider representatives of Z,, 1, and 7, denoted
by the same letters, the first two defined in a neighborhood V' C CP*! of a
closed polydisc U and the last defined in a neighborhood of U x {0} in C",
so that

Mo = Nvx{oy = iz,dz1 A+ Adzpy1.
We will assume cody (Sing(Z,)) > 3. Deﬁne a holomorphic vector ﬁeld Z in
a neighborhood of U x {0} by Z(z,y,) = Zy,(z) = Z; 195 (2, 90) 52 5.;» Where

n|(y:yo) = izyodzl A A dzp+1.
Since 7 is locally totally decomposable. outside its singular set, we have
iZn =0.

Note that Z(z,0) = Z,. Therefore, the hypothesis implies that there
is a neighborhood W of U x {0} in C" such that cod(Sing(Z)) > 3 and
Wn((y=0)=V x{0}.

We assert that there are holomorphic vector fields Xi,..., X,_p_1 de-
fined in a smaller neighborhood of U x {0}, such that ix,n = 0 and

p+1
X;(x, ayj+;hﬂzy Vi<j<n—p-1. (5.1)

First of all, we note that the above assertion is true in a neighborhood
of any point (2,,0) € (V x {0}) \ Sing(Z,). This is true because for (z,y) in
a neighborhood U, of (z,,0) some component of Z(z,y) does not vanishes,
say gp+1(2,y) # 0, so that

(=D
9p+1
where © A dzpy1 Adyr A+ Adyp—p—1 = 0. As the reader can check this

implies the existence of holomorphic vector fields X, on U, as in (5.1),
1<j<n—p-1. It follows that there are:

17|Ua:dzl/\---/\dzp—|—(:),

e apolydisc Q = Q1 xQy C CPHIxC" P71 with @, D U and 0 € Q.

e a covering U = (Uy)aca of @\ Sing(n) by polydiscs,

e n-p-1 collections of holomorphic vector fields (Xjq)aca, 1 < j <
n—p—1, X;, € X(Ua),

such that

(i) Con(Sing(Z|Q))
(11) X = By +Zp 1 gza(z y)az
(iii) ix;,n=0,V1<j<n—-p—-1,VacA
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(iv) for all ¢ = (z,y) € U, then ker(n(q)) = (Z(q), X1a(q),.--,
Xn—p—la(q»(:'

If1<j<n-—p-—1and U, NUg # 0 then

p+1 9 ‘

Xjo = Xjp = (9ja — 9i8) 5, = Map-Z:

i=1 ’
where hf;ﬂ € O(U, N Ug). The collection (h{xﬁ)Ua;#@ is an additive cocycle.
Since cod(Sing(Z)) > 3 by Cartan’s theorem (cf. [5] and [12]) the cocycle is
trivial; b, ; = hﬁlfhj hl € O(U,). Hence, there exists a holomorphic vector
field X; on @\ Sing(Z) as in (5.1) such that ix,n = 0; X;|v, = Xjo —hi,Z.
By Hartog’s theorem X; can be extended to a holomorphic vector field on
Q, denoted by the same letter. In particular, we have

ker(n)|g = (Z,Xl,...,Xn,p,ﬁo(Q). (5.2)

Finally, (5.2) and [6, Theorem 11] imply the theorem:

(i) There exists a smaller polydisc U x {0} C Q" C @ and holomorphic
vector fields Z',Y1,...,Y,_p—1 € <Z Xq,... ,Xn,p,l)o(Q,) such

that [¥;,Y;] =0, [Z/,Y;] =0,V 1<j<n—p—1,and
<Z/a Yia e aYn7p71>o(Q/) = <Z‘Q/aX1|Q’7 e ;Xn7p71|Q’>O(Q/) .
(ii) There are coordinates (z,w) = (2,w1,...,wWyp_p—1) in Q' such that
Y, = aw ,Vi<j<n—-p-—1.
This finishes the proof of Theorem 5.2. |

A simple consequence of Theorem 5.2 is the following:

COROLLARY 5.3. — Sing(n) 4s biholomorphic to Sing(Z,) x (C"~P~1,0).

5.2. Proof of Theorem 5.1

In this section we consider a holomorphic codimension p foliation G on
P, 2 < p < n — 2. We assume that there is a p + 1 plane PP*! = ¥, C P"
such that cods(G|s,) > 3. We want to prove that there is a linear projection
T:P"— — %, such that G = T*(G|x,). We will prove Theorem 5.1 in the
case n = p + 2, or equivalently, when the foliation is two-dimensional. The
general case will be reduced to this case using [18, Section 3.4].

The foliation G|x, is one dimensional and so it can be defined by a finite
covering (Qa)aca of ¥, by polydiscs of ¥, a collection (X4 )aeca of holomor-
phic vector fields X, € X(Qq), and a multiplicative cocycle (gas)Q.nqs-40
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such that X, = go3.X3 on Qo N Qg # 0. A consequence of Theorem 5.2 is
the following:

COROLLARY 5.4. — There is a finite covering of ¥, by polydiscs of PP*2,
say (Uy)a, and two collections of holomorphic vector fields (Zy)aca and
(Yo)aca, Za, Yo € X(Uy,), with the following properties:

(a) UpoNE, = Qo and Z, is an extension of X, to U,. In particular,
Z s tangent to X, along Q..

(b) Sing(Yy) =0 and Y, is transverse to 3, along Q..

(c) If z ¢ Sing(G) N U, then T.G = (Za(2),Ya(2))c-

(d) If z € Sing(G) N Uy then Z,(z) = 0. Moreover, the orbit of Yy,
through z is contained in Sing(G).

The proof is a straightforward consequence of Theorem 5.2 and is left to
the reader.

Our goal now is to prove the following:

LEMMA 5.5. — Under the hypothesis of Theorem 5.1 assume that n =
p+ 2. Then there is a one-dimensional foliation H of degree zero transverse
to ¥, whoose leaves are G-invariant.

Proof. — The foliation H will be constructed in homogeneous coordi-
nates. Let IT: CPT3\ {0} — PP*2 be the canonical projection and G = I1*(G).
Consider homogeneous coordinates z = (zp,...,2p4+2) € CPT3 such that
II1(2,) U{0} = (2o = 0) := ,. In these homogeneous coordinates the foli-
ation G is defined by an integrable homogeneous p-form 7 such that ign = 0,
where R denotes the radial vector field on CP*3. The foliation H will be de-
fined in homogeneous coordinates by R and a constant vector field v such
that i,n = 0.

The idea is to construct a formal series of vector fields of the form
V=& +3 0%V, where V; = S fiilz, - - Zpya) e, the fiis are
holomorphic in some polydisc @ of CP*?2 containing the origin of CP*2 and
such that iyn =0. If v :=V(0) = 6%0 + V5(0) # 0 then i,n = 0 because the
coefficients of 1 are homogeneous of the same degree. The constant vector
field v and R induce a foliation # of degree zero on PP*2 tangent to G.

Let us construct the series V. The covering (Uy)aca, given by Corol-
lary 5.4, induces the covering (Us = 17" (Ua)) ., of X5\ {0}. Without lost
of generality, we can suppose that for any o € A then U, is contained in

some affine chart (z;(q) # 0), where j(a) # 0.
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CILAIM 5.6. — There are collectz’ons of holomorphic vector fields (Z (Na)aeA
and (Y o)aca, With Za,Y o € X(Uy) Y a € A, with the following properties:

(i) DII(2).Za(2) = Za 0 1(2) and DII(2).Y o(2) = Ya on( ), Vze
U In particular, Ya and Za are tangent to Q|U v, n =0 and
zZ n=0,Va.

(i) Yo, Zo and R generate G in the sense that

o ifz€ U, )\ Sing(G) then T.G = <Y Za(z),R(z)>C.
e zeU, ﬁSmg(g) — Y, ( YA Zo(z) AR(2) = 0.
(iii) Zo is tangent to S, along Sy N U, ¥ o € A. This means that

~ 0 0
700,21, .. B
0.2 ) € <321 5Zp+2>o

ga(z)% + Vo, where V, € <%,... L>O and g, €

7 Ozpy2

(iv) Y, =
O*(Ua).

In particular, Sing(?a) = 0 and }7@ is transverse to f]o along io N T}a,
YaeA.

Proof. — Let us construct Yo and Z,, a € A. Let j # 0 be such that
Us C (27 # 0). Let us assume that U, C (z, = 1), for instance, and
that Y, and Z, are vector fields tangent to the affine plane (z, = 1):

Yo =3 icn98 (205 s 2n 1)—2 and Zo = 3, hi' (20, - -, 2n— 1)86 where
g¥, he € OU,), vV a. Slnce Y, is transverse to ¥, we have g8 € O*(U,), V a.
The vector fields YB and Za are then constructed by extending Y, and Z,
“radially”: we set Y, 1= >, g5(2 )7 and Z, = Yicn he(z )az , where
3%(2) = 20.9%(20/Zns - > Zn—1/2n) and h¥(2) = 20.h%(20/Zns- - - » Zn—1/7n)-
We leave the proof of (i), (ii), (iii) and (iv) for the reader. O

We now define a multiplicative cocycle of 3 x 3 matrices (Aag)g, i, 0-

Since cod(Sing(G|u,)) = 3, we get cod(Sing(_C’7|Uu)) > 3, which implies
cod ({z € UnVal(2) A Za(z) AR(z) = 0}) >3
From this and (ii) we get that, if U, N Ups # ) then we can write

{iacz) = 60p(2)V 5(2) + bas(2) Z5(2) + cap(2)R()
Zal2) = das(5)V ap(2) + cas(5)Z5(2) + fas () R(2),

where aqg, ..., fag € (’)(ﬁa N (75) The matrix

VZEﬁaﬁﬁﬁ,

Qo p bag Cap
Aa,B = daﬂ €ap fozﬂ
0 0 1
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defines the transition

7. 7,
Zo | = Aa6~ Zg | - (5.3)
R R

Of course, Aag = AE and if Uy NUs N U, # 0 then AgpAg,Aye = I on

UsN Ug N U Since Uq N Uﬁ is a neighborhood of Q, C (29 = 0) in CP*+3
we can write Aag as a power series in zp:

Aup = Z BA,
3=0

where Aiﬁ is a matrix with coefficients in O(QaNQp), Qo = Us N (20 = 0).
Now, the proof of Lemma 5.5 can be reduced to the following:

LEMMA 5.7. — The matriz cocycle (Aag)gamgﬂ;é@ is formally trivial:
there exist a collection (Ay)aca of formal power series
Ao = AL,
j=0
where

(a) AJ is a matriz with coefficients in O(Qy), Qa = Ua N (20 = 0),
Va,Vj>0.

(b) A, is invertible as a matrixz formal series and its third line is (0,0, 1),
Y a.

(¢) if QuNQp # 0 then Anp = AL Ag.

(d) AL is triangular superior V o € A.

The proof of Lemma 5.7 will be done at the end of the section. Let us
see how it implies Lemma 5.5. From (5.3) we have

}7@ }75 ?a 175
Za :Agl'AB~ Zﬁ - Aa- Za :A,@- ZB
R R R R

Since the third line of A, and Az is (0,0,1), it follows that there are formal
series of vector fields Y = >7.-,zYj and Z = )~ 23 Z; such that

Y Y,
A =A,. Za , Va.
R Qa % (C,0) R
Note that iyn = 0. Since the coefficients of 7 are homogeneous of the

same degree, we obtain i,n = 0, where v = Y(0) = Y;(0). Therefore, it
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is sufficient to see that Y (0) = Z;L:() ajaizj, where ag # 0. This is a conse-

quence of Lemma 5.7 (d) and the fact that the 8—20 component of Y, does
not vanishes at (zg = 0), as the reader can check. This finishes the proof of
Theorem 5.1. ]

5.2.1. Proof of Lemma 5.7

The restriction of A,p to io N ﬁa N [75 is triangular:

Gap bag Cap

Aasls,noano, = | 0 €ap Jap |- (5.4)
0o 0 1

The cocycle defined by (5.4) is trivial, when restricted to a domain of N

where we can apply Cartan’s theorem [5]. Fix two polydiscs @Q1,Q2 C X,
where Qu = {(21,-+,2p12) | |21 < 1} and Qs = {(z1,-. ., zps2) | |21l < 1/2},
for instance. The open set H := Q1 \ Q2 is a Hartog’s domain in X,, so
that any f € O(H) extends to a holomorphic function f € O(Q1) (cf. [24]).
By Cartan’s theorem [5] we have H'(H,O) = 0, because n > 3. Since
H?(H,Z) = 0 we have also H'(H,0*) = 0. Consider the Leray covering
(Wa)aea of H given by W, = lj'a N io. The restriction Aqglw,nw;, in (5.4)
will be denoted by B,g. Since Bug is triangular, the entries ang and eqg
define multiplicative cocycles (aas)w.nw,20 and (€ap)w.nw,-e, Which are
trivial: there are collections (aq)aca and (eq)acAa, Ga,ea € OF(W,) such
that a,s = a;'.ag and ens = e;l.eg on W, N Wp # 0. Hence, the cocycle
(Bag)w.nws=0 is equivalent to a cocycle (Copg)w, w0, Where

1 Jap haB
Cos=[0 1 kus
0 O 1

By writing explicitly that (Cap)w.,nw,0 is a multiplicative cocycle, we get
that (gas)w.nws=0 and (kap)w.nw,=e are aditive cocycles. In particular,
there are collections (go)o and (ko)o With go, kaO(W,) such that g, =
95 — Jo and kopg = kg — ko on W, N Wg # 0. If we set

1 —g9o O
M,=10 1 —kq
0 0 1
then
1 0 Zug
Daﬁ —Mglca/jMf;: 0 1 0
0 0 1
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Using that (Dap)v,nvs#0 s a multiplicative cocycle we obtain that
(Lap)wanws=o is an aditive cocycle and Log = £g — £o on Wo N W5 # 0.
Finally, L' DosLs = I, where
1 0 —L,
L,=10 1 0
0 0 1

as the reader can check. From this, we obtain that there is a collection of
invertible triangular superior matrices (By), such that B,s = B, !'Bs on
Wo NWg # 0. Let

Ta Sa la

Bo=10 uy v

0 0 1
If Wo NWs # 0 then oY o + 50aZo + taR = rg}N/g + sﬁzﬁ + tgR and
UaZo + Vo R = ugZs + vgR on W, N Wg. This defines two holomorphic
vector fields Vj and Zy on H by

Volw,, = oY o+ 5020 +toR and Zolw, = U Z o + Vo R.

Since H is a Hartog’s domain with holomorphic closure is the polydisc @1,
Vo and Z; can be extended to Q1. We denote these extensions by the same
symbols. Moreover, we have iy,n = iz,n = 0. We assert that V5(0) # 0.

In fact, write Vp(z) = Zfig gj (z)a%j, z € Q1. If V5(0) = 0 then go(0) =0
and so the analytic set C := {z € Q1]go(z) = 0} must intersect the boundary
0Q1 of Q1. If zg € CNOQ, then there is o € A such that zg € W,. However,
since 2; and R are tangent to io, we get go(20) = ra(20).94(20) # 0 (see
(iv)), because go € O*(Ug) and the matrix B, is invertible.

Now, let us prove that there is a formal vector field V' = Vo + 3.5, 2V;
such that iyn = 0. To do that we recall that Aa5|wamwﬁ = B,p and B,g =
B;lBB. Consider a collection of invertible matrices (Ea)aeA, where Ea is
an extension of B, to U «- Consider also the cocycle of matrices Za,g =
éa.Aag.Egl. This cocycle is equivalent to A,z and ga5|wamwﬁ =1,V
Wo N Wy #£ 0. Since Wy N Wp = (20 = 0) N Uy NUg we can write

Aup =1+ AL,
j>1
where the entries of Ag 5 are holomorphic in W, N W;3. We claim that there
are collections of power series of matrices of the form

Ag =T+ Al 0 €A, (5.5)

Jj=1
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such that the entries of A7 are holomorphic in W, and A,z = A'Ag.
Given a power series in zg, say S = Zj>0 2}S;, we will use the notation
JF(S) for the truncation > o<ji<k 2z} S;. The matrices A7, will be constructed
by induction on j > 0 in such a way that

-1

TN T+ Y] A4 Aas [T+ D 2 =1 (I1)

1<5<k 1<5<k

Note that (Ip) is true and assume that we can construct collections
(A2)o<j<e—1, a € A, such that (Iy) is true for all 0 < k < £ — 1. Set
Ay =1+ Z Z(])Ajﬂ and C51 =T+ Z Y2 Al Since (I;_1) is true,
we get
Hleh AL = 1+ 2Al,

Writing explicitly that the above expression is a multiplicative cocycle of
matrices we get that (AﬁB)WanWﬂ;ﬁ@ is an aditive cocycle. Since H'(H, O) =
0 we get collections (A%)aca such that if C4 =T + Zle z) A, then ([g) is
true. In particular, the collection of formal series Co = I + 3 ., 2 AL,
a € A, satisfies C; 14,505 = I, so that

Aop = Co.C5' = Aup = B,'.Co.C5" By = (B,'.Ca).(B5".Cp) !

This proves that the cocycle (Aqg)qps is formally trivial and finishes the proof
of the existence of the constant vector field v such that i,m7 = 0.

6. Appendix. Proof of Theorem 2.10 (by Alcides Lins Neto)

Let (f1...fs = 0) be a germ at 0 € C™ of hypersurface with a strictly
ordinary singularity at 0, where s = n —kand 2 < k < n—1. Set X5 =
(fi=-=fs=0) and X = X, \ {0}. Note that dimc(X,) = k. Our aim
is to prove the following:

THEOREM 2.10. — In the above situation there are representatives of X
and X7 in a polydisc QQ C C", denoted by the same letters, such that:

(a) If 0 < g < k — 2 then any form a € Q4(X}) can be extended to a
form o € Q4(Q).
() Ifg=1,£>0and 1 < g+ <k—2 then H(X Q) =0.

Example 6.1. — We would like to observe that the statement of Theo-
rem 2.10 is not true for k£ and k—1 forms. For instance, let f € Clzo, z1,..., zn],
n > 3, be a homogeneous polynomial of degree > n+1and X = (f =0) C
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C"tl, so that k — 1 = n — 1. Assume that Z := II(X*) C P" is smooth.
It is known that there exists a non-vanishing holomorphic (n-1)-form on Z,
say a. The (n-1)-form IT*(«) is holomorphic on X* and has no holomorphic
extension to any neighborhood of 0 € C**1.

In the situation of the hypothesis of Theorem 2.10, if we fix representa-
tives of f1,..., fs in a polydisc @ (denoted by the same letters), 0 € Q C C",
we use the notation Xo = Q and Xy = {z € Q| fi(z) = --- = fi(z) = 0},
1<t < s Weset also X = X; \ {0}.

The “strictly ordinary singularity” assumption implies that for any 1 <
t < sthen XJ :=(f1 =---= fr =0)\ {0} has an isolated singularity at 0:

dfi(z) A Adfi(z) #0,V z € X7 (6.1)

From the above remark we get the following:

LEMMA 6.2. — There are representatives of fi,...,fs in a polydisc Q
such that:

(a) 0 is the unique singularity of Xy in Q, V 1 < t < s. In particular,
X} is smooth of codimension t, V1 <t < s.

(b) For all 0 < t < s — 1 the function fii1|x; is a submersion. In
particular, dfi1(2) # 0 for all z € X7.

With Lemma 6.2 the proof of Theorem 2.10 is reduced to the following:

CrLAamM 6.3. — Let @ C C™ be a polydisc with 0 € Q. Let X C Q be a
connected complete intersection with a singularity 0 € X, defined by X =
(fi==for=0). Assume2< k<n—1 and:

(1) f; has an isolated singularity at 0 € Q, V1< j<n—k.

(2) VI = (i1,...,4), where i; # iy if j # k, and ¥V z € (f;, = -+ =
fi, = 0)\ {0} then df;, () A--- Adfi,(2) # 0. In particular:
(@) (fiy == fi, =0)\ {0} s smooth of codimension t.
(b) dime(X) = k.

If 0 < € < k — 2 then any £-form wp € QXX \ {0}) admits an estension
@y € QYQ).

In order to prove Claim 6.3 we will consider the situation below:

Let Y be a connected complex manifold of dimensionn > 3 and Z C Y be
a codimension one complex codimension one submanifold defined by f =0,
where f € O(Y) and 0 is a regular value of f. In particular, Z is a smooth
submanifold of Y. For simplicity, we will use the notations Q¢ for the sheaf
of holomorphic ¢-forms on Y and Z. Of course Q° = O.
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LEMMA 6.4. — In the above situation assume that H*(Y,Q%) = 0 for all
k and ¢ such thatk > 1 and 1 < k+{¢<r+1. Then:

(@) If k 2 1, £ > 0 and r > 1 are such that 1 < k+ £ < r then
H*(Z,Q) = 0.
(b) If r >0 and 0 < £ < r then any (-form w € QY(Z) can be extended
to a (-form & € Q(Y).
Proof. — We will use Leray’s theorem (cf. [12, p. 43]). Let us consider
Leray coverings U = (Ua)aeA and U = (Ug Jaci of Z and Y by open sets,
respectively, such that: A C A and if o € A then:

(i) U, is the domain of a holomorphic chart 2* = (z1,...,2n): Uy —
€7, such that U = {2 | |z] < 1,j = 1,...,n} and fl5, = 2
(ii) Uy = Uy N Z. In particular, Uy = {2* € Uy | 21 = 0}.

Note that ﬁa is biholomorphic to a polydisc of C"™ and U, to a polydisc of
C" 1. We assume also that:

(iii) If & € A\ A then Uy N Z = (. This implies that A = {a € A| Uy N
Z # 0}.

Given J = (jo, ..., jx) € AF*! (resp. J € Ay weset Uy =Uj,N---NU;,,
(resp. Uy = U;, N ---NUj,). Note that by construction, if J € A¥! is such
that Uy # 0 then Uy = T?J N Z. Moreover, if 2% = (z1,...,2,) is a chart as
n (i) then Uy C {z = 0}.

CLAIM 6.5. — Given 0 < £ < n—1 and J = (jo,...,jx) € A*F! such
that Uy # 0 then any £-form w on Uy can be extended to a £-form on U,.
Moreover, if W1 and Wy are two extensions of w to (7] then:

(a) o —w1=g.f, g€ OWU,) if L = 0. N N
(b) @y — @1 = aAdf + f.B, where a € Q"YU ) and B € QXU ), if
l>1.
Proof of the Claim. — Since Ua is biholomorphic to a polydlsc for any
a € A it follows that U] is a Stein open subset of Y. Since U; = f~1(0 )ﬂUJ
it follows that any holomorphic function h € O(U;) admits an extension
h € O(Uy) (cf. [12]). This proves the case £ = 0. When ¢ > 1, we consider
the chart 2% = (2zq,...,2,): Ug, — C™ where f|Ua0 =z and U,, = {2* €
ﬁao | 21 = 0}, so that U; = {z* € Uy|z = 0}. In particular, any ¢-form
w € QY(Uy) can be written as
w = Z hr.dz, A---Adz;,, where hy = hi(za,...,2,) € O(Uy).
I=(2<i1 < <ig<n)
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By the case ¢ = 0 any function h; admits an extension hy € (9((7 7). There-
fore, w admits the extension

W= Z El.dzh /\~--/\dzie GQZ([?,]).
I=(2<i1 <+ <ig<n)

If W9 and w; are two extensions of w to [7] then (Wg—w1)]|z =0 = 0. Therefore,
if £ =0 then Wy — W1 = g.21 = g.f as in (a), whereas if £ > 1 then Wy — @y =
aANdzy + 7.6 =aAdf + f.0 asin (b). a

Since Q¢ is a holomorphic sheaf, by Leray’s theorem we have H*(Z, Q) =
HEU, QY and HF(Y, Q) = HE(U, Q) for all k > 1 and £ > 0. Of course,
HY(Z,Q% = Q4Z) and H°(Y,Q%) = QYY). Let us fix some notations
(cf. [12]):

(1) C*U, Q) (resp. C*(U, Q) the O-module of k-cochains of ¢-forms
with respect to U (resp. with respect to u ).

(2) § = dp: CF(*,Q° — CF1(x,Q% the coboundary operator, where
% =1 or U. In this way, we have:

H* (%, Q% = ker(6;)/ Im(8_1), k > 0.

Recall that
fu.)= T[ Q.
JeAk+1
where J = (ag,...,ax) € A¥*L and U; = U,, N---NU,,. In particular, a
cochain in wf € C*(U, Q) is of the form

w; = (WJ).]GAk+1 s Wr S QK(UJ).

When U; = () by convenction we set wy; = 0. Anagolously, a cochain (E? €

Ck(U, ) is of the form
@? = (QJ)JEA’C+1 , Wy € QZ(U‘])
Restriction of cochains. — Given a cochain &F € C*(U, QF), where &F =
(W) ye irt1, its restriction to Z is defined as

&}]ﬂz = ((:}J|UJ)J€Ak-+1 € C’k(Z/I,QZ).
Recall that if J € A¥+1 then U, = [7'J nZ.

Remark 6.6. — Let &f,ﬁ? € C*(U, Q") be two cochains with the same
restriction to Z: (7% — @})|z = 0. It follows from Claim 6.5 that:

(a) If £ = 0 then there exists a cochain g§ = (9) ¢ o1 € cku,0)
such that 77; — @y = gy.f, for all J € A1, In this case we will
write 7} — @ = f.gf.
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(b) If £ > 1 then there are cochains & _; = (&) ;¢ zerr € CF(U,Q7T)
and 3F = (EJ>J€Ak+1 € C’k(Zj{,Qe) such that 17; —wy; = ay Adf +
f.By, for all J € A1, In this case, we will write ny—wof =ak | A
df + f.3%.

We leave the details to the reader.
Extension of cochains. — Claim 6.5 implies that given a cochain w} €

Ck(U,0F) then there exists a cochain &% € C*(U, Q) whoose restriction to

Z coincides with We We leave the details to the reader. The cochain @ w[ will

be called an extension of the cochain wé“

Division of cochains. — Given a cochain 8§ = (B1)jeiri € Ck(ljl, 0f)
we define the cochain 8§ Adf := (8, ANAf) e zrir € C’k(Zj, Q1) We would
like to observe that, if £ > 1 and df A ﬁf = 0 then there exists a cochain
B | € C’“(Z;{, Q1) such that BF = ¥ | Adf. The proof is easy and is left
to the reader.

Let us assume the hypothesis of Lemma 6.4: H*(Y, Q%) = 0if k£ > 1 and
1<k+0<r+1.

CLAIM 6.7. — In the above situation, if k > 0 and ¢ > 0 are such that
k+ ¢ < r then any cocycle wk € Ck(l/{,ﬂé) such that dwf = 0 admits an

extension Of € CHU, 0 such that swk = 0.

Proof. — Let wf € C*U,QF) be such that dwk = 0. As we have seen
before, w¥ admits an extension @5 € C*(U, Q). Then d&} € CHL (U, Q)
and so 60F|z = dwk = 0.

Let us assume first that £ = 0, so that k + ¢ = k < r. In this case,
from Remark 6.6 we obtain 60f = f.g8™!, where gi™' € C*1(U, 0). Now,
since 62 = 0, we have f(59k+1 = 0, and so 6gk+1 =0.Since k+1<r+1
the hypothesis implies that H k+1(u O) = 0 and so there exists a cochain
hk e C*(U,0) with go = Shk. Therefore,

S0k = f.onk — o(Qk — f.AE) = 0.
If we set Wk = &k — f.hE then @f|z = wk and d&% = 0, which proves in the

case £ = 0.

Let us assume now that ¢ > 1. In this case, Remark 6.6 implies that
00p = aft) ndf + £ (6.2)

where abtl e CHL(U, Q1) and BFFY e CHHL(U,QF). We assert that we
can choose aft! € CHL(U, Q1) and BEH e CFL(U, Q) such that (6.2)

ﬁkJrl

is true and ¢ = 0. Let us prove this assertion.
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First we construct by induction a sequence of cochains
BT e ORI U, Q) j =0, ¢
such that Bf“ = Bif“ and:

(i) 68T Adf=0,¥j=0,...,L
(ii) 55’“““ NS, Y =0, 01,
The construction is based in the division property. Since 62 = 0, relation (6.2)
implies that
SAEHIAASf + fOB =0 = 0BMTIAdf =0 = 85 = B2 Ady
BT ANAf =0 = 0BT =BT ndf = o = 3BT Adf =0
OB = NAf = - = SBITIN =0 = 6T =pF TS
Next, we will see that the sequence can be constructed in such a way that

66§+€_j 1 =0,V 4 =0,...,0 This involves another induction argument.

k+1;15t€p-'j = 0. — From 68} = B+ df we get 685! = 0. Hence
BEFHL € er(0).

ond step. — Assume that we have constructed the sequence satisfying
(i), (ii) with 5ﬂk+eﬂ+1 0fori=0,...,j—1<¥¢—1 and let us prove that
can assume that 5Bk+l It = .

From (ii) we have (56’“‘6 it = ﬂf+f IT2 A df, where (wkH It — 0 by
the induction hypothe51s Since (k+{¢—j+2)+(i—1)=k+l+1<r+1
we have H¥M=i+2(14 (3~1) = 0 and so there exists a cochain 'ka It e
CHH=I+1(1f,Q7~1) such that BkH 2 kaf IT1 Therefore, if we set

Shtl—j+1 _ pktl—j+1 k0— J+1
B; =B =71 A df then

5§§+é—j+1 _ 5(Bz_c+e—j+1 SAMTEEAL /\df) —0

J j—1
Moreover,
Sk+Hl—54+1 k+4—75+1 k40—
By Adf:ﬂ* IHAdf = B+ =,

k+L—7+1 b ﬂk+€ j+1

Hence, if we replace ﬁ in the sequence, then the new

sequence still satisfies (1) and (ii).

The induction process implies that there exists a cochain v, €

CH (U, Q1) such that (B, Bt — i Adf) = 0. Hence, if we set ﬁ’”‘l =
Aif“ YA df and @t = @+ £.R5T] then (6.2) can be written as

S&F = aptl Adf + fﬁkﬂ, where 6ﬁk+1 =0.
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Since H*(U,¢) = 0, there exists a cochain 7§ € C*(U,QF) such that
?'H = 0vf. In particular, if we set ©f = @f — f.4F then @f|z = @} |z = w)

and
Swh = aktl Adf. (6.3)

If £ =1 then af ™' € H*1(U{,0) and (6.3) implies that Saftl = 0 and
there exists a cochain g§ € C*(U, O) such that a5+ = §gh. In particular,

the cochain Wf = @F — gk.df satisfies 60F = 0 and @¥|z = wf, proving

Claim 6.7 in this case.

Finally, when ¢ > 2 using (6.3) and an induction argument similar to
that used in the case of Bf“ it is possible to obtain a cochain ’yﬁ; €
CHL(U, Q2 such that S@ftt — i Adf) =0. Since (( — 1) +k+1=
(+k < r+1wehave H¥H1(U, Q1) = 0, so that &b — 51 Adf = anf |,
where nf_| € CkU,Q1). From (6.3) we get

Swhtt =@t ndf =onf  Adf = @5 —nf, Adf) =0.

Hence, if we set &f = @5 —nf | Adf then 6wf = 0 and @¥|z = wf, which
proves Claim 6.7.

Let us finish the proof of Lemma 6.4.

Proof of (a). — By Leray’s theorem it is suficient to prove that
HEU,QY = 0,if k> 1and k+ ¢ < r. If wF € CF(U,QY) is such that
Swk = 0 then by Claim 6.7, wf admits an extension &% such that éwf = 0.
Since k+ £ < r < r+1 then H*(U, Q") = 0, so that W = oy for some
cochain 77?_1 € C’kfl(lj ,Q%). As the reader can check, this implies that
wh=0 (ﬁ’gil|z), which proves the assertion.

Proof of (b). — Let wy € Q%(Z), where £ < r. We can associate to wy
a O-cochain w? = (we|y, )aca With dw) = 0. By Claim 6.7, w? admits an
extension @) € CO(U, Q") such that 6@9 = 0. This is equivalent to say that
there exists a section w, € Q(Y) such that &) = (Welg, )aci- Hence, wy
extends wy proving Lemma 6.4. ]

We are now in position to prove the statement of Theorem 2.10. Let 0 €

Q C C™, Q apolydisc,and X = (f; = -+ = f—r = 0) be as in the statement
of Lemma 2.3. Define a sequence of analytic complete intersections Xy D
X1 D - D Xp—g, where Xog = Q and X, = (fy = -+ = fy = 0) if

1 <g<n—k and set X; = X, \ {0}, 0 < g < n— k. The hypothesis
implies the following:

(i) dimc(X,) = k(q) :=n —qand X is smooth, V0 < ¢ < k.
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(i) X; = f71(0)NXy-1, V1< g <n—k Moreover, 0 is a regular value
of fqlxx

Recall that k > 2, so that k(q) > 3 if ¢ <n —3.

71.

CLamM 6.8. — Letp > 1, £ >0 and 0 < g < n—k—1 be such that
<p+L<k(q) —2. Then HP(X},QF) = 0.

Proof. — The proof is by induction on ¢ = 0,...,n—3. The case ¢ =0 is
consequence of a generalization of Cartan’s theorem (cf. [5]): since Xo = Q
is Stein then ([12, p. 133]):

HP (X3, Q9 =0Vp=1,....n =2V L>0

In particular, HP(X(, Q%) =0ifp>1,£>0and 1 < p+¢ < n—2 = k(0)—
The induction step is consequence of Lemma 6.4( ): let us assume that
Claim 6.8 is true for ¢, where 1 < ¢g<n—k—2. Set Y = X* Z = X;H
and f = fo11] Xz, in Lemma 6.4. The induction hypothesis imphes that, if

>1land (¢ > O are such that 1 < p+ ¢ < k(¢q) — 2 then HP(X}, Q%) = 0.
In partlcular, Lemma 6.4 (a) implies that HP(X},,,Q) =0,Vp>1,£>0
such that 1 <p+/4<k(q) —3=k(¢g+1)—2.

The extension property is consequence of Lemma 6.4 (b). The idea is to
use Claim 6.8 and Lemma 6.4 (b) inductively. Let w, € Q°(X \ {0}), where
¢ < k— 2. In the first step weset Z =X} , =X\ {0}, Y =X , | and
f= fa k|X* e . From Claim 6.8 we have HP(X:_k_l,QZ) =0ifp >1
and £ > 0 are such that 1 < p+{¢ < k(n—k—-1)—2 =k — 1. Hence
Lemma 6.4 (b) 1mphes that 1f 0 < £ < k— 2 then any form wp € QX k)
has an extension w} € QF (X:; x_1)- The induction step is similar: assume
that w, has an extension w) € QY(X_, ;); where 1 < j <n—k— 1. Since

(<k—-2<k—-24+j=k(n—k—j)—2, Lemma 6.4(b) implies that w) has
an extension w)™' € QX , j—1)- Finally, wy has an extension wj™~ ke

Q(X(), which by Hartog’s theorem has an extension w, € Q°(Q). O
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