
HAL Id: hal-01761754
https://hal.science/hal-01761754v1

Submitted on 9 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast spherical drawing of triangulations: an
experimental study of graph drawing tools

Luca Castelli Aleardi, Gaspard Denis, Eric Fusy

To cite this version:
Luca Castelli Aleardi, Gaspard Denis, Eric Fusy. Fast spherical drawing of triangulations: an exper-
imental study of graph drawing tools. 17th International Symposium on Experimental Algorithms,
Jun 2018, L’Aquila, Italy. �hal-01761754�

https://hal.science/hal-01761754v1
https://hal.archives-ouvertes.fr

Fast spherical drawing of triangulations: an
experimental study of graph drawing tools ∗

Luca Castelli Aleardi† Gaspard Denis‡ Éric Fusy§

Abstract

We consider the problem of computing a spherical crossing-free geodesic drawing of
a planar graph: this problem, as well as the closely related spherical parameterization
problem, has attracted a lot of attention in the last two decades both in theory and in
practice, motivated by a number of applications ranging from texture mapping to mesh
remeshing and morphing. Our main concern is to design and implement a linear time
algorithm for the computation of spherical drawings provided with theoretical guaran-
tees. While not being aesthetically pleasing, our method is extremely fast and can be
used as initial placer for spherical iterative methods and spring embedders. We provide
experimental comparison with initial placers based on planar Tutte parameterization.
Finally we explore the use of spherical drawings as initial layouts for (Euclidean) spring
embedders: experimental evidence shows that this greatly helps to untangle the layout
and to reach better local minima.

1 Introduction

In this work we consider the problem of computing in a fast and robust way a spherical
layout (crossing-free geodesic spherical drawing) of a genus 0 simple triangulation. While
several solutions have been developed in the computer graphics and geometry processing
communities [1, 2, 3, 15, 18, 23, 26, 29], very few works attempted to test the practical
interest of standard tools [6, 8, 11, 20, 7] from graph drawing developed for the non-planar
(or non-Euclidean) case. On one hand, force-directed methods and iterative solvers are
successful to obtain very nice layouts achieving several desirable aesthetic criteria, such as
uniform edge lengths, low angle distortion or even the preservation of symmetries. Their
main drawbacks rely on the lack of rigorous theoretical guarantees and on their expensive
runtime costs, since their implementation requires linear solvers (for large sparse matrices)

∗This work has been accepted to appear as extended abstract in the Proc. of the 17th Int. Symposium
on Experimental Algorithms (SEA 2018).
†LIX, Ecole Polytechnique, France, amturing@lix.polytechnique.fr
‡LIX, Ecole Polytechnique, France, gaspard.denis@hotmail.fr
§LIX, Ecole Polytechnique, France,fusy@lix.polytechnique.fr

1

or sometimes non-linear optimization methods, making these approaches slower and less ro-
bust than combinatorial graph drawing tools. On the other hand, some well known tools
such as linear-time grid embeddings [10, 24] are provided with worst-case theoretical guar-
antees allowing us to compute in a fast and robust way a crossing-free layout with bounded
resolution: just observe that their practical performances allow processing several millions
of vertices per second on a standard (single-core) CPU. Unfortunately, the resulting layouts
are rather unpleasing and fail to achieve some basic aesthetic criteria that help readability
(they often have long edges and large clusters of tiny triangles).

Motivation. It is commonly assumed that starting from a good initial layout (referred
to as initial guess in [23]) is crucial for both iterative methods and spring embedders. A
nice initial configuration, that is closer to the final result, should help to obtain nicer layouts
(this was explored in [13] for the planar case). This could be even more relevant for the
spherical case, where an initial layout having many edge-crossings can be difficult to unfold
in order to obtain a valid spherical drawing. Moreover, the absence of natural constraints on
the sphere prevents in some cases from eliminating all crossings before the layouts collapse
to a degenerate configuration. One of the motivations of this work is to get benefit of a prior
knowledge of the graph structure: if its combinatorics is known in advance, then one can
make use of fast graph drawing tools and compute almost instantaneously a crossing-free
layout to be used as starting point for running more expensive force-directed tools.

Related works. A first approach for computing a spherical drawing consists in pro-
jecting a (convex) polyhedral representation of the input graph on the unit sphere: one of
the first works [25] provided a constructive version of Steinitz theorem (unfortunately its
time complexity was quadratic). Another very simple approach consists in planarizing the
graph and to apply well known tools from mesh parameterizations (see Section 2.1 for more
details): the main drawback is that, after spherical projection, the layout does not always
remain crossing-free. Along another line of research, several works proposed generalizations
of the barycentric Tutte parameterization to the sphere. Unlike the planar case, where
boundary constraints guarantees the existence of crossing-free layouts, in the spherical case
both the theoretical analysis and the practical implementations are much more challenging.
Several works in the geometry processing community [3, 15, 23, 29] expressed the layout
problem as an energy minimization problem (with non-linear constraints) and proposed a
variety of iterative or optimization methods to solve the spherical Tutte equations: while
achieving nice results on the tested 3D meshes, these methods lack rigorous theoretical guar-
antees on the quality of the layout in the worst case (for a discussion on the existence of non
degenerate solutions of the spherical Tutte equations we refer to [18]). A very recent work [1]
proposed an adaptation of the approach based on the Euclidean orbifold Tutte parameteri-
zation [2] to the spherical case: the experimental results are very promising and come with
some theoretical guarantees (a couple of weak assumptions are still necessary to guarantee
the validity of the drawing). However the layout computation becomes much more expen-
sive since it involves solving non-linear problems, as reported in [1]. A few papers in the

2

graph drawing domain also considered the spherical drawing problem. Fowler and Kobourov
proposed a framework to adapt force-directed methods [16] to spherical geometry, and a
few recent works [6, 8, 11, 7] extend some combinatorial tools to produce planar layouts of
non-planar graphs: some of these tools can be combined to deal with the spherical case, as
we will show in this work (as far as we know, there are not existing implementations of these
algorithms).

1.1 Our contribution

• Our first main contribution is to design and implement a fast algorithm for the com-
putation of spherical drawings. We make use of several ingredients [11, 6, 7] involving
the well-known canonical orderings and can be viewed as an adaptation of the shift
paradigm proposed by De Fraysseix, Pach and Pollack [10]. As illustrated by our ex-
periments, our procedure is extremely fast, with theoretical guarantees on both the
runtime complexity and the layout resolution.

• While not being aesthetically pleasing (as in the planar case), our layouts can be use
as initial vertex placement for iterative parameterization methods [3, 23] or spherical
spring embedders [20]. Following the approach suggested by Fowler and Kobourov [13],
we compare our combinatorial algorithm with two standard initial placers used in previ-
ous existing works [23, 29] relying on Tutte planar parameterizations: our experimental
evaluations involve runtime performances and statistics concerning edge lengths.

• As an application, we show in Section 5 how spherical drawings can be used as initial
layouts for (Euclidean) spring embedders: as illustrated by our tests, starting from a
spherical drawing greatly helps to entangle the layout and to escape from bad local
minima.

All our results are provided with efficient implementations and experimental evaluations
on a wide collection of real-world and synthetic datasets.

2 Preliminaries

Planar graphs and spherical drawings. In this work we deal with planar maps
(graphs endowed with a combinatorial planar embedding), and we consider in particular
planar triangulations which are simple genus 0 maps where all faces are triangles (they
correspond to the combinatorics underlying genus 0 3D triangle meshes). Given a graph
G = (V,E) we denote by n = |V | (resp. by |F (G)|) the number of its vertices (resp. faces)
and by N(vi) the set of neighbors of vertex vi; x(vi) will denote the Euclidean coordinates
of vertex vi.

The notion of planar drawings can be naturally generalized to the spherical case: the
main difference is that edges are mapped to geodesic arcs on the unit sphere S2, which are
minor arcs of great circles (obtained as intersection of S2 with an hyperplane passing through

3

Tutte 2D layout ofseparating cycle Spherical parameterization
the south hemisphere

Polar-to-cartesian mapping

inverse stereo projection

Projected Gauss-Seidel(x0, λ, ε)

r = 0; // iteration counter
do {

} while (‖xr − xr−1‖ > ε))

for(i = 1; i ≤ n; i++) {
s = (1− λ)xr(vi) + λ

∑
j wijx

r(vj)

xr+1(vi) =
s
‖s‖

}
r++;

Figure 1: (left) Two spherical parameterizations of the gourd graph obtained obtained via
Tutte’s planar parameterization. (right) The pseudo-code of the Projected Gauss-Seidel
method.

the origin). A geodesic drawing of a map should preserve the cyclic order of neighbors around
each vertex (such an embedding is unique for triangulations, up to reflexions of the sphere).
As in the planar case, we would aim to obtain crossing-free geodesic drawings, where geodesic
arcs do not intersect (except at their extremities). In the rest of this work we will make
use of the term spherical drawings when referring to drawings satisfying the requirements
above. Sometimes, the weaker notion of spherical parameterization (an homeomorphism
between an input mesh and S2) is considered for dealing with applications in the geometry
processing domain (such as mesh morphing): while the bijectivity between the mesh and S2 is
guaranteed, there are no guarantees that the triangle faces are mapped to spherical triangles
with no overlaps (obviously a spherical drawing leads to a spherical parameterization).

2.1 Initial Layouts

Part of this work will be devoted to compare our drawing algorithm (Section 3) to two
spherical parameterization methods involving Tutte planar parameterization: both methods
have been used as initial placers for more sophisticated iterative spherical layout algorithms.

Inverse Stereo Projection layout (ISP). For the first initial placer, we follow the
approach suggested in [23] (see Fig. 1). The faces of the input graph G are partitioned into
two components homeomorphic to a disk: this is achieved by computing a vertex separator
defining a simple cycle of small size (having O(

√
n) vertices) whose removal produces a

balanced partition (GS, GN) of the faces of G. The two graphs GS and GN are then drawn
in the plane using Tutte’s barycentric method: boundary vertices lying on the separator are
mapped on the unit disk. Combining a Moebius inversion with the inverse of a stereographic
projection we obtain a spherical parameterization of the input graph: while preserving some
of the aesthetic appeal of Tutte’s planar drawings, this map is bijective but cannot produce
in general a crossing-free spherical drawing (straight-line segments in the plane are not
mapped to geodesics by inverse stereographic projection). In our experiments we adopt a
growing-region heuristic to compute a simple separating cycle: while not having theoretical
guarantees, our approach is simple to implement and very fast, achieving balanced partitions

in practice (separators are of size roughly Θ(
√
n) and the balance ratio % = min(|F (GS)|,|F (GN)|)

|F (G)|

4

is always between 0.39 and 0.49 for the tested data) 1 .

Polar-to-Cartesian layout (PC). The approach adopted in [29] consists in planarizing
the graph by cutting the edges along a simple path from a south pole vS to a north pole vN .
A planar rectangular layout can be computed by applying standard Tutte parameterization
with respect to the azimuthal angle θ ∈ (0, 2π) and to the polar angle φ ∈ [0, π]: the spherical
layout, obtained by the polar-to-cartesian projection, is bijective but not guaranteed to be
crossing-free.

2.2 Spherical drawings and parameterizations

The spherical layouts described above can used as initial guess for more sophisticated itera-
tive schemes and force-directed methods for computing spherical drawings. For the sake of
completeness we provide an overview of the algorithms that will be tested in Section 4.

Iterative relaxation: projected Gauss-Seidel. The first method can be viewed as
an adaptation of the iterative scheme solving Tutte equations (see Fig. 1). This scheme
consists in moving points on the sphere in tangential direction in order to minimize the
spring energy

E =
1

2

n∑
i=1

∑
j∈N(i)

wij‖x(vi)− x(vj)‖2 (1)

with the only constraint ‖x(vi)‖ = 1 for i = 1 . . . n (in this work we consider uniform weights
wij, as in Tutte’s work). As opposite to the planar case, there are no boundary constraints on
the sphere, which makes the resulting layouts collapse in many cases to degenerate solutions.
As observed in [18, 23] this method does not always converge to a valid spherical drawing,
and its practical performance strongly depends on the geometry of the starting initial layout
x0. While not having theoretical guarantees, this method is quite fast allowing to quickly
decrease the residual error: it thus can be used in a first phase and combined with more
stable iterative schemes leading in practice to better convergence results [23] (still lacking of
rigorous theoretical guarantees).

Alexa’s method In order to avoid the collapse of the layout, without introducing
artificial constraints, Alexa [3] modified the iterative relaxation above by penalizing long
edges (that tend to move all vertices in a same hemisphere). More precisely, the vertex vi is
moved according to a displacement 4i = c 1

deg(vi)

∑
j(x(vi)− x(vj))‖x(vi)− x(vj)‖ and then

reprojected on the sphere. The parameter c regulates the step length, and can be chosen
to be proportional to the inverse of the longest edge incident to a vertex, improving the
convergence speed.

1The computation of small cycle separators for planar triangulations is a very challenging task. This work
does not focus on this problem: we refer to recent results [14] providing the first practical implementations
with theoretical guarantees.

5

G

3 disjoint paths 3 rivers

M

GC
0

GC
1

GC
2

Figure 2: Computation of a spherical drawing based on a prism layout of the gourd graph
(326 vertices). Three vertex-disjoint chord-free paths lead to the partition of the faces of G
into three regions which are each separated by one river (green faces). Our variant of the FPP
algorithm allows to produce three rectangular layouts, where boundary vertex locations do
match on identified (horizontal) sides. One can thus glue the planar layouts to obtain a 3D
prism: its central projection on the sphere produces a spherical drawing. Edge colors (blue,
red and black) are assigned during the incremental computation of a canonical labeling [11],
according to the Schnyder wood local rule.

(Spherical) Spring Embedders. While spring embedders are originally designed to
produce 2D or 3D layouts, one can adapt them to non euclidean geometries. We have
implemented the standard spring-electrical model introduced in [16] (referred to as FR), and
the spherical version following the framework described by Kobourov and Wampler [20]
(called Spherical FR). As in [16] we compute attractive forces (between adjacent vertices)
and repulsive forces (for any pair of vertices) acting on vertex u, defined by:

Fa(u) =
∑

(u,v)∈E

‖x(u)− x(v)‖
K

(x(u)− x(v)), Fr(u) =
∑

v∈V,v 6=u

−CK2(x(v)− x(u))

‖x(u)− x(v)‖2

where the values C (the strength of the forces) and K (the optimal distance) are scale
parameters. In the spherical case, we shift the repulsive forces by a constant term, making
the force acting on pairs of antipodal vertices zero.

3 Fast spherical embedding with theoretical guaran-

tees: SFPP layout

We now provide an overview of our algorithm for computing a spherical drawing of a planar
triangulation G in linear time, called SFPP layout (the main steps are illustrated in Fig 2).
We make use of an adaptation of the shift method used in the incremental algorithm of
de Fraysseix, Pach and Pollack [10] (referred to as FPP layout): our solution relies on the
combination of several ideas developed in [11, 6, 7]. For the sake of completeness, a more
detailed presentation in given the Appendix.

6

Mesh segmentation. Assuming that there are two non-adjacent faces fN and fS, one
can find 3 disjoint and chord-free paths P0, P1 and P2 from fS to fN (planar triangulations
are 3-connected). Denote by uN0 , uN1 and uN2 the three vertices of fN on P0, P1 and P2 (define
similarly the three neighbors uS0 , u

S
1 , u

S
2 of the face fS). We first compute a partition of the

faces of G into 3 regions, cutting G along the paths above and removing fS and fN . We
thus have three quasi-triangulations GC

0 , GC
1 and GC

2 that are planar maps whose inner faces
are triangles, and where the edges on the outer boundary are partitioned into four sides.
The first pair of opposite sides only consist of an edge (drawn as vertical segment in Fig. 2),
while the remaining pair of opposite sides contains vertices lying on Pi and Pi+1 respectively
(indices being modulo 3): according to these definitions, GC

i and GC
i+1 share the vertices

lying on Pi+1 (drawn as a path of on horizontal segments in Fig. 2).

Grid drawing of rectangular frames. We apply the algorithm described in [11]
to obtain three rectangular layouts of GC

0 , GC
1 and GC

2 : this algorithm first separates each
GC

i into two sub-graphs by removing a so-called river : an outer-planar graph consisting
of a face-connected set of triangles which corresponds to a simple path in the dual graph,
starting at fS and going toward fN . The two-subgraphs are then processed making use of
the canonical labeling defined in [11]: the resulting layouts are stretched and then merged
with the set of edges in the river, in order to fit into a rectangular frame. Just observe that
in our case a pair of opposite sides only consists of two edges, which leads to an algorithm
considerably simpler to implement in practice. Finally, we apply the two-phases adaptation
of the shift algorithm described in [6] to obtain a planar grid drawing of each map GC

i , such
that the positions of vertices on the path Pi in GC

i do match the positions of corresponding
vertices on Pi in GC

i+1. The grid size of drawing of GC
i is O(n) × O(n) (using the fact that

the two opposite sides (uNi , . . . , u
S
i) and (uNi+1, . . . , u

S
i+1) of GC

i are at distance 1).

Spherical layout. To conclude, we glue together the drawings of GC
0 , GC

1 and GC
2

computed above in order to obtain a drawing of G on a triangular prism. By a translation
within the 3D ambient space we can make the origin coincides with the center of mass of
the prism (upon seeing it as a solid polyhedron). Then a central projection from the origin
maps each vertex on M to a point on the sphere: each edge (u, v) is mapped to a geodesic
arc, obtained by intersecting the sphere with the plane passing trough the origin and the
segment relying u and v on the prism (crossings are forbidden since the map is bijective).

Theorem 1. Let G be a planar triangulation of size n, having two non-adjacent faces fS

and fN . Then one can compute in O(n) time a spherical drawing of G, where edges are
drawn as (non-crossing) geodesic arcs of length at least Ω(1

n
).

Some heuristics. We use as last initial placer our combinatorial algorithm of Section 3.
For the computation of the three disjoint paths P0, P1 and P2, we adopt again an heuristic
based on a growing-region approach: while not having theoretical guarantees on the quality
of the partition and the length of the paths, our results suggest that well balanced partitions
are achieved for most tested graphs. A crucial point to obtain a nice layout resides in the

7

choice of the canonical labeling (its computation is performed with an incremental approach
based on vertex removal). A bad canonical labeling could lead to unpleasant configurations,
where a large number of vertices on the boundaries of the bottom and top sub-regions of
each graph Gi are drawn along the same direction: as side effects, a few triangles use a lot
of area, and the set of interior chordal edges in the river can be highly stretched, especially
those close to the south and north poles. To partially address this problem, we design a
few heuristics during the computation of the canonical labeling, in order to obtain more
balanced layouts. Firstly, we delay the conquest of the vertices which are close to the south
and north poles: this way these extremal vertices are assigned low labels (in the canonical
labeling), leading to smaller and thicker triangles close to the poles. Moreover the selection
of the vertices is done so as to keep the height of the triangle caps more balanced in the final
layout. Finally, we adjust the horizontal stretch of the edges, to get more equally spaced
vertices on the paths P0, P1 and P2.

4 Experimental results and comparison

Experimental settings and datasets. In order to obtain a fair comparison of runtime
performances, we have written pure Java implementations of all algorithms and drawing
methods presented in this work. 2 Our tests involves several graphs including the 1-
skeleton of 3D models (made available by the AIM@SHAPE repository) as well as random
planar triangulations obtained with an uniform random sampler [22].

In our tests we take as an input the combinatorial structure of a planar map encoded
in OFF format: nevertheless we do not make any assumption on the geometric realization
of the input triangulation in 2D or 3D space. Moreover, observe that the fact of knowing
the combinatorial embedding of the input graph G (the set of its faces) is a rather weak
assumption, since such an embedding is essentially unique for planar triangulations and it can
be easily retrieved from the graph connectivity in linear time [21]. We run our experiments
on a HP EliteBook, equipped with an Intel Core i7 2.60GHz (with Ubuntu 16.04, Java 1.8
64-bit, using a single core, and 4GB of RAM for the JVM).

4.1 Quantitative evaluation of aesthetic criteria

In order to obtain a quantitative evaluation of the layout quality we compute the spring
energy E defined by Eq. 1 and two metrics measuring the edge lengths and the triangle areas.
As suggested in [13] we compute the average percent deviation of edge lengths, according to

el := 1 −

(
1

|E|
∑
e∈E

|lg(e)− lavg|
max(lavg, lmax − lavg)

)
where lg(e) denotes the geodesic distance of the edge e, and lavg (resp. lmax) is the average

geodesic edge length (resp. maximal geodesic edge length) in the layout. In a similar manner

2Datasets, source codes and runnable Java applications are available
http://www.lix.polytechnique.fr/ amturing/software.html

8

preprocessing Layout computation PC ISP

mesh vertices faces rivers canonical shift prism linear linear

comput. labeling algorithm projection solver solver

Egea 8268 16K 0.015 0.017 0.005 0.017 0.24 0.16
Gargoyle 10002 20K 0.016 0.018 0.007 0.025 0.26 0.22

Bunny 26002 52K 0.017 0.031 0.019 0.036 1.14 0.75

Iphigenia 49922 99K 0.023 0.049 0.025 0.046 2.38 1.44

Camille’s hand 195557 391K 0.076 0.121 0.073 0.125 17.02 7.92

Eros 476596 950K 0.162 0.260 0.132 0.255 50.54 29.99

Chinese dragon 655980 1.3M 0.174 0.314 0.157 0.433 89.64 53.12

vertices
200k 400k 600k

vertices

1.2

1.0

0.8

0.6

0.4

0.2

SFPP layout (total cost)

80

60

40

20

se
co
n
d
s

200k 400k 600k

100

se
co
n
d
s

ISP layout
PC layout

Table 1: This table reports the runtime performance of all steps involved in the computation
of the SFPP layout obtained with the algorithm of Section 3. The overall cost (red chart)
includes the preprocessing phase (computing the three rivers and the canonical labeling) and
the layout computation (running the two-phases shift algorithm, constructing and projecting
the prism). The last two columns report the timing cost for solving the linear systems for
the ISP and PC layouts (see blue/green charts), using the MTJ conjugate gradient solver. All
results are expressed in seconds.

we compute the average percent deviation of triangle areas, denoted by a. The metrics el and
a take values in [0 . . . 1], and higher values indicate more uniform edge lengths and triangle
areas 3.

4.2 Timing performances: comparison

The runtime performances reported in Table 1 clearly show that our SFPP algorithm has an
asymptotic linear-time behavior and in practice is much faster than other methods based on
planar parameterization. For instance the ISP layout adopted in [23] requires to solve large
linear systems: among the tested Java libraries (MTJ, Colt, PColt, Jama), we found that the
linear solvers of the MTJ have the best runtime performances for the solution of large sparse
linear systems (in our tests we run the conjugate gradient solver, setting a numeric tolerance
of 10−6). Observe that a slightly better performance can be achieved with more sophisticated
schemes or tools (e.g. Matlab solvers) as done in [2, 23]. Nevertheless the timing cost still
remains much larger than ours: as reported in [2] the orbifold parameterization of the dragon
graph requires 19 seconds (for solving the linear systems, on a 3.5GHz Intel i7 CPU).

9

Initial layout Projected Gauss-Seidel Alexa method

ρ = 0.42

E = 45.21 E = 47.82el = 0.926 el = 0.849

E = 45.02 el = 0.908 E = 48.02 el = 0.801

Random

PC

ISP

SFPP

Placer

50 iter. 1058 iter.

50 iter. 1190 iter.

E = 49.2 el = 0.89

E = 48.8 el = 0.89

50 iter. 636 iter.

50 iter. 1096 iter.

50 iter. 250 iter. 50 iter. 1200 iter.

E = 51.32 el = 0.859

E = 50.60 el = 0.868

0.88sec

1.10sec

1.13sec

1.04sec

1600 iter. 1.73sec 50 iter. 987 iter.

E = 12.26 el = 0.91 E = 51.37 el = 0.864 E = 48.02 el = 0.790E = 47.92 el = 0.89

50 iter. 1.06sec

E ISP layout

SFPP layout

PC layout

160

80

100

60

40

20

el a
Projected Gauss-Seidel Alexa

800

120

140

iterations
1

160

80

100

60

40

20

120

140

iterations
8001

0.96

1

0.9

0.88

0.84

1600

iterations
800 1600

1

0.9

1

0.92

0.94

0.96

0.98

0.88

1600

0.95

0.9

0.85

0.8

0.75

iterations
800 16001

iterations
800 16001

iterations
800 1600

E el a0.98

0.96

0.94

0.92

0.88

0.90

0.86

0.84

1

1

Figure 3: These pictures illustrate the use of different initial placers as starting layouts for
two iterative schemes on the dog graph (1480 vertices). For each initial layout, we first run
50 iterations of the projected Gauss-Seidel and Alexa method, and then we run the two
methods until a valid spherical drawing (crossing free) is reach. The charts below show the
energy, area and edge length statistics obtained running 1600 iterations of the projected
Gauss-Seidel and Alexa methods.

4.3 Evaluation of the layout quality: interpretation and compar-
isons

All our tests confirm that starting with random vertex locations is almost always a bad
choice, since iterative methods lead in most cases to a collapse before reaching a valid spher-
ical drawing (spherical spring embedders do not have this problem, but cannot always elim-
inate edge crossings, see Fig. 4). Our experiments (see Fig. 3 and 4) also confirm two well
known facts: Alexa’s method is always more robust compared to the projected Gauss-Seidel

3Observe that one common metric considered in the geometric processing community is the (angle)
distortion: in our case this metric cannot be taken into account since our input is a combinatorial structure
(without any geometric embedding).

10

100 iterations 50 iterations 474 iter.

Gauss-Seidel relaxation Alexa method

50 iterations 356 iter.

ISP layout % = 0.49

SFPP layout 100 iterations

E = 61.86 el = 0.864

E = 61.85 el = 0.864

Spherical FR

Random layout 100 iterations 50 iterations 230 iterations 200 iterations

200 iterations

200 iterations

200 iterations100 iterations 50 iterationsPC layout
369 iter.

E = 61.82 el = 0.867

ISP layout

SFPP layout
PC layout

a

el

E

iterations

iterations

iterations
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92

400 8001

120

100

80

60

40

20

400 8001

400 8001

Alexa method

Figure 4: Spherical layouts of a random triangulation with 1K faces. While the projected
Gauss-Seidel relaxation always collapse, Alexa method is more robust, but also fails when
starting from a random initial layout. When using the ISP, PC or our SFPP layouts Alexa
method converges toward a crossing-free layout: starting from the SFPP layout allows getting
the same aesthetic criteria as the ISP or the PC layouts (with even less iterations). Spring
embedders [13] (Spherical FR) prevent from reaching a degenerate configuration, but have
some difficulties to unfold the layout. The charts on the right show the plot of the energy,
edge lengths and areas statistics computed when running 800 iterations of Alexa method
(we compute these statistics every 10 iterations).

relaxation, and the ISP provides a better starting point compared to the PC layout (one can
more often converge towards a non-crossing configuration before collapsing, since vertices
are distributed in a more balanced way on the sphere).

Layout of mesh-like graphs. When computing the spherical layout of mesh-like
structures, the ISP layout seems to be a good choice as initial guess (Fig. 3 show the layout
of the dog mesh). The drawing is rather pleasing, capturing the structure of the input graph
and being not too far from the final spherical Tutte layout: we mention that the results
obtained in our experiments strongly depend on the quality of the separator cycle. Our
SFPP layout clearly fails to achieve similar aesthetic criteria: nevertheless, even not being
pleasing in the first few iterations, it is possible to reach very often a valid final configuration
(crossing-free) without collapsing, and whose quality is very close, in terms of energy and

11

100 iter.

Initial random layout 20 iter. 50 iter. 150 iter.
83.20 sec

Initial spherical drawing: ISP 51.57 sec

(in unit cube)
5 iter.

20 iter. 50 iter.

#
co
ll
id
in
g
tr
ia
n
g
le
s

#
co
ll
id
in
g
tr
ia
n
g
le
s

7000

6000

5000

4000

3000

2000

1000

9060301
iterations

9060301
iterations

70

60

50

40

30

20

10

Figure 5: These pictures illustrate the use of spherical drawings as initial placers for force-
directed methods: we compute the layouts of the cow graph (2904 vertices, 5804 faces) using
our 3D implementation of the FR spring embedder [16]. In the charts on the right we plot
the number of colliding 3D triangles, over 100 iterations of the algorithm.

edge lengths and area statistics, to the ones obtained starting from the ISP layout, as con-
firmed by the charts in Fig. 3. As we observed for most of the tested graphs, when starting
from the SFPP layout the number of iterations required to reach a spherical drawing with
good aesthetics is larger than starting from an ISP layout. But the convergence speed can
be slightly better in a few cases: Fig. 3 shows a valid spherical layout computed after 1058
iterations of the Gauss-Seidel relaxation (1190 iterations are required when starting from the
ISP layout).

The charts in Fig. 3 show that our SFPP has higher values of the edge lengths and
area statistics in the first iterations: this reflects the fact that our layout has a polynomial
resolution and thus triangles have a bounded aspect ratio and side lengths. In the case of
the ISP parameterization there could be a large number of tiny triangles clustered in some
small regions (the size of coordinates could be exponentially small as n grows).

Layout of random triangulations. When drawing random triangulations the behav-
ior is rather different: the performances obtained starting from our SFPP layout are often
better than the ones achieved using the ISP layout. As illustrated by the pictures in Fig.4)
and 6, Alexa’s method is able to reach a non-crossing configuration requiring less iterations
when starting from our SFPP layout: this is observed in most our experiments, and clearly
confirmed by the plots of the energy and statistics el and a that converge faster to the values
of the final layout (see charts in Fig. 4).

12

Random layout

5 iterations

20 iter. 50 iter. 80 iter.

ISP + Alexa (2934iter.)

Spherical drawing
50 iter.

50 iter.20 iter. 40 iter.

20 iter. 40 iter.

t = 20.31 sec

t = 34.26 sec

1.27sec

(in unit cube)

t = 20.35 sec

2.98sec

E =71.671
el = 0.934

E =71.697
el = 0.934

#
c
o
ll
id

in
g

t
r
ia

n
g
le

s
#

c
o
ll
id

in
g

t
r
ia

n
g
le

s
#

c
o
ll
id

in
g

t
r
ia

n
g
le

s

colliding triangles=718

colliding triangles=330

colliding triangles=311

6000

5000

4000

3000

2000

1000

9060301
iterations

iterations
60 90301

iterations
1 30 60 90

900

800

700

600

500

400

300

200

100

900

800

700

600

500

400

300

200

100

SFFP + Alexa (1024 iter.)

Spherical drawing

Figure 6: These pictures illustrate the use of spherical drawings as initial placers for the 3D
version of the FR spring embedder [16], for a random planar triangulation with 5K faces.

5 Spherical preprocessing for Euclidean spring embed-

ders

In this section we investigate the use of spherical drawings as initial placers for spring embed-
ders in 3D space. The fact of recovering the original topological shape of the graph, at least in
the case of graphs that have a clear underlying geometric structure, is an important and well
known ability of spring embedders. This occurs for the case of regular graphs used in Geome-
try Processing (the pictures in Fig. 5 show a few force-directed layouts of the cow graph), and
also for many mesh-like complex networks involved in physical and real-world applications
(such as the networks made available by the Sparse Matrix Collection [9]). In the case
of uniformly random embedded graphs (called maps) of a large size n on a fixed surface S,
the spring embedding algorithms (applied in the 3D ambient space) yield graph layouts that
greatly capture the topological and structural features of the map (the genus of the surface is
visible, the ”central charge” of the model is reflected by the presence of spikes, etc.), a great
variety of such representations can be seen at the very nice simulation gallery of Jérémie Bet-
tinelli (http://www.normalesup.org/∼bettinel/simul.html). While common software
and libraries (e.g. GraphViz [12], Gephi [4], GraphStream) for graph visualization provide
implementations of many force-directed models, as far as we know they never try to exploit
the strong combinatorial structure of surface-like graphs.

Discussion of experimental results. Our main goal is to show empirically that
starting from a nice initial shape that captures the topological structure of the input graph
greatly improves the convergence speed and layout quality.

In our first experiments (see Figures 5 and 6) we run our 3D implementation of the
spring electrical model FR [16], where we make use of exact force computation and we adopt
the cooling system proposed in [28] (with repulsive strength C = 0.1). We also perform

13

Initial layout: random locations

t = 1 sec t = 2 sec t = 5 sec t = 10 sec

t = 1 sec t = 2 sec t = 5 sec t = 10 sec

Initial layout: SFPP+Alexa

t = 2 sec t = 5 sec t = 10 sec

t = 10 sec

t = 1 sec

Initial layout: ISP

Initial layout: random locations

t = 1 sec t = 2 sec t = 5 sec

Figure 7: The spherical drawings of the graphs in Fig. 5 and 6 are used as initial placers for
the Yifan Hu algorithm [19]: we test the implementation provided by Gephi (after rescaling
the layout by a factor 1000, we set an optimal distance of 10.0 and a parameter ϑ = 2.0).

some tests with the Gephi implementation of the Yifan Hu layout algorithm [19], which is
a more sophisticated spring-embedder with fast approximate calculation of repulsive forces
(see the layouts of Fig. 7). In order to quantify the layout quality, we evaluate the number
of self-intersections of the resulting 3D shape during the iterative computation process 4.
To be more precise, we plot (over the first 100 iterations) the number of triangle faces that
have a collision with a non adjacent triangle in 3D space. The charts of Fig. 5 and 6 clearly
confirm the visual intuition suggested by pictures: when starting from a good initial shape
the force-directed layouts seem to evolve according to an inflating process, which leads to
better and faster untangle the graph layout. This phenomenon is observed in all our tests
(on several mesh-like graphs and synthetic data): experimental evidence shows that an
initial spherical drawing is a good starting point helping the spring embedder to reach nicer
layout aesthetics and also to improve the runtime performances. Finally observe that from
the computational point of view the computation of a spherical drawing has a negligible
cost: iterative schemes (e.g. Alexa method) require O(n) time per iteration, which must
be compared to the complexity cost of force-directed methods, requiring between O(n2) or
O(n log n) time per iteration (depending on the repulsive force calculation scheme). This is
also confirmed in practice, according to the timing costs reported in Fig 5, 6 and 7.

6 Concluding remarks

One main feature of our SFPP method is that it always computes a crossing-free layout:
unfortunately edge crossings can appear during the beautification process, when running
iterative algorithms (projected Gauss-Seidel iteration, Alexa method or more sophisticated
schemes). It could be interested to adapt to the spherical case existing methods [27] (which
are designed for the Euclidean case) whose goal is to dissuade edge-crossings: their applica-
tion could lead to produce a sequence of layouts that converge to the final spherical drawing

4We compute the intersections between all pairs of non adjacent triangles running a brute-force algorithm:
the runtimes reported in Fig. 5 and 6 do not count the cost of computing the triangle collisions.

14

while always preserving the map. The promising results of Section 5 would suggest that
starting from an initial nice layout could lead to faster algorithms and better results for the
case of mesh-like structures. It could be interesting to investigate whether this phenomenon
arises for other classes of graphs, such as quadrangulated or 3-connected planar graphs, or
non planar (e.g. toroidal) graphs, for which fast drawing methods also exist [6, 17].

References

[1] N. Aigerman, S. Z. Kovalsky, and Y. Lipman. Spherical orbifold tutte embeddings. ACM
Trans. Graph., 36(4):90:1–90:13, 2017.

[2] N. Aigerman and Y. Lipman. Orbifold tutte embeddings. ACM Trans. Graph., 34(6):190:1–
190:12, 2015.

[3] M. Alexa. Merging polyhedral shapes with scattered features. The Visual Computer, 16(1):26–
37, 2000.

[4] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring and
manipulating networks. In Proc. of the Third Int. Conf. on Weblogs and Social Media, ICWSM
2009, 2009, 2009.

[5] E. Brehm. 3-orientations and Schnyder 3-tree-decompositions. Master’s Thesis, FB Mathe-
matik und Informatik, Freie Universität Berlin, 2000.

[6] L. Castelli-Aleardi, O. Devillers, and É. Fusy. Canonical ordering for triangulations on the
cylinder, with applications to periodic straight-line drawings. In Graph Drawing - 20th Inter-
national Symposium, pages 376–387, 2012.

[7] L. Castelli-Aleardi, É. Fusy, and A. Kostrygin. Periodic planar straight-frame drawings with
polynomial resolution. In LATIN 2014: Theoretical Informatics - 11th Latin American Sym-
posium, pages 168–179, 2014.

[8] E. W. Chambers, D. Eppstein, M. T. Goodrich, and M. Löffler. Drawing graphs in the plane
with a prescribed outer face and polynomial area. J. Graph Algorithms Appl., 16(2):243–259,
2012.

[9] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25, 2011.

[10] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,
10(1):41–51, 1990.

[11] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Planar drawings of higher-genus graphs.
J. Graph Algorithms Appl., 15(1):7–32, 2011.

[12] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. Graphviz - open source
graph drawing tools. In Proc. of Graph Drawing, pages 483–484, 2001.

15

[13] J. J. Fowler and S. G. Kobourov. Planar preprocessing for spring embedders. In Graph Drawing
- 20th International Symposium, pages 388–399, 2012.

[14] E. Fox-Epstein, S. Mozes, P. M. Phothilimthana, and C. Sommer. Short and simple cycle
separators in planar graphs. ACM Journal of Experimental Algorithmics, 21(1):2.2:1–2.2:24,
2016.

[15] I. Friedel, P. Schröder, and M. Desbrun. Unconstrained spherical parameterization. J. Graphics
Tools, 12(1):17–26, 2007.

[16] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Softw.,
Pract. Exper., 21(11):1129–1164, 1991.

[17] D. Gonçalves and B. Lévêque. Toroidal maps: Schnyder woods, orthogonal surfaces and
straight-line representations. Discrete & Computational Geometry, 51(1):67–131, 2014.

[18] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d meshes.
ACM Trans. Graph., 22(3):358–363, 2003.

[19] Y. Hu. Efficient, high-quality force-directed graph drawing. The Mathematica Journal, 10(1),
2006.

[20] S. G. Kobourov and K. Wampler. Non-euclidean spring embedders. IEEE Trans. Vis. Comput.
Graph., 11(6):757–767, 2005.

[21] H. Nagamochi, T. Suzuki, and T. Ishii. A simple recognition of maximal planar graphs. Inf.
Process. Lett., 89(5):223–226, 2004.

[22] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. Algorithmica,
46(3-4):505–527, 2006.

[23] S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer. Practical spherical embedding of manifold
triangle meshes. In (SMI2005), pages 258–267, 2005.

[24] W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, volume 90, pages 138–148, 1990.

[25] A. Shapiro and A. Tal. Polyhedron realization for shape transformation. The Visual Computer,
14(8/9):429–444, 1998.

[26] A. Sheffer, C. Gotsman, and N. Dyn. Robust spherical parameterization of triangular meshes.
Computing, 72(1-2):185–193, 2004.

[27] P. Simonetto, D. W. Archambault, D. Auber, and R. Bourqui. Impred: An improved
force-directed algorithm that prevents nodes from crossing edges. Comput. Graph. Forum,
30(3):1071–1080, 2011.

[28] C. Walshaw. A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms
Appl., 7(3):253–285, 2003.

[29] R. Zayer, C. Rössl, and H. Seidel. Curvilinear spherical parameterization. In Int. Conf. on
Shape Modeling and Applications (SMI 2006), page 11, 2006.

16

f

f ′

f f ′

Figure 8: These pictures illustrate the computation of a spherical drawing using our SFPP
algorithm.

A Appendix

A.1 Proof of Theorem 1

For the sake of completeness we provide a detailed description of all the steps of the linear-time
algorithm computing a SFPP layout of a triangulation G of the sphere, as sketched in Section 3: we
combine and adapt many ingredients developed in [11, 6, 7].

Cutting G along three disjoint paths. Let G be a triangulation on the sphere. We assume
that there exist two non adjacent faces f and f ′ (with no common incident vertices). If not, one
can force the existence of two such faces by adding a new triangle t within a face (and adding edges
so as to triangulate the area between t and the face-contour).

The first step is to compute 3 vertex-disjoint chord-free paths that start at each of the 3 vertices
of fS and end at each of the 3 vertices of fN .

Schnyder woods [24, 5] provide a nice way to achieve this. Taking f as the outer face, where
v0, v1, v2 are the outer vertices in clockwise (CW) order and inserting a vertex v of degree 3 inside
f ′, we compute a Schnyder wood of the obtained triangulation, and let P0, P1, P2 be the directed
paths in respective colors 0, 1, 2 starting from v: by well-known properties of Schnyder woods,
these paths are chord-free and are disjoint except at v, and they end at the 3 vertices v0, v1, v2 of
f . Deleting v and its 3 incident edges, (and thus deleting the starting edge in each of P0, P1, P2) we
obtain a triple of disjoint chord-free paths from f ′ to f . Let u0, u1, u2 be the vertices on f ′ incident
to P0, P1, P2.

As in [7] we call 4ST triangulation a graph embedded in the plane with a polygonal outer
contour and with triangular inner faces, with 4 distinguished vertices w0, w1, w2, w3 (in cw order)
incident to the outer face, and such that each of the 4 outer paths delimited by the marked outer
vertices is chord-free. The external paths between w0 and w1 and between w2 and w3 are called
vertical, and the two other ones are called horizontal. A 4ST is called narrow if the two vertical
paths have only one edge. For i ∈ {0, 1, 2} let Gi be the narrow 4ST whose outer contour (indices
are taken modulo 3) is made of the path Pi, the edge {ui, ui+1}, the path Pi+1, and the edge
{vi, vi+1}.

Note that G can be seen as a prism, with f and f ′ as the two triangular faces and with G0, G1, G2

occupying the 3 lateral quadrangular faces of the prism.

17

Computing compatible drawings of the 3 components G0, G1, G2. A straight-frame drawing
of a 4ST H is a straight-line drawing of H where the outer face contour is an axis-aligned rectangle,
with the 4 sides of the rectangle corresponding to the 4 paths along the contour. The interspace-
vector of each of the 4 paths is the vector giving the lengths (in the drawing) of the successive
edges along the path, where the path is traversed from left to right for the two horizontal ones
and is traversed from bottom to top for the two vertical ones. In order to obtain a drawing of
G on the prism (which then yields a geodesic crossing-free drawing on the sphere, using a central
projection), we would like to obtain compatible straight-frame drawings of G0, G1, G2, i.e., such
that for i ∈ {0, 1, 2} the interspace-vectors of Pi in the drawing of Gi and in the drawing of Gi−1
are the same.

Using an adaptation —given in [7]— of the algorithm by Duncan et al. [11], one gets the
following result, where a vector of positive integers is called even if all its components are even,
and the total of a vector is the sum of its components:

Lemma 1 (from [7]). Let H be a narrow 4ST with m vertices. Then one can compute in linear
time a straight-frame drawing of H such that the interspace-vectors U = (u1, . . . , up) and V =
(v1, . . . , vq) of the two horizontal external paths are even, and the grid-size of the drawing is bounded
by 4m× (4m + 1).

Moreover, for any pair U ′ = (u′1, . . . , u
′
p) and V = (v′1, . . . , v

′
q) of even vectors such that U ′ ≥ U ,

V ′ ≥ V , and U ′ and V ′ have the same total s, one can recompute in linear time a straight-frame
drawing of H such that the interspace vectors of the two horizontal external paths are respectively
U ′ and V ′, and the grid-size is 4s× (4s + 1).

For i ∈ {0, 1, 2} let ki be the number of vertices of Gi. By the first part of Lemma 1, Gi admits
a straight-frame drawing —where Pi and Pi+1 are the two horizontal external paths— such that
the interspace-vector Ui along Pi and the interspace-vector Vi+1 along Pi+1 are even, and the grid
size is bounded by 4ki × (4ki + 1), with ki the number of vertices in Gi.

We let Wi be the vector max(Ui, Vi), and let si be the total of Wi, and set s := max(s0, s1, s2).
It is easy to check that s ≤ 8n. We then let W ′i be obtained from Wi by adding s− si to the last
component. Then we set U ′i and V ′i to W ′i . Note that we have U ′i ≥ Ui and V ′i ≥ Vi for i ∈ {0, 1, 2},
and moreover all the vectors U ′0, V

′
0 , U

′
1, V

′
1 , U

′
2, V

′
2 now have the same total, which is s. We can thus

use the second part of Lemma 1 and obtained straight-frame drawings of Gi (for i ∈ {0, 1, 2}) on
the grid 4s× (4s+ 1) where the interspace-vector for the bottom (resp. upper) horizontal external
path is U ′i (resp. is V ′i+1). Since U ′i = V ′i for i ∈ {0, 1, 2}, the drawings of G0, G1, G2 are compatible
and can thus be assembled to get a drawing of G on the prism (see Figure 8 for an example), which
then yields a drawing on the unit sphere using a central projection (with the origin at the center
of mass of the prism seen as a solid polyhedron). Note that the prism has its 3 lateral faces of area
O(n × n), hence is at distance O(n) from the origin. Since every edge of G drawn on the prism
clearly has length at least 1 (as in any straight-line drawing with integer coordinates) we conclude
that after the central projection every edge of G has length Ω(1/n), as claimed in Theorem 1.

Remark. To improve the distribution of the points on the sphere, one aims at 3 paths P0, P1, P2

such that the graphs G0, G1, G2 are of similar sizes. A simple heuristic (using the approach based
on Schnyder woods mentioned above), is to do the computation for every face fS non-adjacent to
fN , and keep the one that maximizes the objective parameter

∑
0≤i<j≤2 ||Gi| − |Gj ||.

18

