
HAL Id: hal-01761901
https://hal.science/hal-01761901

Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Probabilistic Relational Models to Generate
Synthetic Spatial or Non-spatial Databases

Rajani Chulyadyo, Philippe Leray

To cite this version:
Rajani Chulyadyo, Philippe Leray. Using Probabilistic Relational Models to Generate Synthetic
Spatial or Non-spatial Databases. Research Challenges in Information Science (RCIS) 2018, 12th
International Conference on, May 2018, Nantes, France. pp.1-12, �10.1109/RCIS.2018.8406645�. �hal-
01761901�

https://hal.science/hal-01761901
https://hal.archives-ouvertes.fr

Using Probabilistic Relational Models to Generate
Synthetic Spatial or Non-spatial Databases

Rajani Chulyadyo1,2
1Capacités SAS

University of Nantes
Nantes, France

rajani.chulyadyo@capacites.fr

Philippe Leray2
2DUKe research group, LS2N Laboratory UMR 6004

University of Nantes
Nantes, France

philippe.leray@univ-nantes.fr

Abstract—When real datasets are difficult to obtain for tasks
such as system analysis, or algorithm evaluation, synthetic
datasets are commonly used. Techniques for generating such
datasets often generate random data for single-table datasets.
Such datasets are often inapplicable when it comes to evaluat-
ing data mining or machine learning algorithms dealing with
relational data. To address this, our earlier works have dealt
with the task of generating relational datasets from Probabilistic
Relational Models (PRMs), a framework for dealing with prob-
abilistic uncertainties in relational domains. In this article, we
extend this work by proposing to use more efficient data sampling
algorithms, and by using a spatial extension of PRMs to generate
synthetic spatial datasets. We also present our experimental
analysis on three different data sampling algorithms applicable
in our method, and the quality of the datasets generated by them.

Index Terms—probabilistic relational models, spatial data,
synthetic data generation, relational data, bayesian networks,
sampling

I. INTRODUCTION

Synthetic or artificial datasets are essential for evaluating
data mining algorithms, database applications, or any system
that deals with data and/or databases when it is expensive
to evaluate them on real datasets. Many synthetic database
generation tools can be found online. Tools such as DataFiller
[1], ObjectFiller.NET [2], Generate Data [3], Faker [4], etc.,
populate databases with random data. However, evaluating
data mining algorithms requires that the evaluation data have
certain regularities. The data mining community has been
concerned about the generation of such artificial data since
a long time. A number of research works deal with artificial
data generation for specific domains such as credit scoring
[5], genetic study [6], intrusion detection [7], weather analysis
[8] etc. [9] provides general methods for generating datasets
for data mining algorithms. Synthetic data are also commonly
used in the field of spatial data analysis. [10] provides a review
of techniques for generating spatial microdata. Most works
on synthetic data generation are built around the generation
of single-table data, which is not suitable for evaluating
algorithms that deal with the context where instances may be
related to one another. Such relational context is very common
in real world applications.

Existing tools that generate multi-table data often generate
random data. However, to get synthetic relational data that

resemble real world data, we should consider dependencies
among attributes or those among objects. One approach to
achieve this could be to generate data probabilistically using
a generative model, which typically uses probabilistic models
to describe how data is generated. Among such generative
models is a Bayesian network (BN) [11], which represents
probabilistic dependencies among random variables as a graph.
However, BNs can only model single-table (non-relational)
data. Because BNs are among simple probabilistic graphical
models (PGM) with intuitive graphical representation, and
several algorithms for sampling a BN to generate unseen
data are already available in the literature, we consider Prob-
abilistic Relational Models (PRMs) [12], [13], an extension
of Bayesian networks for relational settings, to generate syn-
thetic relational data. In our earlier works [14], [15], we
had proposed a method for generating (non-spatial) datasets
using PRMs. In this article, we extend it to generate spatial
datasets using PRMs with Spatial Attributes (PRMs-SA) [16],
an extension of PRMs that support spatial objects. We will also
discuss on three different data sampling techniques applicable
in our framework, and present experimental results on the
performance of the data generation algorithms, and the quality
of generated datasets. Our dataset generation method serves
as a method for benchmark generation not only for evaluating
PRM learning and other relational learning algorithms but also
for testing database applications.

This article is organized as follows. After a brief overview
of the underlying techniques in Section II, we present our
approach of generating spatial, and non-spatial datasets using
PRMs in Section III. Experimental results on our approach
of synthetic data generation are presented in Section IV.
Conclusions are presented in Section V.

II. TECHNICAL BACKGROUND

A. Bayesian network (BN)

A Bayesian network (BN) [11] is a Directed Acyclic Graph
(DAG) where nodes correspond to random variables and arcs
between nodes represent conditional dependencies; lack of an
arc between nodes indicates that the variables are conditionally
independent. A BN associates with each random variable Xi a
conditional probability P (Xi | Pai), where Pai ∈ X is the set
of variables that are called the parents of Xi. Every node in a

BN is conditionally independent of its non-descendants given
its parent. This conditional independence assumption enables
BNs to simplify the joint probability distribution given by the
Chain rule as follows:

P (X1, X2, . . . Xn) =
∏
i

P (Xi | Pai) (1)

We can make queries on BNs to infer about variables of
interest. Several algorithms can be found in the literature for
making inference on BNs.

B. Probabilistic Relational Model (PRM)

BNs have been one of the main models for reasoning under
uncertainty. The simplicity of their specification is one of the
reasons for their success. However, one of the difficulties in
Bayesian networks is to create and maintain the model of very
large domains, which are usually conceived with relational
settings. BNs are not sufficient to model this construct as
they lack the concept of objects and their relations. They
are designed for modeling attribute-based domains, where we
have a single table of independent and identically distributed
instances [17], whereas real world data are often stored and
managed using relational representation. Converting relational
data into flat data representation for statistical learning may
introduce statistical skew and lose useful information that
might help us understand the data. Thus, in order to learn a
statistical model from relational data, Probabilistic Relational
Models (PRMs) were emerged. A PRM specifies a probability
model for classes of objects rather than simple attributes.

The structure of relational dataset is often described by a
relational schema. Conversely, a dataset is an instance of a
relational schema. A PRM defines a probabilistic model for
a relational schema of the domain. Instantiating a PRM for
a dataset results in a Bayesian network, also known as a
Ground Bayesian Network (GBN), on which inference can
be performed. In the following, we give formal definitions of
these concepts.

A relational schema, denoted R, describes the classes, X ,
and the attributes, A, in a domain, and specifies the constraints
over the number of objects involved in a relationship. Each
class X ∈ X is described by a set of descriptive attributes
A(X) and a set of reference slots R(X). A reference slot
X.ρ relates an object of class X to an object of class Y
and has Domain[ρ] = X and Range[ρ] = Y . The inverse of a
reference slot ρ is called inverse slot and is denoted by ρ−1.
While a reference slot gives a direct reference of an object
with another, objects of one class can be related to objects of
another class indirectly through other objects. Such relations
are represented with the help of a slot chain, a sequence of
slots (reference slots and inverse slots) ρ1, ρ2, . . . ρn such that
for all i, Range[ρi] = Domain[ρi+1]. A slot chain can be
single-valued or multi-valued. When it is multi-valued, we
need a function such as mode, average, cardinality etc., to
summarize them. We call such function an aggregator.

Fig. 1a depicts an example of a relational schema with 5
classes, X = { Restaurant, User satisfaction, Cuisine, Food order,

User}. Attributes other than identifiers form the set A.
Here, A(User satisfaction) ={satisfaction level, service rating}.
A descriptive attribute is also denoted as Class.attribute, e.g.,
User.age, Cuisine.type etc. Class User satisfaction contains two
reference slots, R(User satisfaction) = {user id, resto id}. The
former one, User satisfaction.user id, refers to the associated
User object, whereas the inverse slot User satisfaction.user id−1

starts from the User object, and gives all User satisfaction objects
associated to the User object. User satisfaction.user id−1.resto id
is an example of a slot chain that gives all the restaurants that
have been rated by (i.e., related with) the given User object.

Definition 1: Probabilistic Relational Model (PRM)
A PRM Π = (S,Θ) for a relational schema R is composed of
a dependency structure S, and a set of parameters Θ [18]. The
dependency structure S consists of a set of random variables
and a set of probabilistic dependencies among the random
variables. Each random variable X.A in S is a descriptive
attribute A ∈ A(X) of a class X ∈ X , and has a set of
parents Pa(X.A) = {U1, . . . Ul}, which describes probabilistic
dependencies. Each Ui has the form X.B or γ(X.τ.B), where
B is an attribute of any class, τ is a slot chain and γ is
an aggregator of X.τ.B. Finally, the parameters Θ is a set
of conditional probability distributions (CPDs), representing
P (X.A | Pa(X.A)). z

Fig. 1b shows a PRM that corresponds to the relational
schema in Fig. 1a. The dashed lines here indicate that the
classes are linked through reference slots.

A dataset is an instance of a relational schema. An instance
I of a schema can be complete (i.e., no missing values) or
incomplete (i.e., missing or uncertain attributes, reference slots
etc.). A special kind of partial instantiation of a relational
schema, where the set of objects σr(Xi) for each class and the
relations that hold between the objects are specified without
specifying the values of the attributes, is called a relational
skeleton σr of the relational schema.

An example of a relational skeleton shown in Fig. 2a is
an instance of the relational schema of Fig. 1a. Such skeleton
describes how objects are related with each other in the dataset
without specifying the attribute values.

Instantiating a PRM for a dataset results in a Bayesian net-
work, also known as a Ground Bayesian Network (GBN). The
process of generating a GBN involves copying the associated
PRM for every object in skeleton σr. Thus, a GBN will have a
node for every attribute of every object in σr and probabilistic
dependencies and CPDs as defined in the PRM.

Definition 2: Ground Bayesian Network (GBN)
A ground Bayesian network (GBN) defined for a PRM Π and
a relational skeleton σr is as follows [13]:

• There is a node x.A for every attribute of every object
x ∈ σr(X).

• Each x.A depends probabilistically on parents of the
form x.B or x.K.B. If K is not single-valued, then the
parent is the aggregate computed from the set of random
variables {y | y ∈ x.K}, γ(x.K.B).

• The CPD for x.A is P (X.A | Pa(X.A)). z

(a)

(b)

Fig. 1: An example of (a) a relational schema, and (b) a PRM

The joint distribution over the instantiations of a PRM, Π,
for a relational skeleton, σr is very similar to the chain rule
for standard Bayesian networks.

P (I | σr,Π) =
∏
X∈X

∏
A∈A(X)

∏
x∈σr(X)

P (x.A | Pa(x.A)) (2)

Here, we need to ensure that the probability distributions
are coherent, i.e. the sum of probability of all instances is
1. In Bayesian networks, this requirement is satisfied if the
dependency graph is acyclic [13].

An example of a GBN (structure only), which is obtained
by instantiating the PRM of Fig. 1b over the relational
skeleton of Fig. 2a is shown in Fig. 2b. CPDs are not
shown here due to space constraints. Colors are used only
to distinguish the class of objects, and do not carry any
significant meaning.

1) Inference in PRMs: The traditional approach to
inference in PRMs is to apply BN inference algorithms
on the GBN obtained by unrolling a PRM for the given
relational skeleton σr. Theoretically, standard inference

(a)

(b)

Fig. 2: An example of (a) a relational skeleton, and (b) a
Ground Bayesian Network (GBN) obtained by unrolling the
PRM of Fig. 1b over the relational skeleton.

algorithms for Bayesian networks can be used to query the
GBN but it may be impractical because GBNs tend to be
very big for real datasets. When GBNs are small, exact
inference can be performed. Large and complex GBNs,
however, limit the application of exact inference algorithms.
Moreover, generation of such propositionalized models is
itself too costly. This issue has already been raised in early
works [19] in this field. [20] have proposed a method,
called Lazy Aggregation Block Gibbs (LABG), for performing
approximate inference in PRMs. Using the fact that a query
can be answered in a Bayesian network by taking into
account only the subgraph that contains all event nodes and
is d-separated from the full GBN given the evidence nodes,
the method constructs a partial GBN for the given query and
applies Gibbs sampling method for approximate inference.
Recent works [21]–[24] advocate lifted probabilistic inference,
which aims at performing as much inference as possible
without propositionalizing.

2) PRM with Spatial Attributes (PRM-SA): Probabilistic
Relational Models with Spatial Attributes (PRMs-SA) [16],

an extension of regular PRMs, provide a general way to
incorporate spatial information into a PRM and model spatial
dependencies. They incorporate in PRMs the vector represen-
tation of spatial objects, where a spatial object is described
by its location in space in terms of geometry (which can be a
point, line or polygon) and its attributes. Like a regular PRM,
a PRM-SA is defined for a relational schema. However, before
defining the probabilistic model of a PRM-SA, the relational
schema needs to be adapted for the attributes (called spatial
geometry attribute or simply spatial attribute) that represent
the geometry of spatial objects. This is because the set of
possible values of a spatial attribute is infinite, and hence
conditional probability distributions associated with spatial
attributes would be very big. It demands an extensive compu-
tation for learning as well as inference and this is practically
too difficult to achieve. Therefore, this set is partitioned into
a finite number of disjoint subsets with the help of a spatial
partition function. Each partition is then represented by a class,
which is called a spatial partition class, and a reference slot
(aka spatial reference slot or spatial ref. slot) that refers to
the objects of the partition class is added in the corresponding
spatial class.

Definition 3: Spatial class
Let SA(X) be the set of spatial geometry attributes in a class
X . Then, a class X is a spatial class if it contains spatial
geometry attributes, i.e. if SA(X) is not empty. z

Definition 4: Spatial partition function, Spatial partition
class
Let X.SA be a spatial geometry attribute of a spatial class
X . We define a spatial partition function fsa : X.SA →
Range[fsa] where Range[fsa] is a finite set of spatial parti-
tions represented by a spatial partition class PXSA. Thus, fsa
associates each sa ∈ Domain[X.SA] to an object of PXSA
determined by the function itself. z

Partition functions are responsible for creating the objects of
partition classes and mapping the values of a spatial attribute
to their corresponding partitions.

Definition 5: PRM with Spatial Attributes (PRM-SA)
Let A(X) and SA(X) denote the set of descriptive attributes
and geometry attributes respectively in class X .

For each spatial class X ∈ X such that SA(X) 6= ∅ and
for each geometry attribute SA ∈ SA(X), we define the
following:
• a new partition class PXSA,
• a partition function fsa : SA → PXSA that creates

instances of PXSA associating each sa ∈ Domain[SA]
to one of the instances of PXSA, and

• a new spatial reference slot X.CSA associated with fsa.
Then, we adapt the relational schema for spatial attributes

and define the probabilistic model in the following way.
Definition 5.1: Adapted relational schema

The relational schema is adapted for spatial attributes by
adding PXSA and X.CSA associated with fsa for each spatial
class X ∈ X and for each geometry attribute SA ∈ SA(X).

Definition 5.2: Probabilistic model of a PRM-SA
Let PSA and CSA be the set of partition classes and the set of

(a)

(b)

Fig. 3: An example of (a) a spatial relational schema adapted
for the spatial attribute Restaurant.location, and (b) a PRM-SA

added spatial reference slots respectively. Then, for each class
X ∈ {X ∪ PSA} and each attribute A ∈ {A(X) ∪ CSA(X)},
we have

• a set of parents Pa(X.A) = {U1, ..., Ul}, where each Ui
has the form X.B or γ(X.K.B), where B is an attribute
of any class, K is a slot chain and γ is an aggregate of
X.K.B,

• a legal conditional probability distribution CPD, P (X.A |
Pa(X.A)). z

In the relational schema of Fig. 1a, Restaurant is a spatial
class with a spatial geometry attribute location (shown in
italics). To have a PRM-SA defined for this schema, we
adapt it as shown in Fig. 3a, where Restaurant.C location
is the added spatial ref. slot, and refers to the spa-
tial partition class P restaurant location objects defined for
Restaurant.location. The objects of P restaurant location are de-
fined using a spatial partition function, e.g., K-means. In
this example, P restaurant location contains a spatial geometry

Fig. 4: Overview of PRM benchmark generation process [14].

attribute, called boundary, which is a polygon, and contains
information about the boundary of the partitions. Since this
class is a spatial class, we can further partition the spatial
geometry attribute of this class, thereby creating a hierarchy
(not shown here). An example of a PRM-SA (structure only)
defined for the adapted relational schema is shown in Fig. 3b.

Like in PRMs, probabilistic inference is performed on a
ground Bayesian network obtained by instantiating a PRM-
SA for a given relational skeleton. Here, the skeleton must
also include the objects of spatial partition classes.

III. SYNTHETIC DATASET GENERATION WITH PRMS

In our earlier works [14], [15], we had proposed a method
for generating PRM benchmarks, which is depicted in Fig. 4.
This method involves 3 steps – 1) generation of a random
PRM, 2) instantiation of the generated PRM with a random
relational skeleton to obtain a GBN, and 3) sampling the
GBN to obtain synthetic (non-spatial) datasets. This article
is concerned with the experimental evaluation of Steps 2 and
3, and proposes the extension of this method for generating
synthetic spatial datasets.

A. Non-spatial dataset generation

In the first step of the method presented in Fig. 4, a random
relational schema is created, and a random regular PRM is
generated for this relational schema by specifying random
dependencies between attributes present in the schema, and
assigning random CPDs to each attribute. In the second
step, a GBN is generated by instantiating the PRM over a
randomly generated relational skeleton. We consider two ways
of generating relational skeletons – 1) the one proposed in
[25], which generates a relational skeleton with nearly equal
number of objects of each class, and 2) another using k-
partite graph generation algorithm [15], which generates more
realistic skeletons with varying number of objects of each
class. Finally, in the third step, a standard sampling algorithm
for sampling Bayesian networks is applied on this network to
generate a sample, which is then stored in a database. Forward
Sampling [26] is a well-known algorithm for this task. Though
this approach is theoretically possible, it may be impractical
when it comes to generate very big datasets because the GBN
would be huge for big datasets. Moreover, GBN generation is
itself an expensive task.

Algorithm 1: Relational Forward Sampling

Input: A PRM, Π =< R,S >; A relational skeleton, σr
Output: An instance (or a sample), I

1: G ← Dependency structure of Π in topological order
2: for each node X.A ∈ G do
3: for each object x ∈ σr(X) do
4: if X.A has no parent then
5: Sample x.A from P (X.A) and write to I
6: else
7: e← {}
8: for X.γ.B ← Parents of X.A do
9: Z.B ← X.γ.B

10: if Aggretation needed then
11: e ← e∪ Aggregate all z.B that have

x.A as their child
12: else
13: e← e ∪ z.B that has x.A as its child
14: end if
15: end for
16: Sample x.A from P (X.A | e) and write to I
17: end if
18: end for
19: end for

Fig. 5: Generalization of PRM benchmark generation process
.

We generalize the PRM benchmark generation process, as
shown in Fig. 5, by skipping the specificity of PRM sampling
technique to clarify that sampling a GBN is not the only way of
generating synthetic datasets from a PRM. Relational forward
sampling (Algorithm 1) aims at sampling a PRM without using
a GBN. It adapts Forward Sampling algorithm for relational
context and works directly with databases. This algorithm
samples each PRM node in a topological order, and generates
a random value for the corresponding attribute of all objects
in the skeleton. Because this algorithm does not need to deal
with GBN, GBN generation time is saved with this algorithm.
The only time consuming operation in this algorithm is the
communication with databases.

B. Spatial dataset generation
Synthetic spatial datasets can be generated by following

the method of generating non-spatial datasets, and replacing
the non-spatial components by their spatial counterparts. That
means, we need to generate a PRM-SA (instead of a regular
PRM) for a spatial relational schema, and instantiate it over a
randomly generated spatial relational skeleton.

1) Random PRM-SA generation: As PRM-SA is defined for
a spatial relational schema adapted for the constituent spatial
attributes, we first generate such schema. A spatial relational
schema consists of two types of classes – one with spatial
attributes, and the other without spatial attributes. The non-
spatial part of such schema can be generated by following
[14]’s method of generating a relational schema. Now to
add spatial components to the generated non-spatial schema,
the required number of spatial classes are selected from the
schema, and spatial attributes are added to each of them.
In the context of spatial databases, these spatial attributes
would be columns of type ‘geometry’. For each added spatial
attribute, a spatial ref. slot is added to the class, a spatial
partition class is introduced to the schema, and a relational
link between the spatial ref. slot and the spatial partition class
is added. Generating random dependencies among non-spatial,
and spatial ref. slots, and assigning random CPDs to each of
these nodes will result in a random PRM-SA.

2) Spatial relational skeleton generation: A spatial rela-
tional skeleton can be generated in the same way as its non-
spatial counterpart with a special constraint that the skeleton
cannot have arbitrary number of partition class objects. For any
spatial attribute, the set of objects of associated partition class
is the range of the spatial partition function associated with
the spatial attribute, and the corresponding spatial ref. slots
refer to this set of partition class objects only. In other words,
for any spatial partition class, the number of objects cannot
exceed the cardinality of the domain of the referring spatial ref.
slots. For this reason, we first generate partition class objects,
and then generate the non-spatial part of the skeleton. These
two operations can be interchanged or be done in parallel as
they are independent. Finally, we add links between objects of
spatial partition classes and those of respective spatial classes.
This process is presented in Algorithm 2.

3) PRM-SA sampling: Sampling a PRM-SA can be sepa-
rated into two tasks, which can be achieved independently, – a)
sampling of non-spatial attributes, and b) sampling of spatial
attributes.

a) Sampling non-spatial attributes: A spatial relational
skeleton differs from a non-spatial relational skeleton in that
some of the attributes are already observed in the former one.
Spatial ref. slots, which act as both foreign keys and de-
scriptive attributes, are already initialized during the skeleton
generation process. Relational forward sampling (see Algo-
rithm 1) is not applicable for generating spatial datasets from
such partially-observed skeleton because it does not support
evidences. Another way to generate a dataset from such par-
tially initialized skeleton is to instantiate the PRM-SA over the
skeleton to obtain a GBN, set evidences to this network, and

Algorithm 2: Spatial Relational Skeleton Generation

Input: A PRM-SA, Π; Total number of objects in the result-
ing skeleton, N ;

Output: A spatial relational skeleton σr
1: G ← DAG representation of the spatial relational Schema

of Π
2: PSA ← The set of partition classes in G
3:
4: for P ∈ PSA do
5: σr(P)← Generate objects for P
6: end for
7:
8: G′ ← {G\PSA} . Sub-DAG obtained by removing

partition classes
9: σ′r ← Generate non-spatial relational skeleton(G′, N)

10: σr ← σr ∪ σ′r
11: Add links between σr(PSA), and σr(SA) in accordance

with Π

Algorithm 3: Relational Block Gibbs sampling (based on
[20]’s LABG algorithm)

Input: A PRM, Π; A relational skeleton, σr, with or without
observations, e; burn-in, N

Output: An instance (or a sample), I
1: G ← Generate GBN structure of Π for σr
2: Set evidences if any
3: Sample initial states s(0)

4: for t = 1 to N do
5: s(t) ← s(t−1)

6: X.A← Select an attribute for sampling
7: for each x.A ∈ G(X.A) do
8: if x.A is not observed then
9:

P ′
φ(x.A)← P (x.A | Pa(x.A))

∏
y.B∈Ch(x.A)

P (y.B | Pa(y.B))

10: Pφ ← Normalize(P ′φ)

11: s(t)〈x.A〉 ← Sample P ′φ(x.A)
12: end if
13: end for
14: end for

then apply a BN sampling algorithm that supports evidences,
such as Rejection sampling, Gibbs sampling etc. Alternatively,
we can devise relational extensions of other BN sampling
algorithms that support evidences.

To avoid the generation of a complete GBN, and to support
evidences in relational skeletons, we propose Relational Block
Gibbs (RBG) sampling algorithm, presented in Algorithm 3,
which is based on [20]’s LABG algorithm. Good points about
RBG algorithm are that it can be applied on partially observed
skeletons, and it can also support the PRMs that have cycles
in class level but are guaranteed to be acyclic in instance level.

LABG starts with a partial GBN induced by the query. In
our case, the query is the set of all unobserved variables.

This can lead to the generation of a complete GBN (when all
attributes are not observed). To avoid this, only the structure
of the GBN is generated in our approach; full CPDs are not
computed for a couple of reasons because full CPDs are big
tables and may require quite a good amount of memory for
large and complicated GBNs. Besides, only a small number of
values from these CPDs are required during actual sampling of
the nodes. So, we compute those values only when required.
After generating the structure and setting evidences, an initial
sample is generated by assigning random values to unobserved
nodes. This structure is imagined to be partitioned into blocks,
where each block contains all nodes corresponding to the same
attribute X.A. Then, an attribute X.A (or a block) is randomly
selected with probability proportional to the size of its block.
For each unobserved node in that block, its Markov blanket
is identified to compute full conditional distribution Pφ and
the node is then sampled according to this distribution. The
steps of selecting a block and performing Gibbs sampling is
performed a finite number of times or until convergence.

b) Sampling spatial attributes: RBG sampling algorithm
is essential for generating spatial datasets from PRM-SA as
other existing algorithms cannot deal with partially-observed
spatial relational skeleton. However, it samples only non-
spatial attributes. To get a complete spatial dataset, we need
to sample spatial attributes too. Sampling a spatial attribute
requires assigning the centers of partitions (i.e., sampling the
spatial attribute of spatial partition classes), and then sampling
the remaining spatial attributes in the skeleton.

We propose two methods for assigning random partition
centers – constrained randomization, and unconstrained ran-
domization. In the former method, we pick random points
from the entire world and assign them as the center of
partitions. If the boundary of partitions is also needed, we can
generate random polygons around the centers. In constrained
randomization, the input can be a collection of points, a fixed
polygon or a collection of polygons. In the first case, where the
input is a collection of points, we pick random points from
the collection and assign them as centers of partitions. For
example, we need to simulate data for some specific cities, we
are given a collection of cities as points, and we pick random
cities to be the center of partitions. In the second case, where
we have to sample spatial attributes from a fixed polygon (e.g.,
a specific country/city), we divide the polygon randomly into
the required number of clusters and pick a random point within
the polygons as the center of the partitions. In the last case,
where the input is a collection of polygons, we pick random
polygons as the boundary of partitions and then pick a random
point within the polygon as the center of that partition.

Once we have chosen center and/or boundary of the partition
classes, we can proceed with the generation of spatial attributes
of spatial classes by generating random points around the
centers and within the boundary (if boundary is available) such
that the points follow a bivariate normal distribution with the
center of the partition as mean and a random positive definite
matrix as variance covariance matrix.

IV. EXPERIMENTS

We carried out some experiments to study Relational Block
Gibbs (RBG) sampling algorithm, and compare it with Re-
lational Forward Sampling (RFS), and sampling on GBN
(which we will refer to as GBN-based sampling). These
algorithms are implemented in PILGRIM [27], a software
library for probabilistic graphical models, being developed at
LS2N laboratory. We used the same for these experiments.

We deal with two types of relational skeletons in the
experiments – one is generated using [25]’s algorithm, which
generates a relational skeleton with nearly equal number
of objects of each class, and another using k-partite graph
generation algorithm [15], which generates more realistic
skeletons with varying number of objects of each class. We
refer to relational skeletons generated by the former algorithm
as ‘Naı̈ve’ skeletons because they are less complex than the
skeletons generated by the latter one. Since the experiments
are not concerned with the generation of random PRMs, we
use pre-defined PRMs(-SA) for all experiments.

We divide these experiments into two parts. In the first
part, we apply RBG sampling algorithm to generate spatial
datasets, and study its performance with respect to burn-in,
relational skeleton type, and dataset size. In the second part,
we compare RFS, RBG, and GBN-based sampling algorithms.
Because RFS does not support evidences (a crucial require-
ment for sampling PRMs-SA), and also because for GBN-
based sampling PILGRIM relies on ProBT [28] library, which
does not provide sampling algorithms that support evidences,
we generate only non-spatial datasets from these algorithms
to compare their performance. Moreover, since these two
algorithms are used for sampling non-spatial attributes of
PRMs-SA, it is not necessary to apply them to sample PRMs-
SA to compare the performance of these algorithms.

In the following, Section IV-A presents the study of RBG
sampling, and Section IV-B presents the comparison of the
three algorithms.

A. Empirical study of relational block Gibbs sampling algo-
rithm

The aim of this study is to understand how relational
block Gibbs sampling algorithm performs on different types
of datasets of varying size, and how burn-in value affects the
performance of the algorithm.

1) Methodology: We start with a PRM-SA shown in
Fig. 6a. The corresponding relational schema (before adapting
for the PRM-SA) is shown as a DAG in Fig. 6b. Conforming to
the (adapted) relational schema of this PRM-SA, we generate
naı̈ve and k-partite graph-based skeletons having approxi-
mately 100, 200, 500, 1000, 2000, 3000, and 5000 objects. So,
we have altogether 14 relational skeletons. While generating
k-partite skeletons, the choice of the scalar parameter α affects
the structure of the skeleton to a great extent. Smaller values
of α result in compact skeletons, i.e. many objects will have
high in-degree. In-degree of objects, in fact, is determined by
whether a referring object gets linked to an existing object or
a new object, which in turn depends on the total number of

(a)

(b)

Fig. 6: (a) The PRMSA used in the experiments, and (b) the
underlying relational schema as a DAG

objects generated so far. Thus, instead of picking a constant
α for skeletons of different size, it should be chosen based on
the size of the skeleton. In this study, we choose α to be the
square root of the required number of objects in the skeleton.
Also note that while generating these k-partite skeletons, we
choose not to generate true scale-free graphs to avoid getting
very complex skeletons for the experiments. Next, the PRM-
SA is sampled for each of these skeletons applying RBG
sampling algorithm with the following burn-in values – 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000,
2500, and 3000. For each combination of dataset size, burn-in
and skeleton type, the time taken to complete the algorithm
is recorded, and parameters of the PRM-SA are learned on
the generated sample. Chi-square goodness-of-fit test with
significance level of 0.05 is performed to compare the original
parameters with the learned ones. Using this test, we can check
how well the PRM-SA nodes are sampled. Null hypothesis
of this test is that the generated data for the given node are
consistent with the original distributions used for generating
the sample. The nodes that reject the test cannot be considered
well-sampled. We count such nodes too.

2) Characteristics of the datasets: As mentioned previ-
ously, there are 14 relational skeletons – 7 naı̈ve skeletons,
and 7 k-partite skeletons. Note that in terms of the size of the
dataset, we consider the naı̈ve skeleton with approximately
100 objects is comparable to the k-partite skeleton with
approximately the same number of objects even though we
cannot ensure that they have exactly the same number of
objects.

In naı̈ve skeletons, objects are almost uniformly distributed
across classes as seen from Fig. 7 whereas in k-partite
skeletons, the number of objects of relationship classes (i.e.,
Rating, Shot at, and Reads) is higher than that of entity classes

book movie users reads rating

Total number of objects = 200

N
um

be
r

of
 o

bj
ec

ts

0
10

20
30

40

book movie users reads rating

Total number of objects = 1000

N
um

be
r

of
 o

bj
ec

ts

0
50

10
0

20
0

book movie users reads rating

Total number of objects = 2000

N
um

be
r

of
 o

bj
ec

ts

0
10

0
30

0

book movie users reads rating

Total number of objects = 3000

N
um

be
r

of
 o

bj
ec

ts

0
20

0
40

0
60

0

book movie users reads rating

Total number of objects = 5000

N
um

be
r

of
 o

bj
ec

ts

0
40

0
80

0

Naive
K-partite

Fig. 7: Distribution of objects in the relational skeletons used
in the experiments

(i.e., Book, Movie, and User) in almost all cases. However, this
expected phenomenon is not observed in the smaller datasets
because the chosen scalar parameter might not have been
enough to produce very compact datasets.

Fig. 8 and Fig. 9 reveal that naı̈ve skeletons are less complex
than k-partite graph-based skeletons. The five charts in Fig. 8
correspond to the five edges present in the relational schema
DAG shown in Fig. 6b. The charts show that the maximum in-
degree of entity objects in naı̈ve skeletons is almost always less
than k-partite skeletons, and does not increase significantly
with the size of data. Fig. 9 shows the frequency of in-
degree of User objects for the references from Rating objects
in the naı̈ve and k-partite skeletons of different sizes. The
same phenomenon was observed for other edges (not shown
here due to space constraints). In this figure, we can see
that there are more objects with high in-degree in k-partite
skeletons compared to the corresponding naı̈ve skeletons.
From these figures, we can conclude that the experimental
k-partite skeletons are complex than the naı̈ve skeletons.

3) Results and discussion: Fig. 10 and Fig. 11 show the
time taken by the sampling algorithm on each skeleton for
different values of burn-in. Here, we can see that it took longer
to sample on k-partite skeletons than on naı̈ve skeletons.
Possible reason behind this is that naı̈ve skeletons are generally
simpler than k-partite skeletons because the latter ones tend to
have nodes/objects that are referenced by many other nodes.
Therefore, Markov blankets in k-partite skeletons tend to be
much bigger than those in naı̈ve skeletons, thereby increasing
computation time for conditional probability distributions.
Another observation we can make is that the time taken by the
algorithm increases almost linearly with the burn-in value (and
also with the skeleton size). We can only expect to observe
such linear relationship but cannot guarantee it because time

0 1000 2000 3000 4000 5000

0
2

4
6

8
User-Reads

Dataset size

M
ax

 in
-d

eg
re

e

0 1000 2000 3000 4000 5000

0
5

10
15

Book-Reads

Dataset size

M
ax

 in
-d

eg
re

e

0 1000 2000 3000 4000 5000

0
2

4
6

8

User-Rating

Dataset size

M
ax

 in
-d

eg
re

e

0 1000 2000 3000 4000 5000

0
2

4
6

8

Movie-Rating

Dataset size

M
ax

 in
-d

eg
re

e

0 1000 2000 3000 4000 5000

0
2

4
6

8

Movie-Shot_at

Dataset size

M
ax

 in
-d

eg
re

e

K-partite
Naive

Fig. 8: Max in-degree of entity objects in the relational
skeletons. Each chart corresponds to one of the four edges
in the relational schema DAG of Fig. 6b

0 1 2 3 4 5 6 7

0
50

10
0

15
0

20
0

25
0

Naive Skeleton

In-degree

F
re

qu
en

cy

Number of objects

100
200
500
1000
2000
3000
5000

0 5 10 15

0
50

10
0

15
0

20
0

k-Partite Skeleton

In-degree

F
re

qu
en

cy

Number of objects

100
200
500
1000
2000
3000
5000

Fig. 9: Distribution of in-degree in naı̈ve and k-partite skele-
tons for the edge to User from Rating objects

taken for sampling actually depends on which attribute is
selected, and how big its Markov blanket is. Because selecting
an attribute for sampling and generating attribute values are

0 1000 2000 3000 4000 5000

10
20

30

Number of objects = 100

Burn-in

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

20
40

60
80

Number of objects = 200

Burn-in

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

40
10

0
16

0

Number of objects = 500

Burn-in

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

10
0

25
0

Number of objects = 1000

Burn-in

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

20
0

60
0

Number of objects = 2000

Burn-in

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

20
0

80
0

14
00

Number of objects = 3000

Burn-in

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

50
0

20
00

Number of objects = 5000

Burn-in

T
im

e
ta

ke
n

(s
)

K-partite
Naive

Fig. 10: Burn-in vs time taken by RBG sampling algorithm
on naı̈ve and k-partite graph-based skeletons of different size.

done randomly, we cannot predict the exact behavior of the
increase of burn-in value.

Fig. 12, and Fig. 13 present the number of nodes that
rejected the null hypothesis of Chi-squared goodness-of-fit
test for different burn-in values on skeletons of different size.
No nodes must reject the null hypothesis in a well-sampled
dataset. So, lower values are better in these charts. As seen
here, out of eight nodes in the PRM-SA, at most two nodes
rejected the null hypothesis on both types of skeletons. There
is no clear pattern of getting well sampled data as a function
of skeleton size. We have cases such as the naı̈ve skeleton
with 500 objects being perfectly sampled, that with 1000
objects having at least one rejected node for all values of
burn-in, again that with 2000 objects being perfectly sampled
for all except one values of burn-in, and exactly the opposite
for equivalent k-partite skeletons. From these results, we are
indecisive about the size of skeletons and the value of burn-in
to get perfect samples. However, we can say that increasing
burn-in can improve the quality of samples with the cost of
time (cf. Fig. 10). We should note that even small values of
burn-in could generate good samples for big datasets (e.g.,
both naı̈ve, and k-partite skeletons having more than 3000
objects with burn-in < 1000 in Fig. 13). Thus, it would be
better to generate big datasets using a small value of burn-
in repeatedly until a well-sampled dataset is obtained instead

0 1000 2000 3000 4000 5000

0
20

0
50

0
Burn-in = 100

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

0
40

0
80

0

Burn-in = 500

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

0
40

0
80

0

Burn-in = 1000

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000
0

50
0

15
00

Burn-in = 2000

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 2000 3000 4000 5000

0
15

00
30

00

Burn-in = 5000

Number of objects

T
im

e
ta

ke
n

(s
)

K-partite
Naive

Fig. 11: Skeleton size vs time taken by RBG sampling
algorithm for different values of burn-in.

of using high value of burn-in and trying to generate a good
sample in one run.

B. Comparison of sampling algorithms

In this part of our experiments, we assess RFS, RBG, and
GBN-based sampling algorithms with the primary objective
of verifying that RBG sampling can replace GBN-based sam-
pling. We also aim at comparing RBG sampling with RFS
in terms of performance of the algorithms and quality of the
samples generated by them.

1) Methodology: Because RFS cannot be applied on
PRMs-SA, we use a regular PRM shown in Fig. 14 for
this experiment. We first generate naı̈ve and k-partite graph-
based skeletons having 100, 200, 500, 1000, 2000, and 3000
objects. The three sampling algorithms are applied over these
skeletons to sample the PRM. From the previous experiments
(Section IV-A), it was observed that high burn-in values are
not necessary for obtaining good samples from big skeletons.
That is why we use a medium value (600) of burn-in for RBG
sampling in this experiment.

2) Results and discussion: Fig. 15 shows that when the
time taken to complete the sampling algorithms is considered,
RFS outperforms the two other sampling algorithms. Even on
big datasets, it took very less time compared to the two others.
Time efficiency of this algorithm lies behind its non-iterative
nature and the fact that GBN generation is not required for it.
Unlike RBG sampling, it samples each attribute only once. The
only time-consuming task in RFS is the communication with
databases. Therefore, we can conclude that RFS is certainly a
good solution if we need to generate very big datasets. One
important thing to note here is that it is difficult to determine

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 100

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 200

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 300

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 400

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
5

Burn-in = 500

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
5

Burn-in = 600

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 700

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 800

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000
0.

0
1.

5

Burn-in = 900

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
5

Burn-in = 1000

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 1500

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 2000

Number of objects

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
6

Burn-in = 2500

Number of objects

R

ej
ec

te
d

K-partite
Naive

Fig. 12: Skeleton size vs number of nodes that rejected the null
hypothesis of the Chi-square goodness-of-fit test for different
values of burn-in. Lower values are better here.

the most time-efficient algorithm among RBG and GBN-
based sampling because they are sensitive to the complexity
of relational skeletons. This sensitivity can be observed in
Fig. 15; RBG sampling took longer on k-partite skeletons but
not on naı̈ve ones. Moreover, RBG sampling also depends on
the value of burn-in as well as on the time of execution. If we
had chosen a smaller burn-in value, we might have obtained
very different results. Because attributes are selected randomly
for sampling at each step, no two executions of RBG sampling
for the same burn-in value would give the same result.

We can observe in Fig. 16 that the number of the nodes
rejecting the null hypothesis of the Chi-squared goodness-of-
fit test is always lower for RBG sampling on both types of
skeletons. All six nodes in the PRM were sampled well on k-
partite skeletons by RBG sampling except in one case where
only one node rejected the null hypothesis. Also on naive

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Nb objects = 100

Burn-in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Nb objects = 200

Burn-in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Nb objects = 500

Burn-in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

1.
0

1.
4

1.
8

Nb objects = 1000

Burn-in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Nb objects = 2000

Burn-in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Nb objects = 3000

Burn-in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Nb objects = 5000

Burn-in

R

ej
ec

te
d K-partite

Naive

Fig. 13: Burn-in vs number of nodes that rejected the null
hypothesis of the Chi-square goodness-of-fit test on k-partite
graph-based skeletons, and naı̈ve skeletons of different size.
Lower values are better here.

Fig. 14: The PRM used for comparing sampling algorithms

skeletons, the best result was obtained with RBG sampling.
Though RFS was very efficient in terms of time, at least
one node was not well sampled with this algorithm. From
these observations, we can conclude that nodes are generally
sampled well with RBG sampling even though it is slower than
RFS.

V. CONCLUSION

Having real datasets for evaluating data mining or machine
learning algorithms can be difficult, for example, due to legal
issues or system complexities. In such case, synthetic or
artificial datasets are often used. This practice is quite common
in both spatial and non-spatial context. Most techniques for
generating synthetic datasets are oriented towards generation

0 500 1000 1500 2000 2500 3000

0
20

00
40

00
60

00

K-partite

Number of objects

T
im

e
ta

ke
n

(s
)

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

Naive

Number of objects

T
im

e
ta

ke
n

(s
)

RFS
RBG
GBN-based

Fig. 15: Time taken by RFS, RBG, and GBN-based sampling
algorithms on naı̈ve and k-partite graph-based skeletons of
different size.

Number of objects

no

de
s

th
at

 r
ej

ec
t H

0

0.0

0.5

1.0

1.5

2.0

100 200 500 1000 2000 3000

KPARTITE

100 200 500 1000 2000 3000

NAIVE

RFS GBN-based RBG

Fig. 16: Number of nodes that rejected the null hypothesis
of the Chi-square goodness-of-fit test on naı̈ve and k-partite
graph-based skeletons of different size. Lower values are better
here.

of flat (non-relational) datasets whereas most tools dealing
with the generation of relational datasets generate random
values for object attributes without considering regularities in
the data, an essential aspect of data required for evaluating data
mining algorithms. In this article, we have tried to address
this problem through our approach of using Probabilistic
Relational Models (PRMs) to generate synthetic spatial and
non-spatial relational databases. This is an extension to our
previous works [14], [15] in the same direction, where the
objective was to generate non-spatial relational databases using

PRMs for evaluating PRM learning algorithms. Our approach
of generating synthetic spatial databases uses PRMs with
Spatial Attributes (PRMs-SA), an extension of regular PRMs,
that support spatial information.

Our method of generating synthetic data involves 3 steps -
1) generating a random PRM, 2) generating an instance of a
relational schema, called relational skeleton, and 3) applying
a sampling algorithm on the PRM over the generated skeleton
to generate a dataset. We performed experiments concerning
mainly Steps 2, and 3. We used 2 different types of relational
skeletons, and applied 3 sampling algorithms over them - i)
sampling on a GBN (GBN-based sampling), ii) Relational
Forward Sampling (RFS), and iii) Relational Block Gibbs
(RBG) Sampling. As our conclusion of these experiments, we
present the following guidelines for those who are interested
in using PRMs for generating synthetic datasets.

1) To generate very big non-spatial datasets, RFS would be
the best choice even though the generated dataset may
not be as well sampled as with RBG sampling algorithm
because RFS is very time-efficient regardless of the
complexity of dataset structure (or relational skeleton).

2) So far, only RBG, and GBN-based sampling algorithms
have been studied for generation of spatial datasets.

3) If the quality of datasets is high priority, then the best
option is RBG sampling algorithm. However, one should
be aware that the execution time for this algorithm
varies greatly with the size/complexity of the relational
skeleton, and that the quality of the generated datasets
depends on the burn-in values. From our experimental
results, we suggest the use of small values of burn-in,
and, if necessary, the repeated application of RBG to
obtain well sampled datasets.

4) In our experiments, GBN-based sampling algorithm was
not found to be as fast as RFS, and did not produce
datasets as good as the ones generated by RBG algo-
rithm. However, we should not label it as the worst
algorithm. It can be interesting to apply GBN-based
sampling in the case when RBG is too slow (i.e., when
relational skeleton is too complex or big) to generate
spatial datasets (i.e., when RFS is not applicable).

Our future perspective is to provide our work presented
here as a software, which would help the communities inter-
ested in generating synthetic spatial and non-spatial relational
databases using PRMs.

REFERENCES

[1] DataFiller. [Online]. Available:
https://www.cri.ensmp.fr/people/coelho/datafiller.html

[2] ObjectFiller.NET. [Online]. Available: http://objectfiller.net/
[3] Generate data. [Online]. Available: http://www.generatedata.com/
[4] Faker. [Online]. Available: https://github.com/fzaninotto/Faker
[5] K. Kennedy, S. J. Delany, and B. Mac Namee, “A framework for

generating data to simulate application scoring,” 2011.
[6] H. Christiansen and C. M. Dahmcke, “A machine learning approach

to test data generation: A case study in evaluation of gene finders,”
in International Workshop on Machine Learning and Data Mining in
Pattern Recognition. Springer, 2007, pp. 742–755.

[7] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-
Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham
et al., “Evaluating intrusion detection systems: The 1998 DARPA off-
line intrusion detection evaluation,” in DARPA Information Survivability
Conference and Exposition, 2000. DISCEX’00. Proceedings, vol. 2.
IEEE, 2000, pp. 12–26.

[8] R. A. Hazwani, N. Wahida, S. I. Shafikah, P. N. Ellyza et al., “Automatic
artificial data generator: Framework and implementation,” in Information
and Communication Technology (ICICTM), International Conference
on. IEEE, 2016, pp. 56–60.

[9] P. D. Scott and E. Wilkins, “Evaluating data mining procedures: tech-
niques for generating artificial data sets,” Information and software
technology, vol. 41, no. 9, pp. 579–587, 1999.

[10] K. Hermes and M. Poulsen, “A review of current methods to generate
synthetic spatial microdata using reweighting and future directions,”
Computers, Environment and Urban Systems, vol. 36, no. 4, pp. 281–
290, 2012.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[12] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning probabilis-
tic relational models,” in International Joint Conference on Artificial
Intelligence, vol. 16. Lawrence Erlbaum Associates Ltd, 1999, pp.
1300–1309.

[13] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar, “Probabilis-
tic relational models,” in Introduction to statistical relational learning,
L. Getoor and B. Taskar, Eds. The MIT press, 2007, ch. 5, pp. 129–174.

[14] M. Ben Ishak, P. Leray, and N. Ben Amor, “Probabilistic relational
model benchmark generation: Principle and application,” Intelligent
Data Analysis, vol. 20, no. 3, pp. 615–635, 2016.

[15] M. Ben Ishak, R. Chulyadyo, and P. Leray, “Probabilistic Relational
Model Benchmark Generation,” LARODEC Laboratory, ISG, Université
de Tunis, Tunisia ; DUKe research group, LINA Laboratory UMR 6241,
University of Nantes, France ; DataForPeople, Nantes, France, Technical
Report, Feb. 2016.

[16] R. Chulyadyo and P. Leray, “Integrating spatial information into prob-
abilistic relational models,” in IEEE International Conference on Data
Science and Advanced Analytics, ser. DSAA’15, Paris, France, Oct 2015,
pp. 1–8.

[17] L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning proba-
bilistic models of relational structure,” in Proceedings of the Eighteenth
International Conference on Machine Learning, ser. ICML ’01. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 170–
177.

[18] L. Getoor, “Learning statistical models from relational data,” Ph.D.
dissertation, Stanford University, 2002.

[19] A. J. Pfeffer, “Probabilistic reasoning for complex systems,” Ph.D.
dissertation, Stanford University, 2000.

[20] F. Kaelin, “Approximate Inference in Probabilistic Relational Models,”
McGill University, Montreal, Canada, Tech. Rep., 2011.

[21] P.-H. Wuillemin and L. Torti, “Structured probabilistic inference,” Inter-
national Journal of Approximate Reasoning, vol. 53, no. 7, pp. 946–968,
2012.

[22] J. Kisynski and D. Poole, “Lifted aggregation in directed first-order
probabilistic models.” in Proceedings of the 21st International Joint
Conference on Artificial Intelligence, ser. IJCAI 2009, Pasadena, Cali-
fornia, USA, 2009, pp. 1922–1929.

[23] B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P.
Kaelbling, “Lifted probabilistic inference with counting formulas.” in
Proceedings of the Twenty-Third AAAI Conference on Artificial Intel-
ligence, ser. AAAI 2008, D. Fox and C. P. Gomes, Eds. Chicago,
Illinois, USA: AAAI Press, 2008, pp. 1062–1068.

[24] P. Singla and P. M. Domingos, “Lifted first-order belief propagation.”
in AAAI, vol. 8, 2008, pp. 1094–1099.

[25] M. Ben Ishak, “Probabilistic relational models: learning and evaluation,”
Ph.D. dissertation, Université de Nantes; Université de Tunis, Institut
Supérieur de Gestion de Tunis, 2015.

[26] M. Henrion, “Propagating uncertainty in bayesian networks by prob-
abilistic logic sampling,” in Uncertainty in Artificial Intelligence, ser.
Machine Intelligence and Pattern Recognition, J. F. Lemmer and L. N.
Kanal, Eds. North-Holland, 1988, vol. 5, pp. 149 – 163.

[27] PILGRIM. [Online]. Available: http://pilgrim.univ-nantes.fr/
[28] ProBt. [Online]. Available: http://www.probayes.com/fr/recherche/probt/

