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Abstract

In this paper, we study existence and uniqueness to multidimensional Reflected
Backward Stochastic Differential Equations in an open convex domain, allowing
for oblique directions of reflection. In a Markovian framework, combining a priori
estimates for penalised equations and compactness arguments, we obtain existence
results under quite weak assumptions on the driver of the BSDEs and the direction
of reflection, which is allowed to depend on both Y and Z. In a non Markovian
framework, we obtain existence and uniqueness result for direction of reflection
depending on time and Y. We make use in this case of stability estimates that
require some smoothness conditions on the domain and the direction of reflection.

Key words: BSDE with oblique reflections
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1 Introduction

In this paper, we study a class of BSDE whose solution is constrained to stay in an open
convex domain, hereafter denoted D. The “reflection” at the boundary of the domain
is made along an oblique direction. Such equations are known as Obliquely Reflected
BSDEs and they allow to represent the solution to some stochastic control problems.
Precisely, let (©2, F,P) be a complete probability space and (W})e[o,7) a k-dimensional
Brownian motion, defined on this space, whose natural filtration is denoted (F¢)e[o0,77-
P is the o-algebra generated by the progressively measurable processes on [0,7] x €.
In the sequel, T" > 0 is a terminal time for the equation under consideration. In this



paper, we are interested in the study of existence and uniqueness of a - measurable
solution (Y, Z, ®) to the following equation

T T T
(i)Y, =€+ f F(s,Ys, Zs)ds — f H(s,Ys, Z5)®yds — f ZdW,, 0<t < T,
t t t

T
(i) Y. € D as., ®.€0p(Y)dt®dP - a.e., f |®s|1y,¢opyds = 0,

’ (1.1)
where 0D is the boundary of the open convex domain D, ¢ the (convex) indicator
function of D, dy the subdifferential of ¢ and (f,H) : Q x [0,T] x R? x Rk
(R4, R4 is a P ® B(R? x R¥F*)-measurable random function. The terminal value
€ is given as a parameter and belongs to .Z?(Fr), where for p > 0 and a o-algebra
B, £P(B) is the space of B-measurable random R variable satisfying H|R|P] < +co.
Of course, we shall require some extra conditions to get an existence and uniqueness
result. Classically, we will look for solution with the following integrability property:
(Y, Z,®) € % x % x s?, where, for p € [1,0], H#P is the set of progressively

measurable process V' such that E[(Sg ]Vt]th)%] < 400, and .7 is the set of continuous

and adapted processes U satisfying E[supte[O,T] |Ut]p]. The main constraints on the

couple (Y, ®) are given in (L.I)(i7). As already mentioned, the first one is that Y
takes its value in D, where D is a non-empty open convex subset of R?. The fact that
®, € 0p(Y;) imposes that ® is directed along the outward normal of the convex domain,
the important point being that in (i) this direction is perturbed by the operator H
and we are thus dealing with an oblique direction of reflection. When (L.1))(i) is viewed
backward in time, the process ® or, more precisely ¥ := H(-)®, is the process allowing
Y to stay in D. The condition Sg |®¢|1¢y,¢opydt = 0 is then interpreted as a minimality
condition, in the sense that ¥ will be active only when Y touches the boundary of the
domain. This is of course one of the main ingredient to get uniqueness result for this
kind of equation.

Let us now mention some known results about these equations. In the one dimen-
sional case, they have been first studied in [6] for the — so called— simply reflected case
and in [3] for the doubly reflected case. The literature on this specific form of equa-
tion has then grown very importantly due to their range of application, in particular in
mathematical economics or stochastic control. The multidimensional case is only well
understood in the case of normal reflection i.e. when the matrix-valued random function
H is equal to the identity, see [8]. The case of oblique direction of reflection has been
only partially treated. Up until recently, only very specific cases have been considered
for the couple (H,D). In [22], the author studies the case of the reflection in an orthant
with some restriction on the direction of oblique reflection and the driver f. Another
case that has received a lot of attention is the setting of RBSDZEs associated to “switching
problems”, see e.g. [13, [I1] 1] and the references therein: the multidimensional domain
has a specific form and the direction is along the axis, see also Section for more
details. In this case, structural conditions on f are required to retrieve existence and
uniqueness results also. This restriction are based on the technique of proof used to



obtain the results and which is mainly based on a monotonic limit theorem & la Peng
[21], in a multidimensional setting. To the best of our knowledge, the first attempt to
treat the question of BSDEs with oblique reflection in full generality can be found in
[7]. Unfortunately, their setting is still quite restrictive concerning H and f.

To the best of our knowledge, there is no, up to now, satisfying global approach for
the question of well-posedness of Obliquely Reflected BSDEs, especially when compared
the case of forward SDEs, where existence and uniqueness results are obtained for oblique
reflection and general domain, see e.g. the seminal paper [15].

Our goal in this paper is thus to prove existence and uniqueness for the RBSDEs
for generic H and convex domain D without imposing any structural dependence
condition on the driver f of the equation. In this direction, we are able to obtain very
general existence result in a Markovian setting, assuming only a weak domination prop-
erty of the forward process, see Section dl We also discuss there the non-uniqueness
issue. In the general case of P-measurable random coefficients f, H and terminal con-
dition &, we need to impose some smoothness assumptions on the domain, on H, which
depend then only on the time and y variables and on the terminal condition £. In this
case, we obtain both existence and uniqueness for the solution of . Let us remark
that our new results on Obliquely Reflected BSDEs allow us to treat some new optimal
switching problems called “randomised switching problems” and introduced in the Sec-
tion 5 of [2].

The main tool to obtain the existence result is to consider a sequence of penalised
equation: for n e N, t € [0,T],

T

T T
Y, =g+f f(s,YS”,Z;‘)ds—f Z;‘dWs—f H(s, Y™, ZMVeM(Y™Mds, (1.2)
t t t

where, for y € R?, and some M > 0,

My B . _{ M[p|-ME it |p] > M,
o (y) .—naljre%ﬂM(y x) with GM(h)—{ Uni? it |h <M. (1.3)

The key point is to obtain the convergence in a strong sense of (Y) to some process
Y along with some a priori estimates on (Z™,®"). This will then allow to obtain the
existence of some limiting process (Z, ®) as well. In the setting of oblique direction of
reflection, the question of uniqueness has generally to be investigated separately.

The first possible argument to obtain the convergence of (Y™) is to prove some mono-
tonicity on the sequence to apply Peng’s monotonic limit theorem [21]. In a multidimen-
sional setting, this monotonicity is obtained under very restrictive structural condition
on the coefficient. Nevertheless, it has been successfully used for the study of RBSDE
associated to switching problem. Another possible argument is to invoke some fine com-
pactness arguments and this is the approach followed in [7]. But, again some strong
structural conditions are required to obtain convergence results in a weak setting. In
this paper, we follow a similar approach in the Markovian setting, see Section @l At
the heart of our proof, we use the paper [10], which was concerned with multidimen-
sional (non-reflected) BSDEs with continuous only driver f. With this approach, in



the Markovian setting, we are able to obtain existence result for H that can depend
on Z and even be discontinuous. To the best of our knowledge, this is the first time
such general setting is considered successfully. It has been brought to our attention that
independantly from us, [4] has followed a similar approach to treat BSDEs associated
to the classical switching problem in a more restrictive setting.

The last approach to obtain convergence of the sequence (Y},) is to show classically
that it is a Cauchy sequence. This approach has been used in the case of muldimensional
RBSDE when there is no perturbation H of the direction of reflection, namely H is
the identity matrix of R, in the seminal paper [8]. To obtain this result and a key
stability estimate, authors of 8] use dramatically the convexity property of the domain
linked with the normal reflection by applying Ité’s formula to the Euclidean norm of the
difference of two solutions. In our setting of general perturbation H, we cannot follow
directly their proof. In order to retrieve the stability estimates, we modify the Euclidean
norm to take into account the oblique reflection inspired by [I5]. Unfortunately, this
produces new terms that have to be controlled. The most difficult one is certainly the
term linked to the quadratic variation of the martingale term in (L.I)(i) or (L.2)). Let
us emphasize that this term cannot be dealt with as one would do in the forward SDE
case. Nevertheless, we are able to treat this term using BMO martingales estimates.
This tool was already used with success to deal with quadratic BSDEs but, to the best
of our knowledge, this approach is completely new in the setting of Reflected BSDEs.
We are then able to obtain in the non-Markovian setting existence results when (D, H)
satisfies some C? smoothness condition, with H depending only on the time and
variables. Let us note also that in this case the uniqueness result is obtained as an easy
consequence of the stability estimate.

The rest of the paper is organised as follows. In the next Section, we present precisely
our framework and the assumption made on the coefficients along with some discussions
on these assumptions. We also prove the key a priori and stability estimates, that
will be used later on. In Section [3| we present our first novel result on existence and
uniqueness of Obliquely Reflected BSDEs in a regular setting for (D, H). In Section
restricting to a Markovian framework, we extend our previous existence result assuming
no regularity on (D, H) and allowing a dependence in Z for the H operator.

Notations We denote by ¢ the indicator function of D

() = 0 if yeD,
Y +00 otherwise,

and Jy its subdifferential operator:

{geR?:§-(2—y)<0,VzeD} ifyeD

%) = {@ if y ¢ D.

In particular, 0p(y) is the closed cone of outward normal to D at y when y € 0D and
0p(y) = {0} when y € D. Finally, we denote by P the projection onto D and by n(y)
the set of unit outward normal at y € 0D.



For a matrix M, we denote M its transpose.
We denote %2, the set of processes V e 72, such that

V] == < +o0.

1

T 3
Supte[o,T]EU |‘/s|2d5|]:t:|

t Lo

Let us remark that V' € %2 means that the martingale SO VsdWy is a BMO martingale
and [V 42 is the BMO norm of §; VodW,. We refer to [14] for further details about
BMO martingales.

The set of continuous function from [0,7] to R™ is denoted C([0,T],R™). For z €
C([0,T],R™), we denote by [z]o := supsepo 7 |2¢], the sup-norm on this space.

2 Setting and preliminary estimates

In this section, we first introduce and discuss the main assumptions that will be used
to obtain our existence and uniqueness results. In a second part, we give important
a priori estimates and prove a key stability result, which is one of the novelty in our
approach to solve Obliquely Reflected BSDEs.

2.1 Framework

The first minimal set of assumption that we consider here is the following.

Assumption (A)
i) ¢ is an Fr-measurable random variable, R%valued such that E [|§ ]2] < +00.

i) f:Qx[0,T] x R x R+ - R is a P @ B(R? x R¥¥)-measurable function and
there exists a non negative progressively measurable process a € #%(R) and a
constant L such that

[f(ty, 2)] < oo+ Lyl + [20), Y(ty,2) € [0,T] x R x RT*F, (2.1)

iii) H:Qx[0,T] xRYx R+ — R i a PR B(RY x R¥**)-measurable function and
there exists a constant 7 > 0 such that, for any (t,y, z) € [0, T] x R% x R4**

H(t,B(y),z)v-v=n ven(PBy)), (2.2)
[H(t,B(y), 2)| < L.

The above assumptions are too weak to obtain existence and uniqueness result in a
general random framework. They will be used in Section [4] in a Markovian framework
with their Markovian counterpart (AM). Nevertheless, it is possible to derive useful a
priori estimates in the general setting of (A).



Remark 2.1. In applications, H(t,-, z) is usually specified only on the boundary 0D.
The extension to RAD is done easily by setting H(t,y,z) := H(t,B(y),z). Moreover,
if H(t,-,z) is a continuous and bounded function on 0D it is possible to extend it to a
continuous and bounded function on D. Indeed, D is homeomorph to a set S which is
a half plane of R or R” x B4, with 0 < r < d. Moreover, the boundary of D is sent
to the boundary of S. Then we remark that the extension of H(t,., z) is straightforward
when D = S.

In the non-Markovian setting, our results require more smoothness and control on
the parameters of the BSDE. We will then work under the following assumption.

Assumption (SB)

i) ¢ is an Fpr-measurable D-valued random variable and the martingale yf =E[¢] =
£ — StT Z5AW,, t < T, is BMO (sce [14] for further details on BMO martingales).

ii) f:Qx[0,7T] xRY x RF — RY is a P ® B(R? x R¥*F)-measurable function, there
exists a constant L > 0 such that, for all (t,y,y/, 2z, 2") € [0,T] x R? x R? x R4k x
Rdxk’

|f(t7y,2) - f(t)y/7zl)| < L (|y - y/’ + |Z - Z,|) . (24)
Moreover, the process 0° = G, A Zé) belongs to 2.

iii) The open convex domain D is given by a C?(R%,R) function ¢ with a bounded first
derivative, namely D = {¢ < 0} and 0D = {¢ = 0}. ¢ is assumed . This function
satisfies moreover

|p(x)] = d(z,0D) for ze€V n (RAD), where V is a neighbourhood of oD.
(2.5)
iv) H:[0,T] x RY — R is valued in the set of matrices @ satisfying
1
QI <L, LvfP=u"QHvx Z|U|2, Yo e RY. (2.6)
(t,y) — H(t,y) is a CO'-function and (t,y) — (H~HT(t,y) is a C*? function satis-
fying
0y H| + [(H )T + [0 (H YT+ |o,(H DT + 15, (H DI <A, (27)
for some positive A.
We first comment assumptions made on BSDE parameters.

Remark 2.2. i) Let us observe that under the BMO condition, there exists ué >0,
¢ )
such that IE[@“E SUPte(o, ] D}t‘] < o and that ||Z§H332 < o, see e.g. [14)]. For later

use, we define

of = E[e“g SUPye(0,T] |3’f|] + Hgf

i
2

” o =P (2.8)

6



ii) Condition (SB)(ii) is a mix of the property of £, f and the domain D. In many
applications, it will be straightforward to check. For example, it is trivially satisfied

in the following cases:
(a) supyep f(s,y,2) < C, for some C > 0;
(b) £ € L%(Fr);
(¢) D is a bounded domain. .
iii) If (SB) holds, then (A) holds as well. Indeed, one can set o := L (|[V¢| + |2%| +(6%]) .
We now discuss the various assumptions made on H and the domain D.

Remark 2.3. i) The function ¢ can be constructed as in e.g. [8] Section 2.4 if the
convexr domain D is C2. From (SB)(iii), it follows that d¢(x) (resp. n(x)) is the
outward normal (resp. unit outward normal) of D at a point x € dD. Moreover,
since D is conver, ¢ is conver on RND and thus, 02,0 is a positive semi-definite
matrix on this domain. Let us also observe that the application 3 : Rd\@ — 0D is
c2.

it) The matriz H defines on 0D a unit vector field v in the following way

v(t,y) := H(t,y)n(y) and v(t,y):= v(t,y) forye oD,

o(t,y)|
which represents the oblique direction of reflection. Then, (2.2)) rewrites as
o(ty),n(y)y=n, foryedD. (2.9)

In applications, it is generally the case that only the smooth vector field v is given
on 0D. Following [15], it is possible to construct H satisfying (SB)(iv) on 0D and
then to extend it on D under (SB)(iii) using classical extension results, see e.g.

[9].
We now introduce a class of terminal conditions that are admissible for the purpose
of our work, in the sense that we can obtain an existence and uniqueness result for this

class.

Definition 2.1. For 8 > 0, the class T3 is the subset of & € L*(Fr) satisfying: there
erists A\¢ > 3, such that

E[e’\f fo 125 |2d8] <o, (2.10)
where Z¢ is given by the martingale representation theorem applied to yf = Ef¢] =

We study the class Ty in Section @ Especially, we exhibit some specific elements
of this class that are quite useful for applications.



Remark 2.4. In the following, we will use in proofs the notation “C'” to denote a generic
constant that may change from line to line and that depends in an implicit way on T, L
and n. We shall denote it Cy, if it depends on an extra parameters 6. In the statement
of the results, we prefer the notation “c” and the dependence upon any extra parameters
on top of T, L and n, will also be made clear.

2.2 A priori estimates

In this section, we prove some a priori control on the solution (Y, Z, ®) € .92 x 7% x 47>
to the following generalised BSDE

T T T
Y: =§+J f(s,YS,ZS)dS—f H(S,YS,ZS)q)sds—f ZsdWs, 0<t<T. (2.11)
t t ¢

Importantly, we assume that (Y, Z, ®) satisfies the following structural condition:

T T
EtU @S\st] < KEtU yf(s,Ys,Zs)Fds] , for some K > 0. (2.12)
t t

Equation (2.11) encompasses both the obliquely reflected BSDE ([1.1]) and its pe-
nalised approximation given in equation ([1.2). The key point for these two equations
will then be to prove that their solutions satisfy condition (2.12]).

Our first estimate is quite classical.

Lemma 2.1. Assume (A). Let (Y, Z,®) € .2 x % x 7 be a solution to [2.11]) with
condition (2.12) holding true. Then, for some ¢ := ¢(K),

T T
sup H|Y|*] + E[J \ZS\st] < CE[\§|2 —I—f |as\2ds} .
0

te[0,T] 0

Proof. We apply Ito’s formula to |Y'|? to obtain

T T T T
Y% + f | Z|?ds = 2J Y. f(s,Ys, Z5)ds — 2J Yo H (s,Ys, Zs)®yds — 2f Y, Z,dW,.
t t t t
(2.13)

We observe, thanks to the square integrability of Y and Z that So Y. Z,dWs is a true
martingale. This yields,

T T T
E[m\Q + f |Z8|2ds} — ]E[]f|2 +QJst(s,Ys,ZS)ds—QJYSH(&YS,ZS)CDSds] .
t t t

We thus compute, using (2.12) and Assumption (A)(ii), the boundedness of H and
Young’s inequality, for some € € (0, 1),

T T 4
]E{J YSH(S,YS,ZS)CI)SdS] < C’KE[J (f\Ys]Z + e|®s|2)ds}
t t €

T
1
< CKE[J (E‘YS’Q + 6‘28‘2 + |as‘2)ds} .
t



Similarly, we get

T T
1
E[J st(s,Ys,ZS)ds} < CIE{J (E|YS’2 + €|l Zs]? + |as|2)ds} .
¢ ¢
For € small enough and using Gronwall Lemma, we deduce
T T
E[|Y;|2 + J |ZS|2ds] < CKIE[|£2 +J |0zs|2ds} .

t t

0

The following proposition refines the previous estimates in the smooth setting of
Assumption (SB). It will also allow to use the stability result proved in the next section.
Interestingly, it shows that most of the properties of the martingale )¢ are transferred
to the non-linear process given in equation ([2.11]).

Proposition 2.1. Assume that (SB) holds. Let (Y,Z,®) € /% x 52 x #? be a
solution to (2.11)) with condition (2.12)) in force. Then, the following holds

i) (Y,Z,®) e % x B% x B% with, for some c := c(K,0%),
B et wieton1 Y| 4 0] 5o + |Z] g < (2.14)
and, for all b > 0 and some ¢ := ¢/ (b, K, 0%)

T 3 &
E{ebSO <|q>s|+|Zt—Zt|+9tl)d8} <. (2.15)

ii) Moreover, if £ € g, for some > 0, then there exists O € % such that, for all
non negative increasing process vy satisfying H|yr|P] < oo for somep > 1 (depending
on ), we have for all t € [0,T]

T T
EtU 75Z5|2ds} < EtU %|@S|ds} <+ (2.16)
t t
and for some X € (B,\%) and c := c¢(K, 0%, \),
E[e)‘g(ﬂ@tldt] <c. (2.17)

Proof. An important step to obtain our estimates below is to compare the BSDE (Y, Z)
with the martingale Y¢. To this end, we introduce for this proof AY := Y — V¢ and
AZ =7 — Z°.

1.a We apply Ité’s formula to |AY|? to obtain

T T T T
IAY;? + f IAZ,[ds = 2f AY,f(s,Ys, Zs)ds — 2f AY,H(s,Y,)®,ds — 2J AY,AZ,dW,.
t t t t

9



We observe, thanks to the square integrability of AY and AZ that SO AY,AZ AW is a
true martingale. This yields, for all r < ¢,

T T T
IET[AYAQ + f ]AZSst] = 2IETU AY,f(s,Ys, Zs)ds — f A}@H(s,n)@sds} (2.18)
t t t

We thus compute, using (2.12)), the Lipschitz continuity of f, the boundedness of H and
Young’s inequality, for all » < ¢t and some € € (0, 1)

T T q
]ET[J AYSH(S,YS)@SdS] < CKET[j (=|AY, | + e|<1>s|2)d8} ,
t t €

T
1
< C’KIETU LAy, 1 eaz,? + |9§|2)ds} .
t

€
Similarly, we obtain

T

T
EU Ast(s,Ys,Zs)ds} < CETU (1|AYS|2 + €| AZ|? + 6§|2)ds] .
t t €

Combining the last two estimates with (2.18)]), setting e small enough and using Gronwall
Lemma, we get for all r < ¢

1 T T
ET[]AY;Q + 2J \AZS|2ds] < CKETU yengds}
t t

1.b Setting » = ¢ in the previous inequality, we have

sup [AYi? + [AZ % < O e (2.19)
te[0,T]

from which we straightforwardly deduce

E[e’K SUPye[0, 7] |Yt|] < E[e“g suptg[o,T](\AYtHWfD] < Okt (2.20)
and 2], < HszQ +|AZ] 2 < Coe - (2.21)

Combining (2.19)) with (2.12]), we obtain
[®] 52 < C o6 - (2.22)

This concludes the proof of (2.14)).
2.a We denote R := |®| + |AZ| + |6%|. For all b > 0, we use Young inequality to get

E[ebSOT “SdS] < estTE[e‘ESOT |9‘s|2d5] (2.23)

10



-1
for all e > 0. Then, by setting ¢ = <1 4|5 +4|AZ|5 + 4 ||95H;2> we compute,
for all r € [0, T,

T T
EU giﬁs\zds] < 35ETU D)2 + |AZ|* + 9§]2ds} < Z.

T T

Going back to (2.23)) and applying the John-Nirenberg formula, see Theorem 2.2 in [14],
we obtain

E[eb&? %st] < Crveys (2.24)
which proves (2.15)).
2.b Applying Itd’s formula to v.|AY.|2, on [t,T], we compute,
T T T
Y| AY; [ + J vs|AZs2ds + J |AY, 2, =2f vsAYs f(s,Ys, Zs)ds (2.25)
t t t

T T
— QJ vsAY H (s,Y;)Psds — QJ Vs AYsAZ dW.
¢ t

Let us observe that the local martingale So v AY;AZ:dW, is a true martingale. Indeed,
we compute, using Burkholder-Davis-Gundy inequality,

E[ sup | | mAYAZ AW

T
<CE[(J |%AYtAZt|2dt)é]
sef0,1] Jo

0

1
2

T
< Cre eE| I ( | |Azt12dt)
0

where we used (2.19) for the last inequality. Using Holder inequality, denoting ¢ the
conjugate exponent of p, we get

1 T % q
S CK7057PH|’7T|p]pE[ (j IAZtI2dt> ] :
0

From the energy inequality, c.f. (VI.109.7) in [5], we have that

E| sup || %AY;AZ dWy
sef0,7] Jo

[4]

T 2
E U |AZt|2dt> < Cylaz)'d, .
0

We thus deduce

El sup | | %AV AZdW|| < .
se(0,7] Jo

11



Since 7 is non-decreasing, we then compute, using (2.25)), (2.12) and the Lipschitz
continuity of f,

T T
]EtU 75|AZS|2ds} < Et[ J %Esds} <0, (2.26)
t t

where we set = := C ¢ (1+R) recalling that AY is bounded by (2.19) and 9 is defined
in step 2.a. Using (2.24) we compute

E[ebf; |Es|d3] < Croet s (2.27)

for all b > 0.
2.c We set A = (1 + €)3 with € > 0 such that (1 + €)28 < A¢, recalling Definition
Now we define

1
0:=1+6|Z25+ 1+ )=
We observe that Et[StT 'ysl@s|2ds] < oo: this follows from (2.26)) and the fact that
T
EtU 75|Z§|2ds] <.
¢
This last inequality is simply obtained by applying It6’s formula to v|)¢|? which yields

T
E[ jo %|z§|2ds] < Hyrlél?] < Il go 1612

From the definition of ©, we have that, for ¢t < T,

T T 1 T
EtU %@st] ><1+6)EtU vs|2§|2ds]+(1+)EtU vslAst’ds}
t t € ‘

where we used (2.26)). Then it follows from Young’s inequality,

T T
Et{J %|Zs|2d5] < CEt[J %@Sds] < w0,
t ¢

which proves (2.16). Finally, we compute using Holder’s inequality,

g <O

1 €
E[e<1+e)5gg @Sds] < CIE[e(Hf)QBSoT |g§|2ds] T+e }E[e(l-i,-%)?BSg |ES|ds:| Tre

and using the fact that £ € Tg and (2.27)), we obtain (2.17) with A = (1 + ¢€)5. O

Let us remark the following result, that will be useful in the next section.

Corollary 2.1. Assume that (SB) holds. Let (Y, Z,®) € /% x % x 3 be a solution
to (2.11)) with condition (2.12)) in force and assume moreover that & € L*(Fr) then Y
is bounded, namely for some c := c(K, 0%, |€| g« ), we have

sup Y| <c.
te[0,T]

Proof. We observe that |V < ||¢] »« and then conclude using (2-19). m
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2.3 A stability result

In this section, we prove a key estimate for the difference of two solutions of the gener-
alised BSDE (2.11) satisfying (2.12)). For i € {1,2}, we denote (‘Y,Z,'®) the solutions
associated to parameters (£,"f) and we furthermore assume that

T
P € dp(P('Y)) dP®dt —a.e. and f |i<I>t|1{¢YteD}dt =0. (2.28)
0

Remark 2.5. The above assumption allows us to cover both cases of equation (1.1) and
equation (|1.2)).

We now define 6Y =Y —2Y 672 =17 - 27, 6V = W — 2, where ‘¥ = H(-,'Y)'®
and 6f = f(-,1Y,'2) — 2f(-,%Y,2Z). We have the following key result for our work.

Proposition 2.2. Assume that (SB) holds. There exist two increasing functions B(-)
and A(+) from (0,00) to (0,00), such that for all ¢ belonging to T()s selling

T, = 2§y B(A){OL+07+6]}ds

where ©F := 10| + |20, ©F := |'Z — Z'¢| + 10|, and O is given by Proposition (z'i)
applied to the BSDE with parameters (%,'f), we have,

i) H|ITr|P] < ¢ for some p:=p(A) > 1 and ¢ := c(K,A,Jlg,azg);

ii) for some ¢ := (K, A, ot 025), and for all t < T,

T T
|6Y;|? +EtU |5ZS|2ds] <c’Et[FT5§|2 +J Lol = 2f)(s,1Ys,12,) ds (2.29)
t t

T
+ f T, (IBCY.) = 2Ya] + B(YL) — 1Y) (0] + [20]) d

Proof. In this proof, we denote A = (a”’) = (H~1)" and the following simplified

notation will be used aéj =a"(t,'Y;), 0taij = 0,V (t,1Y}), %aij = 0,a" (t,1Y;), 0§ya? =

8§yaij (t,1Y;) and f; = f(¢,'Y;,'Z;). For the reader’s convenience, we shall also denote
o:=0%v ot in the proof below.

1. We first show the integrability property of I'. We first recall that from Proposition
for all b > 0, we have

E[ebgg{|e§|+\e£ \}ds] < Ckop . (2.30)

Setting p := p(A) > 1 such that p?B(A) < A¢, recall Definition we obtain using
Holder inequality,

H[Tr ] < CAE[ep%(A) S()T{9i+9§>+@§}ds]

1
< Cixa GE[ep2%(A) S @;ds] P

< CK,A,O’ y

13
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where we used (2.30) and Proposition (i) .
2.a To obtain the stability result, we first expand the product (FﬁYjA(t, Y1)oY:)o<t<T-

Applying It0’s formula, we compute, for 1 < ¢,j < d,

d[Tsa,/ Y Y] |/Ts (2.31)
= 5YjoY] (a;'jat(A) + ata?) dt =: (&) dt

+ 0Y Y} (a?%(A)@,} + 5Tr[a;,a? 'z, 7] ]) dt =: (€7)"at

+{af (=0Y/0f] — V75 £ + B(M)OfY;6Y]) — d,a fioY 0V Yt —: (])Vdt (2.32)

k k
+{af > 6ZmzZ]™ + . dya Zim (Y6 ZI™ + 6Y 2™t = (£07)dt  (2.33)
m=1 m=1

+ {a (OY 67 + 6Y,6Z1) + 6Y,6Y{ 0,0 2,y dW; =: AM? (2.34)
+ {0 (Y00 + 0Y{601) + (0,0 0, + B(AN)a OP)OY 6V Yt =: (EF)7dt . (2.35)

We now study each term separately.
2.b We start by the reflection terms in ([2.35)). We first observe that

D1 ER)T = At 'Y)8Ys 00+ Y dya) Wy + B(A)OFSY; - A(t,Y;)6Y; .

1<i,j<d 1<i,j<d
Recalling (2.6) and (2.7), we compute

- A
D1 (ERT = At 'Y)8Y; - 60, + (%(L)@? — CA|1<I>t|> 16Y;)? . (2.36)
1<i,j<d

For the first term in the right hand side of (2.36)), we compute

A(t,1Y)0Y; - 60, = A(t,1Y)0Y; - W, — A(t,2Y;)6Y; - A, — {A(t,'Y;) — A(t,2Y;)}0Y; - A,

(2.37)
We now observe that,
A(t,1Y)oY, - W, = 6Y; - AT(t, 1Y) ', = 6Y; - 9,
> (1Y, = B(Y) + PV - Y1) -y
> = (IBCY) = | + [BCY:) = *Vi]) ' (2.38)
where we used and the convexity property of D. Similarly, we compute
—A(LY)0Y, A = — (B — 'Yl + [BCY) - Vi) ). (2.39)

For the last term in the right-hand side of (2.37)), we get, using the Lipschitz property
of A that

[A(L 1Y) — A(t,2Y2)}0Y; - 20, > —Ca |6V, . (2.40)

14



Combining ([2.38))-(2.39)-(2.40]) with (2.36]), we obtain, for B(A) large enough,

T T
By f Lo ), (E8)Yds >—CAEtU Fs(I‘B(QYs)—QEH\‘B(le)—le\)(\l‘I’s\+!2<I>s!)d8]-
t t

I<ij<d

(2.41)
2.c Using Young’s inequality, we compute, recalling (2.6)) and ,

- 1
O (E9) = 07 — CuloYilP'Z (2.42)

1<i,j<d

The terms £ in (2.32) can be lower bounded, using Young’s inequality and (2.6, by

S (€193 - 710z + (Pp0] - Cuonalt 1681+ 12, - 2 ) ovi?
1<i,j<d 3
= Cal('f =20t Y5, 'Z) P (2.43)

recalling (2.19). We also have that

g B(A . A(A
S €= (Pet - ezl vk and (€)= (M- o) vk
1<ij<d 1<i,j<d

(2.44)

2.d We now consider the local martingale M, defined by

M, = Z MY with MY :=f IsdMY |
1<i,j<d 0
and are going to show that it is in fact a true martingale. We study only the second

term in (2.34), the first term is treated similarly with 67 in place of 'Z. Applying
Burkholder-Davis-Gundy inequality, we compute, using ([2.7)),

f T,0Y,6Y/ 0,0 ' Z,dW,

T
< ([ THoviPzLant|
0 0

T q
L ( | |1zt|2dt> ]
te[0,T] 0

where we used Cauchy-Schwarz inequality, the energy inequality, with the fact that
sup, [§Y;| is bounded in any .#"(Fr) and 1Z € %2. From step 1. we deduce then that

E[ sup
te[0,T]

Q=

1
< CaHTr ] E

1
< Ca BT ]7
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the supremum of the local martingale term is integrable and it is thus a martingale.
3. Combining the results from steps 2.a - 2.c, we get, for B(A) and A(A) large enough,

T

[0, - A(t, Y)Y + EtU r56iL|5ZS|2ds + M, — MT]
t

<

X

E{T 7€ - A(T, Yr)oE] +

T
O xeoEr [ [ i =20 v z0R + (9ev) -2+ Y - Y + |2<1>s|>}ds].

Step 2.d allows us to claim that EJM; — Mp] = 0 in the previous inequality. Moreover,
we have, recalling (2.6) and I" > 1,

|0Y2|? < LT48Y; - A(t, Y2)0Y; and BTrd€ - A(T, Yr)d¢] < LE{Tr|8¢[*]
which combined with the previous inequality concludes the proof of (2.29)). O

Remark 2.6. The dependence upon A is a key fact that will restrain us to extend
straightforwardly to rougher coefficients our main exristence and uniqueness results in
the non-Markovian case, recall assumption (SB). This is a quite important limitation:
indeed, when we consider classical applications of obliquely reflected BSDEs to optimal
switching problems we have to deal with convex polytopes domains D which are corner
domains. Thus, in this context H is not smooth enough to apply our results. It jus-
tifies Section [4] where the Markovian framework is studied under a weaker regularity
assumption on H thanks to a different approach.

2.4 Some interesting facts about the class %3
We first make the following observation.

Proposition 2.3. Let ¢ € L%(Fr) satisfying (SB)(i). If we have, for some 3 > 0,
1

dge (28, %) < —=, (2.45)
VB
then £ € 3.
_ 1

Proof. We can find V € %w,2 s.t. HZ§ — V||%2 = VB’ for some n > 0 small

n
enough. We now set \ := (115) [ and we compute, using Young’s inequality,

3

3
2P < (1 2 VP4 (4 VP
This leads, using Holder inequality, to

_1_
E[eASOT|Zf|2dt] < CE[B(l—&-g)Q)\SOT\Zf—Vtht] 1+3

16



where we used the fact that V e . Since H 1+ 12 \/X(Z§ — V)‘%2 = 11177 <1, we

can apply the John-Nirenberg inequality, see Theorem 2.2 in [14], to obtain
B+ 128Vl ] < oo

which concludes the proof. ]

Proposition only suggests a sufficient condition. In the case § = 40, for which
condition should read d2(Z¢, #*) = 0, it is known that the condition is not
necessary. We refer the interested reader to the paper [23], where this question is treated
with more details.

The next result shows that a class of path-dependent function of some smooth pro-
cesses are naturally contained in Tz and actually for all 8 > 0. This class is quite
important for applications.

Proposition 2.4. Let X € .#? such that for all t,s < T, the Malliavin deriva-
tives of X, denoted DyX, is well defined and satisfies ||sup; , [E{D;X] |H$oo < 0.
Let g : C°([0,T],R") — R? be a uniformly continuous function, then denoting & =

g ((Xs)se[o,T]); we have that Z¢ € 57

1.a We first start by considering a sequence (gyn) of N-Lipschitz regularisation of
9=1(9"---,9%) given by

g (z) = ueCO(i[él,g’],Rn){gi(u) + N|u—x|e}, forallzec’0,T],R"), 1<i<n.

Let us observe that gy is finite for IV large enough due to the linear growth of g. Then
we have, for all z € C°([0,T],R") and 1 < i < n,
L = ‘ = inf i — Wi — + Nlu —
9'(x) = gy () ueco(%gT]Rn){g (#) = wgi(lu = zfe) + Nlu — 2|0}
> g'(x) + inf Nlu|o —
§@)+ it (Nl = )

where wgi is a concave modulus of continuity for the uniformly continuous component

g' of g. Thus we get
d

lgn — gloo < CZ sup {wyi(Julo) = Nluleo} := (V). (2.46)
i=1 ueCOo([0,T],R™)

Since wyi(h) = o(1) when i — 07 then C(N) = 0(1) when N — +c0.
L.b Defining Y} := Efgn(X.)] = gn(X St ZNdWy and applying It6’s formula
to D/N — y?P, we compute

T
YN — Y512+ EtU |zN — ZEth] =Ef|gn(X.) — g(X)[*] < e(N)?
t

17



recall (2.46]). From this, we deduce that for all € > 0, there exists N, s.t. forall N > N,

2. We now show that Z% introduced above, belongs to .. This fact combined with
proves the statement of the proposition.
Following Lemma 4.1 in [16] there exists a family IT = {7} of partitions of [0,T] and a
family of discrete functionals {gn } such that

(2.47)

e for each mell, with 7: 0 =ty < ... < t;, = T, we have that gy . € CI?O(Rd(mH)),
and satisfies

Z 0e,9n ()| < N, Ve ([0, T],R™), (2.48)

where gy (z) :== gy (z(t0), ..., x(tm)).
e for any x € C([0,T],R") it holds that

lim |9y (z) — gn(z)| = 0. (2.49)

|| =0

We naturally consider (Y™, ZN7) given by

T
YT B gy (X)] = gnon(X) — J ZVTaw,, 0<t<T.
t

2.a By the Clark-Ocone formula, we have that

2" = E{Dign«(X)]

= > Ou, g (X)E[D, X,] .

Now, using (2.48) and the assumption on (D;X,): <7, We obtain

<Cy. (2.50)

2.b Combining (2.49) and the fact that [gnx (X)—gn»(X)| < On (1+sup,epo 7y | X¢]) € L2,
we can use the dominated convergence theorem to get

lim E|gn (X) — gn(X)[*] =0,

|| =0

which leads to

T
lim EU |1ZN — ZN7”|2dt] =0
0

|| =0
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Up to a subsequence, we have ZV7™ — ZN dP ® dt-a.e. and, moreover, |ZV7™| < Cy;,
recall (2.50). We thus obtain for (a version of) the limit process
T
J |ZN2dt < TC%, P—as. (2.51)
0

which concludes the proof of this step.
3. Finally, we remark that Z¢ € %2 since Z2¢ — ZN € #? and ZN € #* < B%. We

conclude the proof by using ([2.47]). O

We obtain the following direct corollary, which gives a sufficient condition on models
in a path-dependent framework to check the admissibility of the terminal condition.

Corollary 2.2. Let X be solution of the Lipschitz SDE

t t
Xi=xz+ j b(Xs)ds + J o(Xs)dWs,
0 0
where o and b are Lipschitz continuous functions and o is bounded.
Set £ := g((Xs)e[o,r]) where g is a uniformly continuous function on C([0,T],R%) with
linear growth, then & belongs to g, for all 3 > 0. Moreover, ifEe L%, then € + ¢

~—2

belongs to Tz for all B < Hﬁsz

Proof. When o and b are smooth enough, it is well known, see e.g. [I§], that X is
Malliavin differentiable and, for all 1 < i < k, (D X,) se[t,7] 18 solution of the linear SDE
given by

DiX, = o'(X;) + J Vb(X,)DiX,dr + f Y Vol (X)) DX, dW], t<s<T.
t t i1

Then, we easily get that |E:[D;X,]| < ef*T M with K, the Lipschitz constant of b and
M a bound of . Thus we can apply Proposition to get the first part of the result.
When coefficients are not smooth enough, a standard approximation gives us the result,
pointing out the fact that |sup, . [E{D;X,]|| oo can be uniformly bounded with respect
to the approximation. For the second part of the corollary, we just have to remark that

A (2576, %) < H35+5 - Z€HW +dge (28, %) = Hzf

22

Moreover, applying It6’s formula to |yf

2, we compute

|79 <l
B2

R

;

which implies i
oz 2|,

Thus, we just have to apply Proposition 2.3] to conclude. O
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3 Existence and uniqueness in a regular setting

In this section, we obtain an existence and uniqueness result in a non Markovian setting,
working under assumption (SB) and considering terminal condition in the class T3, for
some 8 > 0. This B, as shown in the previous section depends dramatically on the
smoothness of the coefficients. Our proof is done in two main steps. In the first step,
we restrict to the case of a bounded terminal condition. We study the wellposedness of
the penalised equation, and prove their convergence to an obliquely reflected BSDE. In
a second step, we extend our result to all terminal condition in the class <g.

3.1 Bounded terminal condition

We first obtain some results on the penalised BSDE that will be used later in this section
and also in Section [4] in the Markovian case. We thus essentially work here under the
assumption (A).

We start with the following lemma that verifies the well-posedness of equation (|1.2))
under some classical conditions.

Lemma 3.1. We assume that (A) is in force and that f and H are Lipschitz continuous
with respect to (y,z). Then, for all n € N there ezists a unique solution to (1.2)) in
F?x .

Proof. Since D is convex, pM is convex and nM-Lipschitz continuous, recall (I.3).
Indeed, denoting Dy := {y € R%|d(y, D) < M}, we have that

142 .
#n () { nMd(h,D) — M2 if h¢ Dy (3.1)
and
0 if yeD
M _ d D y=P(y) if D ’D
Ve (y) = § ndly, )Jy_ Gy if yeDu\D | (3.2)
y—Py) :

nM 1= if y¢Du

Finally H and VM are two Lipschitz bounded functions which proves that the penalised
BSDE (|1.2) has a Lipschitz driver: the classical result of [I9] then applies to get the
existence and uniqueness result. O

Lemma 3.2. Assume that (A) holds and that there exists a solution to (1.2)) in .72 x
A2, Then, (Y™, 2", VoM(Y™)) satisfies Condition [2.12) for some K > 0 and for

some ¢ > 0 we have

T T
sup Al ()] + 8 [ 1wl Pas| < g [leP + [ labas]. a3
te[0,T] 0 0
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Importantly, K and ¢ do not depend on n, nor M.
Moreover, if (SB) holds, then, there exists ¢’ := c’(ag), which does not depend on n nor
M, such that

n n 2
sup on (V") + [V (Y™ < ¢ (3.4)

te[0,T]

Proof. Since ¢ is a C'! convex function, we have the following inequality (see Lemma
2.38 in [20]): for s € [t,T1,

T
ol (Y + | VR (V) - H(w, Yy, Zg) V! (Vi) du (3.5)

T
<M+ [ VM) f(u Y Zm)du j VM (YD) - Z0dW,,
S

S

and we recall that ¢ (&) = 0. We observe, using (2.2)) that
Vo (Vo) - H(u, Y, Z3)V o' (V) = 0V (V) (3.6)

u u u

and combining Cauchy-Schwarz inequality with Young’s inequality

T ,'7 T 2 T
[ verom swyrznans {1l ompan 2 [ iz, zPa.
S S ”7 S
From this, we deduce
T 4 T
oM () +Et[ [ 1w (Yu">|2du] < nEt[ | |f<u,Yu",Zg>|2du] RNERS
t t

which proves (2.12)) for (Y™, Z™, ®"). This allows then to invoke Lemma to obtain
(3.3)) under (A). Under (SB), (3.7)) allows also to conclude recalling that f is Lipschitz
continuous, #¢ € %2 and (2.19). O

We now prove our first existence result for the obliquely reflected BSDE

T T T
Y; =§+J f(s,YS,ZS)dS*j H(S,YS)Q)sdsff Z, dW,, 0<t<T,
t t t
. - (3.8)
YieD, &€ dp(Vr), f Livigopy|®¢|dt = 0.
0

Proposition 3.1. Assume that (SB) holds and that & € £ n Tgny. Then, there
exists a solution in /% x % x A to the obliquely reflected BSDE ({3.5)).

Proof. To obtain the existence result, we consider a sequence of penalised BSDEs

given by equation (|1.2)) for which we have existence and uniqueness from Lemma
In the definition of M recall (1.3)), we set M = 2c where c is given in Corollary In

particular, we observe that for this choice of M, for 0 <t < T,

1 1
O == V! (V") = n (V" = B(¥") and —pn (V") = SIBOF) =Y, (39)
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recall (3.1)) and (3.2). We will use this fact later on.
1.a. We now prove that (Y™, Z") is a Cauchy sequence in .#? x J#2. Indeed, let m = 0
and n > 0, thanks to Lemma [3.2] we can apply Proposition to obtain

sup B[Y;" =Y/ + 2" — 273 (3.10)
te[0,T]

T
< CAE[ fo I (YD) — Y7 + BV — YI) (127 + |97]) ds ] = Amm,

Let us notice that, from Proposition [2.2] again, there exist p > 1 and a constant C' such
that

Hrp" Pl < C, (3.11)

where, importantly, p and C' do not depend on (n, m). Applying Itd’s formula to [V —
Y™|% on [0,T], we compute, using usual arguments,

Using Burkholder-Davis-Gundy inequality and Young’s inequality, we obtain

T
I -y < cg| [ - vl gt + oy

t
f (YI Y (20— 27w,

+ CIE[ sup
0

te[0,T]

Y™ = Y™%2 < CEUOT Y =Y (7] + [@F) dt} +C 12" = Z" 5 -
Applying Cauchy-Schwarz inequality, and using Lemma [3.2] we get
Y =Y < C (V" = Y™y + 127" = 2732 - (3.12)
Combining the previous inequality with , we have

V" =Y™%0 + 2" — 272 < C (Anm + \/Anm) - (3.13)

1.b We now study the A, ,, term. We first observe, recalling Lemma and (3.9)),
T
sup 907 - v7l| By [ arias|
t Rz 0

C T
< —E[T™ O |ds| .
W[T J, S]

Applying Holder inequality, denoting ¢ the conjugate exponent of p introduced in (3.11)),
we deduce from the previous inequality

T C T g
B [ o) - velerias| < WE[( [ 1erzas) ]

22

T
EUO IR — Yt"wwds] <




Then, combining the energy inequality with (3.4)), we conclude

rrT
C
TPV — Y7 ds | < — . 14
E_L o IBO) = Y|P \dS} Tn (3.14)

Similarly we obtain,

T
E\L r?mmxyrw——xﬁn@ﬁdg|<

<

vm

and

%fﬂWWMWAw+mmw—WWQmﬁ<c(l+1).
0 vt

Combining the previous inequalities with (3.13)), we compute that

Y=Y + 12" = 27 < C (n7F 4 m7H)

which proves that (Y, Z"),, is a Cauchy sequence in .2 x 2. We denote (Y, Z) its
limit.

2. We now prove that (Y, Z) is solution to an obliquely reflected BSDE, namely we pass
to the limit in . Let us first observe that, passing to the limit in yields that
Y € D as expected.

2.a We first study the reflecting term. Since, by Lemma [3.2

T
EU'w%ﬁ?W@]<a
0

we have, up to a subsequence, the following weak L2([0,T] x 2)-convergence:
Voo (Y") — &, when n — +o0.

Let (Vi) e[o,r] be a continuous adapted process valued in D. From the convexity property
of D and the fact that Ve, (Y™) = n(Y"™ —P(Y7")), recall (3.9), we have

T
| v vV <o
0

By strong convergence of (Y"),>0 to Y, weak convergence of (V,(Y""))n>0 and the
uniform L2-bound on V¢, (Y"), recall Lemma we obtain

T
EU (Y; — Vt)“btdtu] <0,
0

for all A € Fp. This leads to Sg(Yt — V)T ®,dt < 0. Using Lemma 2.1 in [8] w-wise, we
obtain that

T

P e a(p(Y) and f 1{Yt¢aD}‘q)t‘dt =0 s
0
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which fully characterise ®.

2.b Now we want to show that (Y, Z, ®) is solution of (3.8). By strong convergence

of (Y™, Z™) to (Y, Z) and the Lipschitz-continuity of f, we have

A2 ¢ 22 [

fe YY" z2M = f(-,Y,Z) and Z}AWs — | Z,dWs

0 0
for all t < T. Moreover, ®* — ® in L?([0,T] x ), when n — +o0. Using Mazur’s
Lemma, we know that there exists a convex combination of the above converging strongly

in L2([0,T] x ), namely

NP
=y AT o,
r=p
where A > 0 for all pe N and p < r < N, and ZNP A = 1. Let us observe that by
strong convergence, the following comblnatlon
Np
(Y, PZ) = > N(YT, Z7)
r=p

still converges to (Y, Z) in .2 x 22 and, by strong convergence,

Np

a2 ! 22 [
DINF(YT,ZT) Z f(-Y, Z) and J PZ AW, =5 | ZdW, ,t < T
r=p 0 0
Moreover, we remark that
N, Ny
DINH(, YN = Y N[H(,Y") - H(,Y)|®" + H(,Y)".
r=p r=p

Using the Lipschitz property of H and the uniform L2-bound on V¢, (Y"), the first
term in the right hand side of the previous equation tends to zero in 2. Then we get

Np e
DINH(L, YT Z H(,Y)®.

T=p

Finally, we just have to pass to the limit into

7 No T Np
VY, =¢ +f DINLf(s, Y], Z0)ds —J PZ AW, — J Z AP H (s, Y])®ds
t rep t

to conclude the proof of the theorem.
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3.2 General case

Theorem 3.1. Assume that (SB) holds and £ € Toz(p). There exists a unique solution
(Y, Z,®) e .72 x B? x % to (1.1).

Before proving our main result, we consider the following lemma which is a key
result for the study of Obliquely Reflected BSDEs, as it proves, among other things,
the structural condition . It is the counterpart of Lemma introduced for the
penalised BSDE.

Lemma 3.3. Assume that (SB) holds. Let (Y,Z,®) € .72 x 2 x #? be a solution
to the Obliquely Reflected BSDE (1.1)). Then, the structural condition (2.12]) holds true
for (Y, Z,®) for some K > 0. Moreover, there exists c := c(c%) such that

|0 <c. (3.15)

Proof. Applying Itd’s formula to U; := ¢(Y;), recall assumption (SB), we compute
that dUt = atdt + btth with

1
a := 0p(Y){—f(t,Ys, Zy) + H(t,Y;)®;} + 5Tr[a%m)ztzg*‘] and by := 0p(V3) Z;.
Using It6-Tanaka formula, we obtain
d[—Ut]+ = _at]-{Ut<O}dt — btl{Ut<0}th + dLg

where LY is the local time at 0 of the semi-martingale U. Taking the difference of the
two previous equations, we obtain

0= atl{Ut:O}dt + btl{Ut:O}th + dLg

which leads to a1y, —pydt < 0. We then deduce

1
Bt < ~[0(%) /(1. Y5 Z)] ", (3.16)
recall (2.9) and Remark i). From this, we deduce that a fortior: (2.12)) holds true.
O

We should notice that in the proof of the above lemma, we obtain a stronger result than
the structural condition (2.12)). Indeed, we are able to control in (3.16)) the reflecting
process without the conditional expectation appearing in ([2.12)).

We now turn to the proof of our main result for this section.

Proof of Theorem [3.1]

1. We first prove uniqueness of the solution. Let ('Y,'Z, '®) and (?Y,%Z,%®) be two
solutions of in .72 x A% x #%. We first observe that both solutions satisfies
by application of Lemma which allows us to invoke Proposition Moreover, both
solutions satisfy by definition. Then, a straightforward application of Proposition
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concludes the proof of this step, noticing that all the terms in the right hand side of

(2.29) are null.

2. We now turn to the existence question.
2.a We first approximate £ by a sequence of bounded random variables ({x)n>1. Let
(Tn)n=1 be the sequence of stopping time defined by

TN:=inf{t>0\|yf|>N}/\T7

and we set £y 1= yEN. Importantly, we observe that £y satisfies (SB)(i) and it belongs
also to the class Ty y), indeed Sg |25V [2ds < S;‘JF |Z5|2ds. For later use, let us also remark
that

N

¢ <ot forall N>1, (3.17)

recall (2.8)). Moreover, since

En > &P —a.s. and [y — & <2 sup |y§|,
te[0,T]

we have that by the dominated convergence theorem, recall Remark (i), &y — € in
£, for any q = 1.

2.b Applying Proposition we introduce a sequence of Obliquely RBSDEs, (Y, ZNV, &)
with terminal condition ¢x. We now show that (Y, Z%) is a Cauchy sequence in
F? x H?. First, we apply the stability estimate given in Proposition for N,P > 1,
we have

sup BV =72 + |28 = 27, < cHTY N — €7
te[0,T

]
with T'V-F such that for some p > 1 and C > 0,
E[\P?’PVD] <C,

where importantly p and C do not depend on (N, P), recall (3.17). Using Holder
inequality, we then obtain

sup BV~ ¥ P+ |2V = 27 < OV — €7, -
te[0,T]

Following classical arguments, see Step 1.a in the proof of Proposition 3.1} we compute
also

T
YN v, <0EU YN = v (|<I>£V|+\<I>fl)dt] +C|ZN =27,
0

Applying Cauchy-Schwarz inequality, and combining Lemma and (3.17)), we get

N =PI < 0 (1Y =P+ |25 - 27,
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Eventually, we obtain

HYN o YP

ot 12V =27 < O (| = €7 oy + | =€) -

From the conclusion of Step 1. we deduce the Cauchy property of the sequence (YN, ZV)
and we denote (Y, Z) its limit. The proofis then concluded following the same arguments
as in step 2 of Proposition once observed that by Lemma |3.3

T
EU |c1>§V|2ds] <C,
0

where again C does not depend on N from (3.17)). O

4 A general existence result in the Markovian framework

In this section, we introduce a Markovian framework: for all (¢,x) € [0,T] x R?, we
denote (Xﬁ’x)se[o,T] the solution of the SDE

dXs = b(s, X5)ds + o(s, Xs)dWs, se[t,T], (4.1)
Xs =z, se]0,t],
and we consider the following Markovian reflected BSDE:

T

T T
Y, = g(X%%) +f f(s, X% Y, Z,)ds — f Z. AW, —J H(s, X% Y,, Z,)®ds,
t t t

T
}/t € 25, (Dt € aQO(}/t), 0<t< T, J 1{Yt¢6D}‘(I)t’dt =0.
0
(4.2)

The main goal of this section is to prove an existence result for the above reflected BSDE
when H is only continuous, compare with assumption (SB). We also discuss the case
of discontinuous H and the difficulty arising for uniqueness in this setting.
4.1 Continuous oblique direction of reflection
We now introduce the main setting for this part. The set of assumption below echoes
assumption (A) introduced in Section but in a Markovian setting.
Assumption (AM)

i) b:[0,T] xRY - R and o : [0,T] x R? — R7*¥ are measurable functions satisfying
linear growth condition and uniform Lipschitz condition with respect to the space
variable namely

[b(t, )| + [o(t, 2)| < L(1 + [x]) and [b(t, z) = b(t, y)| + |o(t, 2) — o(t,y)| < Lz —yl,

for some L > 0 and all (¢,z,y) € [0,T] x R? x RY.
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ii) g : R?” - R? is a measurable function and there exists p € R* such that for any
x e RY,
lg(x)] < L1 + [z[7).

iii) f:[0,7] x R? x R? x R¥™* — R? is a measurable function satisfying: there exists
p € RY such that, for any (¢,z,y,2) € [0,T] x R? x R? x R™*¥ we have

|f(t 2y, 2)] < L1+ [z + [y] + |z]),
and, for all (t,z) € [0,T] x RY, f(t,x,.,.) is continuous on R? x R¥*¥,

iv) H:[0,T] x R? x R? x R¥™**¥ — R¥*4 ig a measurable function. There exists 7 > 0
such that, for all (¢, z,y, z) € [0,T] x R? x R% x R4*F

H(ta 5137‘3(1/), Z)U U =1, Vv e n(gp(y))’ (4'3)
and |H(t,z,B(y),z)| < L.

v) Let X = {u(t,z;s,dy),z € R? and 0 < t < s < T} be the family of laws of X** on
R, i.e., the measures such that YA € B(R?), u(t,z;s, A) = P(X2" € A). For any
t € [0,T), for any u(0,a;t,dy)-almost every x € R, and any d €]0,7 — t], there
exists an application ¢, : [t,T] x R? — R* such that:
(a) Yk =1, ¢z € L2([t +6,T] x [k, k]% (0, a; 5, dy)ds),
(b) p(t,@;s,dy)ds = ¢ra(s,y)u(0,a;s,dy)ds on [t + 6, T] x RY.

vi) For all (¢t,z) € [0,7] x RY, H(t,z,.,.) is continuous on R? x D.

Remark 4.1. i) We observe that H(t,X,-) and f(t,X,-) satisfy assumption (A).
Thus we will use in the sequel the a priori estimates obtained in Section [2.4

i) Remark applies for H which is continuous in this context.

iii) The £*-domination condition (AM) (v) was initially introduced in [10]. We refer
to [10, [§)] for examples of assumptions on coefficients of the SDE (4.1)) under which
(AM) (v) is true.

Theorem 4.1. Assume (AM). Then, there exists a solution (Y,Z) € .72 x H#? to
. Moreover, the following Markovian representation holds true:
There exist u : [0,T] x RY — R? and v : [0,T] x RY — R¥>* measurable functions such
that

Y = u(t, X)) and  Z; = v(t, X)),

and, for some ¢ >0, for all (t,z) € [0,T] x RY,
u(t, z)| < c(1 + [z[").

By choosing properly the function H we can obtain the following corollary.

28



Corollary 4.1. Let us consider the following obliquely reflected Markovian BSDE

% T T T
Yim g0 + [ S X0V Z)ds [ Ziawis [ wads 0<i<T)
t t t
<Kf>mazx{}/f—c£j}, 0<t<T, el
je
T ' ‘
J [Yf — max {Y] — cfﬂ}] wldt = 0, let,
0 JET\{4}

(4.4)
where T := {1,...,d} and the switching costs (¢); jer satisfy the following structure
condition B

=0, for1<i<d; (4.5)
{cV 40—y >0, for1<i,j<duwithi#j,j#l .

We assume that assumption (AM) is in force. Then there exists a solution (Y, Z, ®) €
I x A x A to . Moreover the following Markovian representation holds true:
There exist two measurable functions u : [0,T] x R? — R% and v : [0,T] x R? — RI*k
such that

Y, = u(t, X)) and  Zp = v(t, X)),

and, for some ¢ > 0, for all (t,z) € [0,T] x RY,
lu(t, z)| < (1 + |x|P).

Remark 4.2. The main novelty here is the dependence of the generator on the whole z
(as in the concomitant article [J)]) which extend the result of [13,[12, 1] and the possibility
to consider negative switching costs. We refer to [177] and references inside for a recent
work dealing with switching problems with signed switching costs. Our result only cover
the case of constant switching costs due to a priori estimates obtained previously in the
framework of a deterministic domain D. Nevertheless our approach might be adapted
to treat random domains and then tackle the problem of switched BSDFEs with random
signed switching costs.

Before giving the proof of Theorem [£.1]and Corollary we start by considering an
approximation of (#.2). Let  be an element of C®(R¥+4*k R*) with compact support
and satisfying

f 0(y, z)dydz = 1.
Rd+d><k
For all n e N and (t,7,y,2) € [0,T] x R? x R? x R¥>F e set
fultenyz) = [ 28l — )z - v)dudo
Rd+dxk
Holtoog,2) = [ 02H(t, .00y — ), (s —)dudv.
Rd+dxk

By classical convolution arguments functions (fy, )nen and (Hy, )nen satisfy following prop-
erties.
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Lemma 4.1. Assume (AM).

i) fn:[0,T] x RY x R x R>F — R and Hy, : [0,T] x RY x R? x Rk — RI*d gpe
measurable and uniformly Lipschitz functions with respect to (y, z).

i) |fa(t, @y, 2)| < L(L+ [P + [y| + [2]) and [Hn(t,2,y,2)| < L for all (t,z,y,2) €
[0,T] x R? x R? x RI¥K,

i) For all (t,z) € [0,T] x R? and K a compact subset of R x R¥*F

sup |fu(t,z,y,2) — f(t,x,y,2)| + sup |Hy(t,x,y,z)— H(t, x,y,z)] "R,
(y,2)ek (y,2)ek

For any n € N, we then consider the following BSDE
T
Y=g (X5) + [l X00, Y7, Z0)ds
t
T T
- f ngws_j Ho(s, X0, Y7, Z0Vion(Y2)ds, te[0,T]  (4.6)
t t
where ¢, is defined in (1.3) with M fixed to an arbitrary value. Note that, in this

section, for the reader’s convenience, we write simply ¢, instead of M.

Lemma 4.2. There exists a unique solution to (4.6)) in .72 x 2. Moreover, there is a
Markovian representation for this solution: for all n € N, there exist u, : [0,T] x R? —
R? and vy, : [0,T] x RY — R>** measurable functions satisfying

Y = up(t, X3 and Z7' = v, (t, X5%). (4.7)

Moreover, for all (t,x) € [0, T]xRY, (un(s, Xt™), v (s, X,f*”))se[t,T] is the unique solution
in .72 x 2 of the BSDE

T T
YR —g(X) + |l XEm v zpte e - [ zpteaw,
S

s

T
—J Hy(r, X5, Y0 7050 G o, (Y Ydr - s € [t, T (4.8)

Proof. We use the same arguments as in the proof of Lemma Since H,, and Vy,
are two Lipschitz bounded functions (with respect to y and z), the penalised BSDE
has a Lipschitz driver and the classical theory then applies to get the existence,
uniqueness and representation result. O

By applying Lemma [2.I] and Lemma [3.2] we obtain the following estimates for
(Yn,t,x’ Zn,t,x).

Proposition 4.1. For all (t,x) € [0,T] x R?, we have

T T
sup B[V 4 oo (Y00)] +E[ [ rzeepas+ | |Vgon<YsW>|2ds] <O+ [2) .
t t

t<s<T
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In particular, Proposition yields that, for some ¢ > 0,
lun(t, )| < ce(l+|zP), VneN, VY(t,z)el0,T]xRI

We now turn to the proof of the main result for this section.

Proof of Theorem [4.7]

The proof follows mainly from arguments in [I0]. Some extra work is required to identify
the reflecting process properly.

1. Define,

Fo(t,x) = fult, v, un(t, ), vn(t, ), Gu(t,z) = Hu(t, z, un(t, z), va(t, 2)) Ve (un(t, x)) ,
and
Sn =1y — Gy,

we compute

T T
J f |sn<s,y>|2n<o,a;s,dy>ds=EU |3n<s,X2’a>|2ds]
Ra JO 0

T

< E[ [ casixsepr e e +ize |wn<Y;”>|2>ds}
0

< C,

by using Proposition . Thus we get §, — § in L2([0, T] x R%; u(0, a; s, dx)ds), up to
a subsequence.

2. We now show that (uy (¢, z))nen is a Cauchy sequence in R for all ¢ € [0, 7] and
for 1(0,a;t,dz)-almost every x € R9. When ¢ = T the sequence is constant and the
result is obvious. When t < T, x € R? and 6 € (0,7 — t], we compute

T

on0:2) = (1 2)] = 5] [ (B X57) = s, X))

t+4
< E[f 1T (s, X57) — Sm(s,Xﬁ’xﬂds] =: Ay
t

T
+ E{f |§n(s, X;‘”) — Tm(s, Xz’“)|1{|X§,x|>n}ds} =: Ay
t+6

T
+’EU (Ba(e: Xo%) = Fms, X)) 1{X§'“”|<m}ds] s
t

+4é

For the first two terms, we easily get
1
1 o t,x t,xy|2 2 1
Ay <62 [§n(s, X%) — Fm(s, XJ7)|°ds| < C(1+ |z|P)oz
¢
1 T T % 1
A< On bl [ X071 B [ [l X07) = (o XEPas| < 0 1t
t+0 t+5
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where C' is a constant that does not depend on n nor m. For the third term, we have

T
Az = J f (gn(say) - 3m(3,y)) ]_{ly'gﬁ}lu(t’x; S,dy)ds
Ra Jt+6

T
f f (&n(5:9) — Fm(5: 1)) Ly <y Sr.a(5, )00, a3 5, dy)ds
Ra Jt+4d

for 11(0, a; s, dz)-almost every = € R, where we used the L2-domination assumption. By
weak convergence, As — 0 when n,m — oo. Thus, by taking 6 — 0 and Kk — +00 we
show that for all ¢ € [0, T] and for u(0,a;t, dx)-almost every x € R, (un(t,x))nen is a
Cauchy sequence. So, there exists a Borelian application u : [0,7'] x R? — R? such that
for all t € [0,T], for (0, a;t,dx)-almost every x € RY,

u(t,x) = lrng)l Up(t, x). (4.9)

We straightforwardly get, for all ¢ € [0, 7],
VP = (6, X2 — u(t, X*) = Y,,  as.

and , observing that |Y;"| < C(1 + | X*P), we obtain via the dominated convergence
theorem, Y;* — Y; in L%([0,T] x Q, dt ® dP).
3. We can easily prove that the process Y lives in the convex set D. Indeed, we

have, recalling (3.1)),

sup E[p1(Y2)] < sup E[lp1(Ya) — o1 (V)] + = sup E [ (V)]

0<s<T 0<s<T N o<s<T
C n—+0o0
<M sup E[)Y, - Y]+ = "=,
0<s<T n

where we used Proposition the fact that ¢; is a M-Lipschitz function and the
convergence of (Y™),en. Then, for all s € [0,T], d(Ys,D) = 0 a.s. and so Ys € D as.

4. We now show that (Z™),, = ((v,(t, X?’a))te[o,:r])n is a Cauchy sequence in L2([0,T] x
Q,dt ® dP). For n,m > 1, we compute, applying [td’s formula,

0

T T
g [ 122 - zepas| < 28] [ - v (5l X0~ e X0
0

T 3
<crl [ e -vrpar|
0

which goes to 0 as n,m — c©. We denote by Z the limit. From now on, we work with
the progressively measurable version of (Y, 7).
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5.a In the last step we have to prove that (Y, Z) is a solution to BSDE (4.2). We start
by studying the convergence of the generator. Firstly, we compute, for all x > 0,

T
EU s, X007, Z0) — f(s, X0 Y, zs>\ds}
0

T
<EU | fuls, XO Y], Z0) — f(S,XS’a,K",Z?)Hust+Zg|<n}d8] =: By
0

T

+ E[L ‘fn(sanaa Y;n7 Z;L) - f(sana?Y:gna Z;’L)’]-{YS"|+|Z§L>H}dS:| =: By
T

+EU |f(s, X2 Y, Z0) —f(s,XQﬂ,YS,ZS)\ds} =: Bs.
0

Since f and f,, have a linear growth that does not depend on n, and (Y, Z") is uniformly
bounded in L([0,T] x Q,dt ® dP), we get, by using Markov inequality,

C
32 <—.
K

Moreover, we also get

T 0,a 0,a 9 12 T
X Yr Z7) — X Y. Z
[ Rt S e B, EU <1+|Ys"!+|2?|>2d5}
0 (1 +| s |+| s |) 0

1/2
Bs <E

and thus, the dominated convergence theorem yields that Bs converges to 0 as n — +c0.
We now study the first term B;. We have, for all k > 0, s € [0,T],

| fu(s, XY, Z0) = f(5, XUV, Z) Ay 4 izn)<my < C(1+ 26 + | X)),
and
| fn (s, Xgﬂ? Y& ZE) = [ (s, Xg’av Y, Zg)|1{|Y5”|+\Z$|<n}

< sup | fuls, X%y, 2) — f(s, X%y, 2)].
(1,2), [y|+]2]<m

Thanks to Lemma (iii) we can assert that the second term of the last inequality
converges to 0 and then, by applying the dominated convergence theorem, B; converges
also to 0. By taking x — +o00, it follows that (fn(t,XE’a,XQ"7 Z1))telo,T) converges to
(f(ta Xz?’av Yi, Zt))tE[O,T] in Ll([ov T] x Q,dt® dP)

5.b Finally we study the reflecting term. Since

T
IE[ f ywn(Y:)des} <C,
0

we have, up to a subsequence, the following weak L?([0,T] x §2)-convergence:

Vo, (Y") — &, when n — +o0,
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and we can follow step 2.a in the proof of Proposition to obtain

T
P e &p(Y) and j ]-{Yt¢aD}|(I)t|dt =0 5
0

which fully characterize ®. We now follow step 2.b in the proof of Proposition [3:1]
Using Mazur’s Lemma, we know that there exists a convex combination of (®"),cy :=
(Vo (Y™))nen converging strongly in L2([0, 7] x ), namely

NP
B = ) AT 9,
r=p
where AL > 0 for all pe N and p < N,, and ZNF A = 1. Let us observe that by
strong convergence, the following comblnatlon
NP
(Y, PZ) == > N(YT, Z7)
r=p

still converges to (Y, Z) in .2 x ##? and, by strong convergence again,

N, t t
SN (- X0y, 27 PHOTDA@AP) v 300y 7) and j rz.aw, 25 | z.aw, .
—p 0 0

Moreover, we remark that, for all ¢t < T,

th

t
J Z AP H,( XS”,Y;’,ZQ)@’"ds—J H(s, X2 Y,, Zs)®sds  (4.10)
0

J Z NAH, (s, X2 YT ZT) — H(s, X0 YT, Z7)} @ ds =: AP
t Np

+J D UN{H (s, X200 Y], ZT) — H(s, X2, Ys, Z)}lds =: A}
0,=p

t
+J H(s, X2 Yy, Z){", — ®,}ds =: AL .
0

We study each term in the right hand side of the above equality separately. For the first
one, we compute using Cauchy-Schwartz inequality and the uniform bound on [|®"|| .-

1
2

Np t
IEUA’{IKCZA?E[ fo |Hr<s,X2’a,Y;,Z§>—H(s,XSﬂ,YZ,ZQst] TREY
r=p
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For all k > 0, we then get

1
2

) A2)) cEAPE[ f oo X0V, 22) — H s X9V ZDPL v s | = B

1
2

Np t
+C Z A£E|:J;) 1{|YST+|Z§|>H}dS:| =: Bg .
r=p

Combining Markov inequality with the uniform square integrability of Y™ and Z", we
easily obtain that

A
=1Q

BY (4.12)
For the term B, we combine the uniform convergence (on compact set) of H, to H,
recall Lemma [£.1](iii), with the dominated convergence theorem, since H, and H are
bounded, to get that for all € > 0 there exists Ny, . € N such that

BY <eforalp=N,. (4.13)
Combining (4.12) and (4.13]), we then get
lim E[|AT[]] =0 . (4.14)
P

Next, we compute, using Cauchy-Schwartz inequality and the uniform bound on |®" .2,

Np t
HAL <O A%fIEUO \H(s, X%, Y7, 27) — H(s, X, ,, zs>|2ds]
4

and we deduce

lim H|A5|] =0, (4.15)
p

from the continuity of H and the strong convergence of (Y, Z") to (Y, Z). Finally we
use the boundedness of H and the strong convergence of P® to ¢ to get

lim B[] A5[] = 0. (4.16)

Combining (4.14]), (4.15)) and (4.16) with (4.10) yields lim, H|EP|] = 0. Eventually, we
get that, for all ¢t < T,

T

T T
Y; = g(X%a) + J f(s, X% Y,, Z,)ds — f ZsdWs — J H(s, X% Y,, Z,)®ds,
t t

t

which concludes the proof of Theorem Let us remark that the previous equation
allows us to consider a continuous version of the process Y. ]
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We conclude this section by giving the proof of Corollary which is an interesting
application of Theorem [4.1] to the well studied case of BSDEs for switching problems.
Following our approach, the main question reduces now to find an appropriate contin-
uous H to describe the direction of reflection such that H(-)® = ¥, compare and

E3).

Proof of Corollary
It is sufficient to define a continuous function H on @D, recall Remark 2.1] We have

D={yeR:y >1§1gazx(yj—clj),lef}, (4.17)

thus, D is a non-compact convex polyhedron. We can remark that
D’ :=Dn {y? =0}

is, by abuse of notation, a compact convex polyhedron of R4! and so it is a convex
polytope. Indeed, we have

DY {(y"s oy Dy € [ M), Vie {1, d = 1)} # &,

since we have ¢ + ¢@ > 0 for all } < i< d-—1 due to theﬁ structure condition
(4.5). We just have to define H on 0D° and then extend H to 0D in this way: for all
(t,x,9,2) € [0,T] x R¥ x D x R>* we define

H(taxaya Z) = H(tuxa (yl - yd’ "'7yd71 - yd70)az)'

Since DY is a convex polytope, then, by Krein-Milman theorem, it is the convex hull of
its extremal points. We will define H on all extremal points and then the value of H
on all facets ' A ‘
CH={yedD’:yl =y -9}, 1,jeI, 1+]j

will be defined by linear interpolations. Let us consider an extremal point (7', ..., 7% 1):
we know that there exist (Is, ji)ief1,....d—1} € {1, o, d}?(d=1) guch that

® (li,ji) # (Ix, jx) when i # k,

o forallie {1,...d— 1}, ¥ = 5% — cliJi where g = 0.
Then, we define H (¢, z, (7', ..., 5%~ 1, 0), 2) as the orthogonal projection onto span({e’, ..., el-1}).
To conclude it is sufficient to check that H(t,z, (y', ...,y?1,0), 2) sends the vector ¢! —e’

to the vector e when (y*,...,4%"1) € C¥ and to show the result only for extremal points.

In order to do so, let us consider (7', ...,7% ') € C¥ an extremal point: by the definition

of H we just have to show that e/ ¢ {el1, ..., ela-1} where we re-use previous notations.
Let us prove it by contradiction: we assume that there exists i € {1,...,d — 1} such that

j =1 and gl = i — i, (4.18)
Moreover, we have (7', ...,44 1) € CY so

g=7 — . (4.19)
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By combining (4.18]), (4.19) and the structure condition (4.5]), we obtain

g =y —d =g — (I + I) < i — D,

which is in contradiction with the definition of D given by (4.17]). O

4.2 The case of discontinuous H

In this section, we consider the case of a discontinuous direction of reflection on the
boundary ¢D. We obtain an existence result for an obliquely reflected BSDE but the
characterization of the reflecting part is somehow more involved, specially at the dis-
continuity point of H, where many directions of reflection are allowed at the limit. This
too weak characterization leads a to non-uniqueness result as illustrated in the next
paragraph. The limiting equation we are studying here is then

T

T T
Y — (X0 + f F(5, X0V, Z,)ds — f Z.dW, — J Uuds, te[0,T] (4.20)
t t t

U, e FB(s,X%"Y,, Z,) and Y;e D dP®ds a.e.,

with a € RY and, for all (¢,z,y,2) € [0,T] x R? x D x Rk,

E(t7 x? y’ Z) =

NesoPos ({H (¢, 2,5, 2)ul(§, Z € B((y, 2),€),ue dp(y)}) ifyedD
{0} if ye D,

where pos({v;}) is the closure of the positive linear span of the family {v;}, and B(x,¢)
is the closed Euclidean ball of center x and radius .

Theorem 4.2. Assume that assumptions (AM)(i)-(v) hold. Then, there exists a solu-
tion in P2 x A% x A to ([4.20)).

Remark 4.3. When H is continuous, we can easily show that
E(t,,y,2) = H(t,z,y, 2)0p(y)
which is consistent with the result of Theorem [{.1]

Proof. The proof of Theorem strongly follows the proof of Theorem The
arguments are similar from step 1 to step 5.a. We thus start directly the proof at step
5.b by studying the reflecting term. Since

T
E[ | rH<s,XS’“,n”,zwwn(mﬁds} <c,
0

we have, up to a subsequence, the following weak L?([0,T] x §2)-convergence:

"= H(-vX.Oﬂ7Y.na Z")Vep(Y™) — ¥,  whenn — +o.
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Using once again Mazur’s Lemma, we know that there exists a convex combination of
(U™),en converging strongly in L2([0, T] x §2), namely

Np
IRV A
r=p
where A > 0 for all pe N and p < 7 < N,, and ZN” AP = 1. As usual, the following
combination

Np
(Y, PZ) = Y N(YT, Z")

r=p

still converges to (Y, Z) in .2 x 22 and, by strong convergence,

Np t . t
SN (- X007, 77) LHOTXGAHDIP) 1 300y 7) and J rz.aw, 2o | z.aw, .
= 0 0

So we can pass to the limit into

T Np T T
Y, = g(X9%) + J Z M fo(s, X0 YT Zr)dsff pZSdWSfJ PP ds
t t

L r=p

to obtain that

T

T T
Y, = g(X3") + f f(s, X0 Yy, Zg)ds — J ZdW, — J U,ds, dt@dP a.e.
t t

t

To conclude we just have to study the direction of reflection. Since we have, for all
neN,

Uy = H(t, XY, 20 Ven(Y]") € Ht, XY, Z0)de(B(V))

and (Y, Z1) "=7 (Y, Z) dt ® dP a.e., then, for all £ > 0 and 3 > 0, there exists N
(depending on w) such that, for all n 2 N,

WP € pos({H(t, X", §, 2)ul (7, 2) € B((Ys: Z1), 1), 9 € B(Yy,e2) 0 Dyu€ 2p(y)}),
dt ® dP a.e. It implies that, for all p > N,

Wy € pos({H (t, X{*,§. 2)ul (7, 2) € B((Yi, Z1),€1).§ € B(Yy,e2) 0 D, u € 0p(y)})
dt ® dP a.e. Finally we get that

U e B(t, XV, Z) dt@dP —a.e.
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where

E(t,z,y,2) = ﬂ pos ({H(t,x, 7, 2)ul(y,% € B((y,2),¢1),5 € B(y,e2) nD,u e 690(@)}) .

€1>0,e2>0

When y € D we can remark that dp(7) = 0 when j € B(y, 2) n D with 5 small enough:
thus we get E(t,z,y,z) = 0. When y ¢ D, Let us show that

dp(y) = ] {ulue dp(y),ye B(y,e2) n D} (4.21)

e9>0

One inclusion is obvious, we will prove the other one. Let us consider u € dp(y,) for all
n € N* with y, € B(y,1/n) nD and let us show that u € dp(y). For all z€ D and n e N
we have

u-(z—y)=u-(z—yn)+u-(yn —v)

and so

sup (u - (2 —y)) <sup(u- (2 —yn)) +u- (Yn —¥y) < [ullyn — Yl
2€D 2€D

by definition of dp(y,). Then, by taking n — +00 in the previous inequality we get

sup (u- (2 — ) <0
2€D

which proves (#.21]). This result implies that for any (7, 2) € R? x Rk,

ﬂ {H(t,x,g], )uly € B(y,e2) nD,u € 84,0(@)} ={H(t,z,7,Z)ulu e dp(y)},

e2>0
and so we finally get that £ = E which concludes the proof. O
A counter-example to uniqueness Inspired by Remark 4.4 in [15], we suggest the

following counter-example to uniqueness in a non-smooth setting. The domain D is
given by

D={yeR’|y; >0and y2 + 1 >0}
Observe that 0D = F} U Fy, where F} and Fj are given by
Fi={yeR’|y1=0and y > 0}, Fo = {y € R*|y1 > 0 and y1 + 32 = 0}

and we denote by G = F}| n Fy, the corner of the domain. On F; we assume that the
reflection is normal so that H = I3, including points on G where the outward cone of
reflection if given by

K={yeR|y1 <0,y2<0and yo >1}.

39



The direction of reflection is along the y; axis on F»\G and is thus oblique, H is constant
but not equal to I;. H is thus discontinuous at the corner.

We consider a BSDE with the following data: X = W, ¢ = (0,0, X7) ", f(t,z,y,2) =
—(23,23,0)" is constant. Note that it satisfies the assumption (AM)(i)-(v). We give
now two distinct solutions:

1. The first solution is given by Y; = (0,0, W;)", Z; = (0,0,1)" and ¥; = (—¢t, —¢,0)".

2. The second solution is given by Y/ = (T —t,—(T —t),W})", Z, = (0,0,1)T and
U} = (—2t,0,0)".
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