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Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions
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In the paper, the authors introduce the concepts "(α, s)-convex function" and "(α, s, m)-convex function" and establish some new integral inequalities of the Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions in terms of the classical Euler beta, gamma, and polygamma functions.

Introduction

We first recite some definitions of various convex functions. Definition 1.4 ([4, 9]). Let s ∈ (0, 1] be a real number. A function f : R → R 0 is said to be s-convex (in the second sense) if

f (tx + (1 -t)y) ≤ t s f (x) + (1 -t) s f (y)
for all x, y ∈ I and t ∈ [0, 1].

Definition 1.5 ([28]). For some s ∈ [-1, 1], a function f : I ⊆ R → R is said to be extended s-convex if

f (tx + (1 -t)y) ≤ t s f (x) + (1 -t) s f (y)
for all x, y ∈ I and t ∈ (0, 1).

Definition 1.6 ([33]). For some (s, m) ∈ [-1, 1] × (0, 1], a function f : [0, b] → R 0 is said to be extended (s, m)-convex if f (tx + m(1 -t)y) ≤ t s f (x) + m(1 -t) s f (y)
for all x, y ∈ I and t ∈ (0, 1).

The famous Hermite-Hadamard integral inequality for convex functions and some of its diverse generalizations can be reformulated as follows. 

f a + b 2 ≤ 1 b -a b a f (x)dx ≤ f (a) + f (b) 2 . Theorem 1.2 ([5]). Let f : I • ⊆ R → R be a differentiable mapping on I • and a, b ∈ I • with a < b. If |f (x)| is convex on [a, b], then f (a) + f (b) 2 - 1 b -a b a f (x)dx ≤ (b -a) |f (a)| + |f (b)| 8 . Theorem 1.3 ([10, Theorems 2.3 and 2.4]). Let f : I ⊆ R 0 → R be differentiable on I • and a, b ∈ I with a < b. If |f (x)| p is s-convex on [a, b] for some s ∈ (0, 1] and p > 1, then f a + b 2 - 1 b -a b a f (x)dx ≤ b -a 16 
4 p + 1 1/p |f (a)| + |f (b)| and f a + b 2 - 1 b -a b a f (x)dx ≤ b -a 4 4 p + 1 1/p |f (a)| p/(p-1) + 3|f (b)| p/(p-1) 1-1/p + 3|f (a)| p/(p-1) + |f (b)| p/(p-1) 1-1/p .
For more information on integral inequalities of the Hermite-Hadamard type for various kinds of convex functions, please refer to the monograph [START_REF] Dragomir | Selected Topics on Hermite-Hadamard Type Inequalities and Applications[END_REF][START_REF] Hardy | Inequalities[END_REF][START_REF] Niculescu | Convex Functions and Their Applications: A Contemporary Approach[END_REF][START_REF] Niculescu | Convex Functions and Their Applications: A Contemporary Approach[END_REF], to recently published papers [START_REF] Alomari | Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means[END_REF][START_REF] Bai | Hermite-Hadamard type inequalities for the m-and (α, m)-logarithmically convex functions[END_REF][START_REF] Dragomir | Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula[END_REF][START_REF] Erden | New Hermite Hadamard type inequalities for twice differentiable convex mappings via Green function and applications[END_REF][START_REF] Latif | Weighted generalization of some integral inequalities for differentiable co-ordinated convex functions[END_REF][START_REF] Noor | Some integral inequalities for p-convex functions[END_REF][START_REF] Noor | Some characterizations of harmonically log-convex functions[END_REF][START_REF] Noor | Some integral inequalities for harmonically h-convex functions[END_REF][START_REF] Özdemir | On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates[END_REF][START_REF] Pearce | Inequalities for differentiable mappings with application to special means and quadrature formulae[END_REF][START_REF] Qi | Generalizations and refinements of Hermite-Hadamard's inequality[END_REF][START_REF] Qi | Some integral inequalities of Simpson type for GA-εconvex functions[END_REF][START_REF] Sarikaya | On new inequalities of Simpson's type for s-convex functions[END_REF][START_REF] Tian | Properties of generalized sharp Hölder's inequalities[END_REF][START_REF] Wu | On the weighted generalization of the Hermite-Hadamard inequality and its applications[END_REF][START_REF] Xi | Hermite-Hadamard type inequalities for the m-and (α, m)-geometrically convex functions[END_REF][START_REF] Xi | Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means[END_REF][START_REF] Xi | Some Hermite-Hadamard type inequalities for differentiable convex functions and applications[END_REF][START_REF] Xi | Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions[END_REF][START_REF] Xi | Hermite-Hadamard type inequalities for geometrically r-convex functions[END_REF][START_REF] Xi | Some inequalities of Hermite-Hadamard type for m-harmonic-arithmetically convex functions[END_REF], and to the closely related references therein.

In this paper, we introduce two new concepts "(α, s)-convex function" and "(α, s, m)-convex function" and present inequalities of Hermite-Hadamard type for functions whose twice differentiation are of (α, s, m)-convexity.

Two definitions and two lemmas

We introduce the notions of "(α, s)-convex function" and "(α, s, m)-convex function". Definition 2.1. For some s ∈ [-1, 1] and α ∈ (0, 1], a function f :

I ⊆ R → R is said to be (α, s)-convex if f (tx + (1 -t)y) ≤ t αs f (x) + (1 -t α ) s f (y)
for all x, y ∈ I and t ∈ (0, 1). Definition 2.2. For some s ∈ [-1, 1] and (α, m)

∈ (0, 1] 2 , a function f : [0, b] → R is said to be (α, s, m)-convex if f (tx + m(1 -t)y) ≤ t αs f (x) + m(1 -t α ) s f (y)
for all x, y ∈ [0, b] and t ∈ (0, 1).

Remark 2.1. By Definition 2.2, we see that

1. if s = 1, then f (x) is an (α, m)-convex function on (0, b]; 2. if α = 1, then f (x) is an extended (s, m)-convex function on (0, b]; 3. if α = m = 1, then f (x) is an extended s-convex function on (0, b]; 4. if α = s = m = 1, then f (x) is a convex function on (0, b].
This means that Definitions (2.1) and (2.2) are significant.

For establishing new integral inequalities of the Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions, we need the following lemmas.

Lemma 2.1. Let f : I ⊆ R → R be a twice differentiable function on I • and a, b ∈ I with a < b. If f ∈ L 1 ([a, b]), then 1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx = (b -a) 2 16 
× 1 0 t(1 -t) f at + (1 -t) a + b 2 + f t a + b 2 + (1 -t)b dt.
Proof. Integrating by parts and changing variable of integral give

1 0 t(1 -t)f at + (1 -t) a + b 2 dt = 2 b -a 1 0 (1 -2t)f at + (1 -t) a + b 2 dt = 4 (b -a) 2 f (a) + f a + b 2 - 8 (b -a) 2 1 0 f at + (1 -t) a + b 2 dt = 4 (b -a) 2 f (a) + f a + b 2 - 16 (b -a) 3 (a+b)/2 a f (x)dx and 1 0 t(1 -t)f t a + b 2 + (1 -t)b dt = 4 (b -a) 2 f a + b 2 + f (b) - 16 (b -a) 3 b (a+b)/2 f (x)dx.
The proof of Lemma 2.1 is complete. 

M (α, s) 1 0 t(1 -t)(1 -t α ) s dt = 1 α B s + 1, 2 α -B s + 1, 3 α ;
2. when s = -1, we have

1 0 t(1 -t) 1 -t α dt = 1 α ψ 3 α -ψ 2 α ,
where Γ(x), B(x, y), and ψ(x) are the classical Euler gamma, beta, and psi functions defined respectively by

(2.2) Γ(x) = 1 0 t x-1 e -t dt, B(x, y) = 1 0 t x-1 (1 -t) y-1 dt, and 
(2.3) ψ(x) = d ln Γ(x) dx = ∞ 0 e -t t - e -xt 1 -e -t dt for (x), (y) > 0. Proof. Let u = t α for t ∈ [0, 1]. If s ∈ (-1, 1], we have M (α, s) = 1 0 t(1 -t)(1 -t α ) s dt = 1 α 1 0 u 2/α-1 -u 3/α-1 (1 -u) s du = 1 α B s + 1, 2 α -B s + 1, 3 α . 
When s = -1, from the formulas

ψ(z) + γ = 1 0 1 -t z-1 1 -t dt, and γ = ∞ 0 1 1 + t -e -t dt t
in [1, p. 259, 6.3.22], it is easily to deduce

1 0 t(1 -t) 1 -t α dt = 1 α 1 0 u 2/α-1 -u 3/α-1 1 -u du = 1 α ψ 3 α -ψ 2 α .
The proof of Lemma 2.2 is complete.

Integral inequalities of Hermite-Hadamard type

Now we start out to establish some new integral inequalities of the Hermite-Hadamard type for (α, s, m)-convex functions.

Theorem 3.1. For (α, m) ∈ (0, 1] 2 and s ∈ (-1, 1], let f : 0, b * m → R be a twice differentiable function and f ∈ L 1 ([a, b]) for a, b ∈ (0, b * ] with a < b. If |f | q is an (α, s, m)-convex function on 0, b * m for q ≥ 1, then (3.1) 1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 × 6 1-1/q × 1 (αs + 2)(αs + 3) |f (a)| q + mM (α, s) f a + b 2m q 1/q + 1 (αs + 2)(αs + 3) f a + b 2 q + mM (α, s) f b m q 1/q
, where M (α, s) is defined by (2.1).

Proof. By Lemma 2.1 and Hölder's integral inequality, we obtain

(3.2) 1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 1 0 t(1 -t) f at + (1 -t) a + b 2 dt + 1 0 t(1 -t) f t a + b 2 + (1 -t)b dt ≤ (b -a) 2 16 
× 1 0 t(1 -t)dt 1-1/q 1 0 t(1 -t) f at + (1 -t) a + b 2 q dt 1/q + 1 0 t(1 -t)dt 1-1/q 1 0 t(1 -t) f t a + b 2 + (1 -t)b q dt 1/q .
From the (α, s, m)-convexity of |f | q and Lemma 2.2, we arrive at

1 0 t(1 -t) f at + (1 -t) a + b 2 q dt ≤ 1 0 t(1 -t) t αs |f (a)| q + m(1 -t α ) s f a + b 2m q dt = 1 (αs + 2)(αs + 3) |f (a)| q + mM (α, s) f a + b 2m q and (3.3) 1 0 t(1 -t) f t a + b 2 + (1 -t)b q dt ≤ 1 (αs + 2)(αs + 3) f a + b 2 q + mM (α, s) f b m q .
By the inequalities between (3.2) and (3.3), we conclude the inequality (3.1). The proof of Theorem 3.1 is complete.

Corollary 3.1. For α ∈ (0, 1] and s ∈ (-1, 1], let f :

I ⊆ R → R be a twice differentiable function and f ∈ L 1 ([a, b]) for a, b ∈ I with a < b. If |f | q is an (α, s)-convex function on I for q ≥ 1, then 1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 × 6 1-1/q 1 (αs + 2)(αs + 3) |f (a)| q + M (α, s) f a + b 2 q 1/q + 1 (αs + 2)(αs + 3) f a + b 2 q + M (α, s)|f (b)| q 1/q
, where M (α, s) is defined by (2.1).

Proof. This is a special case of Theorem 3.1 for m = 1.

Theorem 3.2. For (α, m) ∈ (0, 1] 2 , let f : 0, b * m → R be a twice differentiable function and f ∈ L 1 ([a, b]) for a, b ∈ (0, b * ] with a < b. If |f | q is (α, -1, m)- convex function on 0, b * m for q ≥ 1, then 1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 × 6 1-1/q |f (a)| q (2 -α)(3 -α) + m ψ( 3 α ) -ψ( 2 α ) α f a + b 2m q 1/q + 1 (2 -α)(3 -α) f a + b 2 q + m ψ( 3 α ) -ψ( 2 α ) α f b m q 1/q
, where ψ(x) is defined by (2.3).

Proof. This follows from similar argument to Theorem 3.1.

Corollary 3.2. Let f : I ⊆ R → R be a twice differentiable function and f ∈ L 1 ([a, b]) for a, b ∈ I with a < b. If |f | q is an (α, -1) 
-convex function on I for α ∈ (0, 1] and q ≥ 1, then

1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 × 6 1-1/q 1 (2 -α)(3 -α) |f (a)| q + ψ 3 α -ψ 2 α α f a + b 2 q 1/q + 1 (2 -α)(3 -α) f a + b 2 q + ψ 3 α -ψ 2 α α |f (b)| q 1/q
, where ψ(x) is defined by (2.3).

Proof. This is a special case of Theorem 3.2 for m = 1.

Theorem 3.3. For (α, m) ∈ (0, 1] 2 , s ∈ (-1, 1], and ≥ 0, let f : 0, b * m → R be a twice differentiable function and f ∈ L 1 ([a, b]) for a, b ∈ (0, b * ] with a < b. If |f | q is an (α, s, m)-convex function on 0, b *
m for q > 1 and q ≥ , then

1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 B 2q --1 q -1 , 2q -1 q -1 1-1/q × 1 αs + + 1 |f (a)| q + m α B s + 1, + 1 α f a + b 2m q 1/q + 1 αs + + 1 f a + b 2 q + m α B s + 1, + 1 α f b m q 1/q
, where B(x, y) is the classical beta function defined in (2.2).

Proof. By Lemma 2.1, Hölder's integral inequality, and the (α, s, m)-convexity of |f | q , one has

1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 
1 0 t (q-)/(q-1) (1 -t) q/(q-1) dt 1-1/q 1 0 t f at

+(1 -t) a + b 2 q dt 1/q + 1 0 t f t a + b 2 + (1 -t)b q dt 1/q ≤ (b -a) 2 16 
1 0 t (q-)/(q-1) (1 -t) q/(q-1) dt

1-1/q × 1 0 t t αs |f (a)| q + m(1 -t α ) s f a + b 2m q dt 1/q + 1 0 t t αs f a + b 2 q + m(1 -t α ) s f b m q dt 1/q = (b -a) 2 16 B 2q --1 q -1 , 2q -1 q -1 1-1/q × 1 αs + + 1 |f (a)| q + m α B s + 1, + 1 α f a + b 2m q 1/q + 1 αs + + 1 f a + b 2 q + m α B s + 1, + 1 α f b m q 1/q .
The proof of Theorem 3.3 is thus complete.

Corollary 3.3. Under assumptions of Theorem 3.3, if = 0, then

1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 × B 2q -1 q -1 , 2q -1 q -1 1-1/q 1 αs + 1 |f (a)| q + m α B s + 1, 1 α × f a + b 2m q 1/q + f a+b 2 q αs + 1 + m α B s + 1, 1 α f b m q 1/q
, where B(x, y) is the classical beta function defined in (2.2). is an (α, s)-convex function on I for q ≥ 1 and q ≥ , then

1 4 f (a) + 2f a + b 2 + f (b) - 1 b -a b a f (x)dx ≤ (b -a) 2 16 B 2q --1 q -1 , 2q -1 q -1 1-1/q 1 αs + + 1 |f (a)| q + 1 α B s + 1, + 1 α f a + b 2 q 1/q + 1 αs + + 1 f a + b 2 q + 1 α B s + 1, + 1 α |f (b)| q 1/q
, where B(x, y) is the classical beta function defined in (2.2).

Proof. This is a special case of Theorem 3.3 for m = 1.

Theorem 3.4. For (α, m) ∈ (0, 1] 2 and s ∈ (-1, 1], let f : 0, b * m → R be an (α, s, m)-convex function on 0, b * m for b * > 0. If f ∈ L 1 ([a, b]) for a, b ∈ (0, b * ] and a < b, then f a + b 2 ≤ 1 b -a b a f (x) + m(2 α -1) s f x m 2 αs dx and 1 b -a b a f (x)dx ≤ max 1 αs + 1 f (a) + m α B s + 1, 1 α f b m , m α B s + 1, 1 α f a m + 1 αs + 1 f (b) ,
where B(x, y) is the classical beta function defined in (2.2). The proof of Theorem 3.4 is complete. Remark 3.1. This paper is a corrected and revised version of the preprint [START_REF] Xi | Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions[END_REF].
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