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Abstract

We study by means of full quantum simulations the operating principle and performance of a

semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic

emission. Our model takes into account the coupling between the electric and thermal currents

by self-consistently solving the transport equations within the non-equilibrium Green’s function

framework and the heat equation. We show that the device can achieve relatively high cooling

power values, while, in the considered implementation, the maximum lattice temperature drop

is severely limited by the thermal conductivity of the constituting materials. In such out-of-

equilibrium structure, we then emphasize the significant deviation of the phonon temperature from

its electronic counterpart which can vary over several hundred Kelvin. The interplay between those

two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable

options toward an optimization of the device are proposed.
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I. INTRODUCTION

Handling the rapid increase of the heat power densities associated to the electronic minia-

turization is a major scientific and industrial issue. In microelectronics, self-heating effects

result, indeed, in significant reductions of both transistor efficiency1,2 and lifetime3. Similar

difficulties arise also in the case of optoelectronic devices, particularly those operating with

intense radiation, as light-concentrating solar cells4. The development of embedded systems

in a Internet of Things perspective will, moreover, require local, and possibly on-chip, ther-

mal management capabilities5–7.

Temperature stabilization by means of electronic refrigerators has attracted much interest,

as a scalable, reliable and “green” option. The researches in this field have mainly focused on

two approaches, which rely either on thermoelectricity or thermionic emission of hot carriers.

Thermoelectric devices are based on the Peltier effect. Their performance can be quanti-

fied through the dimensionless figure of merit ZT = σS2T/(κe+κl), where σ is the electronic

conductivity, S is the Seebeck coefficient, T is the average temperature of the hot and cold

side of the device, and κe and κl are the electronic and lattice thermal conductivities, re-

spectively. An efficient thermoelectric system must therefore have a high σ (to minimize the

Joule effect), low κe and κl (to avoid thermal short-circuit), and a high S (to maximize the

conversion of electrical energy to temperature variation, or vice versa). Despite extensive

research efforts, for over fifty years the best thermoelectric materials had ZT ≈ 1. In 1993,

the pioneering work of Hicks and Dresselhaus8 paved the way to the exploitation of nanoscale

effects to improve the thermoelectric device efficiency. Since then, experimental studies, e.g.

on thin-film superlattices9, quantum-dot superlattices10 and nanowires11,12, reported higher

values of ZT , mostly due to the substantial reduction of the phonon thermal conductivity

in nanostructures13–15.

Thermionic devices were proposed as an alternative to thermoelectric devices, able to

reduce the effects of carrier scattering and lattice thermal conduction. The operation of

these devices is based on the extraction of thermally excited electrons from an emitter (the

cold side of the device), via thermionic emission over a potential barrier. The carriers,

then, almost ballistically reach the collector (the hot side), where they thermalize at lower
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energies. A voltage generator sustains a current in the device, by supplying cold carriers

from the collector to the emitter. It has been pointed out that the working principle of

thermionic devices can be described as well in terms of Peltier cooling and heating at the

emitter-barrier and barrier-collector interfaces, respectively, and that the physical quantities

defining their performance are the same as those entering the expression of ZT 16. Never-

theless, the performance of thermionic devices is traditionally assessed by referring to the

more device-oriented Coefficient Of Performance COP = JQ/(JV ), where JQ is the heat

power density per unit area extracted from the cold side, and JV is the the density of power

supplied to the device (J is the electrical current density and V the voltage bias).

Within the same miniaturization trend as for their thermoelectric counterparts, solid

state implementation of these devices based on heterostructures have been envisaged. The

first solid state thermionic refrigerator (analogous of a vacuum diode) has been proposed by

Mahan17–19. Currently, other options are being investigated, as it has been pointed out that

simple single-barrier thermionic devices cannot exhibit performance higher than their bulk

thermoelectric counterparts16,20,21. In particular, on the basis of the theoretical predictions

in Refs.22–29, the energy filtering properties of multibarrier structures (typically in the form

of superlattices) have been successfully exploited. With respect to thermoelectric coolers,

these devices are expected to offer advantages in terms of compatibility with standard inte-

gration processes, high cooling power density and fast transient response30.

In this paper, we study a AlGaAs/GaAs heterostructure-based thermionic refrigerator

first proposed by Chao et al.31, which exploits resonant tunneling filtering to enhance the

cooling at the interface with a thermionic barrier. Our numerical full quantum simula-

tions are able to take into account the thermal effects by self-consistently coupling the

electron transport equations within the non-equilibrium Green’s function (NEGF) formal-

ism with the heat equation32,33. In our simulations, this coupling is obtained by defining

local effective temperatures for the acoustic and polar optical-phonon baths. However, in

out-of-equilibrium conditions, the electron temperature is expected to deviate from that

of phonons. To complete the physical picture of the system, we therefore also compute a

non-ambiguous and thermodynamically-consistent values of electron temperature and elec-

trochemical potential34,35.
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The paper is organized as follows. Section II describes the electronic quantum transport

and heat transport models. In Section III we illustrate and discuss the simulation results

in terms of current characteristics, coefficient of performance, phonon and electron tem-

peratures, and variation of electrochemical potential. Finally, in Section IV we draw our

concluding remarks.

II. DESCRIPTION OF THE MODEL

Figure (1.a) represents the band diagram and the working principle of the studied semi-

conductor heterostructure refrigerator (SHR). The cold electrons are injected into 4.8 nm

wide GaAs quantum well (QW) by resonant tunneling through a 2.4 nm thick AlGaAs po-

tential barrier. The cooling effect is driven by the transfer of energy from the lattice to

electrons in the resonant state, mediated by the electron polar optical-phonon scattering.

The thermally excited electrons are then removed from the well by thermionic emission over

a 150 nm thick AlGaAs barrier, that serves as a thermal wall to reduce the heat backflow.

The left and right GaAs access regions are 150 nm thick and n-doped with concentration

1018 cm−3.

A. Electronic quantum transport model

We use the NEGF transport equations expressed within the effective mass approximation

to implement a one-dimensional (1D) quantum simulator along the heterostructure growth

direction (x). The single band effective mass Hamiltonian describes the Γ-valley of the

conduction band of the III-V semiconductors. As the considered structure is translationally

invariant in the perpendicular y and z directions, Born-Von-Karman periodic boundary

conditions are applied on the transverse wave vector component kt such that kt = nkt×2π/Lt,

with Lt = 50 nm and nkt an integer indexing the transverse modes whose degeneracy is equal

to π(2× nkt + 1)36. In the following, we briefly summarize the main features of the NEGF

approach in matrix notation. We first define the retarded Green’s function at the energy E

for each transverse mode kt,
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FIG. 1. a) Schematic band diagram of the studied semiconductor heterostructure refrigerator

(SHR) device. The left and right n-GaAs access regions are 150 nm wide and doped at a concen-

tration of 1018cm−3. The thin and thick AlGaAs barriers are 2.4 nm and 150 nm wide, respectively.

The Al mole fractions are y = 0.3 and x = 0.12. The GaAs QW thickness is 4.8 nm; b) Current

density as a function of the voltage VRL applied between the left and right contacts, for a contact

temperature T = 300 K.

Gr
kt =

[
(E − V )I −Hkt − Σr

L,kt − Σr
R,kt − Σr

S,kt

]−1
, (1)

where I is the identity matrix, Hkt represents the effective mass Hamiltonian for the

transverse mode kt and V is the electrostatic potential energy. Σr
L/R and Σr

S are the retarded

self-energies for the left/right semi-infinite device contacts37 and scattering mechanisms,

respectively.

From the retarded Green’s function, the lesser/greater Green’s functions are then ob-

tained as

G≶
kt

= Gr
kt

(
Σ≶
L,kt

+ Σ≶
R,kt

+ Σ≶
S,kt

)
Gr†
kt
, (2)

where the Σ≶ are the lesser/greater self-energies, related to their retarded counterpart by

Σr =
1

2
[Σ> − Σ<] . (3)

Only acoustic- and polar optical-phonon interactions are considered, since non-polar-

optical phonons turn out to be negligible in the materials constituting the device38. Interac-

tions self-energies are calculated within the self-consistent Born approximation (SCBA)39–41.
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In our approach, the acoustic and polar optical-phonon baths locally follow a Bose-Einstein

distribution, and are therefore assumed at equilibrium. On the other hand, acoustic and

optical phonons can not be assumed at equilibrium with respect to each other, as the net

anharmonic decay of optical phonons into acoustic, driven by an unbalance in their respec-

tive energy densities, plays a fundamental role in the thermal transport42. This is taken into

account in our model by defining, at each position of the domain, two different tempera-

tures, TAC and TPOP for the acoustic and polar optical-phonons, respectively. As detailed

in the next subsection, these temperatures are self-consistently computed by coupling the

electron transport equations with the heat equation. Within the elastic assumption, the

SCBA self-energy for acoustic-phonons is independent of kt and can be expressed as39,43

Σ≶
AC(j, j, E) =

∑
k′t

π(2nk′t + 1)
Ξ2kBTAC(j)

ρu2s
G≶
k′t

(j, j, E), (4)

where Ξ is the deformation potential, ρ is the mass density and us is the sound velocity.

In Eq.(4) index j indicates the x position along the discretized domain. Interactions with

acoustic phonons are here assumed to be local and we then consider only the diagonal part

of the Green’s function. Such approximation has been demonstrated to be valid for acoustic

phonons down to very low temperatures44. Concerning polar optical-phonons (POP), we

adopt the diagonal expression of the scattering self-energy recently proposed as an effective

description of their long range interactions45. For a given wave vector kt, it can be shown

that:

Σ≶
POP,kt

(j, j, E) =
λM2

2πS

∑
k′t

[
(nL(j) + 1)G≶

k′t
(j, j, E ± ~ωL) +(nL(j))G≶

k′t
(j, j, E ∓ ~ωqL)

]
×
∫ π

π/Lt

π(2nk′t + 1)√
(kt − k′t cos θ)2 + (k′t sin θ)2

dθ, (5)

with nL(j) = (e(~ωL)/(kBTPOP (j)) − 1)−1, M2 = 2π~ωLe2( 1
ε∞
− 1

ε0
), θ is the angle between kt

and k′t, S = πL2
t , and ωL=35 meV. M is the Fröhlich factor in which ε0 and ε∞ represent the

static and high frequency dielectric permittivity respectively. Finally λ is a scaling factor

which takes into account for the diagonal approximation. The value λ=8 used in this paper

has been obtained within the comprehensive and physically-based analytical model proposed

in Ref.45.
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The total phonon self-energy Σ≶
S,kt

for a given mode kt is then:

Σ≶
S,kt

= Σ≶
AC + Σ≶

POP,kt
. (6)

Once the lesser/greater Green’s function G≶
kt

of each mode kt is determined, physical

quantities can be straightforwardly calculated39. The electron density n along the transport

direction reads:

nj = −2× i

2π

∑
kt

π(2nkt + 1)

∫ +∞

−∞
G<
kt

(j, j;E)dE, (7)

= −i
∫ +∞

−∞
G<(j, j;E)dE, (8)

with G<(j, j;E) =
∑

kt
(2nkt + 1)G<

kt
(j, j;E). The carrier current density (in A/m2) flowing

from position j to j + 1 along the x direction is calculated from the off-diagonal elements

(j, j + 1) of G<
kt

(i, j;E) as

Jj→j+1 =

∫ +∞

−∞
dE

e

~
∑
kt

(2nkt + 1)

S

[
Hj,j+1G

<
kt

(j + 1, j;E)−G<
kt

(j, j + 1;E)Hj+1,j

]
, (9)

=

∫ +∞

−∞
Jj→j+1(E)dE. (10)

where Hj,j+1 corresponds to the nearest neighbors hopping terms in the discretized tight-

binding like Hamiltonian and Jj→j+1(E) is the current density spectrum (in A/(m2· eV)).

From Eq.(10) we can deduce the corresponding electronic energy current46:

JEj→j+1 =

∫ +∞

−∞
EJj→j+1(E)dE. (11)

In practice, the set of Eqs. (1)-(6) is solved self-consistently using a recursive algorithm37,47

until the criteria of convergence for both electron density and carrier current density are

reached. The potential energy V is self-consistently determined by nonlinearly coupling the

transport equations (1)-(6) with the Poisson equation through the electron density.

B. Heat transport model

We compute the lattice temperature by solving the 1D heat equation along the x direction.

The discretized heat equation on the site j reads:[
− ∂

∂x
[κth(x)

∂

∂x
TAC(x)]

]
j

= Qj, (12)
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where κth is the thermal conductivity. It is taken equal to the GaAs bulk value (46 W/(m·K))

in all the device, except in the QW region, where it is set to 4 W/(m·K) in order to take into

account the thermal resistance associated to the interface between different layers48,49. The

temperature entering the heat equation is the one associated to the acoustic phonons, since

they have a larger velocity than their polar optical counterparts and are mainly responsible

of the heat transport50. Left and right reservoirs are assumed to be at the thermodynamic

equilibrium at TAC = 300 K. This value is set by enforcing Dirichlet’s boundary conditions

at the left and right contact. This assumption corresponds to consider massive contacts with

a sufficiently high thermal capacitance. Qj is the volumetric source term which corresponds

to the heat power density (in W/m3) generated by electron-phonon interactions. In the

framework of the previously described electron transport formalism, it can be computed

as33,46:

Qj = −∇j · JE. (13)

A negative value of Qj corresponds to an energy transfer from the lattice to electrons,

while a positive one describes the reverse phenomenon. In the absence of electron-phonon

interactions, the charge conservation entails ∇·J (E) = 0 for each E, and, therefore, Q = 0.

From a physical point of view, electrons loose or increase their energy by scattering with

polar optical-phonons. In turn, optical phonons decay into acoustic phonon modes, which

sustain the thermal energy propagation along the device. In stationary conditions, the power

transfer from optical to acoustic phonons must be equal to the heat power density Qj defined

above. Within a relaxation time approximation42, we can thus write

(TPOP (j)− TAC(j))CPOP
τPOP→AC

= Qj, (14)

where τPOP→AC is the relaxation time of polar optical-phonons into acoustic phonons

(τPOP→AC = 4.1610−12 s)51 and CPOP is the thermal capacitance of the polar optical-

phonons per unit volume (CPOP = 1, 72.106 J/(m3·K))51. The numerator of the left side

expresses the average energy per unit volume exchanged between the polar optical and

acoustic phonon baths in an interval τPOP→AC . Eq.(14) allows us to compute TPOP (j) from

the knowledge of Qj and TAC(j).
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The computed values of TAC and TPOP are injected in Eq.(4) and Eq.(5), respectively.

This establishes the coupling between the heat equation and the electron transport equations.

The heat equation is iteratively solved together with the transport equations and the Poisson

equation, until a global self-consistency is achieved.

III. RESULTS

A. Local phonon temperature

Figure (1.b) shows the electron current density as a function of the bias VRL between the

right and left contacts, when the temperature in the reservoirs is set to 300 K. The resonant

tunneling can be easily identified. This physical phenomenon together with the thermionic

emission above the thick barrier, are also visible in the current spectrum of Figure (2).

Electrons are mainly injected through the thinner AlGaAs barrier at energies close to the

resonant state in the GaAs QW. This filtering results in a charge accumulation in the well,

which enhances the electron-phonon scattering rates39. On the other hand, no available

states are present in the well at energies below the resonant state, and therefore electrons

can only absorb phonons. If the energy difference between the resonant state and the top of

the wider AlGaAs barrier is comparable with the energy of the polar optical-phonons (as it

is the case in Fig.(2)), after absorbing a phonon, electrons can overcome the barrier and flow

toward the right end of the device. As the potential of the wider AlGaAs barrier decreases,

states at lower energies are made available for electrons. They then start thermalizing toward

the Fermi-Dirac distribution by emitting polar optical-phonons and transferring heat power

to the lattice. Figure (3.a) shows the corresponding electron energy current density (Eq.(11))

along the device. The current smoothly increases in the left access region, where phonon

absorption dominates over emission33, increases more rapidly in the quantum well, where

absorption is enhanced, and finally monotonically decreases as a consequence of electron

thermalization.

The energy transferred between electrons and the lattice along the device can be exactly

evaluated by the heat power density (Eq.(13)) as shown in Figure (3.b). The heat power

density is negative on the left side, where a net transfer of energy from the lattice to electrons

takes place, and positive on the right side. A negative peak of the heat power density, which
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FIG. 2. Current density spectrum (arb. unit) obtained at VRL=0.4 V with a contact temperature

T = 300 K. Fermi levels of left and right contacts (EFL and EFR respectively) are also represented.

Arrows indicate the main current density flux in the QW resonant state and above the barrier,

highlighting the physical processes involved. Potential profile is also plotted in solid line.
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FIG. 3. a) Energy current density along the device (solid line) and b) heat power density along

the device (solid line) at VRL = 0.4 V. The corresponding conduction band edge profile is plotted

in both panels in dashed line.

accounts for most of the power extracted from the lattice, corresponds to the QW, where

the absorption of polar optical-phonons mostly occurs.

Figure (4) shows the self-consistent polar optical-phonon temperature along the device

for several values of VRL. As expected, it decreases in the left region, while it increases on the

right side. The temperature reaches its minimum in the QW. An increase of VRL entails an

increase of the current (see Fig.(1-a)), and as a consequence, an increase of electron-phonon

scattering. This results in an enhanced cooling effect. In the considered implementation, the

maximum temperature difference that the refrigerator is able to establish is around 2 mK.
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FIG. 4. Polar optical-phonon temperature profiles for different applied VRL.

Such a small value is to be attributed to the high lattice thermal conductivity of AlGaAs

and GaAs, which effectively level out the temperature inside the device.

Considering the present structure, the cooling power density of the device JQ, obtained

by integrating over x the negative part of the heat power density (Eq.(13)), increases with

the applied bias. It varies from 2,26·106 W/m−2 at VRL=0.1 V to 7,5·106 W/m−2 at VRL=0.6

V. Interestingly, the related coefficient of performance (COP), defined as the ratio of JQ by

the applied power (PElec=J × VRL)) follows the opposite trend. It goes from 11,7 % at

VRL=0.6 V up to 120 % at VRL=0.1 V. Such high COP values for low bias is physically

sound as long as the integration of the heat power density over the whole device remains

equal to PElec. It also confirms the real capacity of the considered device to cool the lattice.

B. Local electron temperature

As previously mentioned, temperature of phonons in a non-equilibrium system can sig-

nificantly differ from its electronic counterpart. The comparison between the electron tem-

perature and the one of optical phonons could provide information about the physics of

the device and its possible optimizations. In this section, we calculate the local electronic

temperature based on the virtual probe approach. Such a method can determine the local

electronic temperature and electrochemical potential by cancelling the particle and energy

currents between a floating probe and the SHR device. The probe is then in local ther-

modynamic equilibrium with the non-equilibrium structure. Stafford and co-workers34,35,52

recently showed that temperature and electrochemical potential determined within this ap-

proach are physically-consistent, as they are unique and fulfill the four laws of thermodynam-
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ics. More precisely, temperature and electrochemical potential are completely determined

when the probe-system coupling is: i) maximally localized, to provide a good spatial reso-

lution, ii) weak enough to generate a non-invasive measurement, iii) broadband, ”to ensure

that the measured physical properties depend on the energy spectrum of the structure and

not on the one of the probe”.

We then consider a thermoelectric probe at the position j along the x-axis defined by the

following self-energy (similar to the Büttiker probes53–55):

Σ>(j;E) =− i[1− fFD(E, µj, T
e
j )]LDOS(j;E)νcoup, (15)

Σ<(j;E) =ifFD(E, µj, T
e
j )LDOS(j;E)νcoup, (16)

where fFD is the Fermi-Dirac distribution of the electrons in the probe, µj and T ej are

respectively the local electrochemical potential and electronic temperature at the position j;

LDOS(j;E) = i [G
>(j,j;E)−G<(j,j;E)]

2π
is the local density of states of the probe (taken equal to

the one of the device) and νcoup is the energy independent coupling strength between the

probe and the system. In the considered case, the exact value of νcoup is not important, as

it will cancel out in the following computations.

By enforcing the simultaneous cancellation of the electron charge and energy currents

between the device and the probe, we obtain a system of two coupled nonlinear equations

in the unknowns µj and T ej :

∆J(j) =

∫ +∞

−∞
Σ>(j;E)G<(j, j;E)dE −

∫ +∞

−∞
G>(j, j;E)Σ<(j;E)dE = 0, (17)

∆JE(j) =

∫ +∞

−∞
EΣ>(j;E)G<(j, j;E)dE −

∫ +∞

−∞
EG>(j, j;E)Σ<(j;E)dE = 0. (18)

The system is iteratively solved at each position j through a Newton-Raphson algorithm56.

We remark that the model adopted for the probe fulfills the above-mentioned conditions

ensuring the possibility to unambiguously define a local electron temperature and electro-

chemical potential. The system of Eqs. (17) and (18) is therefore expected to have a unique

solution. These calculations are done as a post-processing step once the self-consistent lesser

and greater Green’s functions of the system are obtained.

Figure (5.a) shows the electron temperature along the device at VRL=0.1 V. We first see

that temperature varies over a much wider scale than in the polar optical-phonon case. The

coldest temperature is still reached in the QW region. The temperature first drops by ∼22 K
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FIG. 5. a) Electronic temperature along the device obtained at VRL = 0.1 V (solid line) and b)

corresponding local electrochemical potential profile (solid line). In both panels the conduction

band edge is plotted as reference in dashed line.

in the thin AlGaAs barrier, as a results of the energy filtering (which selects electrons close

to the bottom of the conduction band). It then rises by ∼12 K in the quantum well, where

electrons increase their kinetic energy due to a combined effect of polar optical phonons

absorption and thermionic emission. At the onset of the thick AlGaAs barrier, the kinetic

energy of electrons is mostly converted in potential energy, and the electron temperature

drops again, until a minimum value of 236 K. In the region between the quantum well

and the right contact, the constant electric field associated to the linear bending of the

AlGaAs barrier induces an increase of the average electron kinetic energy. This results in

an increase of the electron temperature up to 337 K. By moving further toward the right

contact, electrons start thermalizing and the temperature decreases. Electrons participating

in the transport correspond to a much smaller charge density with respect to the total mobile

charge in the doped access regions (1015 against 1018 cm−3). Therefore, the hot electrons

reaching the right access region are screened along few nanometers and the global electronic

temperature recovers its contact equilibrium value of 300 K.

For the sake of completeness, the corresponding plot of the local electrochemical potential

is shown in Figure (5.b). Electrochemical potential remains typically between the two Fermi

levels of the contacts (i.e. between 0 eV and -0.1 eV). It slightly increases in the QW since

the average energy of the electrons tends to also increase. Conversely, the electrochemical

potential decreases in the thick AlGaAs barrier since the emission of polar optical-phonons
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FIG. 6. a) Electronic temperature along the device obtained at VRL = 0.4 V (solid line) and b)

corresponding local electrochemical potential profile (solid line). In both panels the conduction

band edge is plotted as reference in dashed line.

leads to a decrease of the average electron energy.

Figures (6.a) and (6.b) show the electron temperature and the corresponding electrochem-

ical potential obtained at VRL = 0.4 V. According to the discussion in Subsection (III A),

the higher electron current density enhances the phonon absorption rate, leading to a higher

electronic temperature in the quantum well. The minimum value of the temperature at the

onset of the thick AlGaAs barrier consequently decreases to 207 K. On the other hand, the

maximum temperature increases to 740 K. This is is consistent with the four times larger

electric field in the region of the thick AlGaAs barrier (cf. the steeper slope of the potential

profile in Figure (6) with respect to Figure (5)), which drives hot electrons appreciably more

out-of-equilibrium. The capability of the SHR to modulate over such wide ranges the elec-

tronic temperature is in agreement with the high values of cooling power densities attainable

and confirms the potentialities of the device.

In order to validate this approach of measurement of the electronic temperature and elec-

trochemical potential in non-equilibrium regime, we consider the following electron density

expression:

neqj =

∫ +∞

−∞
LDOS(j;E)fFD(E, µj, T

e
j )dE. (19)

A consistency check can rely on the comparison between the charge density values obtained

from Eq.(19) and those obtained by solving the NEGF transport equations (Eq.(8)). In

Figure (7) such a comparison is proposed for VRL=0.4 V. The excellent agreement between
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FIG. 7. Electron density along the device at VRL = 0.4 V, obtained by solving the NEGF transport

equations (solid line), and from Eq.(19) (crosses). The conduction band edge is plotted for reference

in dashed line.

the two computational approaches definitely supports the values of T e and µ.

IV. CONCLUSION

We numerically investigated the cooling properties of a GaAs/AlGaAs SHR based on a

combination of resonant-tunneling and thermionic processes. By adopting a full-quantum

approach, we have resolved the electric and thermal effects at play and described their

reciprocal influence. The physical picture provided has been further complemented by in-

troducing, through a virtual probe approach, a thermal characterization of electrons. In the

considered implementation of the device, we have found power cooling densities of the order

of 102 W/cm2 and a maximum COP of 120% at low bias (VRL=0.1 V). The difference of

lattice temperature the device is able to maintain is, however, limited to few mK, due to the

high thermal conductivity of GaAs and AlGaAs. Unlike the phonon case, electronic tem-

perature can vary up to several hundred of kelvins. At high applied bias (i.e. VRL >0.4 V)

the electronic temperature can be reduced by 90 K in the QW region, while exceeding 700

K in the hot region. Besides the obvious advantage that could derive by considering mate-

rials with lower thermal conductivities, a viable option to improve the performance of the

refrigerator consists in increasing the doping of the access regions. For a given supply power,

this is expected to increase the electron density in the quantum well, and therefore the rate

of phonon absorption. An optimization of the process of heat extraction from the lattice

15



could be also performed by finely tuning the energy of the resonant level. A higher thermal

isolation between the hot and cold side of the device could be obtained by tailoring the

shape of the wider AlGaAs barrier, particularly by flattening its top in order to ballistically

guide electrons to thermalize farer from the quantum well. Finally, looking at a suitable

trade-off between a decrease of the thermal conductivity by including superlattice sections

and the concurrent degradation of electron mobility can be also envisaged.
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