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Logarithmic foliations (∗)

Dominique Cerveau (1) and Alcides Lins Neto (2)

ABSTRACT. — The purpose of this paper is to study singular holomorphic folia-
tions of arbitrary codimension defined by logarithmic forms on projective spaces.

RÉSUMÉ. — Nous étudions dans cet article les feuilletages holomorphes singuliers
de codimension arbitraire définis par des formes logarithmiques sur les espaces pro-
jectifs.

1. Basic definitions and results

Recall that a logarithmic form on a complex manifoldM is a meromorphic
q-form η on M such that the pole divisors of η and dη are reduced. It is
known that a holomorphic form on a compact Kähler manifold is closed.
This statement were generalized by Deligne in the context of logarithmic
forms as follows:

Theorem 1.1. — Let η be a logarithmic q-form on a compact Kähler
manifold M . Assume that the pole divisor (η)∞ of η is an hypersurface with
normal crossing singularities. Then η is closed.

In the case of germs of closed meromorphic 1-forms there are “normal
forms” describing them in terms of the poles and residues (cf. [7]). These
normal forms can be translated to the projective spaces and in the logarith-
mic case they are of the type

η =
∑
j

λj
dfj
fj

, λj ∈ C∗, fj holomorphic.

(*) Reçu le 4 avril 2018, accepté le 10 septembre 2019.
Keywords: holomorphic foliation, logarithmic form.
2020 Mathematics Subject Classification: 37F75, 32G34, 32S65, 37F75, 34M15.
(1) Inst. Mathématique de Rennes, Campus de Beaulieu, 35042 Rennes Cedex,

France — dominique.cerveau@univ-rennes1.fr
(2) IMPA, Est. D. Castorina, 110, 22460-320, Rio de Janeiro, RJ, Brazil —

alcides@impa.br
Article proposé par Vincent Guedj.

– 561 –

mailto:dominique.cerveau@univ-rennes1.fr
mailto:alcides@impa.br


Dominique Cerveau and A. Lins Neto

One of our purposes is to generalize the above normal form for p-forms,
p > 2, in a special case. We need a definition.

Definition 1.2. — Let X ⊂ (Cn, 0) be a germ at 0 ∈ Cn of holomorphic
hypersurface and f ∈ On be a reduced germ f = f1 . . . fr, defining X: X =
(f = 0). We say that X has strictly ordinary singularities outside 0 if 0 ∈ Cn
is an isolated singularity of fi (i.e. (fi = 0) \ {0} is smooth), ∀ 1 6 i 6 r,
and X is normal crossing outside the origin.

It is important to note that Definition 1.2 is different from the usual
definition of a germ of hypersurface having normal crossing outside 0. For
example, is f is irreducible then (f = 0) has strictly ordinary singularities
outside 0 if, and only if, f has an isolated singularity at 0.

Our first main result (see Theorem 2.1) is a generalization of Cerveau–
Mattei theorem on normal forms for germs of closed meromorphic 1-forms [7].
For instance, in the case of 2-forms it says that a germ of a closed 2-form η
with poles at the strictly ordinary singularities hypersurface X = (f1 . . . fr =
0) can be written as

η =
∑
i<j

λij
dfi
fi
∧ dfj
fj

+
∑
j

dgj ∧
dfj
fj

+ dα,

where λij ∈ C, 1 6 i < j 6 r, g1, . . . , gr ∈ On and α ∈ Ω1(Cn, 0). The
numbers λij are the residues and can be calculated by integral formulas (see
Section 2). In Section 2 we will see a precise statement of Theorem 2.1 for
germs of closed logarithmic p-forms on (Cn, 0).

As a consequence of Theorem 2.1 in the general case we get normal forms
in the case of logarithmic p-forms on Pn:

Corollary 1.3. — Let η be a logarithmic p-form on Pn, p 6 n − 1.
Assume that the divisor of poles (η)∞ is given in homogeneous coordinates
by f1 . . . fr, where the fi′s are irreducible homogeneous polynomials on Cn+1.
Furthermore suppose that the hypersurface X = (f1 . . . fr = 0) has strictly
ordinary singularities outside 0 ∈ Cn+1. Then r > p + 1 and there are
numbers λI , I ∈ Spr , such that in homogeneous coordinates we have

η =
∑
I∈Spr

I=(i1<···<ip)

λI
dfi1
fi1
∧ · · · ∧

dfip
fip

, (1.1)

where iRη = 0.

Notation. — Let us fix homogeneous polynomials f1, . . . , fr ∈ C[z0,
. . . , zn]. The projectivization of the vector space of p-forms η that can be
written as in (1.1) (not satisfying iRη = 0 necessarily) will be denoted by

– 562 –



Logarithmic foliations

Lp(f1, . . . , fr). The subspace of forms η ∈ Lp(f1, . . . , fr) such that iRη = 0
will be denoted by LpR(f1, . . . , fr). Note that LpR(f1, . . . , fr) ( Lp(f1, . . . , fr).

We now turn our attention to p-forms defining codimension p foliations.
A holomorphic p-form ω, on an open subset U ⊂ Cn, defines a codimension
p distribution, outside its singular set Sing(ω) = {z ∈ U |ω(z) = 0}, if
it is locally totally decomposable on U \ Sing(ω). This means that for any
z ∈ U \ Sing(η) there are holomorphic 1-forms ω1, . . . , ωp, defined in some
neighborhood V of z, such that ω|V = ω1 ∧ · · · ∧ ωp. The distribution D is
then defined on U \ Sing(ω) by the codimension p planes

Dz = ker(ω(z)) := {v ∈ TzU | ivω(z) = 0} =
⋂

16j6p
ker(ωj(z)).

Definition 1.4. — A holomorphic p-form ω will be said integrable if it
is locally totally decomposable outside its singular set and satisfies Frobenius
integrability condition. In this context it means that, if ω|V = ω1 ∧ · · · ∧ ωp
as above then dωj ∧ ω = 0 for all j = 1, . . . , p.

Remark that if ω is closed and locally totally decomposable then the
Frobenius condition is automatic:

ωj ∧ ω = 0, ∀ j =⇒ dωj ∧ ω = d(ωj ∧ ω) = 0, ∀ j.
In particular, if ω is a closed logarithmic p-form then it is integrable if, and
only if, it is locally totally decomposable outside (ω)∞ ∪ Sing(ω).

Example 1.5. — Let f1, . . . , fr be irreducible homogeneous polynomials
on Cn+1. Then any 1-form θ ∈ L1

R(f1, . . . , fr) defines a logarithmic codi-
mension one foliation on Pn, denoted by Fθ. Let θ1, . . . , θp ∈ L1

R(f1, . . . , fr)
and η := θ1∧· · ·∧θp. If η 6≡ 0 then η ∈ LpR(f1, . . . , fr) and defines a singular
codimension p foliation on Pn, denoted by Fη. The leaves of Fη, outside the
pole divisor f1 . . . fr = 0, are contained in the intersection of the leaves of
Fθ1 , . . . ,Fθp . By this reason, Fη is called the intersection of the foliations
Fθ1 , . . . ,Fθp .

Notation 1.6. — We will use the notation
LpF (f1, . . . , fr) = {η ∈ LpR(f1, . . . , fr) | η is integrable}.

Remark 1.7. — We would like to observe that LpF (f1, . . . , fr) is an alge-
braic subset of LpR(f1, . . . , fr). The proof is left as an exercise to the reader.

Definition 1.8. — We say that η ∈ Lp(f1, . . . , fr) is totally decom-
posable into logarithmic forms if η = θ1 ∧ · · · ∧ θp, where θ1, . . . , θp ∈
L1(f1, . . . , fr). We will use the notation

Lptd(f1, . . . , fr) =
{
η ∈ LpR(f1, . . . , fr)

∣∣∣∣ η is totally decomposable
into logarithmic forms

}
.
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Observe that Lptd(f1, . . . , fr) is an irreducible algebraic subset of LpF (f1,
. . . , fr).

Problem 1.9. — When Lptd(f1, ..., fr) = LpF (f1, ..., fr)? In other words,
does a foliation on Pn defined by a logarithmic p-form, 2 6 p < n, is an
intersection of p codimension one logarithmic foliations?

A partial answer to Problem 1.9 is given by Theorem 1.10 (see Section 3):

Theorem 1.10. — Let f1, . . . , fr be homogeneous polynomials on Cn+1

and assume that (f1 . . . fr = 0) has strictly ordinary singularities outside
0 ∈ Cn+1. Then:

(a) If p = 2, or r ∈ {p+ 1, p+ 2} then Lptd(f1, . . . , fr) = LpF (f1, . . . , fr).
(b) If 2 < p 6 n− 2 and r > p+ 2 then Lptd(f1, . . . , fr) is an irreducible

component of LpF (f1, . . . , fr). In particular, if LpF (f1, . . . , fr) is ir-
reducible then Lptd(f1, . . . , fr) = LpF (f1, . . . , fr).

An interesting consequence of Theorem 1.10 is the following:

Corollary 1.11. — In the hypothesis of Theorem 1.10 if r = p + 1
and η ∈ LpF (f1, . . . , fp+1) then the foliation Fη in Pn is a rational fibration
of codimension p on Pn. In other words, Fη has a rational first integral
F : Pn− → Pp that in homogeneous coordinates can be written as

F =
(
fk1

1 , . . . , f
kp+1
p+1

)
,

where k1.deg(f1) = · · · = kp+1.deg(fp+1) and gcd(k1, . . . , kp+1) = 1.

Remark 1.12. — We would like to observe that the statement of Theo-
rem 1.10 cannot be true in the case of p = n− 1.

In fact, if p = n − 1 then Ln−1
F (f1, . . . , fr) = Ln−1

R (f1, . . . , fr), because
any (n − 1)-form on Cn is locally decomposable outside its singular set.
Moreover, if r > p+ 2 then Ln−1

td (f1, . . . , fr) is a proper algebraic subset of
Ln−1
F (f1, . . . , fr). The reason is that if η is decomposable, η = θ1 ∧ · · · ∧ θp,

where θ1, . . . , θp are logarithmic 1-forms as in Theorem 1.10, then η cannot
have isolated singularities outside its pole divisor. A specific example on P3

is given in homogeneous coordinates by the logarithmic 2-form

η =
∑

16i<j66
λij

d`i
`i
∧ d`j
`j
,

where λij ∈ C, 1 6 i < j 6 6, and `j ∈ C[z0, . . . , z3] is homogeneous of
degree one, 1 6 j 6 6. If we choose the `j′s and λij′s generic then the
foliation Fη defined by η has degree three and 40 = 33 + 32 + 3 + 1 isolated
singularities. Each plane `j is Fη-invariant and the restriction Fη|`j also
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defines a degree three foliation and so contains 13 = 32 + 3 + 1 singularities,
1 6 j 6 6, each line `i ∩ `j contains 4 = 3 + 1 singularities, 1 6 i < j 6 6,
and each point `i ∩ `j ∩ `k one singularity, 1 6 i < j < k 6 6. In particular,
there are 13×6−4×#(`i∩ `j) + #(`i∩ `j ∩ `k) = 38 singularities contained
in
⋃6
j=1 `j and so 2 = 40− 38 singularities not contained in the pole divisor.

If η was decomposable as in Theorem 1.10 then these two singularities could
not be isolated.

As a consequence of Theorem 1.10 we can assert that if G is a codimension
two logarithmic foliation on P4 ⊃ P3 such that G|P3 = Fη then G cannot be
tangent to P3 outside the pole divisor

⋃
j `j . As a consequence G will be a

pull-back Π∗(Fη), where Π is induced by a linear map Π̃: C5 → C4.

In fact, the example of Remark 1.12 has motivated Theorems 5.1 and 5.2
that will be proved in Section 5. These results give necessary conditions
for a codimension p foliation F to be a local or global product in terms
of the codimension of the singular set of its intersection with a (p + 1)-
plane: if there is a (p + 1)-plane Σ such that cod(Sing(F|Σ)) > 3 then
F = F ∗(F|Σ), where F : Pn− → Pp+1 is induced by a linear map of maximal
rank f : Cn+1 → Cp+2 (Theorem 5.1). Theorem 5.2 is a local version of
Theorem 5.1.

Another kind of result that we will prove concerns the “stability” of log-
arithmic foliations on Pn, n > 3. In order to precise this phrase we recall the
definition of the degree of a foliation on Pn.

Definition 1.13. — Let F be a holomorphic foliation of codimension
p on Pn, 1 6 p < n. The degree of F , deg(F), is defined as the degree of
the divisor of tangencies of F with a generic plane of complex dimension p
of Pn.

Remark 1.14. — In the particular case of codimension one foliations the
degree is the number of tangencies of the foliation with a generic line P1 ⊂
Pn. More generally, a codimension p foliation F on Pn can be defined by a
meromorphic integrable p-form on Pn, say η, with codC(Sing(η)) > 2. If we
consider a generic p-plane Σ ' Pp ⊂ Pn then the degree of F is the degree
of the divisor of zeroes of η|Σ.

Note that, if Π: Cn+1 \ {0} → Pn is the canonical projection, then the
foliation Π∗(F) can be extended to a foliation F∗ on Cn+1. This foliation is
represented by a holomorphic p-form η whose coefficients are homogeneous
polynomials of degree deg(F)+1 and such that iRη = 0, where R is the radial
vector field on Cn+1. We say that the form η represents F in homogeneous
coordinates.
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A consequence of the definition, is that if T : Pm− → Pn is a linear map
of maximal rank, where m > p, then deg(T ∗(F)) = deg(F). In particular,
if Pm ⊂ Pn is a generic m-plane, where m > p, then the degree of F|Pm is
equal to the degree of F .

The space of dimension k (codimension p = n − k) foliations on Pn
of degree d will be denoted by Fol(d; k, n). Note that Fol(d; k, n) can be
identified with the subset of the projectivisation of the space of (n − k)-
forms η on Cn+1 such that: η is integrable, η has homogeneous coefficients
of degree d+ 1, codC(Sing(η)) > 2 and iRη = 0.

When k = 1 the integrability condition is automatic and Fol(d; 1, n) is
a Zariski open and dense subset of some projective space PN . However, if
k > 2 then the integrability condition is non-trivial and Fol(d; k, n) is an
algebraic subset of some Zariski open and dense subset of a projective space.

Example 1.15. — Let F be the logarithmic foliation on Pn defined in
homogeneous coordinates by an integrable p-form η on Cn+1 as below:

η =
∑
I∈Spr

I=(i1<···<ip)

λI
dfi1
fi1
∧ · · · ∧

dfip
fip

, (1.2)

where f1, . . . , fr are homogeneous polynomials on Cn+1 with deg(fj) = dj ,
1 6 j 6 r. We assume also that f1, . . . , fr are normal crossing outside the
origin and λI 6= 0, ∀ I ∈ Spr . With these conditions then the holomorphic
form η̃ := f1 . . . frη has singular set of codimension > 2 and so defines
F in homogeneous coordinates. Since the degree of the coefficients of η̃ is∑r
j=1 dj − p we obtain

deg(F) =
r∑
j=1

dj − p− 1 := D(d1, . . . , dr, p)

=⇒ F ∈ Fol(D(d1, . . . , dr, p);n− p, n)

Notation 1.16. — The space of dimension k = n − p logarithmic fo-
liations of Pn defined by a closed p-form as in (1.2) will be denoted by
LF (d1, . . . , dr; k, n). Note that

LF (d1, . . . , dr; k, n) ⊂ Fol(D(d1, . . . , dr, p); k, n).

The sub-space of LF (d1, . . . , dr; k, n) of foliations that are defined by
totally decomposable into logarithmic forms p-forms will be denoted by
Ltd(d1, . . . , dr; k, n).

Our main result generalizes a theorem by Calvo-Andrade [3]:
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Theorem 1.17. — If k > 2 and r > p + 2 = n − k + 2 then
Ltd(d1, . . . , dr; k, n) is an irreducible component of Fol(D(d1, . . . , dr, p); k, n)
for all r > p and d1, . . . , dr > 1.

Remark 1.18. — The above result is also true in the case r = p + 1. In
fact, in [8] it is proven the stability of foliations induced by rational maps. On
the other hand, by Corollary 1.11 the set LF (d1, . . . , dp+1;n−p, n) coincides
with the set of foliations induced by a rational map

F = (fk1
1 , . . . , f

kp+1
p+1 ) : Cn+1 → Cp+1,

where deg(fj) = dj and k1.d1 = · · · = kp+1.dp+1.

Theorem 1.17 and Problem 1.9 motivate the following question:

Problem 1.19. — When LF (d1, . . . , dr; k, n) = Ltd(d1, . . . , dr; k, n)?

Finally, in the appendix we give a proof of Theorem 2.10. This result,
which is used in the proof of Theorem 2.1, gives sufficient conditions for
the extension of forms defined in a hypersurface X with an strictly ordinary
singularities to the ambient space.

Remark 1.20. — Just before finishing this paper we have found a work
by Javier Gargiulo Acea [11] in which he studies some of the problems that
we have treated in our paper. For instance, he obtains the same results
(decomposability and stability) of our Theorems 1.10 and 1.17 in the case
p = 2 (2-forms). He also proves the normal form for logarithmic p-forms on
Pn if the pole divisor is normal crossing and p 6 n − 1 (our Corollary 1.3).
The local case and the logarithmic foliations of codimension > 3 are not
treated by him. We would like to observe that his proof of the stability
of logarithmic 2-forms is purely algebraic: he computes the Zariski tangent
space at a generic point.

2. Normal forms

The aim of this section is to prove Theorem 2.1 and its corollary (see
Corollary 1.3).

Theorem 2.1. — Let η be a germ at 0 ∈ Cn of closed logarithmic p-form
with poles along a hypersurface X = (f1 . . . fr = 0) with strictly ordinary
singularities outside 0 ∈ Cn+1. Assume that n > p+ 2. Then:

(a) If r < p then η is exact; η = dΘ, where Θ is logarithmic non-closed
and has the same pole divisor as η.
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(b) If r > p then there are numbers λI ∈ C, I ∈ Srp , such that

η =
∑
I∈Spr

I=(i1<···<ip)

λI
dfi1
fi1
∧ · · · ∧

dfip
fip

+ dΘ, (2.1)

where, either Θ = 0, or Θ is logarithmic non-closed and has pole
divisor contained in X.

Remark 2.2. — In the above statement, if r = 0 then X = ∅ and η is
holomorphic and closed. In this case it can be written as η = dΘ, where Θ is
a holomorphic (p−1)-form, by Poincaré lemma. On the other hand, if p = 1
and r > 1 then η can be written as

η =
∑
j

λj
dfj
fj

+ dg, g ∈ On,

whereas when p = 2 and r > 2 then Theorem 2.1 implies that

η =
∑
i<j

λij
dfi
fi
∧ dfj
fj

+
∑
j

dgj ∧
dfj
fj

+ dα,

where g1, . . . , gr ∈ On and α ∈ Ω1(Cn, 0).

Remark 2.3. — The numbers λI in (2.1), I ∈ Srp , are called the numerical
residues of η (see Section 2.1.1). Given I = (i1 < · · · < ip) then λI can be
calculted by integrating η as follows: since 1 6 p < n the germ of analytic
set XI := (fi1 = · · · = fip = 0) has dimension n − p > 1. Moreover, by the
normal crossing condition the set X̃I := XI \

⋃
j /∈I(fj = 0) is not empty. If

we fix m ∈ X̃I then there are local coordinates z = (z1, . . . , zn) such that
z(m) = 0 and fij = zj for all j = 1, . . . , p. Given ε > 0 small, consider the
real p-dimensional torus

T pε = {z | |zj | = ε if 1 6 j 6 p, and zj = 0 if j > p} .

It follows from (2.1) that

λI = 1
(2πi)p

∫
Tpε

η.

As a consequence, a logarithmic p-form η on Pn, p 6 n − 1, with pole
divisor given in homogeneous coordinates by f1 . . . fr = 0, where the fi′s are
irreducible and the hypersurface X = (f1 . . . fr = 0) has strictly ordinary
singularities outside 0 ∈ Cn+1 can be written as in Corollary 1.3:

η =
∑
I∈Spr

I=(i1<···<ip)

λI
dfi1
fi1
∧ · · · ∧

dfip
fip

with iRη = 0.
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Another observation is that Theorem 2.1 is false if p = n− 1 and n > 3
as shows the following example in Cn, n > 3:

Example 2.4. — Let P be an irreducible homogeneous polynomial of de-
gree n on Cn and set

η = iR(dz1 ∧ · · · ∧ dzn)
P (z1, . . . , zn) =

∑n
j=1(−1)j−1zjdz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn

P (z1, . . . , zn) ,

where in the symbol d̂zj means omission of dzj in the product.

We would like to observe that the same example shows that Corollary 1.3
is false in Pm = Pn−1 if p = m: the form η represents in homogeneous
coordinates a closed logarithmic m-form on Pm which is not like in the
statement of the corollary.

2.1. Preliminaries

Let η be a germ at 0 ∈ Cn of meromorphic p-form with reduced pole
divisor X = (f1 . . . fr = 0), r > 1. At the begining we will not assume that
η is closed.

It follows from the definition that η is logarithmic if, and only if,
f1 . . . fr.dη is holomorphic. Since (η)∞ = (f1 . . . fr) we can write η = 1

f1...fr
ω

where ω ∈ Ωpn is a germ of holomorphic p-form. We would like to observe
that the following assertions are equivalent:

(a) η = 1
f1...fr

ω is logarithmic.
(b) fj divides dfj ∧ ω, for all 1 6 j 6 r.

In particular, we have:

(c) 1
f1...fs

ω is logarithmic, for all s 6 r.

In fact:

(a) ⇐⇒ f1 . . . fr.dη = dω − d(f1 . . . fr)
f1 . . . fr

∧ ω = µ is holomorphic

⇐⇒ f1 . . . fr.
∑
j

dfj
fj
∧ ω = f1 . . . fr(dω − µ)

⇐⇒ fj divides dfj ∧ ω, 1 6 j 6 r.

The proof of Theorem 2.1 will be based in the following:
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Lemma 2.5. — Let η = 1
f1...fr

ω be a germ of at 0 ∈ Cn of logarithmic
p-form, where 1 6 p 6 n − 2. Assume that the pole divisor of η is X =
(f1 . . . fr = 0), r > 1, has strictly ordinary singularities outside 0. Then η
can be written as

η = α0 +
p−1∑
s=1

∑
I∈Ssr

αI ∧
dfi1
fi1
∧· · ·∧ dfis

fis

+
∑
J∈Spr

gJ .
dfj1

fj1

∧ · · · ∧
dfjp
fjp

, (2.2)

where α0 ∈ Ωpn, αI ∈ Ωp−sn if I ∈ Ssr , s < p, and gJ ∈ On if J ∈ Spr .

The proof of Lemma 2.5 relies in the concept of residue of a logarithmic
form along an irreducible pole (cf. [10]).

2.1.1. Residues of a logarithmic form

Let η = 1
f1...fr

ω be a germ at 0 ∈ Cn of logarithmic p-form with pole
divisor X = (f1 . . . fr = 0). Let us define the residue along Yk := (fk = 0),
1 6 k 6 r.

Fix representatives of f1, . . . , fr and η, denoted by the same symbols,
on some polydisc Q. We will assume that the fj′s are irreducible in Q, and
that the divisor f1 . . . fr has strictly ordinary singularities on Q \ {0}. In
particular, the fj′s have isolated singularity at 0 ∈ Q. We have seen that fk
divides dfk ∧ ω. In particular, we can write dfk ∧ ω = fk.θ where θ ∈ Ωp+1

n .
This implies that dfk ∧ θ = 0. Since dfk has an isolated singularity at 0 ∈ Q
and p + 1 6 n − 1, it follows from de Rham’s division theorem [21] that
θ = dfk∧βk, where βk ∈ Ωp(Q). Therefore, we can write dfk∧(ω−fk.βk) = 0
which implies, via the division theorem [21], that there exists αk ∈ Ωp−1(Q)
such that ω = αk∧dfk+fk.βk. The residue of 1

fk
ω along Yk is the (p−1)-form

along Yk defined as Res
( 1
fk
ω, Yk

)
:= αk|Yk . Finaly, the residue of η = 1

f1...fr
ω

along Yk is defined as Res(η, Yk) := 1
f1...f̂k...fr

αk|Yk , where f̂k means omission
of the factor fk in the product.

Remark 2.6. — Let η and Yk be as above. It is well known that Res (η, Yk)
does not depend on the particular decomposition ω = αk ∧ dfk + fkβk and
on the particular equation of Yk (cf. [10]).

The above remark allow us to define the residue of a logarithmic form
η on a arbitrary complex manifold M along any codimension one smooth
irreducible submanifold Y contained in the pole divisor of η. In particular,
we can define the iterated residue. Given I = (i1 < · · · < ik) ∈ Skr , set
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XI = (fi1 = · · · = fik = 0) and X∗I = XI \ {0}. We define Res(η,XI) induc-
tively. If k = 1 then Res(η,XI) = Res(η, Yi1) and for k > 2, Res(η,XI) =
Res
(
Res(η, Yik), XI\{ik}

)
. This definition depends only of the ordering of the

fj′s, that we will assume fixed.

Example 2.7. — If η = α∧ dfi1
fi1
∧· · ·∧ dfik

fik
, where α is holomorphic, then

Res(η,XI) = α|XI , I = (i1 < · · · < ik). We leave the proof to the reader.

Remark 2.8. — Let η = 1
f1...fk

ω be logarithmic as above, Yk = (fk = 0),
where we assume n > p+ 2. We would like to observe the following facts:

(a) If Res(η, Yk) = 0 then fk divides ω, or equivalently fk is not con-
tained in the pole divisor of η.

(b) If p = 1 then Res(η, Yk) is a holomorphic function on Yk.
(c) If p > 2 then Res(η, Yk) is logarithmic on Yk. Moreover, the pole

divisor of Res(η, Yk) is f1 . . . f̂k . . . fr|Yk .
(d) dη is logarithmic and Res(dη, Yk) = d Res(η, Yk). In particular, if η

is closed then Res(η, Yk) is closed.

We will prove (b) and (c). The proofs of (a) and (d) will be left to the
reader. Write ω = αk∧dfk+fkβk (resp. ω = gkdfk+fkβk if p = 1) as before.
It is sufficient to prove that if ` 6= k then f`|Yk divides αk∧df`|Yk (resp. f`|Yk
divides gk|Yk if p = 1). Note that dim(Yk ∩ Y`) > 1, because n > p+ 2 > 3.
Therefore we can fix a point m ∈ Yk ∩ Y` where dfk(m) ∧ df`(m) 6= 0. Let
(U, z = (z1, . . . , zn)) be a coordinate system around m such that fk|U = z1
and f`|U = z2. Write ω = ω1 ∧dz1 +ω2 ∧dz2 +ω12 ∧dz1 ∧dz2 + θ, where ω1
does not contain terms with dz2, ω2 does not contain terms with dz1 and θ
does not contain terms in dz1 or dz2 (resp. ω =

∑
j hjdzj if p = 1).

Let us consider the case p > 1. In this situation, ω ∧ dz1 = ω2 ∧ dz2 ∧
dz1 + θ ∧ dz1 and θ ∧ dz1 does not contain terms with dz1 ∧ dz2, so that
z1 divides ω2 and θ. Similarly, z2 divides ω1 and θ. Therefore, we can write
ω = z2ω̃1 ∧ dz1 + z1ω̃2 + ω12 ∧ dz1 ∧ dz2 + z1z2θ̃, which implies

ω = (z2ω̃1 ∧ −ω12 ∧ dz2) ∧ dz1 + z1
(
ω̃2 + z2θ̃

)
=⇒ αk|Yk∩U = (z2ω̃1 ∧ −ω12 ∧ dz2) |Yk∩U
=⇒ αk ∧ dz2|Yk∩U = z2ω̃2 ∧ dz2|Yk∩U ,

which implies (c).

In the case p = 1, since zj divides ω ∧ dzj , ∀ j, then z1 divides hj if
j > 1 and z2 divides h1, so that ω|U = z2h̃1dz1 + z1

∑
j>1 h̃jdzj . Hence,

gk|Yk∩U = z2h̃1|Yk∩U , which implies (b).
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2.1.2. Proof of Lemma 2.5 in the case p = 1

Since the proof of Lemma 2.5 is rather technical in the general case, we
give first the proof in the case p = 1 which contains essentially the idea of
the general case.

As before, write η = 1
f1...fr

ω. The proof will be by induction on the
number r of components of the pole divisor.

Formula (2.2) of Lemma 2.5 is true if r = 1 and p > 1. — When η = 1
f1
ω

is logarithmic we have seen in Section 2.1.1 that ω = α1 ∧ df1 + f1.β1 (resp.
ω = g1df1 + f1β1 if p = 1). Hence η = α1 ∧ df1

f1
+ β1 (resp. η = g1

df1
f1

+ β1 if
p = 1), as we wished.

If p = 1 and (2.2) is true for r − 1 > 1 then it is true for r. — Let
η = 1

f1...fr
ω and Q ⊂ Cn be a polydisc where f1, . . . , fr and ω have repre-

sentatives as before. As before we set Yj = (fj = 0) ⊂ Q ⊂ Cn. We will use
the following well known result in the case n > 3:

Lemma 2.9. — Any holomorphic function h ∈ O(Yj \{0}) has an exten-
sion g ∈ O(Q).

In fact, Lemma 2.9 is a particular case of Theorem 2.10 stated below and
that will proved in Section 6 (see Remark 2.11).

Let h = Res(η, Yr) ∈ O(Yr \ {0}). By Lemma 2.9, h has an extension
gr ∈ O(Q). The form gr

dfr
fr

is logarithmic and Res
(
gr

dfr
fr
, Yr
)

= h. Therefore,
the form η̃ = η− gr dfr

fr
is also logarithmic and Res (η̃, Yr) = 0. In particular,

fr is not a pole of η̃ by Remark 2.8. Since the pole divisor of η̃ has r − 1
irreducible components, by the induction hypothesis we can write

η − gr
dfr
fr

= η̃ = α0 +
r−1∑
j=1

gj
dfj
fj

=⇒ Lemma 2.5 in the case p = 1.

2.1.3. Proof of Lemma 2.5 when p > 2

The case p > 2 is more involved, but the idea of the proof is the same as
in the case p = 1. Before given the details let us sketch the proof.

Given s ∈ {0, 1, . . . , r} set Ys = (fs = 0) if s > 1, X0 = Q and Xs =
Y1 ∩ · · · ∩Ys if s > 1. Set also X∗s = Xs \ {0}, 0 6 s 6 r. Note that Xs = {0}
if s > n. On the other hand, if 1 6 s 6 n− 1 then Xs is an analytic reduced
germ of codimension s and X∗s is a complex smooth manifold of dimension
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n − s. The proof will involve two induction arguments. In order to state
properly these arguments we need a definition.

Given 1 6 s 6 p 6 n − 2 and q > 1, we will say that X∗s satisfies
the q decomposition property if any logarithmic q-form θ on X∗s with pole
divisor on the zeroes of fs+1 . . . fr|X∗s := f̃s+1 . . . f̃r can be decomposed as
in formula (2.2):

θ = α0 +
q−1∑
`=1

 ∑
I∈S`

r−s

αI ∧
df̃ i1
f̃ i1
∧ · · · ∧ df̃ i`

f̃ i`

+
∑

J∈Sq
r−s

gJ .
df̃ j1

f̃ j1

∧ · · · ∧
df̃ jq
f̃ jq

,

where α0 is a holomorphic q-form, the αI′s are holomorphic (q − `)-forms
on X∗s and the gJ′s are holomorphic functions on X∗s . We resume below the
main steps in the arguments.

1st step. — If 0 6 s 6 p − 1 then X∗s satisfies the 1 decomposition
property.

2nd step. — If 2 6 q 6 p− s, where s > 0, and X∗s+1 satisfies the q − 1
decomposition property then X∗s satisfies the q decomposition property.

The 1st and 2nd steps above will be proved by induction on the number
of r > 1 of factors in the pole divisor f1 . . . fr. In the proof we will use the
following result:

Theorem 2.10. — Let Xs and X∗s be as above, where s = n − k and
2 6 k 6 n − 1 (dimC(Xs) = k). Then there are representatives of Xs and
X∗s in a polydisc Q ⊂ Cn, denoted by the same letters, such that:

(a) If 0 6 q 6 k − 2 then any form α̃ ∈ Ωq(X∗s ) can be extended to a
form α ∈ Ωq(Q).

(b) If q > 1, ` > 0 and 1 6 q + ` 6 k − 2 then Hq(X∗s ,Ω`) = 0.

Remark 2.11. — Note that Lemma 2.9 is a particular case of Theo-
rem 2.10(a).

Theorem 2.10 implies that, if X∗s is as before and 0 6 q 6 n− s− 2, then
any holomorphic q-form on X∗s can be extended to a holomorphic q-form on
Q. The proof of Theorem 2.10 will be done in Section 6. Let us finish the
proof of Lemma 2.5 assuming Theorem 2.10.

Proof of the 1st step. — It is similar to the case p = 1 done above
with Lemma 2.9 (which corresponds to the case q = 0 in Theorem 2.10).
Therefore, we will assume 1 6 s 6 p − 1. Note that the 1st step is trivially
true if r = s, because in this case the pole divisor is empty and the 1-form
is holomorphic.

– 573 –



Dominique Cerveau and A. Lins Neto

Assume that the assertion is true for any logarithmic 1-form on X∗s with
pole divisor containing ` − 1 > 0 functions in the set {f̃j = fj |X∗s | s + 1 6
j 6 r}. Let θ be a logarithmic 1-form on X∗s with pole divisor f̃s+1 . . . f̃s+`.
By Remark 2.8, g̃s+1 := Res(θ,X∗s+1) ∈ O(X∗s+1). By Theorem 2.10, g̃s+1
admits an extension gs+1 ∈ O(Q). In particular, ĝs+1 := gs+1|X∗s is a holo-
morphic extension of g̃s+1 on X∗s . Let θ̃ := ĝs+1

df̃s+1
f̃s+1

. Then θ̃ is logarithmic
and Res(θ̃, X∗s+1) = Res(θ,X∗s+1). In particular, f̃s+1 is not contained in the
pole divisor of θ − θ̃, by Remark 2.8(a). By the induction hypothesis, θ − θ̃
can be decomposed as in (2.2):

θ − θ̃ = α0 +
∑̀
j=2

ĝs+j
df̃s+j
f̃s+j

=⇒ 1st step.

Proof of the 2nd step. — The proof is again by induction on the number
r − s of factors of the pole divisor. The assertion is trivially true if r = s.
Assume that the assertion is true for any logarithmic q-form, 2 6 q 6 p− s,
on X∗s with pole divisor containing ` − 1 > 0 functions in the set {f̃j =
fj |X∗s | s + 1 6 j 6 r}. Let θ be a logarithmic q-form on X∗s with pole
divisor f̃s+1 . . . f̃s+`. By Remark 2.8 the (q − 1)-form µ := Res(θ,X∗s+1) is
logarithmic on X∗s+1 with pole divisor f̂s+2 . . . f̂s+` := f̃s+2 . . . f̃s+`|X∗s+1

(or
holomorphic if ` = 1). Since X∗s+1 satisfies the q− 1 decompostion property,
we can write

µ = α0 +
q−2∑
t=1

∑
I∈Str

αI ∧
df̂s+i1−1

f̂s+i1−1
∧ · · · ∧ df̂s+it−1

f̂s+it−1

+
∑

J∈Sq−1
r

gJ .
df̂s+j1−1

f̂s+j1−1
∧ · · · ∧

df̂s+j(q−1)−1

f̂s+j(q−1)−1

where α0 and the αI′s are holomorphic forms on X∗s+1 and the gJ′s are
holomorphic functions onX∗s+1. By Theorem 2.10 each αI (resp. each gJ) has
a holomorphic extension α̃I (resp. g̃J) on X∗s . Therefore, µ has a logarithmic
extension µ̃ on X∗s ,

µ̃ = α̃0 +
q−2∑
t=1

∑
I∈Str

α̃I ∧
df̃s+i1−1

f̃s+i1−1
∧ · · · ∧ df̃s+it−1

f̃s+it−1

+
∑

J∈Sq−1
r

g̃J .
df̃s+j1−1

f̃s+j1−1
∧ · · · ∧

df̃s+j(q−1)−1

f̃s+j(q−1)−1
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Therefore, θ1 := µ̃ ∧ df̃s+1

f̂s+1
is logarithmic on X∗s and

Res(θ1, X
∗
s+1) = Res(θ,X∗s+1) =⇒ Res(θ − θ1, X

∗
s+1) = 0.

Hence, f̃s+1 is not contained in the pole divisor of θ − θ1. By the induction
hypothesis, θ−θ1 := θ2 admits a decomposition as in (2.2), and so θ = θ1+θ2
admits a decomposition as in (2.2). This finishes the proof of Lemma 2.5. �

2.2. Proof of Theorem 2.1

In the proof of Theorem 2.1 we will use Theorem 2.10 and Hamm’s gen-
eralization of Milnor’s theorem (cf. [13], [14], [20] and [23]):

Theorem 2.12. — Let X = (f1 = · · · = f` = 0) be a germ at 0 ∈ Cm of
a complete intersection with an isolated singularity at 0, so that dimC(X) =
m − ` := n. Then there exist representatives of f1, . . . , f` and X defined in
a ball Bε = B(0, ε), denoted by the same letters, such that:

(a) X∗ = X \ {0} is rectratible to the link K := X ∩ S2m−1
ε , S2m−1

ε =
∂Bε.

(b) If n > 3 then K is (n−2)-connected. In particular, X∗ is connected
and Hk

DR(X∗) = {0} if 1 6 k 6 n− 2.
(c) If n = 2 then X∗ is connected.

When n = 1, X∗ is not necessarily connected, as shows the example X =
(x2 + y2 + z2 = z = 0) ⊂ C3.

Let η be a germ at 0 ∈ Cn of a closed logarithmic p-form, 1 6 p 6
n− 2, with pole divisor f1 . . . fr with a strictly ordinary singularity outside
0. According to Lemma 2.5 we can write η as a sum of a holomorphic p-
form α0, and “monomial” p-forms of the type αI ∧

dfi1
fi1
∧ · · · ∧ dfis

fis
, or

gJ
dfj1
fj1
∧ · · · ∧ dfjp

fip
, where I ∈ Ssr and J ∈ Spr .

Given a monomial µ = αI ∧
dfi1
fi1
∧· · ·∧ dfis

fis
we define the pseudo depth of

µ as d̃ep(µ) = s. Given η =
∑m
j=1 µj , where the µj are monomials as above,

we set d̃ep(η) = max{d̃ep(µj) | 1 6 j 6 m}.

Observe that d̃ep, as defined above, is not well defined. For instance, if
g ∈ 〈f1, . . . , fp〉, the ideal generated by f1, . . . , fp, g =

∑p
j=1 hj .fj , then

g
df1

f1
∧ · · · ∧ dfp

fp
=
∑
j

αj ∧
df1

f1
∧ · · · ∧ d̂fj

fj
∧ dfp
fp

,
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where αj = ±hjdfj , 1 6 j 6 p. Therefore, if η is a logarithmic form as
above, then we define its depth as

depth(η) = min

d̃ep

∑
j

µj

∣∣∣∣∣∣ η =
∑
j

µj ,where the µj′s are monomials

.
When η is holomorphic we define depth(η) = 0.

Claim 2.13. — Let η be a germ at 0 ∈ Cn of logarithmic closed p-form,
1 6 p 6 n − 2. If depth(η) = p there exists a collection (λJ)J∈Spr , λJ ∈ C,
such that

depth

η − ∑
J∈Spr

λJ
dfj1

fj1

∧ · · · ∧
dfjp
fjp

 6 p− 1.

Proof. — If depth(η) = p then the decomposition of η as in (2.2) contains
at least one monomial of the form µJ = gJ

dfj1
fj1
∧ · · · ∧ dfjp

fjp
, where gJ /∈〈

fj1 , . . . , fjp
〉
. As before, set XJ := (fj1 = · · · = fjp = 0) and X∗J = XJ \{0}.

We assert that gJ |X∗
J
is a constant λJ ∈ C∗.

In fact, since dimCXJ = n − p > 2, X∗J is connected, by Theorem 2.12.
Note that Res(µJ , XJ) = Res(η,XJ) = gJ |X∗

J
(see Example 2.7). Since η is

closed, we have Res(dη,XJ) = dgJ |X∗
J

= 0. Hence, gJ |X∗
J

= λJ ∈ C. On the
other hand, if λJ = 0 then gJ |XJ = 0 and since XJ is a complete intersection
we get gJ ∈

〈
fj1 , . . . , fjp

〉
, a contradiction.

Let µJ := λJ
dfj1
fj1
∧ · · · ∧ dfjp

fjp
. Note that η−µJ is still logarithmic, closed

and does not contain terms multiples of dfj1
fj1
∧ · · · ∧ dfjp

fjp
. By repeating this

procedure finitely many times we can find the collection (λJ)J∈Spr as in the
statement of the claim. �

Claim 2.14. — Let η be logarithmic closed p-form with pole divisor
f1 . . . fr = 0, with a strictly ordinary singularities at 0 ∈ Cn. If depth(η) < p
then η is exact: η = dΘ, where Θ is either zero, or is logarithmic with pole
divisor contained in f1 . . . fr = 0.

Proof. — The proof will be by induction on the depth of η. If depth(η) =
0 then η is holomorphic and so it is exact by Poincaré lemma. �

Assume that any closed logarithmic p-form ω with depth(ω) 6 q − 1 <
p− 1 is exact: ω = dθ with θ logarithmic as above. Let η be a logarithmic p-
form with pole divisor f1 . . . fr = 0 with depth(η) = q < p. By the definition
of depth, when we write η as in (2.2) then we get

η =
∑
I∈Sqr

αI ∧
dfi1
fi1
∧ · · · ∧

dfiq
fiq

+ β,
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where β is logarithmic and depth(β) < q. Recall that, if I = (i1, . . . , iq) ∈ Sqr
then XI = (fi1 = · · · = fiq = 0) and X∗I = XI \{0}. As the reader can check,
we have

Res(η,XI) = αI |XI := α̃I ∈ Ωp−q(X∗I ), ∀ I ∈ Sqr ,
where α̃I is closed, by Remark 2.8. Now, we use Theorem 2.12 and Theo-
rem 2.10(b): since dim(X∗I ) = n−q we get Hk

DR(X∗) = 0 if 1 6 k 6 n−q−2.
But, p 6 n− 2 and so p− q 6 n− q− 2 = dimC(X∗)− 2 which implies that
α̃I ∈ Ωp−q(X∗I ) is exact: α̃I = dβ̃I , where β̃I is in principle a C∞(p− q−1)-
form. However, the fact that Hsr

∂
(X∗I ) ' Hr(X∗I ,Ωs) = 0 if r+ s = p− q− 1

implies that we can assume β̃I ∈ Ωp−q−1(X∗I ) (cf. [12]).

Therefore, there are (p− q − 1)-forms β̃I ∈ Ωp−q−1(X∗I ) such that α̃I =
dβ̃I , ∀ I ∈ Sqr . By Theorem 2.10(a) each form β̃I admits an extension βI ∈
Ωp−q−1(Q), where Q is some polydisc of Cn where XI has a representative.
Define a logarithmic form µ by

µ =
∑
I∈Sqr

βI ∧
dfi1
fi1
∧ · · · ∧

dfiq
fiq

so that

dµ =
∑
I∈Sqr

dβI ∧
dfi1
fi1
∧ · · · ∧

dfiq
fiq

=⇒ Res(dµ,XI) = dβI |XI = Res(η,XI),

for all I ∈ Sqr . In particular, Res(η − dµ,XI) = 0 for all I ∈ Sqr , and
this implies that depth(η − dµ) < q. Finally, since η − dµ is closed the
induction hypothesis implies that η − dµ = dθ, where either θ = 0, or θ
is logarithmic with pole divisor contained in f1 . . . fr = 0. This finishes the
proof of Claim 2.14 and of Theorem 2.1. �

2.3. Proof of Corollary 1.3

Let η be a logarithmic p-form on Pn, where p 6 n−1, with pole divisor in
homogeneous coordinates (f1 . . . fr = 0) with strictly ordinary singularities
outside 0 ∈ Cn+1. Let Π: Cn+1 \ {0} → Pn be the canonical projection and
η̃ = Π∗(η). We want to prove that η̃ can be written as

η̃ =
∑
I∈Spr

λI
dfi1
fi1
∧ . . .

dfip
fip

where λI ∈ C ∀ I ∈ Spr . We know that η is closed (Deligne’s theorem 1.1).

The pull-back η̃ = Π∗(η) can be extended to a closed logarithmic p-form
on Cn+1 which is called the expression of η in homogeneous coordinates. The
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pole divisor of η̃ is of course the pull-back of the pole divisor of η, and by
assumption it is f1 . . . fr, where fj is a homogeneous polynomial of degree
dj , 1 6 j 6 r. In particular, we can write

η̃ = 1
f1 . . . fr

∑
gJdzJ

where dzJ = dzj1 ∧ · · · ∧ dzjp and gJ is a homogeneous polynomial. Us-
ing that η̃ is invariant by any homothety Ht(z) = t.z, ∀ t ∈ C∗, and
with a straighforward computation we see that gJ is homogeneous of degree
deg(gJ) = deg(f1 . . . fr)− p. This implies that the coefficients gJ/f1 . . . fr of
η̃ are meromorphic homogenous of degree −p.

Now, the hypothesis on the pole divisor of η implies that the pole divisor
of η̃, f1 . . . fr, has strictly ordinary singularities outside 0 ∈ Cn+1. Therefore,
by Theorem 2.1 we have

η̃ =
∑
I∈Spr

λI
dfi1
fi1
∧ . . .

dfip
fip

+ dΘ,

where Θ is logarithmic with pole divisor contained in (η)∞. It is enough to
prove that dΘ = 0.

The proof of Theorem 2.1 implies that the monomials of Θ have depth
< p and are, either of the form α∧ dfj1

fj1
∧ · · · ∧ dfjq

fjq
, where α is a (p− q− 1)-

form, or of the form g.
dfj1
fj1
∧· · ·∧ dfjp1

fjp1
, where g is a holomorphic function. In

particular, the monomials of dΘ are, either of the form dα∧ dfj1
fj1
∧· · ·∧ dfjq

fjq
,

or of the form dg ∧ dfj1
fj1
∧ · · · ∧ dfjp1

fjp1
. In both cases, the meromorphic degree

of the coefficients of the monomial is > −p and this implies that dΘ = 0.
The proof that iRη̃ = 0 follows from the fact that DΠ(z).R(z) = 0 for all
z ∈ Cn+1 \ {0}. Finally, iRη̃ = 0 implies that r > p + 1, as the reader can
check. �

3. Decomposition of logarithmic foliations

The purpose of this section is to study the question posed in Problem 1.9:
is an integrable logarithmic p-form on Pn totally decomposable into logarith-
mic 1-forms?

The main theorem to be proved here gives a partial answer to the above
problem:

– 578 –



Logarithmic foliations

Theorem 1.10. — Let f1, . . . , fr be homogeneous polynomials on Cn+1

and assume that the pole divisor f1 . . . fr = 0 has strictly ordinary singular-
ities outside 0 ∈ Cn+1. Then:

(a) If p = 2, or r ∈ {p+ 1, p+ 2} then Lptd(f1, . . . , fr) = LpF (f1, . . . , fr).
(b) If 2 < p 6 n− 2 and r > p+ 2 then Lptd(f1, . . . , fr) is an irreducible

component of LpF (f1, . . . , fr). In particular, if LpF (f1, . . . , fr) is ir-
reducible then Lptd(f1, . . . , fr) = LpF (f1, . . . , fr).

An interesting consequence of Theorem 1.10 is Corollary 1.11: when r =
p + 1 in Theorem 1.10 then Fη is a rational fibration (see Section 1). Since
the case r = p+ 1 is the easier one, we will do it, together with the proof of
Corollary 1.11, in Section 3.1.

In Section 3.2 we prove the theorem in the case p = 2. In Section 3.3 we
will see that the proof of (b) can be reduced to the case of 2-dimensional
foliations (in which p = n−2). The proof of the case r = p+2 will be done in
Section 3.4. We note that item (b) is an easy consequence of Theorem 1.17
and so it will be not done in this section.

3.1. Proof of the case r = p+ 1 and of Corollary 1.11

The proof will be based in the remark that a p-vector Ω in a vector space
V of dimension p + 1 is always decomposable. In fact, if {v1, . . . , vp+1} is a
basis of V , then we can write

Ω =
p+1∑
j=1

ajv1 ∧ · · · ∧ v̂j ∧ · · · ∧ vp+1, aj ∈ K, 1 6 j 6 p+ 1.

Since Ω 6= 0, we can assume that a1 6= 0. Dividing Ω by a1 if necessary, we
can assume that a1 = 1.

Let {g1, . . . , gp+1} be dual basis of the basis {v1, . . . , vp+1}; gj(vi) = δij .
If X = g1 +

∑p+1
j=2(−1)j−1ajgj then Ω = iXv1 ∧ · · · ∧ vp+1. Now, if we set

θj := vj + (−1)jajv1, 2 6 j 6 p+ 1, then iXθj = 0 and the reader can verify
that Ω = θ2 ∧ · · · ∧ θp+1.

Let η̃ be the extension of Π∗(η) to Cn+1, as in Corollary 1.3. Let f1 . . . fp+1
be the pole divisor (η̃)∞, so that

η̃ =
p+1∑
j=1

λj
df1

f1
∧ · · · ∧ d̂fj

fj
∧ · · · ∧ dfp+1

fp+1
. (3.1)
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By the above remark η̃ is decomposable: if we assume λ1 6= 0 then there
exist µ2, . . . , µp+1 ∈ C such that, if we set θj = dfj

fj
− µj df1

f1
then

η̃ = λ1θ2 ∧ · · · ∧ θp+1.

We assert that µj ∈ Q+, 2 6 j 6 p+ 1. In fact, from iRη̃ = 0 we get

iR(θ1 ∧ · · · ∧ θp+1) = 0 =⇒
p+1∑
j=2

(−1)jiR(θj).θ2 ∧ · · · ∧ θ̂j ∧ · · · ∧ θp+1 = 0

=⇒ iR(θj) = 0, 2 6 j 6 p+ 1

=⇒ µj = deg(fj)
deg(f1) := dj

d1
∈ Q+.

In particular, the rational function fd1
j /f

dj
1 is a first integal of θj ;d

(
fd1
j /f

dj
1
)
∧

θj = 0, 2 6 j 6 p+ 1. This of course implies that F =
(
fk1

1 , . . . , f
kp+1
p+1

)
is a

first integral of η̃ if kj := d1 . . . dp+1/dj . �

3.2. Proof of Theorem 1.10 in the case p = 2: foliations of codi-
mension two

Let F be a logarithmic foliation of codimension two on Pn defined by a
logarithmic 2-form η̃ ∈ L2

F (f1, . . . , fr). Note that the hypothesis p = 2 6
n− 2 implies that n > 4.

Remark 3.1. — The condition of local decomposability of η̃ outside the
singular set is equivalent to η̃ ∧ η̃ = 0. This is a consequence of the fact that
a two vector θ on a complex vector space is decomposable if, and only if,
θ ∧ θ = 0.

In particular, we have

L2
F (f1, . . . , fr) = {ω ∈ L2

R(f1, . . . , fr) |ω ∧ ω = 0}.

As we have seen, a form ω ∈ L2
R(f1, . . . , fr) can be written as

ω =
∑

16i<j6r
µij

dfi
fi
∧ dfj
fj

. (3.2)

As the reader can check,

ω ∧ ω =
∑

16i<j<k<`6r
2Ψ(µij , µk`, µik, µj`, µi`, µjk)dfi

fi
∧ dfj
fj
∧ dfk
fk
∧ df`
f`
,
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where Ψ(a, b, c, d, e, f) = ab− cd+ ef . If ω ∧ ω = 0 their numerical residues
must vanish (see Remark 2.3). This implies that L2

F (f1, . . . , fr) is isomorphic
to the algebraic subset A of Cr(r−1)/2 defined by
A =

{
(λij)16i<j6r

∣∣Ψ(λij , λk`, λik, λj`, λi`, λjk)=0, ∀ 16 i < j < k < `6 r
}
,

where the isomorphism is given by

(λij)16i<j6r ∈ A 7−→
∑

16i<j6r
λij

dfi
fi
∧ dfj
fj

On the other hand, if we fix a base {e1, . . . , er} of Cr, a 2-vector θ on Cr
can be written as

θ =
∑

16i<j6r
aijei ∧ ej .

Since
θ ∧ θ =

∑
16i<j<k<`6r

2Ψ(aij , ak`, aik, aj`, ai`, ajk)ei ∧ ej ∧ ek ∧ e`,

we obtain θ ∧ θ = 0 if, and only if, (aij)16i<j6r ∈ A. Now, if θ ∧ θ = 0 then
θ is decomposable: θ = α ∧ β, where α, β ∈ Cr. In fact, if θ 6= 0 let u, v be
in the dual of Cr and such that θ(u, v) 6= 0. Then

0 = iu(θ ∧ θ) = 2iu(θ) ∧ θ =⇒ θ = c.iu(θ) ∧ iv(θ), c = 1/θ(u, v).
Finally, if ω is as in (3.2) and satisfies ω ∧ ω = 0 then the 2-vector θ =∑
i<j µijei∧ej is decomposable: θ = α∧β, α =

∑
i aiei and β =

∑
j bjej , so

that ω = ω1 ∧ ω2, ω1 =
∑
i ai

dfi
fi

and ω2 =
∑
j bj

dfj
fj

. Moreover, if iRω = 0
then iRω1 = iRω2 = 0 because

0 = iR(ω1 ∧ ω2) = iRω1.ω2 − iRω2.ω1 =⇒ iRω1 = iRω2 = 0 �

3.3. Some remarks

From now on, we fix homogeneous polynomials f1, . . . , fr ∈ C[z0, . . . , zn],
where r > p + 1, the divisor f1, . . . , fr has strictly ordinary singularities
outside 0 ∈ Cn+1 and deg(fj) = dj , 1 6 j 6 r. Recall that Lp(f1, . . . , fr)
denotes the set of logarithmic p-forms that can be written as below:

η̃ =
∑
I∈Spr

λI
dfi1
fi1
∧ · · · ∧

dfip
fip

, λI ∈ C, ∀ I ∈ Spr . (3.3)

Given a base {du1, . . . ,dur} of Cr∗ there exists an unique linear map
Φp :

∧p(Cr∗)→ Lp(f1, . . . , fr) such that

Φp(dui1 ∧ · · · ∧ duip) = dfi1
fi1
∧ · · · ∧

dfip
fip

.
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Lemma 3.2. — Φp is an isomorphism for all p > 1. Moreover, if α ∈∧p(Cr∗) and β ∈
∧q(Cr∗) then

Φp+q(α ∧ β) = Φp(α) ∧ Φq(β). (3.4)

Proof. — On one hand, it is clear that Φp is surjective. On the other hand,
if η̃ =

∑
I∈Spr λI

dfi1
fi1
∧ · · · ∧ dfip

fip
then each numerical residue λI , I ∈ Spr , can

be calculated by an integral as in Remark 2.3:

λI = 1
(2πi)p

∫
Tpε

η.

It follows that∑
I∈Spr

λI
dfi1
fi1
∧ · · · ∧

dfip
fip
≡ 0 ⇐⇒ λI = 0, ∀ I ∈ Spr

and so Φp is injective.

Finally, formula (3.4) is consequence of
Φp+q

(
(dui1 ∧ · · · ∧ duip) ∧ (duj1 ∧ · · · ∧ dujq )

)
= dfi1

fi1
∧ · · · ∧

dfip
fip
∧ dfj1

fj1

∧ · · · ∧
dfjq
fjq

= Φp(dui1 ∧ · · · ∧ duip) ∧ Φq(duj1 ∧ · · · ∧ dujq ) �

Remark 3.3. — Given a p-form α ∈
∧p(Cr∗) its kernel is defined as

ker(α) = {v ∈ Cr | ivα = 0}.
We say that α ∈

∧p(Cr∗) is totally decomposable if there are p 1-forms
α1, . . . , αp such that α = α1 ∧ · · · ∧ αp. It is well known that:

(a) α = α1∧· · ·∧αp is totally decomposable if, and only if, dim(ker(α))=
r − p.

(b) If α = α1 ∧ · · · ∧ αp then ker(α) =
⋂p
j=1 ker(αj).

(c) The projectivization of the set of totally decomposable p-forms of∧p(Cr∗) is isomorphic to the grassmanian of p planes through the
origin in Cr. In particular, it is an algebraic subset of P (

∧p(Cr∗)).
Recall that η̃ ∈ Lptd(f1, . . . , fr) if it is totally decomposable into loga-

rithmic forms (totally decomposable into logarithmic forms). An easy con-
sequence of Lemma 3.2 and of Remark 3.3(c) is the following:

Corollary 3.4. — Let p > 2. A p-form η̃ ∈ Lp(f1, . . . , fr) is to-
tally decomposable into logarithmic forms if, and only if, there are 1-forms
α1, . . . , αp ∈ Cr∗ such that

η̃ = Φp(α1 ∧ · · · ∧ αp).
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In particular, Lptd(f1, ...,fr) is an algebraic irreducible subset of LpR(f1, ...,fr).

Another consequence of Lemma 3.2 is that Theorem 1.10(b) can be re-
duced to the case of 2-dimensional foliations. Let Σ ' Pq be a q-plane linearly
embedded in Pn. We say that Σ is in general position with respect to the
divisor f1 . . . fr if for all J = {j1, . . . , jk} ⊂ {1, . . . , r} then Σ is transverse
to
⋂
j∈J Π(fj = 0). By transversality theory, the set of q-planes of Pn in

general position with respect to f1 . . . fr is a Zariski open and dense subset
of the grassmanian of q-planes on Pn.

Remark 3.5. — Let η̃ ∈ LpR(f1, . . . , fr). Let Σ be (p + k)-plane of Pn in
general position with respect to f1 . . . fr, p < p+k < n, and Σ̃ be a p+k+1
plane through 0 ∈ Cn+1 such that Π(Σ̃) = Σ. Then η̃|Σ̃ is a logarithmic
p-form on Σ̃. An easy consequence of Lemma 3.2 and Corollary 3.4 is the
following:

Corollary 3.6. — Let η̃, Σ and Σ̃ be as in Remark 3.5. Then η̃ is
totally decomposable into logarithmic forms if, and only if, η̃|Σ̃ is totally
decomposable into logarithmic forms.

Taking k = 2 in the above statement, we reduce the proofs of the case
r = p + 2 and of Theorem 1.10(b) to the case of 2-dimensional foliations.
From now on, we will assume that η̃ = Π∗(η) ∈ LpF (f1, . . . , fr) and that
n = p + 2. By Section 3.1 we will assume also that r > p + 2. As we have
seen, we can write

η̃ =
∑
I∈Spr

λI
dfi1
fi1
∧ · · · ∧

dfin−2

fin−2

. (3.5)

The foliation Fη is defined in homogeneous coordinates by the (n-2)-form
ω = f1 . . . frη̃. As a consequence, the part of Sing(Fη̃) contained in the
pole divisor contains an union of curves: given J = (j1, . . . , jn−1) ∈ Sn−1

r let
SJ = Π(fj1 = · · ·= fjn−1 = 0). By the assumption on the pole divisor f1 . . . fr,
SJ is a smooth complex curve and

Sing(Fη) ∩Π(f1 . . . fj . . . fr = 0) ⊃
⋃

J∈Sn−1
r

SJ .

A point q = Π(p) ∈ SJ , for a fixed J ∈ Sn−1
r , will be said generic if

for all i /∈ J then fi(p) 6= 0. Otherwise, q will be said non-generic. By the
assumption on the pole divisor, if q = Π(p) is non-generic and fi(p) = 0 then
f`(p) 6= 0 for all ` /∈ J ∪ {i}.

Let us fix J = (j1 < · · · < jn−1) ∈ Sn−1
r and a point q = Π(q) ∈ SJ .

After an automorphism of Pn we can assume that q = (0, . . . , 0) in the affine
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chart (x0 = 1) ' Cn. In this chart, the pole divisor of η is g1 . . . gr, where
gj(x) = gj(x1, . . . , xn) = fj(1, x1, . . . , xn). Since the equation of the curve
SJ is (gj1 = · · · = gjn−1 = 0), there exists a holomorphic coordinate system
(U, z = (z1, . . . , zn)) around q such that gji |U = zi, 1 6 i 6 n− 1.

Remark 3.7. — Let q ∈ SJ and (U, z) be as above. We would like to
observe that:

(a) If q is a generic point of SJ then we can write

η|U =
n−1∑
j=1

µj
dz1

z1
∧ · · · ∧ d̂zj

zj
∧ · · · ∧ dzn−1

zn−1
+ dΘ, (3.6)

where, either Θ = 0, or Θ is a non-closed logarithmic (n-3)-form with
pole divisor contained in x = z1 . . . zn−1, and µi = λIi , Ii = J \{ji}.

(b) If q ∈ SJ is a non-generic point then there exists j /∈ J such that
gj(q) = 0 and gi(q) 6= 0 if i /∈ J ∪ {j}. In this case, we can assume
that gj |U = zn. Moreover, we can write

η|U =
∑

16k<`6n
µk`

dz1

z1
∧ · · · ∧ d̂zk

zk
∧ · · · ∧ d̂z`

z`
∧ · · · ∧ dzn

zn
+ dΘ, (3.7)

where Θ is as in (a) and µk` = λIk` , Ik` = J ∪{j} \ {jk, j`} if ` < n,
µkn = J \ {jk}.

The proof can be done directly by using (3.5) or Theorem 2.1.

3.4. Proof of the case r = p+ 2

In this case r = p + 2 = n and the non generic points of Sing(Fη) ∩
Π(f1 . . . fn = 0) are in the finite set Π(f1 = · · · = fn = 0). In particular,
if we fix a non-generic point q ∈ Π(f1 = · · · = fn = 0) there exists a
local coordinate system (U, z = (z1, . . . , zn)) around q such that gj |U = zj ,
1 6 j 6 n. In particular, by (3.5) we have

η|U =
∑

16k<`6n
µk`

dz1

z1
∧ · · · ∧ d̂zk

zk
∧ · · · ∧ d̂z`

z`
∧ · · · ∧ dzn

zn
.

Since η ∈ Ln−2
F (f1, . . . , fn) then η|U is locally decomposable outside the

polar set z1 . . . zn = 0. The foliation Fη is defined in U by the holomorphic
form

ω := z1 . . . znη|U =
∑

16k<`6n
µk`zkz`dz1∧· · ·∧ d̂zk∧· · ·∧ d̂z`∧· · ·∧dzn. (∗)
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Remark 3.8. — Let α be a holomorphic (n-2)-form on an open subset
V ⊂ Cn. Given 1 6 j 6 n and p ∈ V such that α|(zj=zj(p)) 6≡ 0 we can define
a vector field Xj

p , tangent to the hyperplane (zj = zj(p)), by

α|(zj=zj(p)) = iXjpνj , νj = dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn.

This procces defines a holomorphic vector field Xj on V , tangent to the
fibration (zj = cte), by

Xj(p) = Xj
p(p), p ∈ V.

Altough iXjpα|(zj=zj(p)) = 0, in general iXjα 6≡ 0. However, if the form α is
locally decomposable outside its singular set then iXjα ≡ 0, so that Xj is
tangent to the distribution defined by α. The proof is straightforward and
is left to the reader.

If we apply Remark 3.8 to the (n-2)-form ω in (∗) we obtain Xj = zj .Y
j ,

where
Y j =

∑
k 6=j

ρjkzk
∂

∂zk
,

and ρjk = (−1)k−1µkj , with the convention µrs = −µsr, ∀ r, s. Since Fη has
dimension two, at least two of the linear vector fields above, that we can
suppose to be Y 1 and Y 2, are not identically zero and generically linearly
independent. In this case, the form ω̃ = iY 1iY 2ν, ν = dz1 ∧ · · · ∧dzn, defines
the same distribution as ω. The reader can check that
ω̃ =

∑
16k<`6n

(−1)k+`(ρ1
kρ

2
` − ρ1

`ρ
2
k)zkz`dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ d̂z` ∧ · · · ∧ dzn.

Since the coefficients of ω and ω̃ are homogeneous of degree two it follows that
ω̃ = c.ω, where c ∈ C∗. From ρjk = (−1)k−1µkj and the above expression,
we get

µk1µ`2 − µ`1µk2 = c.µk` =⇒
k=2

c = µ12.

Now, consider the n-2 closed logarithmic 1-forms θ̃3, . . . , θ̃n defined by

θ̃j = ρ2
j

dz1

z1
− ρ1

j

dz2

z2
+ ρ1

2
dzj
zj
.

Using that ρ2
1 = −ρ1

2 we get iY 1 θ̃j = iY 2 θ̃j = 0, 3 6 j 6 n, and this implies
that θ̃3∧· · ·∧θ̃n = k.η|U , k ∈ C∗. Comparing the coefficients of dz3

z3
∧· · ·∧ dzn

zn

of the two members of the relation we get k = (ρ1
2)n−3 = µn−3

12 . Finally, if
we define θj = ρ2

j
df1
f1
− ρ1

j
df2
f2

+ ρ1
2

dfj
fj

then θ3 ∧ · · · ∧ θn then

θ3 ∧ · · · ∧ θn = µn−3
12 η̃,

which proves that Ln−2
F (f1, . . . , fn) = Ln−2

td (f1, . . . , fn).
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4. Proof of Theorem 1.17

The purpose of this section is to prove the following:

Theorem 1.17. — If k > 2 and r > p + 2 = n − k + 2 then
Ltd(d1, . . . , dr; k, n) is an irreducible component of Fol(D(d1, . . . , dr, p); k, n)
for all r > p and d1, . . . , dr > 1.

The proof of Theorem 1.17 will be done first in the case of foliations of
dimension two. The general case will be reduced to this one by using the
following result:

Theorem 4.1. — Let F be a codimension p holomorphic foliation on Pn,
n > p + 1. Assume that there is an algebraic smooth submanifold M ⊂ Pn,
dimC(M) = m, where p+ 1 6 m < n, such that:

• The set of tangencies of F with M has codimension > 2 on M .
• F|M can be defined by a closed meromorphic p-form on M , say η.

Then η can be extended to a closed meromorphic p-form η̃ on Pn defining
F . Moreover, if η is logarithmic so is η̃.

In fact, Theorem 4.1 is a generalization of a result in [4] (see also [16]).

The proof of Theorem 1.17 in the two dimensional case will be reduced
to a result that we state next (Theorem 4.3). In order to state it properly
let us recall the definition of a Kupka or generalized Kupka singularity for
two dimensional foliations (see also [17]).

Let ω be a germ at p ∈ Cn of integrable (n−2)-form with ω(p) = 0. Recall
that the rotational of ω is the vector field X = rot(ω) (cf. [17]) defined by

dω = iXν, ν = dz1 ∧ · · · ∧ dzn.
The singularity p of ω is of Kupka type if X(p) 6= 0 and it is of generalized
Kupka type (briefly g.K) if X(p) = 0 and p is an isolated singularity of X.
WhenX(p)=0 and the linear part ofX at p is non singular (det(DX(p)) 6=0)
we say that p is non degenerated g.K.

The Kupka set of Fω is the set of Kupka singularities of Fω.

If p is of Kupka or g.K type then the division theorem [21] implies that
there exists another germ of holomorphic vector field, say Y , such that ω =
iY iXν.

Remark 4.2. — If p is of Kupka type then there exists a local coordinate
system z = (z1, . . . , zn) around p such that z(p) = 0, X = ∂

∂zn
and Y =
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∑n−1
j=1 Yj(z1, . . . , zn−1) ∂

∂zj
, Y (0) = 0. In particular, the foliation Fω has the

structure of a local product, the germ of curve γ = (z1 = · · · = zn−1 = 0) is
contained in the Kupka set of Fω and the vector field Y defines the normal
type of Fω along γ [17].

In the next result we will consider the following situation: let F be a two-
dimensional foliation on Pn, n > 4. Assume that Sing(F) contains a smooth
irreducible curve, say S, with the following properties:

(I) There is a finite subset F = {p1, . . . , pk} ⊂ S such that S \ F ⊂
K(F), the Kupka set of F . Since S \ F is connected, the normal
type of F is the same at all points of S \ F . We will denote by Y
a germ at 0 ∈ Cn−1 of holomorphic vector representing this normal
type.

(II) The eigenvalues of the linear part of Y , say ρ1, . . . , ρn−1, are in the
Poincaré domain and satisfy the following non-resonant conditions
(?) ρj 6=

∑
i 6=jmiρi for all m = (m1, . . . , m̂j , . . . ,mn−1) ∈ Zn−2

>0
with

∑
imi > 1.

In particular, we have ρi 6= ρj if i 6= j. Recall that ρ1, . . . , ρn−1 are
in the Poincaré domain if there exists a 6= 0 such that Re(a.ρj) > 0,
1 6 j 6 n − 1. With these conditions the germ of vector field Y is
linearizable and semi-simple (cf. [1] and [19]).

(III) Given p ∈ F let ω be a germ of (n-2)-form defining the germ of
F at p. We will assume that there is a local coordinate system
(U, z = (z1, . . . , zn)) around p with the following properties:
(i) z(p) = 0 and S ∩ U = (z1 = · · · = zn−1 = 0).
(ii) Set X = rot(ω), so that dω = iXν, ν = dz1 ∧ · · · ∧ dzn. Let

λ1, . . . , λn be the eigenvalues of the linear part DX(p). We will
assume that there exists a 6= 0 such that Re(a.λn) < 0 and
Re(a.λj) > 0, ∀ 1 6 j 6 n− 1. Moreover, we will assume that
the eingenspace of DX(p) associated to the eigenvalue λn is
the tangent space TpS.

(iii) Setting ρn = 0, we will assume that λiρj − λjρi 6= 0, ∀ 1 6 i <
j 6 n.

Theorem 4.3. — If F satisfies conditions (I), (II) and (III) above then
there exist homogeneous polynomials g1, ..., gr such that F ∈ Ln−2

td (g1, ..., gr).

A crucial fact that will be used in the proof of Theorem 4.3 is that, if r > n
then there are foliations F ∈ Ltd(d1, . . . , dr; 2, n) with a curve S ⊂ Sing(F)
that satisfies conditions (I), (II) and (III) above:
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Lemma 4.4. — If r > n then there are θ2, . . . , θn−1 ∈ L1
F (d1, . . . , dr;

n − 1, n) such that, if ηo := θ2 ∧ · · · ∧ θn−1, then Fη0 satisfies (I), (II) and
(III) along the curve S = Π(f1 = · · · = fn−1 = 0).

Since the proof of Lemma 4.4 is not difficult we begin by it.

4.1. Proof of Lemma 4.4

Let f1, . . . , fr be homogeneous polynomials on Cn+1 with deg(fj) = dj ,
1 6 j 6 r, and such that (f1 . . . fr = 0) has strictly ordinary singularities
outside 0 ∈ Cn+1.

When r = n − 1 and S = Π(f1 = · · · = fn−1 = 0) we have seen in the
proof of Corollary 1.3 in Section 2.3 that the foliation F0 ∈ LF (f1, . . . , fn−1)
is unique and defined by θ2

0 ∧ · · · ∧ θn−1
0 , where

θj0 = dfj
fj
−Aj

df1

f1
, Aj = dj

d1
, 2 6 j 6 n− 1, (4.1)

with dj = deg(fj). In a neighborhood U of any point p ∈ S we can find
local coordinates z = (z1, z2, . . . , zn) such that fj |U = zj , 1 6 j 6 n − 1,
=⇒ θj0 = dzj

zj
−Aj dz1

z1
and Fη0 is defined by ω = z1 . . . zn−1θ

2
0 ∧· · ·∧θn−1

0 |U .
Since the θ0

j′s are closed we get

dω = z1 . . . zn−1

(
dz1

z1
+ · · ·+ dzn−1

zn−1

)
∧θ2

0∧· · ·∧θn−1
0 |U = ρdz1∧· · ·∧dzn−1,

where ρ = 1
d1

∑
j dj 6= 0, as the reader can check. Therefore, all points in S

are of Kupka type and S is a Kupka component of Fη0 . The normal type of
Fη0 at p can be defined by the linear vector field Y =

∑n−1
j=1 djzj

∂
∂zj

because
it satisfies iY θj0 = 0, ∀ 2 6 j 6 n− 1. In particular, the eigenvalues ρj = dj ,
1 6 j 6 n− 1, are in the Poincaré domain: Re(ρj) > 0, ∀ 1 6 j 6 n− 1.

When r > n we will consider small deformations of the forms θj0 above.
For instance, if r = n then the non-generic points of S are the points of the
set F = S ∩Π(fn = 0).

Let us consider the case r = n. Given τ = (t2, . . . , tn−1) ∈ Cn−2 consider
the family of 1-forms

θjτ = dfj
fj
−Aj(τ)df1

f1
−Bj(τ)dfn

fn
, 2 6 j 6 n− 1,

where Aj(τ) = dj
d1
−tj and Bj(τ) = tjd1

dn
. Note that iRθjτ = 0, ∀ 2 6 j 6 n−1,

so that θjτ ∈ L1
F (f1, . . . , fn), ∀ τ ∈ Cn−2, ∀ 2 6 j 6 n − 1. Let Fτ be the

foliation defined by ητ = θ2
τ ∧ · · · ∧ θn−1

τ .
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If p ∈ S is a generic point then fn(p) 6= 0 and there are local coordinates
at p, (U, z = (z1, . . . , zn−1, zn)), such that fj |U = zj , 1 6 j 6 n− 1. In these
coordinates we have S ∩ U = (z1 = · · · = zn−1 = 0) and the normal type
can be calculated by considering the restriction of Fτ to a normal section,
for instance Σ := (fn = fn(p)) ∩ U . The foliation Fτ |Σ is defined by the
(n-2)-form

z1 . . . zn−1ητ |Σ

= z1 . . . zn−1

(
dz2

z2
−A2(τ)dz1

z1

)
∧ · · · ∧

(
dzn−1

zn−1
−An−1(τ)dz1

z1

)
.

In particular, the normal type can be defined by the vector field

Yτ =
n−1∑
j=1

ρj(τ)zj
∂

∂zj
,

where ρ1(τ) = d1 and ρj(τ) = dj − tjd1, because iYτ θiτ = 0, ∀ 2 6 i 6 n− 1.

If |τ | is small enougth then the genereric points of S are of Kupka type
and the eigenvalues of the normal type are in the Poincaré domain (these are
open conditions). Moreover, the parameter τ can be chosen in such a way that
the eigenvalues ρ1(τ), . . . , ρn−1(τ) satisfy the non-resonance conditions (?)
of (II). This is a consequence of the fact that the set {(ρ2, . . . , ρn−1) ∈
Cn−2 | d1 = ρ1, ρ2, . . . , ρn−1 satisfy conditions (?)} is dense in Cn−2.

At a point p ∈ F we can find local coordinates (U, z = (z1, . . . , zn)) such
that z(p) = 0 and the foliation is defined by the form ωτ = z1 . . . znθ̃

2
τ ∧· · ·∧

θ̃n−1
τ , where

θ̃jτ = dzj
zj
−Aj(τ)dz1

z1
−Bj(τ)dzn

zn
.

Since the forms θ̃jτ are closed, we get

dωτ =
(

dz1

z1
+ · · ·+ dzn

zn

)
∧ ωτ .

The rotational Xτ of ωτ is defined by dωτ = iXtdz1 ∧ · · · ∧ dzn and so
Xτ =

∑n
j=1 λj(τ)zj ∂

∂zj
is linear and must satisfy iXτ

(dz1
z1

+· · ·+ dzn
zn

)
= 0 and

iXτ θ̃
j
τ = 0, ∀ 2 6 j 6 n− 1. It follows that the eigenvalues λ1(τ), . . . , λn(τ)

must satisfy the homogeneous system{
x1 + · · ·+ xn = 0
xj −Aj(τ)x1 −Bj(τ)xn = 0, 1 6 j 6 n− 2

(4.2)

When τ = 0 we are in the situation of the case r = n − 1 and a solu-
tion of (4.2) is xj = dj > 0, if 1 6 j 6 n − 1, and xn = −(d1 + · · · +
dn−1) < 0. Therefore, λ1(0), . . . , λn(0) satisfy condition Re(a.λn(0)) < 0
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and Re(a.λj(0)) > 0, 1 6 j 6 n − 1, for some a 6= 0. Of course, this im-
plies that for small |τ | the eigenvalues of Xτ has eigenvalues that satisfy
Re(aτ .λn(τ)) < 0 and Re(aτ .λj(τ)) > 0, 1 6 j 6 n− 1, for some aτ 6= 0. It
remains to verify that Fτ satisfies condition (iii) of (III) near p.

First of all, recall that Xτ and Zτ = Yτ =
∑n−1
j=1 ρj(τ)zj ∂

∂zj
are tangent

to Fτ . Moreover, since Xτ ∧Zτ 6≡ 0 these vector fields generate the foliation
in a neighborhood of p = 0. In particular, we must have ωτ = b.iXτ iZτ ν for
some b 6= 0. If we set ρn(τ) = 0 then the coefficient of ∂

∂zi
∧ ∂
∂zj

in Xτ ∧ Zτ
is λi(τ)ρj(τ)− λj(τ)ρi(τ) 6= 0 if i < j. Therefore (iii) is equivalent to prove
that all coefficients of ωτ are not zero.

Set α = z1 . . . zn−1θ̃
2
0∧· · ·∧θ̃n−1

0 . By the case r = n−1 we have Sing(α) =
S ∩ U = (z1 = · · · = zn−1 = 0). Since ω0 = zn.α we have

Sing(ω0) = (zn = 0) ∪ (z1 = · · · = zn−1 = 0).
On the other hand, if τ 6= 0 then the form ωτ can be written as

ωτ = zn.ατ + dzn ∧ βτ
where α0 = α, ατ has linear coefficients and

βτ =
∑

16i<j6n−1
Aij(τ)zizjdz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn−1,

where Aij(τ) = ±(Ai(τ)Bj(τ) − Aj(τ)Bi(τ)), if i, j > 1 and A1j(τ) =
±Bj(τ), if 2 6 j 6 n − 1. We leave this computation for the reader. If
tj 6= 0 then A1j(τ) = ±Bj(τ) = ±tj .d1/dn 6= 0. If i, j > 1 then

Aij(τ) = ± d1

dn
(tjdi − tidj).

Hence, we can choose τ small so that tjdi − tidj 6= 0, ∀ 1 < i < j 6 n− 1.

In the case r > n we consider the parameter τ = (tji)26j6n−1
n6i6r and

θrjτ = dfj
fj
−Aj(τ)df1

f1
−

r∑
i=n

Bji(τ)dfi
fi
,

where Aj(τ) = dj
d1
−
∑r
i=n tji and Bji(τ) = d1

di
tji, 2 6 j 6 n − 1. It can be

checked directly that iRθrjτ = 0, ∀ j. The proof of the lemma in this case can
be done by induction on r > n. We leave the details for the reader. �

4.2. Proof of Theorem 1.17 in the case of two dimensional folia-
tions

In the proof we will use Lemma 4.4 and Theorem 4.3. Theorem 4.3 will
be proved in the next section.
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We want to prove that for all r > n and d1, . . . , dr > 1 then
Ltd(d1, . . . , dr; 2, n) is an irreducible component of Fol(D; 2, n), where D =∑
j dj−n+1. To avoid confusion we assume d1 6 d2 6 · · · 6 dr. Recall that

the definition implies

Ltd(d1, . . . , dr; 2, n) =
⋃

dg(fj)=dj
16j6r

Ln−2
td (f1, . . . , fr).

Since Ln−2
td (f1, . . . , fr) is irreducible for all polynomials f1, . . . , fr with

deg(fj) = dj , 1 6 j 6 r, it is clear that Ltd(d1, . . . , dr; 2, n) is an ir-
reducible algebraic subset of Fol(D; 2, n). The idea is to exhibit a folia-
tion F0 ∈ Ltd(d1, . . . , dr; 2, n) such that for any germ of holomorphic de-
formation t ∈ (C, 0) 7→ Ft ∈ Fol(D; 2.n), with Ft|t=0 = F0, then Ft ∈
Ltd(d1, . . . , dn; 2, n) ∀ t ∈ (C, 0).

In order to do that, first of all let us fix homogeneous polynomials f1, ..., fr
in Cn+1 with deg(fj) = dj , 1 6 j 6 r, such that the hypersurface (f1 . . . fr =
0) ⊂ Cn+1 has a strictly ordinary singularity outside 0 ∈ Cn+1. In particular,
for any J = (1 6 j1 < · · · < jn−1 6 r) then the curve SJ = Π(fj1 = · · · =
fjn−1 = 0) ⊂ Pn is a smooth complete intersection.

From now on we fix J = (1, 2, . . . , n− 1) and set SJ = S. By Lemma 4.4
there exists ητ = θ2

τ ∧ · · · ∧ θn−1
τ ∈ Ln−2

td (f1, . . . , fr) such that the foliation
Fητ defined by ητ satisfies (I), (II) and (III) along the curve S. The finite
set of (I) is F = S ∩

⋃
j>n Π(fj = 0).

Remark 4.5. — The parameter τ = (tji)26j6n−1
n6i6r in Lemma 4.4 can be

chosen in such a way that if Fητ ∈ Ltd(d′1, . . . , d′s; 2, n), where d′1 6 d′2 6
· · · 6 d′r then d′i = di, ∀ i. Recalling the definition of the θj′sτ , an example
in which Fητ belongs to two different Ltd′s is when Bjn(τ) = Bjn+1(τ) for
all 2 6 j 6 n− 1. In this case, in the sum that defines θjτ there are terms as
below

Bjn(τ)dfn
fn

+Bjn+1(τ)dfn+1

fn+1
= Bjn(τ)d(fnfn+1)

fnfn+1
.

In this case
Fητ ∈ Ltd(d1, . . . , dr : 2, D) ∩ Ltd(d1, . . . , dn−1, dn + dn+1, . . . , dr; 2, D).

On the other hand, if we choose the parameters tji linearly independent
over Z then the required property is true. From now on, we will assume this
propety.

Since Fηo satisfies property (III) along the curve S, all points of the finite
set F are non degenerated g.K singularities of Fηo . Fix any holomorphic germ
of deformation t ∈ (C, 0) 7→ Ft ∈ Fol(D; 2, n). The main fact that we will
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use is that the curve S admits a C∞ deformation t ∈ (C, 0) 7→ S(t) such
that S(t) ⊂ Sing(Ft) and the foliation Ft satisfies properties (I), (II), (III)
along S(t).

Lemma 4.6. — There exists a germ of C∞ isotopy Φ: (C, 0)× S 7→ Pn,
such that, if we denote S(t) := φ(t, S), then:

(a) S(0) = S and S(t) ⊂ Sing(Ft) is smooth ∀ s ∈ (C, 0). In particular,
S(t) is an algebraic complete intersection, ∀ t ∈ (C, 0).

(b) If r = n− 1 then all poins of S(t) are of Kupka type.
(c) If r > n − 1 then any point p ∈ F = S ∩

⋃
k>n Π(fk = 0), n − 1 <

k 6 r, has a holomorphic deformation t ∈ (C, 0) 7→ Pp(t) such
that Pp(t) ∈ S(t) is a non degenerated g.K singularity of Ft. Set
F (t) := {Pp(t) | p ∈ F}.

(d) The points of S(t) \ F (t) are in the Kupka set of F(t). Moreover,
if we denote by Yt the normal type of Ft along S(t) \ F (t) then the
correspondence t ∈ (C, 0) 7→ Yt is holomorphic.

Proof. — The argument for the proof of (c) uses the stability under de-
formations of the non degenerated g.K points [17, Theorem 6]. The argument
for the existence of the isotopy Φ is similar to [16, Lemma 2.3.3, p. 83] and
uses essentially the local stability under deformations of the Kupka set [9]
and of the non degenerated g.K singular points [17]. The fact that the de-
formed curve S(t) satisfies (I), (II) and (III) for the foliation F(t) is a con-
sequence of the fact that these conditions are open. We leave the details for
the reader. �

Let us finish the proof. We will assume that Fη0 satisfies Remark 4.5.
Lemma 4.6 implies that the foliation F(t) has a curve S(t) in the singular
set that satisfies (I), (II) and (III). In particular, there are homogeneous
polynomials g1(t), . . . , gs(t)(t) such that Ft ∈ Ln−2

td (g1(t), . . . , gs(t)(t)). Set
deg(gj(t)) = dj(t). We assert that s(t) = r and that we can assume dj(t) =
dj , 1 6 j 6 r.

In fact, since D =
∑s(t)
j=1 dj(t) − n + 1 we have s(t) 6 D + n − 1 and

the number of possilities for the degrees dj(t), 1 6 j 6 s(t) is finite. In
particular, there is a germ of non-contable set A ⊂ (C, 0) such that the
functions t ∈ A 7→ s(t) and t ∈ A 7→ dj(t), 1 6 j 6 s(t), are all constants,
say s|A = r′ and dj |A = d′j . In particular, F(t) ∈ Ltd(d′1, . . . , d′r′ ; 2;D) for all
t ∈ A. Since 0 is in the adherence of A we get Fη0 ∈ Ltd(d′1, . . . , d′r′ ; 2, D).
Hence, r′ = r and d′j = dj , 1 6 j 6 r, and F(t) ∈ Ltd(d1, . . . , dr; 2, D). �
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4.3. Proof of Theorem 4.3

Let F be a two dimensional foliation on Pn, n > 4, having a curve S in
the singular set and that satisfies (I), (II) and (III). The idea is to construct
closed logarithmic 1-forms θ2, . . . , θn−1, defined in a neighborhood U of the
curve S, such that θ2 ∧ · · · ∧ θn−1 defines the foliation F|U . By using an
extension theorem of meromorphic functions (cf. [2] and [22]), each form θj
can be extended to a global closed meromorphic 1-form on Pn, denoted again
by θj , 2 6 j 6 n − 1. The fact that θj |U is logarithmic implies that θj is
also logarithmic: there are homogeneous polynomials in Cn+1, say g1, . . . , gr,
such that θj ∈ L1

R(g1, . . . , gr), ∀ 1 6 j 6 n− 2, =⇒ F ∈ Ln−2
td (g1, . . . , gr).

The following result will be usefull:

Theorem 4.7 (Parametric linearization). — Let (Wτ )τ∈(Ck,0) be a germ
at 0 ∈ Ck of a holomorphic family of germs of holomorphic vector fields at
0 ∈ Cm. Assume that:

(a) The linear part Lτ = DWτ (0) is diagonal of the form Lτ =∑m
j=1 ρj(τ)zj ∂

∂zj
in some local coordinate system z = (z1, . . . , zm)

around 0 ∈ Cm.
(b) ρ1(0), . . . , ρm(0) are in the Poincaré domain and satisfy the non-

resonance condition (?) in (II).

Then there exists a holomorphic family of germs of biholomorphisms
(Ψτ )τ∈(Ck,0) such that DΨτ (0) = I and

Ψ∗τ (Wτ ) = Lτ =
m∑
j=1

ρj(τ)wj
∂

∂wj
.

Theorem 4.7 is a parametric version of Poincaré’s linearization theorem.
Its proof can be found in [1] or [19].

Let us continue the proof of Theorem 4.3. First of all, we will prove
that there are n-2 closed logarithmic 1-forms θ2, . . . , θn−1, defined in some
neighborhood W of S \ F , such that η = θ2 ∧ · · · ∧ θn−1 defines F|W .

Fix p ∈ S \ F . Since p ∈ K(F) there are local coordinates (V, z =
(z1, . . . , zn)), with p ∈ V , such that

(i) z(p) = 0 and S ∩ V = (z1 = · · · = zn−1 = 0).
(ii) F|V is defined by a holomorphic (n-2)-form ω that can be written

as ω = iY iXν, where X = ∂
∂zn

, Y =
∑n−1
j=1 Yj(z1, . . . , zn−1) ∂

∂zj
is

the normal type and ν = dzn ∧ dz1 ∧ · · · ∧ dzn−1.

– 593 –



Dominique Cerveau and A. Lins Neto

Since the eigenvalues ρ1, . . . , ρn−1 of DY (0) satisfy the non-resonance con-
ditions (?), by Theorem 4.7 (without parameters) we can assume that Y is
linear

Y =
n−1∑
j=1

ρjzj
∂

∂zj
,

which implies

ω =
n−1∑
j=1

(−1)j−1ρjzjdz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn−1.

In particular, the form ηV := 1
z1...zn−1

ω is logarithmic

ηV =
n−1∑
j=1

(−1)j−1ρj
dz1

z1
∧ · · · ∧ d̂zj

zj
∧ · · · ∧ dzn−1

zn−1
.

Note that ηV can be decomposed as ηV = ρ1θ
2
V ∧ · · · ∧ θ

n−1
V , where

θjV = dzj
zj
− ρj
ρ1

dz1

z1
, (4.3)

because iY θjV = iXθ
j
V = 0, ∀ 2 6 j 6 n− 1.

The above argument implies that there exists a covering V of S \ F , by
open sets, such that

(iii) For each V ∈ V there exists a coordinate system zV = (z1, . . . , zn) :
V → Cn with V = {z||zj | < 1, 1 6 j 6 n} and S ∩ V = (z1 = · · · =
zn−1 = 0).

(iv) If θjV is as (4.3), 2 6 j 6 n− 1, then the logarithmic form θ2
V ∧ · · · ∧

θn−1
V defines F|V .

(v) The vector fields XV = ∂
∂zn

and YV =
∑n−1
j=1 ρjzj

∂
∂zj

generate F|V .

We assert that if V, Ṽ ∈ V are such that V ∩ Ṽ 6= ∅ then θjV ≡ θ
j

Ṽ
on V ∩ Ṽ .

In fact, first of all let us remark that

(vi) For all j ∈ {1, . . . , n − 1} the hypersurface ΣjV := (zj = 0) ⊂
V is invariant by F|V . Moreover, if Σ̂j ⊂ V is another smooth
hypersurface which is F|V invariant and is tangent to ΣjV along S
then Σ̂j ⊂ ΣjV .

Note that (vi) above is equivalent to the fact that the hyperplane (zj = 0)
is Y -invariant, 1 6 j 6 n−1. Moreover, it is the unique smooth hypersurface
which is Y -invariant and tangent to (zj = 0). This is well-known and is a
consequence of the fact that ρ1, . . . , ρn−1 satisfy (?) (see [1]).
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Let zV = (z1, . . . , zn) and zV̂ = (ẑ1, . . . , ẑn) be the coordinate systems of
V and V̂ on which (iv), (v) and (vi) are true. We assert that ẑj = uj .zj on
V ∩ V̂ , where uj(z) 6= 0 ∀ z ∈ V ∩ V̂ , ∀ 1 6 j 6 n− 1.

In fact, if we fix 1 6 j 6 n − 1, by (vi) we must have ẑj = u.zi, where
u(z) 6= 0 ∀ z ∈ V ∩ V̂ , for some 1 6 i 6 n−1. However, the fact that ρ` 6= ρj
if ` 6= j implies that i = j. It follows that

θj
V̂

= dẑj
ẑj
− ρj
ρ1

dẑ1

ẑ1
= dzj

zj
− ρj
ρ1

dz1

z1
+ dv = θjV + dv, 2 6 j 6 n− 1,

where v = log(uj)− ρj
ρ1

log(u1) is holomorphic. Now, (iv) and (v) imply that

iXV θ
j

V̂
= iXV θ

j
V = iYV θ

j

V̂
= iYV θV = 0

=⇒ XV (v) = YV (v) = 0
=⇒ v is a first integral of both vector fields XV and YV

Since XV = ∂
∂zn

we get v = v(z1, . . . , zn−1). Since the eigenvalues of YV
are in the Poincaré domain v(z1, . . . , zn−1) must be a constant and dv = 0.
Hence, θj

V̂
= θjV on V ∩V̂ , as asserted. Therefore there are closed logarithmic

1-forms θ2, . . . , θn−1, defined on W =
⋃
V V , such that F|W is defined by

θ2 ∧ · · · ∧ θn−1, as asserted. Let us prove that the forms θj extend to a
neighborhood of any point in F .

Given p ∈ F let ω be a germ of (n-2)-form defining the germ of F at p.
Let (U, z = (x = z1, . . . , zn)) be a coordinate system around p as in (III),
so that z(p) = 0 and S ∩ U = (z1 = · · · = zn−1 = 0). The rotational X of
ω has eigenvalues λ1, . . . , λn and there exists a 6= 0 such that Re(a.λn) < 0
and Re(a.λj) > 0, ∀ 1 6 j 6 n − 1. Since p = 0 is an isolated singularity
of X there exists another germ of vector field Z such that ω = iZiXν,
ν = dz1 ∧ · · · ∧ dzn. The vector fields X and Z generate the germ of F at 0.

Lemma 4.8. — There are germs at p of vector fields X̃ and Z̃ that gen-
erate the germ of F at p and a holomorphic coordinate system (U1, w =
(w1, . . . , wn)) around p, with the following properties:

(a) w(p) = 0 and S ∩ U1 = (w1 = · · · = wn−1 = 0).
(b) Z̃(w) =

∑n−1
j=1 ρjwj

∂
∂wj

. In particular, Z̃ is the normal type of F
along S \ F .

(c) X̃ =
∑n
j=1 λjwj(1 +φj(wn)) ∂

∂wj
, where φj(0) = 0, ∀ 1 6 j 6 n− 1.

Proof. — LetWu be the hyperplane of TpPn generated by the eigenspaces
ofDX(p) associated to the eigenvalues λ1, . . . , λn−1 andWs be the eigenspace
associated to λn. Recall that we have assumedWs = TpS, which implies that
Wu is transverse to S at p. The conditions Re(a.λn) < 0 and Re(a.λj) > 0
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implies that the vector field a.X has an unique invariant smooth hypersurface
Σu tangent to Wu, which meets S transversely at p. This is a consequence
of the existence of invariant manifolds for hyperbolic singularities of vector
fields (see [15]). The hypersurface Σu is the unstable manifold of the vector
field a.X. We assert that Σu is also Z-invariant. For simplicity, we will assume
a = 1.

In the proof we will use the relation:
[Z,X] = hX (4.4)

where h ∈ On and h(0) = 0. Let us assume (4.4) and prove that Σ is Z-
invariant.

Take representatives of Z, X and h defined in some small ball B around
0. Let Zt and Xt be the local flows of Z and X, respectively. Since Σu is the
unstable manifold of X the real flow Xt of X satisfies limt→−∞Xt(z) = 0 ∀
z ∈ Σ ∩B. Integrating (4.4) we get

Z∗t (X) = φt.X, where φt(z) = exp
(∫ t

0
h(Zs(z))ds

)
.

The above relation implies that Zt sends orbits of X on orbits of X. Given
z ∈ Σ ∩ B denote O(z) = {Xt(z) | t 6 0}. Since limt→−∞Xt(z) = 0 we get
O(z) = O(z) ∪ {0}. Let Õ(z) be the germ of O(z) at 0. Note that Õ(z) ⊂ Σ
and that Zt(Õ(z)) is a germ of curve through 0 such that Zt(Õ(z)) \ {0}
is an orbit of X. This of course implies that Zt(Õ(z)) ⊂ Σ. Hence, Σ is
Z-invariant.

Proof of (4.4). — Since dω = iXν and ω = iZiXν we have

LZω = iZ(dω) + d(iZω) = ω

=⇒ LZ(dω) = dω
=⇒ iXν = LZ(iXν) = i[Z,X]ν + iXLZν = i[Z,X]ν +∇(Z)iXν,

where ∇(Z) =
∑
j
∂Zj
∂zj

is the divergence of Z. From this relation we get
[Z,X] = hX, where h = 1−∇(Z). We assert that h(0) = 0.

In fact, let X1 = DX(0) and Z1 = DZ(0). Relation (4.4) implies that
[Z1, X1] = h(0).X1.

The above relation implies that if h(0) 6= 0 then X1 is nilpotent, so that
λ1 = · · · = λn = 0, a contradiction (see [17]). In particular, we have proved
that X1 and Z1 commute. �

Let us continue the proof of Lemma 4.8. After a holomorphic change of
variables, we can assume that Σu ⊂ (zn = 0). Since (zn = 0) is invariant
for both vector fields, in the new coordinate system we can write the nth
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component of X and Z as λnzn(1 + h1(z)) and znf(z), respectively, where
h1(0) = 0. If we set Ψ := − f(z)

λn(1+h1(z)) then the nth component of Z̃ :=
Z + ΨX vanishes. Moreover, ω = iZ̃iXν = iZiXν and [Z̃,X] = gX, where
g = h −X(Ψ) and g(0) = 0. We assert that there are coordinates (W,w =
(w1, . . . , wn−1, wn)) around p such that

(i) w(p) = 0, Σu∩W = (wn = 0) and S ∩W = (w1 = · · · = wn−1 = 0).
(ii) Z̃ = φ(wn).

∑n−1
j=1 ρjwj

∂
∂wj

, where φ(0) 6= 0.

In fact, since the nth component of Z̃ vanishes, the hyperplanes Σc :=
(zn = c) are Z̃-invariant. On the other hand, if c 6= 0 then Σc is transverse
to S = (z1 = · · · = zn−1 = 0) and so Z̃|Σc represents the normal type of F
in the section Σc. Therefore, the eigenvalues of DZ̃(0, c) are proportional to
ρ1, . . . , ρn−1. In other words there exists a φ ∈ O1 such that the eigenvalues
of DZ̃(0, c)|Σc are φ(c).ρ1, . . . , φ(c).ρn−1. Considering Z̃ as a 1-parameter
family of germs of vector fields at 0 ∈ Cn−1 and applying Theorem 4.7 to
this family we get (ii) of the assertion. Now, we assert that there exists
Φ ∈ On such that if we set X̃ := eΦ.X then

[Z̃, X̃] = 0. (4.5)

In fact, if Φ ∈ On then

[Z̃, X̃] = [Z̃, eΦ.X] = eΦ.Z̃(Φ).X + eΦ.[Z̃,X] = eΦ(Z̃(Φ) + g)X.

Therefore, we have to prove that Z̃(Φ) = −g has a solution Φ ∈ On.
Recall that Z̃ = φ(wn).L, where L =

∑n−1
j=1 ρjwj

∂
∂wj

. Set w = (x,wn),
x = (w1, . . . , wn−1). We can write

−g(x,wn) =
∑
σ

bσ(wn).xσ

where σ = (σ1, . . . , σn−1) ∈ Zn−1
>0 , bσ ∈ O1 and xσ = wσ1

1 . . . w
σn−1
n−1 .

Let σ0 = (0, . . . 0). We will prove below that bσ0 ≡ 0. Assuming this fact,
the equation Z̃(Φ) = −g has a formal solution Φ =

∑
σ cσ(wn)xσ where

cσ(wn) = bσ(wn)
φ(wn) 〈ρ, σ〉 , 〈ρ, σ〉 =

n−1∑
j=1

ρjσj .

Since ρ1, . . . , ρn−1 are in the Poincaré domain we have

inf
{
|〈ρ, σ〉|

∣∣σ ∈ Zn−1
>0 , σ 6= (0, . . . , 0)

}
> C,

where C > 0. This implies that the formal series converges; Φ ∈ On.
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Proof that bσ0(wn) ≡ 0, or equivalently g(0, wn) ≡ 0. — First of all, the
nth component of [Z̃,X] is Z̃(Xn), where Xn = λnwn(1 + h1(x,wn)) is the
nth component of X. Hence, [Z̃,X] = gX implies that

g.λnwn(1 + h1) = Z̃ (λnwn(1 + h1)) = λnwnZ̃(h1) = λnwnφ(wn)L(h1)

=⇒ g(x,wn) =
φ(wn)

∑n−1
j=1 ρjwj

∂h1
∂wj

1 + h1
=⇒ g(0, wn) ≡ 0 �

From Z̃ = φ(wn).L we get that (4.5) implies:

(1) DX̃(0) commutes with L. In particular, DX̃(0) is diagonal in the
coordinate system w and we can write X̃ =

∑n
j=1X

j(w) ∂
∂wj

, where
Xj(w) = λjwj + h.o.t, 1 6 j 6 n.

(2) L(Xn) = 0. Since the first integrals of L are functions of wn we get
Xn = λnwn(1 + ψn(wn)), ψn ∈ O1.

(3) φ(wn).L(Xj) = X̃(φ(wn)ρjwj), 1 6 j 6 n− 1 ⇐⇒

L
(
Xj
)
− ρjXj = φ′(wn)

φ(wn) (1 + ψn(wn))ρnρjwjwn, 1 6 j 6 n. (4.6)

Note that (4.6) implies that wj |Xj if j < n and so Xj = λjwju, where
u(0) = 1. But, in this case we get that 1

wj
(L(Xj) − ρjXj) ∈ O∗1 which can

happens only if φ′ ≡ 0 and L(Xj) = ρjXj . We can assume that φ ≡ 1.
Finally, the solutions of L(Xj) = ρjX

j with linear part λjwj are of the
form Xj(w) = λjwj(1 + ψj(wn)), ψj(0) = 0. This finishes the proof of
Lemma 4.8. �

Let us finish the proof that the forms θj , 2 6 j 6 n − 1, extend to a
neighborhood of p ∈ F . Define closed logarithmic 1-forms θ̃j , 2 6 j 6 n− 1,
by

θ̃j = dwj
wj
− ρj
ρ1

dw1

w1
− ζj(wn)dwn

wn
,

where

ζj(wn) =
λj(1 + φj(wn))− ρj

ρ1
λ1(1 + φ1(wn))

λn(1 + φn(wn)) .

Note that ζj(0) 6= 0, because ρ1λj − ρjλ1 6= 0. In particular, the pole divisor
of θ̃j contains wn with multiplicity one.

The reader can check directly that iZ̃ θ̃j = iX̃ θ̃j = 0, ∀ 2 6 j 6 n− 1, so
that η̃ := θ̃2 ∧ · · · ∧ θ̃n−1 defines the germ of F at p. Taking representatives,
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we can assume that the θ̃j′s are defined in some polydisc W̃ containing p
and with F ∩ W̃ = {p}. We assert that θ̃j = θj on W̃ ∩W , 2 6 j 6 n− 1.

In fact, fix a point q ∈ S∩W̃∩W . We have seen that there are coordinates
(V, z = (z1, . . . , zn−1, zn)) around q such that z(q) = 0, S ∩ V = (z1 =
· · · = zn−1 = 0), F|V is generated by the vector fields X = ∂

∂zn
and Y =∑n−1

j=1 ρjzj
∂
∂zj

and θj |V = dzj
zj
− ρj

ρ1
dz1
z1

, 2 6 j 6 n − 1. Note that wn|V ∈
O∗(V ) and that wj |V = vj .zj , where vj ∈ O∗(V ), 1 6 j 6 n−1. This implies
that θ̃j |V = θj |V + dfj , where fj is a primitive of the closed holomorphic
form

dvj
vj
− ρj
ρ1

dv1

v1
− ζj(wn)dwn

wn
|V .

Finally, the fact that iXθj = iY θj = iX θ̃j = iY θ̃j = 0 implies that X(fj) =
Y (fj) = 0 and so fj is a constant and θ̃j |V = θj |V , 2 6 j 6 n− 1.

We have proved that there are closed logarithmic 1-forms θ2, . . . , θn−1
defined in a neighborhood U of S such that η := θ2 ∧ · · · ∧ θn−1 defines
F|U . By the extension theorem in [22] the form θj can be extended to closed
meromorphic 1-forms on Pn, 2 6 j 6 n−1, denoted by the same symbol. The
pole divisor of θj must be reduced because the pole divisor of the restriction
θj |U is reduced. Therefore θj is logarithmic, 2 6 j 6 n− 1, and η is totally
decomposable into logarithmic forms. In particular, there exist g1, . . . , gr
such that η ∈ Ln−1

td (g1, . . . , gr). This finishes the proof of Theorem 4.3. �

4.4. Proof of Theorem 4.1

Let M ⊂ Pn be a m-dimensional smooth algebraic submanifold, where
m < n, and F be a codimension p holomorphic foliation on Pn, where
p+ 1 6 m. Assume that:

(a) The set of tangencies of F with M has codimension > 2 on M .
(b) F|M can be defined by a meromorphic closed p-form η.

We want to prove that η admits a closed meromorphic extension η̃ defining F
on Pn. In fact, this proof is similar to the proof of the extension theorem of [4]
(see also [16, Proposition 3.1.1]). The idea is to prove that η admits a closed
extension η̂, defined in a neighborhood U ofM , such that F|U is represented
by η̂. After that, by [2] and [22], the form η̂ admits a meromorphic extension
η̃ to Pn. Since U is an open non-empty subset of Pn, it is clear that η̃ is
closed and defines F on Pn.
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Let X = Sing(F|M ). Note that X = Tang(F ,M)∪ (Sing(F)∩M), where
Tang(F ,M) denotes the set of tangencies of F and M . By (a) we have
codM (X) > 2. We begin by extending η to a neighborhood of M \X.

Extension to a neighborhood of M \X. — By definition, the foliation F
is transverse to M at the points of M \X. In particular, given q ∈ M \X
there exists a local coordinate system around q, z = (z1, . . . , zn) : W → Cn,
with z(W ) a polydisc of Cn, z(q) = 0 ∈ Cn, and such that

(i) M ∩W = (zm+1 = · · · = zn = 0).
(ii) The leaves of F|W are the levels z1 = ct1, . . . , zp = ctp.

In particular, F|W is defined by the form ΩW = dz1 ∧ · · · ∧ dzp. Since
F|W∩M is also defined by η|W∩M we must have η|W∩M = f.ΩW |W∩M , where
f = f(z1, . . . , zm) is meromorphic on W ∩M . Since η and ΩW are closed we
get df ∧ ΩW = 0, which is equivalent to
∂f

∂zj
= 0, ∀ p+ 1 6 j 6 m

=⇒ f(z1, . . . , zm) = f(z1, . . . , zp) : f depends only of z1, . . . , zp.

In particular, η|W∩M admits an unique closed meromorphic extension to W
defining F|W : η̂W = f(z1, . . . , zp)dz1 ∧ · · · ∧ dzp. This proves that η|M\X
admits an unique closed meromorphic extension η̂ to a neighborhood V of
M \X representing F|V .

Extension of η̂ to a neighborhood of M . — Since codM (X) > 2, given
q ∈ X we can find a Hartog’s domain H ⊂ V such that q ∈ Ĥ, the holomor-
phic closure ofH (for the details see [16]). Therefore, η̂ admits a meromorphic
extension to a neighborhood of q, by Levi’s extension theorem [24]. In par-
ticular, η can be extended to a closed meromorphic p-form η̃ defining F on
Pn by [2] and [22].

Let us assume now that η is logarithmic and let (η̃)∞ = S̃k1
1 . . . S̃krr be

the decomposition of the pole divisor of η̃ into irreducible components. The
pole divisor of η will be then (η)∞ = (η̃)∞ ∩M , which is reduced because η
is logarithmic. Hence, k1 = · · · = kr = 1 and η̃ is logarithmic. �

4.5. End of the proof of Theorem 1.17

Recall that we want to prove that, if k > 3, n > 5 and r > n− k + 2 :=
p + 2 then Ltd(d1, . . . , dr; k, n) is an irreducible component of Fol(D, k, n),
where D =

∑
j dj − n + k − 1. Fix f1, . . . , fr homogeneous polynomials on

Cn+1 with the following properties:
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(i) deg(fj) = dj , 1 6 j 6 r.
(ii) the hypersurface (f1 . . . fr = 0) has strictly ordinary singularities

outside 0 ∈ Cn+1.

Set m = n− k + 2 and let Pm ' Σ ⊂ Pn be a m-plane such that:

(iii) If Cm+1 ' E = Π−1(Σ) ∪ {0} ⊂ Cn+1 and f̃ j = fj |E , 1 6 j 6 r,
then (f̃1 . . . f̃r = 0) has strictly ordinary singularities outside 0 ∈ E.

Such m-plane E exists by transversality theory. In fact, it is sufficient to
choose E in such a way that for any sequence I = (i1 < · · · < is) ∈ Srs , where
1 6 s 6 n − 1, then the algebraic smooth set Π(fi1 = · · · = fis = 0) ⊂ Pn
meets transversely Σ = Π(E) (see Definition 1.2). We leave the details for
the reader.

Since m − 2 = n − k = p, then for any F ∈ Lptd(f1, . . . , fr) we have
F|Σ ∈ Lm−2

td (f̃1, . . . , f̃r), so that F|Σ is a two dimensional foliation. Given
a 1-form θ =

∑
j λj

dfj
fj
∈ L1

F (f1, . . . , fr), we set θ̃ =
∑r
j=1 λj

df̃j
f̃j

.

Choose Fo ∈ Lptd(f1, . . . , fr) defined by a logarithmic form ηo = θ2 ∧
· · · ∧ θp+1, where θ2, . . . θp+1 are as in Lemma 4.4. We assume also Fo|Σ
satisfies Remark 4.5: if Fo|Σ ∈ Ltd(d′1, . . . , d′s; 2,m) then s = r and d′j = dj ,
1 6 j 6 r.

Let (Ft)t∈(C,0) be a germ of holomorphic 1-parameter family of foliations
in Fol(D, k, n) such that Ft|(t=0) = Fo. Consider the germ of 1-parameter
family of two dimensional foliations F̃ t := Ft|Σ, t ∈ (C, 0). By the proof in
Section 4.2 we get F̃ t ∈ Ltd(d1, . . . , dr; 2,m), ∀ t ∈ (C, 0), so that F̃ t can be
defined in homogeneous coordinates by a m − 2 = n − k logarithmic form
η̃t ∈ Lm−2(f̃1t, . . . , f̃rt), where f̃ jt|t=0 = f̃ j , 1 6 j 6 r. By Theorem 4.1
the foliation Ft ∈ Fol(D, k, n) is logarithmic, ∀ t ∈ (C, 0), so that Ft ∈
L(d1(t), . . . , dst(t); k, n). We assert that st = r and dj(t) = dj , 1 6 j 6 r.

In fact, since Ft ∈ L(d1(t), . . . , dst(t); k, n) we get F̃ t ∈ L(d1(t), . . . ,
dst(t); 2,m). Therefore, as in the proof of the two dimensional case, we have
st = r and dj(t) = dj , 1 6 j 6 r, ∀ t ∈ (C, 0). Finally, by Corollary 3.6
we get Ft ∈ Ltd(d1, . . . , dr; k, n), ∀ t ∈ (C, 0). This finishes the proof of
Theorem 1.17. �

5. Linear pull-back foliations

The purpose of this section is to prove a result of “trivialisation” of holo-
morphic foliations on projective spaces:
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Theorem 5.1. — Let G be a codimension p foliation on Pn, where n >
p + 2. Assume that there is a p + 1 plane Σ ' Pp+1 such that the foliation
F := G|Σ has singular set Sing(F) of codimension > 3. Then G is the pull-
back of F by some linear projection T : Pn− → Σ. In particular, there exists
an affine coordinate system (z, w) ∈ Cp+1 ×Cn−p−1 = Cn ⊂ Pn such that G
is represented in these coordinates by a p-form depending only of z and dz:

η =
p+1∑
j=1

Pj(z)dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzp+1 = iXdz1 ∧ · · · ∧ dzn,

where X =
∑p+1
j=1(−1)j−1Pj(z) ∂

∂zj
.

Theorem 5.2, that will be used in the proof of Theorem 5.1, is a local
version of it. Let Zo 6≡ 0 be a germ at (Cp+1, 0) of holomorphic vector field,
where p + 1 > 3. The germ of foliation defined by Zo is also defined by the
germ of p-form ηo = iZoν, where ν = dz1∧· · ·∧dzp+1. If Zo =

∑p+1
j=1 fj(z)

∂
∂zj

then

ηo =
p+1∑
j=1

(−1)j−1fj(z)dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzp+1.

We will assume that there is a germ of integrable holomorphic p-form η at
0 ∈ Cn, where Cn = Cp+1 ×Cn−p−1, n > p+ 1, such that ηo = i∗η, where i
is the inclusion Cp+1 7→ Cp+1 × Cn−p−1.

Theorem 5.2. — In the above situation, assume that cod (Sing(Zo)) >
3. Then there exists a local coordinate system (z, w) ∈ (Cp+1×Cn−p−1, (0, 0))
and an unity φ ∈ O∗n such that

η = φ

p+1∑
j=1

(−1)j−1fj(z)dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzp+1 = φiZodz1 ∧ · · · ∧ dzp+1.

In particular, the foliation generated by η is equivalent to the product of
the singular one dimensional foliation generated by Zo by the non-singular
foliation of dimension n− p− 1 with leaves z = constant.

We begin with the proof of Theorem 5.2.

5.1. Proof of Theorem 5.2

Let ηo = iZoν be the germ of p-form on (Cp+1, 0) which can be extended
to a germ of integrable p-form η on (Cn = Cp+1 ×Cn−p−1, (0, 0)). As in the
hypothesis of Theorem 5.2 we will assume that cod(Sing(Zo)) > 3.
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The points in Cn = Cp+1×Cn−p−1 will be denoted (z, y), where z ∈ Cp+1

and y ∈ Cn−p−1. We will consider representatives of Zo, ηo and η, denoted
by the same letters, the first two defined in a neighborhood V ⊂ Cp+1 of a
closed polydisc U and the last defined in a neighborhood of U × {0} in Cn,
so that

ηo = η|V×{0} = iZodz1 ∧ · · · ∧ dzp+1.

We will assume codV (Sing(Zo)) > 3. Define a holomorphic vector field Z in
a neighborhood of U ×{0} by Z(z, yo) = Zyo(z) =

∑p+1
j=1 gj(z, yo)

∂
∂zj

, where

η|(y=yo) = iZyodz1 ∧ · · · ∧ dzp+1.

Since η is locally totally decomposable. outside its singular set, we have
iZη = 0.

Note that Z(z, 0) = Zo. Therefore, the hypothesis implies that there
is a neighborhood W of U × {0} in Cn such that cod(Sing(Z)) > 3 and
W ∩ (y = 0) = V × {0}.

We assert that there are holomorphic vector fields X1, . . . , Xn−p−1 de-
fined in a smaller neighborhood of U × {0}, such that iXjη = 0 and

Xj(x, y) = ∂

∂yj
+
p+1∑
i=1

hji(z, y) ∂

∂zi
, ∀ 1 6 j 6 n− p− 1. (5.1)

First of all, we note that the above assertion is true in a neighborhood
of any point (zo, 0) ∈ (V × {0}) \ Sing(Zo). This is true because for (z, y) in
a neighborhood Uα of (zo, 0) some component of Z(z, y) does not vanishes,
say gp+1(z, y) 6= 0, so that

(−1)p

gp+1
η|Uα = dz1 ∧ · · · ∧ dzp + Θ̃,

where Θ̃ ∧ dzp+1 ∧ dy1 ∧ · · · ∧ dyn−p−1 ≡ 0. As the reader can check this
implies the existence of holomorphic vector fields Xjα on Uα as in (5.1),
1 6 j 6 n− p− 1. It follows that there are:

• a polydisc Q = Q1×Q2 ⊂ Cp+1×Cn−p−1, with Q1 ⊃ U and 0 ∈ Q2.
• a covering U = (Uα)α∈A of Q \ Sing(η) by polydiscs,
• n-p-1 collections of holomorphic vector fields (Xjα)α∈A, 1 6 j 6
n− p− 1, Xjα ∈ X (Uα),

such that

(i) codQ(Sing(Z|Q)) > 3.
(ii) Xjα = ∂

∂yj
+
∑p+1
i=1 giα(z, y) ∂

∂zi
.

(iii) iXjαη = 0, ∀ 1 6 j 6 n− p− 1, ∀ α ∈ A.
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(iv) for all q = (z, y) ∈ Uα then ker(η(q)) = 〈Z(q), X1α(q), . . . ,
Xn−p−1α(q)〉C.

If 1 6 j 6 n− p− 1 and Uα ∩ Uβ 6= ∅ then

Xjα −Xjβ =
p+1∑
i=1

(gjα − gjβ) ∂

∂zi
= hjαβ .Z,

where hjαβ ∈ O(Uα ∩ Uβ). The collection (hjαβ)Uαβ 6=∅ is an additive cocycle.
Since cod(Sing(Z)) > 3 by Cartan’s theorem (cf. [5] and [12]) the cocycle is
trivial; hjαβ = hjα−h

j
β , hjα ∈ O(Uα). Hence, there exists a holomorphic vector

field Xj on Q \ Sing(Z) as in (5.1) such that iXjη = 0; Xj |Uα = Xjα− hjαZ.
By Hartog’s theorem Xj can be extended to a holomorphic vector field on
Q, denoted by the same letter. In particular, we have

ker(η)|Q = 〈Z,X1, . . . , Xn−p−1〉O(Q) . (5.2)

Finally, (5.2) and [6, Theorem 11] imply the theorem:

(i) There exists a smaller polydisc U ×{0} ⊂ Q′ ⊂ Q and holomorphic
vector fields Z ′, Y1, . . . , Yn−p−1 ∈ 〈Z,X1, . . . , Xn−p−1〉O(Q′) such
that [Yi, Yj ] = 0, [Z ′, Yj ] = 0, ∀ 1 6 j 6 n− p− 1, and
〈Z ′, Y1, . . . , Yn−p−1〉O(Q′) = 〈Z|Q′ , X1|Q′ , . . . , Xn−p−1|Q′〉O(Q′) .

(ii) There are coordinates (z, w) = (z, w1, . . . , wn−p−1) in Q′ such that
Yj = ∂

∂wj
, ∀ 1 6 j 6 n− p− 1.

This finishes the proof of Theorem 5.2. �

A simple consequence of Theorem 5.2 is the following:

Corollary 5.3. — Sing(η) is biholomorphic to Sing(Zo)×(Cn−p−1, 0).

5.2. Proof of Theorem 5.1

In this section we consider a holomorphic codimension p foliation G on
Pn, 2 6 p 6 n − 2. We assume that there is a p + 1 plane Pp+1 = Σo ⊂ Pn
such that codΣ(G|Σo) > 3. We want to prove that there is a linear projection
T : Pn− → Σo such that G = T ∗(G|Σo). We will prove Theorem 5.1 in the
case n = p + 2, or equivalently, when the foliation is two-dimensional. The
general case will be reduced to this case using [18, Section 3.4].

The foliation G|Σo is one dimensional and so it can be defined by a finite
covering (Qα)α∈A of Σo by polydiscs of Σo, a collection (Xα)α∈A of holomor-
phic vector fields Xα ∈ X (Qα), and a multiplicative cocycle (gαβ)Qα∩Qβ 6=∅
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such that Xα = gαβ .Xβ on Qα ∩Qβ 6= ∅. A consequence of Theorem 5.2 is
the following:

Corollary 5.4. — There is a finite covering of Σo by polydiscs of Pp+2,
say (Uα)α, and two collections of holomorphic vector fields (Zα)α∈A and
(Yα)α∈A, Zα, Yα ∈ X (Uα), with the following properties:

(a) Uα ∩ Σo = Qα and Zα is an extension of Xα to Uα. In particular,
Zα is tangent to Σo along Qα.

(b) Sing(Yα) = ∅ and Yα is transverse to Σo along Qα.
(c) If z /∈ Sing(G) ∩ Uα then TzG = 〈Zα(z), Yα(z)〉C.
(d) If z ∈ Sing(G) ∩ Uα then Zα(z) = 0. Moreover, the orbit of Yα

through z is contained in Sing(G).

The proof is a straightforward consequence of Theorem 5.2 and is left to
the reader.

Our goal now is to prove the following:

Lemma 5.5. — Under the hypothesis of Theorem 5.1 assume that n =
p+ 2. Then there is a one-dimensional foliation H of degree zero transverse
to Σo whoose leaves are G-invariant.

Proof. — The foliation H will be constructed in homogeneous coordi-
nates. Let Π: Cp+3\{0} → Pp+2 be the canonical projection and G̃ = Π∗(G).
Consider homogeneous coordinates z = (z0, . . . , zp+2) ∈ Cp+3 such that
Π−1(Σo)∪{0} = (zo = 0) := Σ̃o. In these homogeneous coordinates the foli-
ation G̃ is defined by an integrable homogeneous p-form η such that iRη = 0,
where R denotes the radial vector field on Cp+3. The foliation H will be de-
fined in homogeneous coordinates by R and a constant vector field v such
that ivη = 0.

The idea is to construct a formal series of vector fields of the form
V = ∂

∂z0
+
∑
j>0 z

j
0Vj , where Vj =

∑p+2
i=1 fji(z1, . . . , zp+2) ∂

∂zi
, the fji′s are

holomorphic in some polydisc Q of Cp+2 containing the origin of Cp+2 and
such that iV η = 0. If v := V (0) = ∂

∂z0
+ V0(0) 6= 0 then ivη = 0 because the

coefficients of η are homogeneous of the same degree. The constant vector
field v and R induce a foliation H of degree zero on Pp+2 tangent to G.

Let us construct the series V . The covering (Uα)α∈A, given by Corol-
lary 5.4, induces the covering

(
Ũα = Π−1(Uα)

)
α∈A of Σ̃o \{0}. Without lost

of generality, we can suppose that for any α ∈ A then Uα is contained in
some affine chart (zj(α) 6= 0), where j(α) 6= 0.
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Claim 5.6. — There are collections of holomorphic vector fields (Z̃α)α∈A
and (Ỹ α)α∈A, with Z̃α, Ỹ α ∈ X (Ũα) ∀ α ∈ A, with the following properties:

(i) DΠ(z).Z̃α(z) = Zα ◦ Π(z) and DΠ(z).Ỹ α(z) = Yα ◦ Π(z), ∀ z ∈
Ũα. In particular, Ỹ α and Z̃α are tangent to G̃|Ũα : iỸ αη = 0 and
iZ̃αη = 0, ∀ α.

(ii) Ỹ α, Z̃α and R generate G̃ in the sense that:
• if z ∈ Ũα \ Sing(G̃) then TzG̃ =

〈
Ỹ α(z), Z̃α(z), R(z)

〉
C.

• z ∈ Ũα ∩ Sing(G̃) ⇐⇒ Ỹ α(z) ∧ Z̃α(z) ∧R(z) = 0.
(iii) Z̃α is tangent to Σ̃o along Σ̃o ∩ Ũα, ∀ α ∈ A. This means that

Z̃α(0, z1, . . . , zp+2) ∈
〈

∂

∂z1
, . . . ,

∂

∂zp+2

〉
O
.

(iv) Ỹ α = gα(z) ∂
∂z0

+ Vα, where Vα ∈
〈
∂
∂z1

, . . . , ∂
∂zp+2

〉
O and gα ∈

O∗(Ũα).

In particular, Sing(Ỹ α) = ∅ and Ỹ α is transverse to Σ̃o along Σ̃o ∩ Ũα,
∀ α ∈ A.

Proof. — Let us construct Ỹ α and Z̃α, α ∈ A. Let j 6= 0 be such that
Uα ⊂ (zj 6= 0). Let us assume that Uα ⊂ (zn = 1), for instance, and
that Yα and Zα are vector fields tangent to the affine plane (zn = 1):
Yα =

∑
i<n g

α
i (z0, . . . , zn−1) ∂

∂zi
and Zα =

∑
i<n h

α
i (z0, . . . , zn−1) ∂

∂zi
, where

gαi , h
α
i ∈ O(Uα), ∀ α. Since Yα is transverse to Σo we have gα0 ∈ O∗(Uα), ∀ α.

The vector fields Ỹ α and Z̃α are then constructed by extending Yα and Zα
“radially”: we set Ỹ α :=

∑
i<n g̃

α
i (z) ∂

∂zi
and Z̃α :=

∑
i<n h̃

α
i (z) ∂

∂zi
, where

g̃αi (z) = z0.g
α
i (z0/zn, . . . , zn−1/zn) and h̃αi (z) = z0.h

α
i (z0/zn, . . . , zn−1/zn).

We leave the proof of (i), (ii), (iii) and (iv) for the reader. �

We now define a multiplicative cocycle of 3× 3 matrices (Aαβ)Ũα∩Ũβ 6=∅.
Since cod(Sing(G|Uα)) > 3, we get cod(Sing(G̃|Ũα)) > 3, which implies

cod
(
{z ∈ Ũα|Ỹ α(z) ∧ Z̃α(z) ∧R(z) = 0}

)
> 3.

From this and (ii) we get that, if Ũα ∩ Ũβ 6= ∅ then we can write{
Ỹ α(z) = aαβ(z)Ỹ β(z) + bαβ(z)Z̃β(z) + cαβ(z)R(z)
Z̃α(z) = dαβ(z)Ỹ αβ(z) + eαβ(z)Z̃β(z) + fαβ(z)R(z),

∀ z ∈ Ũα ∩ Ũβ ,

where aαβ , . . . , fαβ ∈ O(Ũα ∩ Ũβ). The matrix

Aαβ :=

aαβ bαβ cαβ
dαβ eαβ fαβ
0 0 1


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defines the transition Ỹ αZ̃α
R

 = Aαβ .

Ỹ βZ̃β
R

 . (5.3)

Of course, Aαβ = A−1
βα and if Ũα ∩ Ũβ ∩ Ũγ 6= ∅ then AαβAβγAγα = I on

Ũα ∩ Ũβ ∩ Ũγ . Since Ũα ∩ Ũβ is a neighborhood of Qα ⊂ (z0 = 0) in Cp+3

we can write Aαβ as a power series in z0:

Aαβ =
∑
j>0

zj0A
j
αβ ,

where Ajαβ is a matrix with coefficients in O(Qα ∩Qβ), Qα = Ũα ∩ (z0 = 0).
Now, the proof of Lemma 5.5 can be reduced to the following:

Lemma 5.7. — The matrix cocycle (Aαβ)Ũα∩Ũβ 6=∅ is formally trivial:
there exist a collection (Aα)α∈A of formal power series

Aα =
∑
j>0

zj0A
j
α,

where

(a) Ajα is a matrix with coefficients in O(Qα), Qα = Ũα ∩ (z0 = 0),
∀ α, ∀ j > 0.

(b) Aα is invertible as a matrix formal series and its third line is (0, 0, 1),
∀ α.

(c) if Qα ∩Qβ 6= ∅ then Aαβ = A−1
α .Aβ.

(d) A0
α is triangular superior ∀ α ∈ A.

The proof of Lemma 5.7 will be done at the end of the section. Let us
see how it implies Lemma 5.5. From (5.3) we haveỸ αZ̃α

R

 = A−1
α .Aβ .

Ỹ βZ̃β
R

 =⇒ Aα.

Ỹ αZ̃α
R

 = Aβ .

Ỹ βZ̃β
R

.
Since the third line of Aα and Aβ is (0, 0, 1), it follows that there are formal
series of vector fields Y =

∑
j>0 z

j
0Yj and Z =

∑
j>0 z

j
0Zj such thatYZ

R

∣∣∣∣∣∣
Qα×(C,0)

= Aα.

Ỹ αZ̃α
R

, ∀ α.
Note that iY η = 0. Since the coefficients of η are homogeneous of the
same degree, we obtain ivη = 0, where v = Y (0) = Y0(0). Therefore, it
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is sufficient to see that Y (0) =
∑n
j=0 aj

∂
∂zj

, where a0 6= 0. This is a conse-
quence of Lemma 5.7(d) and the fact that the ∂

∂z0
component of Ỹ α does

not vanishes at (z0 = 0), as the reader can check. This finishes the proof of
Theorem 5.1. �

5.2.1. Proof of Lemma 5.7

The restriction of Aαβ to Σ̃o ∩ Ũα ∩ Ũβ is triangular:

Aαβ |Σ̃o∩Ũα∩Ũβ =

aαβ bαβ cαβ
0 eαβ fαβ
0 0 1

 . (5.4)

The cocycle defined by (5.4) is trivial, when restricted to a domain of Σ̃o
where we can apply Cartan’s theorem [5]. Fix two polydiscs Q1, Q2 ⊂ Σ̃o,
where Q1 = {(z1, . . . , zp+2) | |zi| < 1} and Q2 = {(z1, . . . , zp+2) | |zi| 6 1/2},
for instance. The open set H := Q1 \ Q2 is a Hartog’s domain in Σ̃o, so
that any f ∈ O(H) extends to a holomorphic function f̃ ∈ O(Q1) (cf. [24]).
By Cartan’s theorem [5] we have H1(H,O) = 0, because n > 3. Since
H2(H,Z) = 0 we have also H1(H,O∗) = 0. Consider the Leray covering
(Wα)α∈A of H given by Wα = Ũα ∩ Σ̃o. The restriction Aαβ |Wα∩Wβ

in (5.4)
will be denoted by Bαβ . Since Bαβ is triangular, the entries aαβ and eαβ
define multiplicative cocycles (aαβ)Wα∩Wβ 6=∅ and (eαβ)Wα∩Wβ 6=∅, which are
trivial: there are collections (aα)α∈A and (eα)α∈A, aα, eα ∈ O∗(Wα) such
that aαβ = a−1

α .aβ and eαβ = e−1
α .eβ on Wα ∩Wβ 6= ∅. Hence, the cocycle

(Bαβ)Wα∩Wβ 6=∅ is equivalent to a cocycle (Cαβ)Wα∩Wβ 6=∅, where

Cαβ =

1 gαβ hαβ
0 1 kαβ
0 0 1

 .

By writing explicitly that (Cαβ)Wα∩Wβ 6=∅ is a multiplicative cocycle, we get
that (gαβ)Wα∩Wβ 6=∅ and (kαβ)Wα∩Wβ 6=∅ are aditive cocycles. In particular,
there are collections (gα)α and (kα)α with gα, kαO(Wα) such that gαβ =
gβ − gα and kαβ = kβ − kα on Wα ∩Wβ 6= ∅. If we set

Mα =

1 −gα 0
0 1 −kα
0 0 1


then

Dαβ := M−1
α CαβMβ =

1 0 `αβ
0 1 0
0 0 1


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Using that (Dαβ)Vα∩Vβ 6=∅ is a multiplicative cocycle we obtain that
(`αβ)Wα∩Wβ 6=∅ is an aditive cocycle and `αβ = `β − `α on Wα ∩Wβ 6= ∅.
Finally, L−1

α DαβLβ = I, where

Lα =

1 0 −`α
0 1 0
0 0 1


as the reader can check. From this, we obtain that there is a collection of
invertible triangular superior matrices (Bα)α such that Bαβ = B−1

α Bβ on
Wα ∩Wβ 6= ∅. Let

Bα =

rα sa tα
0 uα vα
0 0 1

 .

If Wα ∩ Wβ 6= ∅ then rαỸ α + sαZ̃α + tαR = rβỸ β + sβZ̃β + tβR and
uαZα + vαR = uβZβ + vβR on Wα ∩ Wβ . This defines two holomorphic
vector fields V0 and Z0 on H by

V0|Wα
= rαỸ α + sαZ̃α + tαR and Z0|Wα

= uαZ̃α + vαR.

Since H is a Hartog’s domain with holomorphic closure is the polydisc Q1,
V0 and Z0 can be extended to Q1. We denote these extensions by the same
symbols. Moreover, we have iV0η = iZ0η = 0. We assert that V0(0) 6= 0.

In fact, write V0(z) =
∑p+2
j=0 gj(z)

∂
∂zj

, z ∈ Q1. If V0(0) = 0 then g0(0) = 0
and so the analytic set C := {z ∈ Q1|g0(z) = 0} must intersect the boundary
∂Q1 of Q1. If z0 ∈ C∩∂Q1 then there is α ∈ A such that z0 ∈Wα. However,
since Z̃α and R are tangent to Σ̃o, we get g0(z0) = rα(z0).gα(z0) 6= 0 (see
(iv)), because gα ∈ O∗(Ũα) and the matrix Bα is invertible.

Now, let us prove that there is a formal vector field V = V0 +
∑
j>1 z

j
0Vj

such that iV η = 0. To do that we recall that Aαβ |Wα∩Wβ
= Bαβ and Bαβ =

B−1
α Bβ . Consider a collection of invertible matrices (B̃α)α∈A, where B̃α is

an extension of Bα to Ũα. Consider also the cocycle of matrices Ãαβ :=
B̃α.Aαβ .B̃

−1
β . This cocycle is equivalent to Aαβ and Ãαβ |Wα∩Wβ

= I, ∀
Wα ∩Wβ 6= ∅. Since Wα ∩Wβ = (z0 = 0) ∩ Ũα ∩ Ũβ we can write

Ãαβ = I +
∑
j>1

zj0A
j
αβ ,

where the entries of Ajαβ are holomorphic in Wα ∩Wβ . We claim that there
are collections of power series of matrices of the form

Aα = I +
∑
j>1

zj0A
j
α, α ∈ A, (5.5)
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such that the entries of Ajα are holomorphic in Wα and Ãαβ = A−1
α Aβ .

Given a power series in z0, say S =
∑
j>0 z

j
0Sj , we will use the notation

Jk(S) for the truncation
∑

06j6k z
j
0Sj . The matrices Ajα will be constructed

by induction on j > 0 in such a way that

Jk


I +

∑
16j6k

zj0A
j
α

−1

.Ãαβ .

I +
∑

16j6k
zj0A

j
β


 = I. (Ik)

Note that (I0) is true and assume that we can construct collections
(Ajα)06j6`−1, α ∈ A, such that (Ik) is true for all 0 6 k 6 ` − 1. Set
Ã`αβ = I +

∑`
j=1 z

j
0A

j
αβ and C`−1

α = I +
∑`−1
j=1 z

j
0A

j
α. Since (I`−1) is true,

we get
J`
[
(C`−1

α )−1.Ã`αβ .C
`−1
β

]
= I + z`0A

`
αβ .

Writing explicitly that the above expression is a multiplicative cocycle of
matrices we get that (A`αβ)Wα∩Wβ 6=∅ is an aditive cocycle. Since H1(H,O) =
0 we get collections (A`α)α∈A such that if C`α = I +

∑`
j=1 z

j
0A

j
α then (I`) is

true. In particular, the collection of formal series Cα = I +
∑
j>1 z

j
0A

j
α,

α ∈ A, satisfies C−1
α ÃαβCβ = I, so that

Ãαβ = Cα.C
−1
β =⇒ Aαβ = B̃−1

α .Cα.C
−1
β .B̃β = (B̃−1

α .Cα).(B̃−1
β .Cβ)−1.

This proves that the cocycle (Aαβ)aβ is formally trivial and finishes the proof
of the existence of the constant vector field v such that ivη = 0.

6. Appendix. Proof of Theorem 2.10 (by Alcides Lins Neto)

Let (f1 . . . fs = 0) be a germ at 0 ∈ Cn of hypersurface with a strictly
ordinary singularity at 0, where s = n − k and 2 6 k 6 n − 1. Set Xs =
(f1 = · · · = fs = 0) and X∗s = Xs \ {0}. Note that dimC(Xs) = k. Our aim
is to prove the following:

Theorem 2.10. — In the above situation there are representatives of Xs

and X∗s in a polydisc Q ⊂ Cn, denoted by the same letters, such that:

(a) If 0 6 q 6 k − 2 then any form α̃ ∈ Ωq(X∗s ) can be extended to a
form α ∈ Ωq(Q).

(b) If q > 1, ` > 0 and 1 6 q + ` 6 k − 2 then Hq(X∗s ,Ω`) = 0.

Example 6.1. — We would like to observe that the statement of Theo-
rem 2.10 is not true for k and k−1 forms. For instance, let f ∈ C[z0, z1, ..., zn],
n > 3, be a homogeneous polynomial of degree > n+ 1 and X = (f = 0) ⊂
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Cn+1, so that k − 1 = n − 1. Assume that Z := Π(X∗) ⊂ Pn is smooth.
It is known that there exists a non-vanishing holomorphic (n-1)-form on Z,
say α. The (n-1)-form Π∗(α) is holomorphic on X∗ and has no holomorphic
extension to any neighborhood of 0 ∈ Cn+1.

In the situation of the hypothesis of Theorem 2.10, if we fix representa-
tives of f1, . . . , fs in a polydisc Q (denoted by the same letters), 0 ∈ Q ⊂ Cn,
we use the notation X0 = Q and Xt = {z ∈ Q | f1(z) = · · · = ft(z) = 0},
1 6 t 6 s. We set also X∗t = Xt \ {0}.

The “strictly ordinary singularity” assumption implies that for any 1 6
t 6 s then X∗t := (f1 = · · · = ft = 0) \ {0} has an isolated singularity at 0:

df1(z) ∧ · · · ∧ dft(z) 6= 0,∀ z ∈ X∗t . (6.1)

From the above remark we get the following:

Lemma 6.2. — There are representatives of f1, . . . , fs in a polydisc Q
such that:

(a) 0 is the unique singularity of Xt in Q, ∀ 1 6 t 6 s. In particular,
X∗t is smooth of codimension t, ∀ 1 6 t 6 s.

(b) For all 0 6 t 6 s − 1 the function ft+1|X∗t is a submersion. In
particular, dft+1(z) 6= 0 for all z ∈ X∗t .

With Lemma 6.2 the proof of Theorem 2.10 is reduced to the following:

Claim 6.3. — Let Q ⊂ Cn be a polydisc with 0 ∈ Q. Let X ⊂ Q be a
connected complete intersection with a singularity 0 ∈ X, defined by X =
(f1 = · · · = fn−k = 0). Assume 2 6 k 6 n− 1 and:

(1) fj has an isolated singularity at 0 ∈ Q, ∀ 1 6 j 6 n− k.
(2) ∀ I = (i1, . . . , it), where ij 6= ik if j 6= k, and ∀ z ∈ (fi1 = · · · =

fit = 0) \ {0} then dfi1(z) ∧ · · · ∧ dfit(z) 6= 0. In particular:
(a) (fi1 = · · · = fit = 0) \ {0} is smooth of codimension t.
(b) dimC(X) = k.

If 0 6 ` 6 k − 2 then any `-form ω` ∈ Ω`(X \ {0}) admits an extension
ω̃` ∈ Ω`(Q).

In order to prove Claim 6.3 we will consider the situation below:

Let Y be a connected complex manifold of dimension n > 3 and Z ⊂ Y be
a codimension one complex codimension one submanifold defined by f = 0,
where f ∈ O(Y ) and 0 is a regular value of f . In particular, Z is a smooth
submanifold of Y . For simplicity, we will use the notations Ω` for the sheaf
of holomorphic `-forms on Y and Z. Of course Ω0 = O.
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Lemma 6.4. — In the above situation assume that Hk(Y,Ω`) = 0 for all
k and ` such that k > 1 and 1 6 k + ` 6 r + 1. Then:

(a) If k > 1, ` > 0 and r > 1 are such that 1 6 k + ` 6 r then
Hk(Z,Ω`) = 0.

(b) If r > 0 and 0 6 ` 6 r then any `-form ω ∈ Ω`(Z) can be extended
to a `-form ω̃ ∈ Ω`(Y ).

Proof. — We will use Leray’s theorem (cf. [12, p. 43]). Let us consider
Leray coverings U = (Uα)α∈A and Ũ = (Ũ α̃)α̃∈Ã of Z and Y by open sets,
respectively, such that: A ⊂ Ã and if α ∈ A then:

(i) Ũα is the domain of a holomorphic chart zα = (z1, . . . , zn) : Ũα →
Cn, such that Ũα = {zα | |zj | < 1, j = 1, . . . , n} and f |Ũα = z1

(ii) Uα = Ũα ∩ Z. In particular, Uα = {zα ∈ Ũα | z1 = 0}.

Note that Ũα is biholomorphic to a polydisc of Cn and Uα to a polydisc of
Cn−1. We assume also that:

(iii) If α ∈ Ã \A then Ũα ∩Z = ∅. This implies that A = {α ∈ Ã | Ũα ∩
Z 6= ∅}.

Given J = (j0, . . . , jk) ∈ Ãk+1 (resp. J ∈ Ak+1) we set ŨJ = Ũ j0 ∩ · · · ∩ Ũ jk
(resp. UJ = Uj0 ∩ · · · ∩ Ujk). Note that by construction, if J ∈ Ak+1 is such
that UJ 6= ∅ then UJ = ŨJ ∩Z. Moreover, if zα0 = (z1, . . . , zn) is a chart as
in (i) then UJ ⊂ {z1 = 0}.

Claim 6.5. — Given 0 6 ` 6 n − 1 and J = (j0, . . . , jk) ∈ Ak+1 such
that UJ 6= ∅ then any `-form ω on UJ can be extended to a `-form on ŨJ .
Moreover, if ω̃1 and ω̃2 are two extensions of ω to ŨJ then:

(a) ω̃2 − ω̃1 = g.f , g ∈ O(ŨJ) if ` = 0.
(b) ω̃2 − ω̃1 = α ∧ df + f.β, where α ∈ Ω`−1(ŨJ) and β ∈ Ω`(ŨJ), if

` > 1.

Proof of the Claim. — Since Ũα is biholomorphic to a polydisc, for any
α ∈ Ã it follows that ŨJ is a Stein open subset of Y . Since UJ = f−1(0)∩ŨJ
it follows that any holomorphic function h ∈ O(UJ) admits an extension
h̃ ∈ O(ŨJ) (cf. [12]). This proves the case ` = 0. When ` > 1, we consider
the chart zα0 = (z1, . . . , zn) : Ũα0 → Cn where f |Uα0

= z1 and Uα0 = {zα ∈
Ũα0 | z1 = 0}, so that UJ = {zα0 ∈ ŨJ | z1 = 0}. In particular, any `-form
ω ∈ Ω`(UJ) can be written as

ω =
∑

I=(26i1<···<i`6n)

hI .dzi1∧· · ·∧dzi` , where hI = hI(z2, . . . , zn) ∈ O(UJ).
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By the case ` = 0 any function hI admits an extension h̃I ∈ O(ŨJ). There-
fore, ω admits the extension

ω̃ =
∑

I=(26i1<···<i`6n)

h̃I .dzi1 ∧ · · · ∧ dzi` ∈ Ω`(ŨJ).

If ω̃2 and ω̃1 are two extensions of ω to ŨJ then (ω̃2−ω̃1)|z1=0 = 0. Therefore,
if ` = 0 then ω̃2− ω̃1 = g.z1 = g.f as in (a), whereas if ` > 1 then ω̃2− ω̃1 =
α ∧ dz1 + z1.β = α ∧ df + f.β as in (b). �

Since Ω` is a holomorphic sheaf, by Leray’s theorem we have Hk(Z,Ω`) =
Hk(U ,Ω`) and Hk(Y,Ω`) = Hk(Ũ ,Ω`) for all k > 1 and ` > 0. Of course,
H0(Z,Ω`) = Ω`(Z) and H0(Y,Ω`) = Ω`(Y ). Let us fix some notations
(cf. [12]):

(1) Ck(U ,Ω`) (resp. Ck(Ũ ,Ω`)) the O-module of k-cochains of `-forms
with respect to U (resp. with respect to Ũ).

(2) δ = δk : Ck(∗,Ω`) → Ck+1(∗,Ω`) the coboundary operator, where
∗ = U or Ũ . In this way, we have:

Hk(∗,Ω`) = ker(δk)/ Im(δk−1), k > 0.

Recall that
Ck(U ,Ω`) =

∏
J∈Ak+1

Ω`(UJ),

where J = (α0, . . . , αk) ∈ Ak+1 and UJ = Uα0 ∩ · · · ∩ Uαk . In particular, a
cochain in ωk` ∈ Ck(U ,Ω`) is of the form

ωk` = (ωJ)J∈Ak+1 , ωJ ∈ Ω`(UJ).

When UJ = ∅ by convenction we set ωJ = 0. Anagolously, a cochain ω̃k` ∈
Ck(Ũ ,Ω`) is of the form

ω̃k` = (ω̃J)J∈Ãk+1 , ωJ ∈ Ω`(ŨJ).

Restriction of cochains. — Given a cochain ω̃k` ∈ Ck(Ũ ,Ω`), where ω̃k` =
(ω̃J)J∈Ãk+1 , its restriction to Z is defined as

ω̃k` |Z := (ω̃J |UJ )J∈Ak+1 ∈ Ck(U ,Ω`).

Recall that if J ∈ Ak+1 then UJ = ŨJ ∩ Z.

Remark 6.6. — Let ω̃k` , η̃k` ∈ Ck(Ũ ,Ω`) be two cochains with the same
restriction to Z: (η̃k` − ω̃k` )|Z = 0. It follows from Claim 6.5 that:

(a) If ` = 0 then there exists a cochain gk0 = (gJ)J∈Ãk+1 ∈ Ck(Ũ ,O)
such that η̃J − ω̃J = gJ .f , for all J ∈ Ãk+1. In this case we will
write η̃k` − ω̃k` = f.gk0 .
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(b) If ` > 1 then there are cochains α̃k`−1 = (α̃J)J∈Ãk+1 ∈ Ck(Ũ ,Ω`−1)
and βk` = (β̃J)J∈Ãk+1 ∈ Ck(Ũ ,Ω`) such that η̃J − ω̃J = α̃J ∧ df +
f.β̃J , for all J ∈ Ãk+1. In this case, we will write η̃k` − ω̃k` = α̃k`−1 ∧
df + f.β̃k` .

We leave the details to the reader.

Extension of cochains. — Claim 6.5 implies that given a cochain ωk` ∈
Ck(U ,Ω`) then there exists a cochain ω̃k` ∈ Ck(Ũ ,Ω`) whoose restriction to
Z coincides with ωk` . We leave the details to the reader. The cochain ω̃k` will
be called an extension of the cochain ωk` .

Division of cochains. — Given a cochain βk` = (βJ)J∈Ãk+1 ∈ Ck(Ũ ,Ω`)
we define the cochain βk` ∧ df := (βJ ∧ df)J∈Ãk+1 ∈ Ck(Ũ ,Ω`+1). We would
like to observe that, if ` > 1 and df ∧ βk` = 0 then there exists a cochain
βk`−1 ∈ Ck(Ũ ,Ω`−1) such that βk` = βk`−1 ∧ df . The proof is easy and is left
to the reader.

Let us assume the hypothesis of Lemma 6.4: Hk(Y,Ω`) = 0 if k > 1 and
1 6 k + ` 6 r + 1.

Claim 6.7. — In the above situation, if k > 0 and ` > 0 are such that
k + ` 6 r then any cocycle ωk` ∈ Ck(U ,Ω`) such that δωk` = 0 admits an
extension ω̃k` ∈ Ck(Ũ ,Ω`) such that δω̃k` = 0.

Proof. — Let ωk` ∈ Ck(U ,Ω`) be such that δωk` = 0. As we have seen
before, ωk` admits an extension ω̂k` ∈ Ck(Ũ ,Ω`). Then δω̂k` ∈ Ck+1(Ũ ,Ω`)
and so δω̂k` |Z = δωk` = 0.

Let us assume first that ` = 0, so that k + ` = k 6 r. In this case,
from Remark 6.6 we obtain δω̂k0 = f.gk+1

0 , where gk+1
0 ∈ Ck+1(Ũ ,O). Now,

since δ2 = 0, we have f.δgk+1
0 = 0, and so δgk+1

0 = 0. Since k + 1 6 r + 1
the hypothesis implies that Hk+1(Ũ ,O) = 0 and so there exists a cochain
hk0 ∈ Ck(Ũ ,O) with gk+1

0 = δhk0 . Therefore,
δω̂k0 = f.δhk0 =⇒ δ(ω̂k0 − f.hk0) = 0.

If we set ω̃k0 = ω̂k0 − f.hk0 then ω̃k0 |Z = ωk0 and δω̃k0 = 0, which proves in the
case ` = 0.

Let us assume now that ` > 1. In this case, Remark 6.6 implies that

δω̂k` = α̂k+1
`−1 ∧ df + f.β̂k+1

` , (6.2)

where α̂k+1
`−1 ∈ Ck+1(Ũ ,Ω`−1) and β̂k+1

` ∈ Ck+1(Ũ ,Ω`). We assert that we
can choose α̂k+1

`−1 ∈ Ck+1(Ũ ,Ω`−1) and β̂k+1
` ∈ Ck+1(Ũ ,Ω`) such that (6.2)

is true and δβ̂k+1
` = 0. Let us prove this assertion.
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First we construct by induction a sequence of cochains

βk+j+1
`−j ∈ Ck+j+1(Ũ ,Ω`−j), j = 0, . . . , `

such that βk+1
` = β̂k+1

` and:

(i) δβk+j+1
`−j ∧ df = 0, ∀ j = 0, . . . , `.

(ii) δβk+j+1
`−j = βk+j+2

`−j−1 ∧ df , ∀ j = 0, . . . , `− 1.

The construction is based in the division property. Since δ2 = 0, relation (6.2)
implies that

δα̂k+1
`−1 ∧ df + f.δβ̂k+1

` = 0 =⇒ δβ̂k+1
` ∧ df = 0 =⇒ δβ̂k+1

` = βk+2
`−1 ∧ df

δβk+2
`−1 ∧ df = 0 =⇒ δβk+2

`−1 = βk+3
`−2 ∧ df =⇒ · · · =⇒ δβk+j+1

`−j ∧ df = 0

δβk+j+1
`−j =βk+j+2

`−j−1 ∧ df =⇒ · · · =⇒ δβk+`
1 ∧df=0 =⇒ δβk+`

1 =βk+`+1
0 .df.

Next, we will see that the sequence can be constructed in such a way that
δβk+`−j+1
j = 0, ∀ j = 0, . . . , `. This involves another induction argument.

1st step: j = 0. — From δβk+`
1 = βk+`+1

0 .df we get δβk+`+1
0 = 0. Hence

βk+`+1
0 ∈ ker(δ).

2nd step. — Assume that we have constructed the sequence satisfying
(i), (ii) with δβk+`−i+1

i = 0 for i = 0, . . . , j − 1 6 `− 1 and let us prove that
can assume that δβk+`−j+1

j = 0.

From (ii) we have δβk+`−j+1
j = βk+`−j+2

j−1 ∧ df , where δβk+`−j+2
j−1 = 0 by

the induction hypothesis. Since (k + `− j + 2) + (j − 1) = k + `+ 1 6 r+ 1
we have Hk+`−j+2(Ũ ,Ωj−1) = 0 and so there exists a cochain γk+`−j+1

j−1 ∈
Ck+`−j+1(Ũ ,Ωj−1) such that βk+`−j+2

j−1 = δγk+`−j+1
j−1 . Therefore, if we set

β̃k+`−j+1
j = βk+`−j+1

j − γk+`−j+1
j−1 ∧ df then

δβ̃k+`−j+1
j = δ

(
βk+`−j+1
j − γk+`−j+1

j−1 ∧ df
)

= 0.

Moreover,
β̃k+`−j+1
j ∧ df = βk+`−j+1

j ∧ df = βk+`−j
j+1 .

Hence, if we replace βk+`−j+1
j by β̃k+`−j+1

j in the sequence, then the new
sequence still satisfies (i) and (ii).

The induction process implies that there exists a cochain γk+1
`−1 ∈

Ck+1(Ũ ,Ω`−1) such that δ(β̂k+1
` − γk+1

`−1 ∧ df) = 0. Hence, if we set β̃k+1
` =

β̂k+1
` − γk+1

`−1 ∧ df and α̃k+1
`−1 = α̂k+1

`−1 + f.hk+1
`−1 then (6.2) can be written as

δω̂k` = α̃k+1
`−1 ∧ df + f.β̃k+1

` , where δβ̃k+1
` = 0.
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Since Hk+1(Ũ ,Ω`) = 0, there exists a cochain γk` ∈ Ck(Ũ ,Ω`) such that
β̃k+1
` = δγk` . In particular, if we set ωk` = ω̂k` − f.γk` then ωk` |Z = ω̂k` |Z = ωk`

and
δωk` = α̃k+1

`−1 ∧ df. (6.3)

If ` = 1 then α̃k+1
0 ∈ Hk+1(Ũ ,O) and (6.3) implies that δαk+1

`−1 = 0 and
there exists a cochain gk0 ∈ Ck(Ũ ,O) such that α̃k+1

0 = δgk0 . In particular,
the cochain ω̃k1 = ωk1 − gk0 .df satisfies δω̃k1 = 0 and ω̃k1 |Z = ωk1 , proving
Claim 6.7 in this case.

Finally, when ` > 2 using (6.3) and an induction argument similar to
that used in the case of β̂k+1

` it is possible to obtain a cochain γk+1
`−2 ∈

Ck+1(Ũ ,Ω`−2) such that δ(α̃k+1
`−1 − γ

k+1
`−2 ∧ df) = 0. Since (` − 1) + k + 1 =

`+k 6 r+ 1 we have Hk+1(Ũ ,Ω`−1) = 0, so that α̃k+1
`−1 −γ

k+1
`−2 ∧df = δηk`−1,

where ηk`−1 ∈ Ck(Ũ ,Ω`−1). From (6.3) we get

δωk+1
` = α̃k+1

`−1 ∧ df = δηk`−1 ∧ df =⇒ δ(ωk` − ηk`−1 ∧ df) = 0.

Hence, if we set ω̃k` = ωk` − ηk`−1 ∧ df then δω̃`k = 0 and ω̃k` |Z = ωk` , which
proves Claim 6.7.

Let us finish the proof of Lemma 6.4.

Proof of (a). — By Leray’s theorem it is suficient to prove that
Hk(U ,Ω`) = 0, if k > 1 and k + ` 6 r. If ωk` ∈ Ck(U ,Ω`) is such that
δωk` = 0 then by Claim 6.7, ωk` admits an extension ω̃k` such that δω̃k` = 0.
Since k + ` 6 r < r + 1 then Hk(Ũ ,Ω`) = 0, so that ω̃k` = δη̃k−1

` for some
cochain η̃k−1

` ∈ Ck−1(Ũ ,Ω`). As the reader can check, this implies that
ωk` = δ

(
η̃k−1
` |Z

)
, which proves the assertion.

Proof of (b). — Let ω` ∈ Ω`(Z), where ` 6 r. We can associate to ω`
a 0-cochain ω0

` = (ω`|Uα)α∈A with δω0
` = 0. By Claim 6.7, ω0

` admits an
extension ω̃0

` ∈ C0(Ũ ,Ω`) such that δω̃0
` = 0. This is equivalent to say that

there exists a section ω̃` ∈ Ω`(Y ) such that ω̃0
` = (ω̃`|Ũα)α∈Ã. Hence, ω̃`

extends ω` proving Lemma 6.4. �

We are now in position to prove the statement of Theorem 2.10. Let 0 ∈
Q ⊂ Cn, Q a polydisc, andX = (f1 = · · · = fn−k = 0) be as in the statement
of Lemma 2.3. Define a sequence of analytic complete intersections X0 ⊃
X1 ⊃ · · · ⊃ Xn−k, where X0 = Q and Xq = (f1 = · · · = fq = 0) if
1 6 q 6 n − k, and set X∗q := Xq \ {0}, 0 6 q 6 n − k. The hypothesis
implies the following:

(i) dimC(Xq) = k(q) := n− q and X∗q is smooth, ∀ 0 6 q 6 k.
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(ii) Xq = f−1
q (0)∩Xq−1, ∀ 1 6 q 6 n−k. Moreover, 0 is a regular value

of fq|X∗
q−1

.

Recall that k > 2, so that k(q) > 3 if q 6 n− 3.

Claim 6.8. — Let p > 1, ` > 0 and 0 6 q 6 n − k − 1 be such that
1 6 p+ ` 6 k(q)− 2. Then Hp(X∗q ,Ω`) = 0.

Proof. — The proof is by induction on q = 0, . . . , n−3. The case q = 0 is
consequence of a generalization of Cartan’s theorem (cf. [5]): since X0 = Q
is Stein then ([12, p. 133]):

Hp(X∗0 ,Ω`) = 0,∀ p = 1, . . . , n− 2,∀ ` > 0.
In particular, Hp(X∗0 ,Ω`) = 0 if p > 1, ` > 0 and 1 6 p+` 6 n−2 = k(0)−2.
The induction step is consequence of Lemma 6.4(a): let us assume that
Claim 6.8 is true for q, where 1 6 q 6 n − k − 2. Set Y = X∗q , Z = X∗q+1
and f = fq+1|X∗q+1

in Lemma 6.4. The induction hypothesis implies that, if
p > 1 and ` > 0 are such that 1 6 p + ` 6 k(q) − 2 then Hp(X∗q ,Ω`) = 0.
In particular, Lemma 6.4(a) implies that Hp(X∗q+1,Ω`) = 0, ∀ p > 1, ` > 0
such that 1 6 p+ ` 6 k(q)− 3 = k(q + 1)− 2.

The extension property is consequence of Lemma 6.4(b). The idea is to
use Claim 6.8 and Lemma 6.4(b) inductively. Let ω` ∈ Ω`(X \ {0}), where
` 6 k − 2. In the first step we set Z = X∗n−k = X \ {0}, Y = X∗n−k−1 and
f = fn−k|X∗

n−k−1
. From Claim 6.8 we have Hp(X∗n−k−1,Ω`) = 0 if p > 1

and ` > 0 are such that 1 6 p + ` 6 k(n − k − 1) − 2 = k − 1. Hence,
Lemma 6.4(b) implies that if 0 6 ` 6 k − 2 then any form ω` ∈ Ω(X∗n−k)
has an extension ω1

` ∈ Ω`(X∗n−k−1). The induction step is similar: assume
that ω` has an extension ωj` ∈ Ω`(X∗n−k−j), where 1 6 j 6 n− k − 1. Since
` 6 k− 2 < k− 2 + j = k(n− k− j)− 2, Lemma 6.4(b) implies that ωj` has
an extension ωj+1

` ∈ Ω`(X∗n−k−j−1). Finally, ω` has an extension ωn−k` ∈
Ω`(X∗0 ), which by Hartog’s theorem has an extension ω̃` ∈ Ω`(Q). �
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