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A fast implementation of a spectral finite elements method on CPU and GPU applied to ultrasound propagation
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In this paper we present an optimization of a spectral finite element method implementation. The improvements consisted in the modification of the memory layout of the main algorithmic kernels and in the augmentation of the arithmetic intensity via loop transformations. The code has been deployed on multi-core SIMD machines and GPU. Compared to our starting point, i.e. the original scalar sequential code, we achieved a speed up of ×228 on CPU. We present comparisons with the SPECFEM2D code that prove the good performances of our implementation on similar cases. On GPU, a hybrid solution is investigated.

Introduction

In the context of ultrasonic non-destructive testing (NDT) simulation, a new finite element method based on the spectral finite elements and the domain decomposition method has been developed in the CIVA software [START_REF] Impériale | UT simulation using a fully automated 3D hybrid model: application to planar backwall breaking defects inspection[END_REF]. As the computational cost of such a numerical method is expensive, our goal is to reduce the simulation time by an efficient use of the hardware to reach the speed expected by the NDT engineers who are mainly equipped with standard PCs or workstations.

First, we will perform an overview of the spectral finite elements and the domain decomposition method. Secondly, the equation will be split into workable stages to analyse the performance and which optimizations can be efficient, like memory layout optimizations and loop transformations. Thirdly, an analysis of accuracy, hardware architecture, scalability and vectorization on several multi-cores machines will be presented. We will compare our code performance with SPECFEM2D, a well-known software implementation of SFEM. A feasibility study will be also performed on GPU. Lastly, we will conclude and draw some perspectives.

Overview of the Numerical Method

The ECHO library simulates ultrasounds controls to detect echoes on cracks. It has to model the propagation of waves inside a component several order bigger. For this, it combines the domain decomposition method and the Spectral Finite Element Method (SFEM) to solve the problem.

The SFEM is a powerful tool for solving the wave equation. It relies on high-order finite element spaces while conserving a fully explicit scheme, thanks to the mass lumping technique [START_REF] Cohen | Higher-order finite elements with mass-lumping for the 1d wave equation[END_REF]. For example, applying an explicit time discretization of order two, which is stable under the so-called Courant-Friedrichs-Lewy condition on the time step, the fully discrete equation obtained reads

M → P n+1 -2 → P n + → P n-1 ∆t 2 + K → P n = M → F n (1) 
where → P is the unknown, n represents the time step, M is the mass matrix, K is the stiffness matrix and → F is the source. In practice, in order to apply the SFEM, the domain needs to be discretized by a mesh composed of hexahedral elements, which are known to be a major challenge for meshing algorithms [START_REF] Shepherd | Hexahedral mesh generation constraints[END_REF].

This method has been extensively used: to solve transient wave equations [START_REF] Cohen | Higher-Order Numerical Methods for Transient Wave Equations[END_REF], elastodynamic multi-dimensional problems [START_REF] Casadei | A mortar spectral/finite element method for complex 2D and 3D elastodynamic problems[END_REF] or targeting seismic problems [START_REF] Komatitsch | Introduction to the spectral element method for three-dimensional seismic wave propagation[END_REF][7] using also GPU hardware [START_REF] Komatitsch | Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA[END_REF] and distributed computation [START_REF] Komatitsch | Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs[END_REF] [START_REF] Komatitsch | High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[END_REF].

The region of interest, where the cracks are situated, is decomposed into deformed cubes, which are called sub-domains. The cracks are situated as boundaries between two or more sub-domains where the wave propagation is altered or interrupted. Each subdomain corresponds to a deformed predefined grid. Every element is associated with a reference spectral finite element. In this reference element, high-order lagrangian functions are defined using Gauss-Lobatto points [START_REF] Durufle | Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain[END_REF]. Using an approximation order q leads to q + 1 symmetrical DoFs per dimension. In order to reduce sub-domains communications we impose one-to-one interfaces and same DoF position within common interfaces. This strategy allows us to solve explicitly interface problems arising from domain decomposition. Hence the computational burden is mostly related to computational steps. 

Optimization of the Stiffness Matrix

Local Stiffness Matrix

Since the mass matrix is diagonal, the main computational effort (75% of the total execution time) comes from the product of the stiffness matrix with the previously computed solution vector. Thanks to the SFEM, the structure of the global stiffness matrix is composed of overlapping local stiffness matrices related to every element in the mesh.

In the context of ultrasound propagation modelling, storing the global stiffness is numerically intractable, due to the huge number of elements in the mesh. Hence, we opt for an unassembled strategy where the product between the local stiffness matrices and the finite element vector corresponding to each element is performed on the fly. The only constraint to the unassembled strategy is that the local products within a sub-domain with two elements sharing DoFs (neighbours) cannot be computed at the same time. For this, we use a colouring strategy that gives a color to each element, knowing that two neighbours cannot have the same colour (that is, 4 colors in 2D, 8 colors in 3D). Then, each group of colours can benefit from parallel computing. The colouring strategy is also explicit and does not add heavy complexity. A similar strategy was followed in [START_REF] Komatitsch | Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA[END_REF], with the added complexity of dealing with unstructured meshes. In the following, working on the elements of the same colour is supposed, eliminating all constraints regarding concurrent accesses in the parallelization.

Stage Decomposition

In this paper, we shall address the case of a two-dimensional acoustic wave equation and a propagation inside an isotropic homogeneous material, but other cases, as three dimensions, elastic wave equation and anisotropic materials, have also been treated. The resulting equation is Eq. ( 2), where the input U represents the local finite element vector of size (q + 1) 2 , and the output is the vector with the product. A is the gradient matrix, and A T is its transposition. co(DF) is the cofactor of the linear transformation F and J F the jacobian of F. These terms are related to the transformation and they are applied to each local DoF, a vector of two dimensions. ĉ is the wave speed, which is constant because of the homogeneous isotropic nature of the material. From an algorithmic point of view, this equation can be divided in 5 stages in accordance with their main function.

V Stage 4 = A T Stage 3 ⎛ ⎝ ĉ co(DF) T co(DF) J F ⎞ ⎠ xi Stage 2 A Stage 1 ⋅ U Stage 0 (2) 
More specifically, stage 0 finds the degrees of freedom corresponding to a local element on the global vector and then copies them to a local vector. Stage 1 computes the gradient as a product of an invariant matrix by this local vector. Stage 2 consist in two two-dimensional matrix products, adding some scalar products for each DoF. Stage 3 computes the transposed gradient, which are the same calculations as in stage 1. This last one is finally accumulated on the global vector by means of stage 4.

Memory Layout

In order to select which optimization to apply, we first compute the arithmetic intensity (AI) which is the ratio between computations and memory accesses. A small AI usually leads to memory bound algorithm. The original code has an average AI value of 0.5 for approximation order 2 (further details are shown in Table 1). The main target of the following optimizations is to reduce the amount of memory accesses. Let us focus on stage 1 and then apply the optimizations to stage 3, as it is mostly the same calculation. The gradient matrix, A, is a regular sparse matrix. Most of the coefficients are zero, and the non-zero ones follow a regular structure. There is a different matrix A for each dimension. Each (i, j) coefficient shows the relation between the DoF i and the DoF j. Thanks to the finite element of reference, the DoFs elements are symmetrically situated in each dimension with repeated pattern. Considering second order, the reference element size is 9 DoFs and thus there are only 9 different coefficients. As shown in Figure 2, we decided to store once each coefficient, creating a reorganized copy of the local vector to match the new and smaller matrix product. In this example two 9×9 matrix products are reduced to six 3 × 3 matrix products. As Figure 2 shows, the second vector is reorganized. This new memory layout simplifies the code because multiple chained loops with strided accesses become only one loop performing basic small products. We apply the same ideas to stage 3, but using the transposed matrix. Other stages are modified to suit the new layout. Stage 2, being in the middle of this optimizations, benefits largely regarding both memory accesses and computations. New AI values can be found in Table 1. This technique should reduce the number of cache misses.

Loop Transformation

Loop unwinding and scalarization [START_REF] Kennedy | Optimizing Compilers for Modern Architectures: A Dependence-based Approach[END_REF][13] have been applied. It pursues operator fusion and reduces the amount of memory accesses (or increasing the AI). The code is divided in three pieces: memory loads, computations and memory stores. The data is loaded into and stored from scalar variables. The strided accesses are reduced, therefore allowing the compiler to optimize the code freely. Complex codes with multiple reused values can benefit largely, although the resulting code may be longer. After applying this transformation in all stages, the code has an average AI of 13.7 (see Table 1), which means it is computed bound.

Benchmark & Analysis

To benchmark our code, we selected a configuration of a two-dimensional mesh of 64 million global DoFs (that is 8,000 for each dimension), with a polynomial approximation order from 2 to 10. The code solving the stiffness matrix product is intended to be used from order 2 to 5, but the range has been extended to gather more information. As the global points are fixed, increasing the elements size results in decreasing the number of total elements. That allows to evaluate the relation between the order and the optimizations. It should be highlighted that computing each local element separately leads to compute much more DoFs than 64 million because of repeated DoFs in borders. It should also be noted that the bigger the element is, the smaller the border ratio is, and thus less DoFs are computed. 64 million global points on 32-bit floating points leads to a 1.4GB-size problem. The unit of measure selected is cycles per point (cpp), that is total clock cycles (RDTSC instruction) divided per computed DoFs [see Table 2]. All measurements correspond to one time step. The processors used are specified in each case. Turbo-boost and hyperthreading are always disabled. Code is compiled with Intel C++ Compiler 17.0 and highest optimization flag (O3). The source code is parallelized using a # pragma omp parallel OpenMP directive and vectorized using only # pragma ivdep directives.

Accuracy Analysis

Single precision floating point values are used, although the original code used double precision values. This change have been decided based upon the relative error when using single precision compared with a double precision result. To do so, the biggest difference between the points of a defined time-step is compared with the biggest value in that timestep. After 500 time-steps, the relative error is for all approximation orders smaller than 0.01%, and after 5000 time-steps smaller than 0.1%. The error grows linearly with the number of steps and can be limited.

Impact Analysis

Four machines have been used for benchmarking: Westmere (WSM) 2 × 6 cores Intel Xeon Processor X5690 3.46Ghz, Ivy Bridge (IVB) 2 × 4 cores Intel Xeon Processor E3-1245 v2 3.45GHz, Haswell (HSW) 2 × 8 cores Intel Xeon Processor E5-2630 v3 2.4GHz and Broadwell (BDW) 2 × 10 cores Intel Xeon E5-2640 v4 2.4GHz. The following test is performed with the IVB machine. The optimized code is faster in every case than the older code using a scalar mono-thread execution (Figure 3). The cache misses have been reduced in a 50% and the acceleration factor is on average 3. It seems to use less cpp before approximation order 7 and much more after order 8. By using Intel VTune Amplifier XE, an increase of instruction cache misses has been measured from insignificant to around 10%. This is related to the increasing size of the code with the order, from 240 lines for approximation order 2 to 1520 lines for approximation order 10. In order to know if the issue can be overcomed varying the processor architecture, this version has been tested with WSM, IVB and HSW. The L1 cache sizes used are 64KB, 16KB and 32KB respectively. As shown in Figure 4, HSW does not meet the problem until the approximation of order 12, using a smaller L1 cache than WSM. HSW must implement a different algorithm to handle the instructions cache misses, but the information about these algorithms is scarce, so it is just a guess. Regarding why WSM performs better than IVB, the L1 cache sizes difference may be the reason. Then using HSW, the acceleration factor is on average 4.5. 

Scaling and Vectorization Efficiency

For clarity, only the first four approximation orders are kept during this section. Then the acceleration factor is on average 5.3. The machine used is the HSW. Our new code benefits of great vectorization and scalability efficiency. The test compares a scalar monothread execution against 2 up to 16 scalar OpenMP threads. Before optimizations, the code had an efficiency of around 22%. Now the efficiency goes from 97% using two threads to 90% using sixteen (Figure 5).

Then we evaluated the impact of different SIMD extensions, comprising SSE4.2 and AVX2 instructions without and with FMA. The theoretical speed up factors are 4, 8 and 16 respectively. Before, the vectorization efficiency with AVX instruction was of 26%. The efficiency now is respectively around 100%, 75% and 35% (Figure 6). Some NUMA issues in bi-processor configuration have been found when combining OpenMP with SSE4.2 and AVX. As HSW has two processors, the first one is used efficiently but the second one suffers a fall of performance. Using SSE4.2 instructions (Figure 7), the first eight threads have an efficiency of around 95%, but then it falls to 50%. On the other hand, AVX performs around 90%, then decreases to 30%, to increase again to 80%. This roller coaster is closely related to our memory layout. The loop is divided between the threads, which process process elements that can be situated in the same line and be 'reasonably' contiguous, or through different lines. Depending on the number of threads and the problem size, this can highly affect the NUMA nodes, or not at all. The code has been tested with different NUMA node sizes, and there are always some strong disturbances using the second one. Finally, the 8-core AVX version using the HSW machine is ×228 faster than the original scalar code.

Comparative Benchmark with SPECFEM2D

SPECFEM2D [START_REF] Tromp | Spectral-element and adjoint methods in seismology[END_REF] is the reference software for seismic wave propagation in twodimensional acoustic and elastic media. Both codes use spectral finite elements for simulation but at different scales: ECHO is coded for NDT and SPECFEM2D is used in geodynamics. Until now, only the product of the stiffness matrix has been discussed. For comparison, the capability to solve the entire wave equation (Eq. ( 1)) has been added, using the same methodology when possible.

The machine used is the BDW. An approximation order of 2 is used, because SPECFEM2D only allows orders 1 and 2. SPECFEM2D uses a square mesh generated with the pre-processing finite element mesh generator Gmsh. The same source and similar variables has been settled between the two codes. SPECFEM2D has been modified to remove all output and related checks it usually does, to compare only computation time. 2,000 time-steps are used. In this case, both codes use a call to CPU time, so the elapsed time is given in seconds, not cycles. The measured scale is time per element. Both of them have been compiled with the Intel compiler, ICC in our code and IFC for SPECFEM2D. OpenMP and AVX2 vectorization flags have been activated. To be fair, we can not compare multi-threading execution. SPECFEM2D is designed to use distributed architectures via MPI, whereas our code is intended to use OpenMP in single workstations. Our code benefits of great scalability but SPECFEM2D suffer with MPI communication overhead, which is pointless using this kind of architecture. We are therefore comparing mono-thread executions. As shown in Table 3, our code has a substantial speed up factor. There are multiple reasons. First, SPECFEM2D aims at treating more general geometries than our code and therefore supports unstructured meshes. This more generic data structure may provoke indirect accesses and more complex memory layouts. Secondly, according to the Intel optimization report, few loops have been vectorized, because vector dependence prevents vectorization.

GPU: a Feasibility Study

Our optimized stiffness algorithm has a high AI and a good parallel efficiency. It should therefore benefit from GPU computational power. Our interest is to target one single GPU, as did Huthwaite [START_REF] Huthwaite | Accelerated finite element elastodynamic simulations using the GPU[END_REF], but it can be done using several GPUs [START_REF] Komatitsch | Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs[END_REF]. The are two main issues regarding the efficient use of GPUs: transfer time and computation time.

The input memory (which is going to be read during stage 0) and the output memory (which is written during stage 4) need to be transferred. The constant coefficients are negligible. Furthermore, these transfers will not fit the GPU global memory in a context of multi-domain problems, where the meshes need dozens of gigabytes [START_REF] Komatitsch | Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA[END_REF]. Our strategy is to load (potentially several) domains in order to fill in the GPU memory and compute one temporal iteration before replacing it with a new domain. These memory transfers can be asynchronous, so they can be hidden. Our tests use a NVIDIA GeForce GTX TITAN, 6GB of global memory, Kepler GK110, 0.8GHz, compute ability 3.5 and 2048 single precision cores. This GPU is connected through a PCI Express x16 2.0. The code is written in CUDA and compiled with NVCC. We consider a two-dimensional mesh of 640 million global DoFs. The problem size is 4.2GB, half input, half output. The bandwidth achieved is 6.29GB/s out of the ideal 6.4GB/s transfer bandwidth given by the tool CUDA Bandwidth Test (that is 749ms). This bandwidth could be higher using a motherboard connection with architecture PCI 3.0, going up to 10.8GB/s.

Regarding the computing time, there are up to 64 warps of 32 threads each and 65536 registers to be distributed equally. Occupancy is fulfilled if all the 64 warps are in use, that is using 2048 threads and having 32 registers for each one. A single thread can not use more than 255 registers. Balancing the warp used against register availability is crucial, because high occupancy is not always better [START_REF] Volkov | Better Performance at Lower Occupancy[END_REF].

The GPU version of the code computes one element using one thread. Shared memory is not used because threads does not access same positions. The cudaOccupancy-MaxPotentialBlocks function helps us to calculate the maximal size of one block considering how many registers the kernel uses (it depends on the approximation order, see Table 4). The code presents two main issues. The first one is that a single thread requires a lot of registers and thus the occupancy decreases. The second issue is about memory layout. As each thread load an element, and the elements are not adjacent, the threads cannot load coalesced memory. The GPU version is slower than our fastest CPU code considering execution time. Our current work is trying to limit the register number to increase the GPU occupancy. We plan to use the maxrregcount flag combined with kernel launch bounds to control the number of registers. By increasing the warps used and the occupancy, the hypothesis is that the performance will be increased.

Even when the GPU is not still fully used, we plan to develop a hybrid computation strategy, following the ideas of Papadrakakis [START_REF] Papadrakakis | A new era in scientific computing: Domain decomposition methods in hybrid CPU-GPU architectures[END_REF]. As all the information regarding the use of different approximation orders is available, we will be able to add an auto-tuning step, as did Dollinger [START_REF] Dollinger | CPU+GPU load balance guided by execution time prediction[END_REF]. We expect to predict the execution time launching a small test-case with different approximation orders and sub-domains sizes, and then decide consequently the placement.

Conclusion and Perspectives

A fast SFEM implementation has been presented. We have performed memory layout optimizations and code transformations to increase the arithmetic intensity and reduce the cache misses. Further loop optimizations lead to a code automatically vectorized and parallelized which is several order faster than the original code. A comparative benchmark of execution time has been performed between SPECFEM2D and our code, show-ing a significant performance improvement. Finally, a feasibility study regarding the use of GPUs has been conducted.

A particular case of the wave equation has been presented. Our next step will be to apply the work done to a wider range of cases: dimension, materials, transformations. Using these code transformations means having one source file for each approximation order (potentially 2 to 10), which size can be considerable. Combining the different binary parameters leads to 144 files for each hardware. We therefore plan to generate automatically these files from another program.
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 1 Figure 1. From left to right: a 2D surface with a parametric defect; the same surface divided into six sub-domains; a deformed pre-defined grid; a finite reference element and 16 DoFs located by a quadrature rule of order 3.
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 2 Figure2. Schema of stage 1 calculations. One gradient for each dimension is converted into several small matrix-vector products using the same smaller matrix.
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 3 Figure 3. Cpp by approximation order+1 comparing a scalar mono-thread execution using a IVB processor.
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 4 Figure 4. Performance of the code using WSM, IVB and HSW processors. The abscissa has been extended to observe the deferred effect.
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 5 Figure 5. Scalability of the new code.
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 6 Figure 6. Vectorization impact of the new code.
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 7 Figure 7. Scalability of the SSE4.2 code.Figure 8. Scalability of the AVX code.
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 8 Figure 7. Scalability of the SSE4.2 code.Figure 8. Scalability of the AVX code.

Table 1 .

 1 Computations and memory accesses for the original code, the memory layout optimizations and the loop transformations in each stage for the approximation order 2.

	Computation / IOs	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Total AI
	Original	0 18	108 234	198 315	108 225	18 27	432 810 = 0.5
	Memory Layout	0 27	108 216	117 45	108 216	27 36	360 540 = 0.7
	Loop Transformation	0 9	90 0	162 0	90 0	27 18	369 27 = 13.7

Table 2 .

 2 Millions of elements and computed DoFs against approximation order for 64 million points mesh (values are rounded).

	Order	2	3	4	5	6	7	8	9	10
	Elements (M)	16	7	4	2.5	1.8	1.3	1	0.79	0.064
	Computed DoFs (M)	144	114	100	92	87	84	81	79	77

Table 3 .

 3 DoFs, elements and execution time of our code and SPECFEM2D.

		DoFs	Elements	Total seconds	Seconds per element
	SPECFEM2D	130561	32480	1.46 × 10 -2	4.48 × 10 -7
	ECHO	133225	33124	1.76 × 10 -3	5.30 × 10 -8
				Speed up factor	×8.45

Table 4 .

 4 Values related to the GPU algorithm. Each column from left to right: approximation order+1, registers used in each kernel, block size, active warps in GPU at the same time, its proportion against 64 total warps, GPU execution time and CPU execution time (seconds) using the fastest CPU version (HSW mono-socket using AVX instructions).

	Order+1 Registers/thread	Threads/block	Active warps	Occupancy	GPU time	CPU time
	3	71	32x28	28	43.75%	1.57	1.00
	4	101	32x16	16	25.00%	1.82	0.81
	5	135	32x12	12	18.75%	2.20	0.73
	6	181	32x8	8	12.50%	2.98	0.74