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A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures

Introduction

Fractures represent one of the most challenging heterogeneities for the approximation of fluid flow in porous media. Typically their lateral dimension is considerably smaller compared to their extensions in other directions. Moreover fractures may act as barriers to and/or conduits for fluid flow. Depending on the hydrogeological properties and the scale of consideration, the presence of fractures thus may lead to a significant change in the flow behavior in the subsurface. Because fault zones occur in many applications, such as CO 2 sequestration, underground storage of radioactive waste and enhanced oil recovery, the consideration of fractures in modeling of flow in porous media has received more and more attention in the last decades. A variety of different models have been proposed.

A common way to incorporate fractures in models is the discrete-fracture (DFM) approach, in which information concerning the fracture location in the domain of interest is required, and the fluid flow in the fracture as well as in the surrounding domain is calculated. In this context the fractures are often considered as (n -1)-dimensional objects within the surrounding n-dimensional matrix domain in order to avoid the generation of small elements of the spatial discretization grid. Such models have been studied, in e.g. [START_REF] Alboin | Fluid flow and transport in porous media: mathematical and numerical treatment[END_REF][START_REF] Angot | Asymptotic and numerical modelling of flows in fractured porous media[END_REF], assuming Darcy flow in both, fracture and matrix, parts of the domain. Other studies addressed Forchheimer flow in the fractures [START_REF] Knabner | Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture[END_REF] or Darcy-Brinkman flow [START_REF] Lesinigo | A multiscale Darcy-Brinkman model for fluid flow in fractured porous media[END_REF]. Multiphase flow has also been considered, e.g. [START_REF] Ahmed | A reduced fracture model for two-phase flow with different rock types[END_REF][START_REF] Brenner | Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media[END_REF][START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF]. Some articles deal with discrete fracture network (DFN) models, e.g. [START_REF] Berrone | An optimization approach for large scale simulations of discrete fracture network flows[END_REF][START_REF] Pichot | A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks[END_REF]. Whereas some of these models are based on finite element methods, [START_REF] Baca | Modelling fluid flow in fracturedporous rock masses by finite-element techniques[END_REF], others use mixed or mixed-hybrid finite elements, [START_REF] Boon | Robust Discretization of Flow in Fractured Porous Media[END_REF][START_REF] Martin | Modeling Fractures and Barriers as Interfaces for Flow in Porous Media[END_REF], finite volume methods, [START_REF] Fumagalli | A numerical method for two-phase flow in fractured porous media with non-matching grids[END_REF][START_REF] Karimi-Fard | An efficient discrete-fracture model applicable for general-purpose reservoir simulators[END_REF][START_REF] Reichenberger | A mixed-dimensional finite volume method for two-phase flow in fractured porous media[END_REF], multi-point flux methods, [START_REF] Sandve | An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations[END_REF], or mimetic finite difference methods, (Antonietti et al, 2016b;[START_REF] Formaggia | Analysis of a mimetic finite difference approximation of flows in fractured porous media[END_REF], or discontinuous Galerkin methods, (Antonietti et al, 2016a;[START_REF] Massing | A Cut Discontinuous Galerkin Method for Coupled Bulk-Surface Problems[END_REF], to discretize the problem.

For discretization schemes, in what may be referred to as a matching fracture and matrix grid approach, the fracture mesh elements coincide with faces of the matrix mesh elements. However one may wish to discretize the fracture more finely in the case of a highly conductive fracture or more coarsely in the case of a barrier. Therefore it may be necessary to use methods allowing for non-matching grids; see e.g. [START_REF] Chave | A Hybrid High-Order method for passive transport in fractured porous media[END_REF][START_REF] Faille | Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults[END_REF][START_REF] Frih | Modeling fractures as interfaces with nonmatching grids[END_REF]. Still with these methods the matrix grid must be aligned with the fracture. By contrast, with nonconforming methods a fracture can cut through the interior of matrix elements because of an independent meshing of the corresonding domains. This can be achieved, for example, with locally enriched basis functions in the vicinity of the fracture to account for the resulting discontinuities, in what is commonly referred to as an extended finite element method (XFEM), e.g. in [START_REF] Fumagalli | A numerical method for two-phase flow in fractured porous media with non-matching grids[END_REF][START_REF] Schwenck | Dimensionally reduced flow models in fractured porous media: crossings and boundaries[END_REF].

This work presents an alternative nonconforming discretization scheme for a model, introduced in [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], for single-phase, Darcy flow in frac-tured porous media. The model uses Lagrange multiplier variables, which represent a local fluid exchange between fracture and matrix, in a primal variational formulation. The new numerical scheme, like that of [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], uses continuous piecewise linear or bilinear approximations for the pressure both in the matrix and in the fracture and piecewise constant functions to approximate the multipliers. Here however, following ideas of Burman and Hansbo (2010a), we add a stabilization term which penalizes jumps in the multipliers over regular portions of the fracture. The permeability in the fracture is assumed to be larger than that in the matrix. Hence the fluid pressure is continuous excluding the case of a geological barrier, which will be subject of future research. Because of the use of the multiplier this model allows for mutually independent grids of the matrix and the fracture, both discretized with continuous, piecewise-(bi)linear basis functions. As in [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], the Lagrange multiplier is discretized by means of discontinuous, piecewise-constant, basis functions, though here the multipliers are no longer associated with an independent but size-constrained grid but with a grid generated by intersections of the matrix grid with the fracture. Following Burman and Hansbo (2010a), we add a weakly consistent stabilizing term which penalizes the jumps of the discrete multipliers. This leads to a stabilization of the discrete saddle point system and thus reduces the condition numbers involved. In Section 2, we recall briefly the continuous formulation of the Lagrange multiplier method. Section 3 concerns the discrete formulation of the problem. We introduce a weakly consistent penalty term to stabilize the discrete system, prove the stability of the discrete formulation and its convergence under conditions on the regularity of the Lagrange multiplier. In Section 4, the theoretical findings are analyzed numerically by means of several numerical experiments, including two benchmarks from [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF], validating the method. Finally we conclude and discuss the proposed method in Section 5.

The continuous formulation for the Lagrange multiplier model

In this section we recall briefly the continuous model for the Lagrange-multiplier DFM, introduced in [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF]. Let Ω be a domain in R 2 , representing a porous medium and let γ ⊂ Ω be an one-dimensional surface representing a fracture. The extension to 3D does not pose real conceptual difficulties for the analysis though. Let n γ denote one of the two possible continuous unit vector fields on γ, and let K and K γ be symmetric, uniformly positive-definite, bounded, permeability tensor fields on Ω and γ respectively, with constants

C M K and C m K > 0 such that K(x) ≤ C M K , ∀x ∈ Ω, C m K v 0,Ω ≤ (Kv, v) Ω , ∀v ∈ L 2 (Ω), K γ (x γ ) ≤ C M K , ∀x γ ∈ γ, C m K v γ 0,γ ≤ K γ v γ , v γ γ , ∀v γ L 2 (γ),
where we use the notation (•, •) Ω and •, • γ for the L 2 inner products on L 2 (Ω) and L 2 (γ), respectively, and

• 0,O for the L 2 (O) norm on an open set O ⊂ R d , d = 1, 2.
Here K(x) denotes the operator norm as does K γ (x γ ) . For simplicity assume that γ is a line segment and that ∂γ ⊂ ∂Ω. Flow in both Ω and γ is assumed to be governed by Darcy's law and the law of mass conservation, and for simplicity homogeneous Dirichlet boundary conditions are imposed on both ∂γ and ∂Ω. Fluid exchange between Ω and γ is through a source/sink term λ representing the discontinuity in the flux in Ω from one side of γ to the other. Letting p and p γ represent the fluid pressure and f and f γ external source terms in Ω and γ respectively, assuming sufficient regularity of f γ , we may write the equations for the model as follows:

div(-K∇p) -λ δ γ = f, in Ω, div τ (-K γ ∇ τ p γ ) + λ = f γ , in γ, p| γ = p γ , in γ, p = 0, on Γ = ∂Ω, p γ = 0, on ∂γ, (1) 
where δ γ denotes the Dirac measure on γ, and where the operators div τ and ∇ τ denote the derivatives in the direction obtained by rotating n γ through 90 degrees. For the variational formulation, the spaces V Ω , V γ , V and Λ are used:

V Ω = H 1 0 (Ω), V γ = H 1 0 (γ), V = V Ω × V γ , and Λ = H -1 2 00 (γ). (2)
We use the same notation •, • γ for the duality pairing between H -1 2 00 (γ) and H 1 2 00 (γ) as that which is used for the L 2 (γ)-inner product when the functions are sufficiently regular. Now with the bilinear form A on (V × Λ) 2 defined by

A(P, Q) = Ω K∇p •∇q + γ K γ ∇ τ p γ •∇ τ q γ -λ, q| γ -q γ γ + µ, p| γ -p γ γ ,
for P = (p, p γ ; λ) and Q = (q, q γ ; µ) in V ×Λ, and the linear form on V defined by

(q, q γ ) = Ω f q + γ f γ q γ ,
for (q, q γ ) ∈ V , the variational formulation of (1) may be written as follows:

Find P = (p, p γ ; λ) ∈ V × Λ such that A(P, Q) = (q, q γ ), ∀Q = (q, q γ ; µ) ∈ V × Λ.

(3)

In [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], it was proved that (3) has a unique solution. Note that λ can be interpreted as the jump in the flux across γ: λ = [ K∇p • n γ ] γ .

Discretization

Inspired by the work in Burman and Hansbo (2010a), we introduce a stabilized numerical discretization of problem (3) and show existence and uniqueness of the discrete solution as well as convergence. Recall that in [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], a different primal finite element method was used to discretize (3), one that uses different discretization spaces for the Lagrange multiplier and does not have a stabilization term. With the stabilized method we do not have the minimum size constraint on the support of the Lagrange multipliers.

A stabilized discrete formulation

We introduce independent finite element meshes, T h and T h,γ , to define the approximation spaces V h,Ω ⊂ V Ω and V h,γ ⊂ V γ . The mesh T h on Ω is made up of triangles and/or rectangles, and T h,γ is a mesh on γ. We assume that each of T h and T h,γ belongs to a uniformly regular family of discretizations. Let h and h γ be the parameters associated with these families:

h = max T ∈T h h T , where h T = diam(T ), h γ = max t∈T h,γ h t , where h t = diam(t),
For each T ∈ T h let ρ T = the radius of the incircle of T , and let There is naturally induced on γ a second mesh, which we will denote T h,λ (as it will be associated with the space of discrete Lagrange multipliers), that consists of the segments T ∩ γ such that T ∈ T h , see Fig. 1:

σ T = h T ρ T . Let ρ h = min T ∈T h ρ T and let σ h = h ρ h . Let σ Ω = max
T h,λ = {s ⊂ γ : s = T ∩ γ for some T ∈ T h }.
Let F h denote the set of edges F of elements T ∈ T h , and F h,λ the set of vertices f of elements s ∈ T h,λ which do not lie on the boundary: f ∈ ∂γ. The conforming approximation spaces V h,Ω and V h,γ will consist of continuous

P h,1 P h,2 P h,3 G h,γ φ 1 = 1 φ 2 = 1 φ 3 = 1 γ P h,1 P h,2 P h,3 s ∈ T h,λ t ∈ T h,γ
Fig. 1 Meshes T h , T h,γ (elements t delimited by red dots) and T h,λ (elements s delimited by blue segments). The domain G h,γ around γ is in grey. The supports of the patch elements P h,i (in blue) and P h,i (grey) are also depicted, with the chosen edge for φ i .

functions that vanish on the boundary of Ω and γ, respectively. The functions in V h,γ will be piecewise linear subordinate to the mesh T h,γ while those of V h,Ω , subordinate to the mesh T h will be piecewise linear or bilinear depending on whether the element is a triangle or a rectangle:

V h,Ω = q ∈ H 1 0 (Ω) : ∀T ∈ T h , q T ∈ P 1 (T ) if T is a triangle Q 1,1 (T ) if T is a rectangle , V h,γ = q γ ∈ H 1 0 (γ) : ∀t ∈ T h,γ , q γ t ∈ P 1 (t) , and V h = V h,Ω × V h,γ . (4) 
The approximation space Λ h for the Lagrange multiplier is defined as follows:

Λ h = {λ h ∈ L 2 (γ) | λ h | s ∈ P 0 (s), ∀s ∈ T h,λ }. (5) 
Following Burman and Hansbo (2010a) we will introduce a stabilizing term J in the form of a bilinear operator on Λ h × Λ h :

J (λ h , µ h ) = f ∈F h,λ ξh 2 λ h f µ h f , (6) 
where for µ h ∈ Λ h , and f ∈ F h,λ , µ h f denotes the jump in µ h across the vertex f (i.e. along the fracture, and should not be confused with [ •] γ which is a jump normal to γ). Here, for simplicity, we assume that no edge F ∈ F h lies along γ and that γ does not contain any vertex of the mesh T h . This ensures that λ h f is uniquely defined when f ∈ F h,λ and λ h ∈ Λ h . Otherwise defining the jump term is more cumbersome, though it poses no real problem, and in fact, some of our numerical experiments treat such cases. We remark that we will at times use the notation φ f for functions φ not necessarily belonging to Λ h but for which the jumps over the vertices f ∈ F h,λ are well defined. Indeed, J (•, •)

1 2 defines a semi-norm on Λ h , and we have the Cauchy-Schwarz-like estimate

|J (λ h , µ h )| ≤ J (λ h , λ h ) 1 2 J (µ h , µ h ) 1 2 ∀λ h , µ h ∈ Λ h , (7) from the usual estimate | f a f b f | ≤ ( f a 2 f ) 1 2 ( f b 2 f ) 1 2 for a f , b f ∈ R.
The formulation of the discrete stabilized problem may be written as follows:

Find P h = (p h , p γ,h ; λ h ) ∈ V h × Λ h such that A(P h , Q h ) + J (λ h , µ h ) = (q h , q γ,h ), ∀Q h = (q h , q γ,h ; µ h ) ∈ V h × Λ h . (8) 
The following proposition states an approximate Galerkin orthogonality for (8) which will give the weak consistency of the method according to Burman and Hansbo (2010b).

Proposition 1 If P is the solution of (3) and P h the solution of (8), then

A(P -P h , Q h ) = J (λ h , µ h ) ∀Q h = (q h , q γ,h ; µ h ) ∈ V h × Λ h . (9) Proof As V h ⊂ V and Λ h ⊂ Λ, it suffices to take Q = Q h ∈ V h × Λ h in (3), substract ( 
8) from (3) and use the bilinarity of A to obtain (9).

Some discrete norms

We give the definition of some norms that will be useful for obtaining the approximation properties of the space V h × Λ h . For ζ ∈ L 2 (γ) and h > 0 we define the discrete norms

ζ 2 1 2 ,h,γ = γ h -1 ζ 2 = h -1 ζ 2 0,γ and ζ 2 -1 2 ,h,γ = γ hζ 2 = h ζ 2 0,γ , (10) 
and we recall the associated Cauchy-Schwarz type inequality

ζ, η γ ≤ ζ -1 2 ,h,γ η 1 2 ,h,γ , ∀ ζ and η ∈ L 2 (γ). ( 11 
)
We will also use two more norms defined respectively for Q = (q, q γ ; µ) ∈ V × L 2 (γ) for Q h = (q, q γ ; µ h ) ∈ V × Λ h , and for h > 0 by

|||Q||| 2 0,h := ∇q 2 0,Ω + ∇ τ q γ 2 0,γ + µ 2 -1 2 ,h,γ + q| γ -q γ 2 1 2 ,h,γ |||Q h ||| 2 1,h := |||Q h ||| 2 0,h + J (µ h , µ h ).
That |||•||| 0,h indeed defines a norm on V × L 2 (γ) follows immediately from the Poincaré inequality. Thus |||•||| 1,h also defines a norm on V × Λ h . That A is continuous in the |||•||| 0,h norm follows from the Cauchy-Schwarz inequality:

Proposition 2 There exists a constant C c , independent of h, such that if P and Q belong to V × L 2 (γ), then

A(P, Q) ≤ C c |||P ||| 0,h |||Q||| 0,h . (12) 
Proof The Cauchy-Schwarz inequality, ( 7) and ( 11) yield ( 12) with C c = C M K .

A subspace of Λ h and some approximation lemmas

The family of inherited meshes T h,λ on γ suffers from the fact that it is not uniformly regular: while for s ∈ T h,λ , its length h s ≤ h, there is not necessarily a σ λ > 0, independent of h, such that h s ≥ h σ λ . For this reason we amalgamate elements of T h,λ to obtain a supermesh T h, P of T h,λ made up of patch-elements obtained by fusing two or more contiguous elements of T h,λ to form n h pairwisedisjoint patches, P h,i , i = 1, • • • n h , see Fig. 1. The patches are used for the analysis, but are not built in practice. The patches should be constructed in such a way that the length of each patch segment is bounded above and below by a multiple of h; i.e. there are positive constants c 1 and c 2 , independent of h, such that

c 1 h ≤ h P h,i ≤ c 2 h, i = 1, • • • n h , (13) 
where h P h,i denotes the length of the patch-segment P h,i . Let h P be the maximum value of h P h,i , P h,i ∈ T h, P . An additional constraint on the patch construction will be given in Section 3.4 following the proof of Lemma 3. From the uniform regularity of T h , the patch-segments can clearly be constructed so that the maximum number of elements s ∈ T h,λ in a patch-element P h,i is bounded above by some number n independent of h. The patches can be numbered in such a way that each of P h,1 and P h,n h has a vertex on the boundary of γ, and such that for

i = 1, • • • , n h -1, P h,i and P h,i+1 have a vertex in common. Similarly, for each i; i = 1, • • • , n h , the patch P h,i contains as subsets a certain number, n i , of cells s i, ∈ T h,λ , = 1, • •
• n i which we may assume are numbered such that the first and last cells have a vertex on ∂P h,i and contiguous cells are numbered consecutively. Now define the space of patch-wise constant functions on γ

X h = x h ∈ L 2 (γ) : x h | P h,i ∈ P 0 (P h,i ), i = 1, • • • , n h .
(Please note that X h is not meant to replace the multiplier space Λ h but is to be used only in the demonstrations). Then let π P : L 2 (γ) → X h be defined by

η → π P η where π P η| P h,i = 1 h P h,i P h,i η. As π P is the L 2 (γ)-projection operator from L 2 (γ) onto X h , for µ ∈ L 2 (γ), µ, ζ h γ = π P µ, ζ h γ , ∀ζ h ∈ X h , ( 14 
) π P µ 0,γ ≤ µ 0,γ , (15) 
and if further µ ∈ H 1 (γ), there is a constant C π P , independent of h, such that the following Poincaré-Wirtinger-type inequality holds:

µ -π P µ 0,γ ≤ C π P h P ∇ τ µ 0,γ . (16) 
Before stating approximation lemmas we define a mesh-dependent, thickened γ made up of the cells of T h crossed by γ plus an extra layer of cells on each side of γ. Let

S h = {T ∈ T h : ∃T ∈ T h with T ∩ T = ∅ and T ∩ γ = ∅},
and let G h,γ be the interior of the union of the closures of the cells T ∈ S h :

G h,γ = Int( T ∈S h T ). (17) 
The following two lemmas concern approximation in X h :

Lemma 1 There exist constants C 1 ≥ 1 and C1 > 0 such that for (q h , q γ,h )

∈ V h (q h | γ -q γ,h ) -π P (q h | γ -q γ,h ) 2 1 2 ,h,γ ≤ C 1 ( ∇q h 2 0,G h,γ + h ∇ τ q γ,h 2 0,γ ), C1 q h | γ -q γ,h 2 1 2 ,h,γ -∇q h 2 0,G h,γ -h ∇ τ q γ,h 2 0,γ ≤ π P (q h | γ -q γ,h ) 2 1 2 ,h,γ .
Proof The second inequality follows directly from the first with C1 = 1 2C 1 , so we only need to prove the first. For q γ,h in V h,γ and q h in V h,Ω , we have q γ,h ∈ H 1 (γ) and q h | γ ∈ H 1 (γ). Thus ( 16) and then (13) implies that

q γ,h -π P q γ,h 0,γ ≤ C π P c 2 h ∇ τ (q γ,h ) 0,γ , q h | γ -π P (q h | γ ) 0,γ ≤ C π P c 2 h ∇ τ (q h | γ ) 0,γ .
It is obvious for a grid of triangles (when ∇q h is piecewise constant) but also true for a grid of rectangles that there exists C σ > 0 such that

∇ τ (q h | γ ) 0,γ ≤ C σ h -1 2 ∇ τ q h 0,G h,γ ≤ C σ h -1 2 ∇q h 0,G h,γ ,
where C σ depends on the uniform regularity constant σ Ω . Combining the last three inequalities we obtain

(q h | γ -q γ,h ) -π P (q h | γ -q γ,h ) 2 1 2 ,h,γ ≤ 2h -1 ( q h | γ -π P (q h | γ ) 2 0,γ + q γ,h -π P q γ,h 2 0,γ ) ≤ 2C 2 π P c 2 2 (C 2 σ ∇q h 2 0,G h,γ + h ∇ τ q γ,h 2 0,γ ).
The lemma follows with

C 1 = max{1, 2C 2 π P c 2 2 max{C 2 σ , 1}}. Lemma 2 There is a positive constant C 2 such that if µ h ∈ Λ h , then µ h -π P µ h 2 -1 2 ,h,γ ≤ C 2 J (µ h , µ h ). Proof As π P is an L 2 -projection, it suffices to show that there is a constant C 2 such that if µ h ∈ Λ h there is a function χ h ∈ X h such that µ h -χ h 2 0,γ ≤ C 2 h -1 J (µ h , µ h ). Let µ h ∈ Λ h . We construct χ h ∈ X h such that the value χ i of χ h on the patch P h,i ∈ T h, P is the value µ i,1 of µ h on the cell s i,1 ∈ T h,λ , i.e. χ i = µ i,1 . Then µ h -χ h 2 0,γ = n h i=1 µ h -χ i 2 0,P h,i = n h i=1 n i =2 µ h -χ i 2 0,s i, ≤ h λ n h i=1 n i =2 (µ i, -µ i,1 ) 2 ≤ h n h i=1 n i =2 -1 ν=1 j i,ν 2 ≤ h n h i=1 n i =2 ( -1) -1 ν=1 j 2 i,ν ≤ h n2 2 n h i=1 n i -1 ν=1 j 2 i,ν , where for = 1, • • • , n i ; µ i, = µ h | s i, ; for ν = 1, • • • , n i -1; j i,ν = µ i,ν+1 -µ i,ν
and n is an upper bound, independent of h, on the number of cells s ∈ T h,λ contained in a patch P h ∈ T h, P . The lemma follows with

C 2 = n2 2ξ since J (µ h , µ h ) = f ∈F h,λ ξh 2 [µ h ] 2 f ≥ ξh 2 n h i=1 n i -1 ν=1 j 2 i,ν .

A stability estimate

This section is devoted to the demonstration of the stability estimate for the formulation (8) given in Theorem 1. The proof relies on Lemmas 3 and 4.

Lemma 3 There exist positive constants C 3 , C 4 and C 5 independent of h, such that for (p h , p γ,h ) in V h there exists η h ∈ Λ h satisfying:

η h , p h | γ -p γ,h γ ≥ C 3 π P (p h | γ -p γ,h ) 2 1 2 ,h,γ , η h 2 -1 2 ,h,γ ≤ C 4 π P (p h | γ -p γ,h ) 2 1 2 ,h,γ , J (η h , η h ) ≤ C 5 π P (p h | γ -p γ,h ) 2 1 2 ,h,γ . Proof Given (p h , p γ,h ) in V h , define η h ∈ X h by η h = 1 h P π P (p h | γ -p γ,h
). Use equations ( 14) and ( 13) to obtain the first inequality of the lemma:

η h , p h | γ -p γ,h γ = h -1 2 P π P (p h | γ -p γ,h ) 2 0,γ ≥ c -1 2 π P (p h | γ -p γ,h ) 2 1 2 ,h,γ . For the second inequality, observe that η h 2 -1 2 ,h,γ = hh -2 P π P (p h | γ -p γ,h ) 2 0,γ ≤ c -2 1 π P (p h | γ -p γ,h ) 2 1 2 ,h,γ .
For the third inequality, using the definition (6) of J , the fact that η h is constant on patches, using (13) and the definition of η h , one obtains

J (η h , η h ) = n h -1 i=1 ξh 2 η h | P h,i -η h | P h,i+1 2 ≤ n h i=1 4ξh 2 η h | P h,i 2 ≤ 4c -2 1 ξ n h i=1 π P (p h | γ -p γ,h ) P h,i 2 ≤ 4c -3 1 ξ h -1 2 π P (p h | γ -p γ,h ) 2 0,γ . Now with C 3 = c -1 2 , C 4 = c -2
1 and C 5 = 4c -3 1 ξ, the proof is completed. Before stating Lemma 4, still following Burman and Hansbo (2010a), we define a subspace Y h of V h,Ω consisting of certain functions having support "near" γ, (i.e. in G h,γ , see ( 17)). Toward this end we partition G h,γ into a set of nonoverlapping thickened patches P h,i , i = 1, • • • , n h , where P h,i is made up of a choice of cells T ∈ S h such that P h,i ⊂ P h,i , see Fig. 1. The 1D patches P h,i should be constructed in such a way that to each thick patch P h,i , we can associate a patch function φ i ∈ V h,Ω such that for i = 1, • • • , n h the patch function φ i satisfies the following conditions:

-0 ≤ φ i (x) ≤ 1, ∀x ∈ Ω, -φ i vanishes outside P h,i ,
-φ i is identically equal to 1 on some edge F ∈ F h cut by γ, -there are constants c 3 and c 4 independent of h and of i such that

c 3 ≤ 1 h P h,i φ i and h|∇φ i (x)| ≤ c 4 , for a. e. x ∈ Ω. ( 18 
)
Because of the uniform regularity of T h , it is always possible to construct the patches in such a way: it suffices to amalgamate enough elements s ∈ T h,λ . The subspace Y h is the space generated by the functions φ i ; i = 1, • • • , n h . We note also that there is a constant c 5 independent of h such that

|P h,i | ≤ c 5 h 2 P h,i . (19) 
Lemma 4 There exist positive constants C 6 , C 7 and C 8 , independent of h, such that for λ h in Λ h there is an element r h ∈ Y h ⊂ V h,Ω such that:

π P λ h , r h γ ≥ C 6 π P λ h 2 -1 2 ,h,γ , r h | γ 2 1 2 ,h,γ ≤ C 7 λ h 2 -1 2 ,h,γ , ∇r h 2 0,Ω ≤ C 8 λ h 2 -1 2 ,h,γ . Proof Let λ h ∈ Λ h . We define r h ∈ Y h ⊂ V h,Ω
by taking a linear combination of the patch functions as follows:

r h = n h i=1 C P i φ i ,
where

C P i = P h,i h P λ h P h,i φ i . ( 20 
)
We then have r h | Ω\G h,γ = 0, and recalling that φ i vanishes outside of P h,i , we also have 18), and

P h,i r h = P h,i h P λ h , ∀i = 1, • • • , n h . (21) One has P h,i φ i -2 ≤ c -2 3 h -2 from (
P h,i λ h 2 ≤ h P h,i P h,i λ 2
h by the Cauchy-Schwarz inequality. Thus, using (13), we have the estimate

C 2 P i ≤ c 3 2 c -2 3 P h,i hλ 2 h ∀i = 1, • • • , n h . ( 22 
)
Now to check that r h satisfies the first inequality of the lemma, since π P λ h is constant on P h,i , i = 1, • • • , n h , we can use ( 21), ( 14) and then ( 13) to obtain

π P λ h , r h γ = n h i=1 (π P λ h )| P h,i P h,i r h = n h i=1 (π P λ h )| P h,i P h,i h P λ h = h P π P λ h , λ h γ = h P γ (π P λ h ) 2 ≥ c 1 π P λ h 2 -1 2 ,h,γ .
For the second inequality we note that by the definition of r h in (20), we have

r h | γ 2 1 2 ,h,γ = h -1 n h i=1 C 2 P i P h,i φ 2 i ≤ c 2 n h i=1 C 2 P i
because (13), together with the fact that |φ i (x)| ≤ 1, ∀x ∈ γ, implies that P h,i φ 2 i ≤ h P h,i ≤ c 2 h. Thus using ( 22), one obtains

r h | γ 2 1 2 ,h,γ ≤ n h i=1 c 4 2 c -2 3 P h,i hλ 2 h = c 4 2 c -2 3 λ h -1 2 ,h,γ .
For the third inequality, since the supports of the φ i 's are disjoint, we have

∇r h 2 0,Ω = n h i=1 C 2 P i P h,i (∇φ i ) 2 ≤ c 2 2 c 2 4 c 5 n h i=1 C 2 P i ≤ c 5 2 c -2 3 c 2 4 c 5 n h i=1 P h,i hλ 2 h ,
where we have used (18), then ( 19) and ( 22). The lemma now follows with

C 6 = c 1 , C 7 = c 4 2 c -2 3 and C 8 = c 5 2 c -2 3 c 2 4 c 5 .
We can now state a stability theorem for the problem given by (8).

Theorem 1 Let ξ > 0. There is a positive constant θ, independent of h, such that if

P h = (p h , p γ,h ; λ h ) ∈ V h × Λ h , then θ|||P h ||| 1,h ≤ sup Q h = (q h , q γ,h ; µ h ) Q h ∈ V h × Λ h A(P h , Q h ) + J (λ h , µ h ) |||Q h ||| 1,h . (23) 
Proof Clearly, it suffices to show that there exist positive constants θ 1 and θ 2 such that if

P h = (p h , p γ,h , λ h ) ∈ V h × Λ h there exists Q h = (q h , q γ,h , µ h ) ∈ V h × Λ h such that θ 1 |||Q h ||| 1,h ≤ |||P h ||| 1,h and θ 2 |||P h ||| 2 1,h ≤ A(P h , Q h ) + J (λ h , µ h ). ( 24 
) Let P h = (p h , p γ,h ; λ h ) ∈ V h × Λ h .
The idea is to put

Q h = P h + R h , with R h = (-c r r h , 0; c η η h ) ∈ V h × Λ h
with η h and r h as constructed in Lemmas ( 3) and ( 4), respectively, and with c r and c η positive constants to be determined in such a way that both equations of ( 24) are satisfied with θ 1 and θ 2 independent of the choice of P h .

To obtain the first estimate of ( 24), we use Lemmas 3 and 4 with (15):

|||Q h ||| 2 1,h = ∇p h -c r ∇r h 2 0,Ω + ∇ τ p γ,h 2 0,γ + λ h + c η η h 2 -1 2 ,h,γ + p h | γ -c r r h | γ -p γ,h 2 1 2 ,h,γ + J (λ h + c η η h , λ h + c η η h ) ≤ 2 |||P h ||| 2 1,h + c 2 η ( η h 2 -1 2 ,h,γ + J (η h , η h )) + c 2 r ( ∇r h 2 0,Ω + r h 2 1 2 ,h,γ ) ≤ 2 |||P h ||| 2 1,h + c 2 η (C 4 + C 5 ) (p h | γ -p γ,h ) 2 1 2 ,h,γ + c 2 r (C 7 + C 8 ) λ h 2 -1 2 ,h,γ .
Thus putting

θ 1 = 2(1 + max{c 2 η (C 4 + C 5 ), c 2 r (C 7 + C 8 )}) -1
2 we obtain the first inequality of (24).

For the second estimate of (24), letting µ h = λ h + c η η h , we have

A(P h , Q h )+J (λ h , µ h ) = A(P h , P h )+J (λ h , λ h )+A(P h , R h )+c η J (λ h , η h ). ( 25 
)
Now we bound from below each term in (25). For the first two terms,

A(P h , P h )+J (λ h , λ h ) = K 1 2 ∇p h 2 0,Ω + K 1 2 γ ∇ τ p γ,h 2 0,γ + J (λ h , λ h ) ≥ C m K ∇p h 2 0,Ω + ∇ τ p γ,h 2 0,γ + J (λ h , λ h ). ( 26 
)
For the fourth term, using (7), Young's inequality, then the third inequality of Lemma 3 and (15), we obtain, for each ε η > 0,

c η J (λ h , η h ) ≥ -c η J (λ h , λ h ) 1 2 J (η h , η h ) 1 2 ≥ - c η ε η J (λ h , λ h ) - c η ε η 4 J (η h , η h ) ≥ - c η ε η J (λ h , λ h ) - c η ε η 4 C 5 p h | γ -p γ,h 2 1 2 ,h,γ . (27) 
There remains to bound the third term in (25):

A(P h , R h ) = -c r Ω K∇p h • ∇r h + c r λ h , r h | γ γ + c η η h , p h | γ -p γ,h γ . (28)
For the first term of the right hand side of (28) we have, for each ε r > 0,

-c r Ω K∇p h • ∇r h ≥ -c r ε r K 1 2 ∇p h 2 Ω -c r ε r 4 K 1 2 ∇r h 2 Ω ≥ -c r ε r C M K ∇p h 2 Ω -c r ε r 4 C M K C 8 λ h 2 -1 2 ,h,γ . (29) 
For the second term, using the Cauchy-Schwarz type inequality (11), the first inequality of Lemma 4, Young's inequality, the second inequality of Lemma 4 and Lemma 2, we obtain

c r λ h , r h | γ γ = c r λ h -π P λ h , r h | γ γ + c r π P λ h , r h | γ γ ≥ -c r ε r λ h -π P λ h 2 -1 2 ,h,γ -c r ε r 4 r h | γ 2 1 2 ,h,γ +c r C 6 π P λ h 2 -1 2 ,h,γ ≥ -c r ε r λ h -π P λ h 2 -1 2 ,h,γ -c r ε r 4 C 7 λ h 2 -1 2 ,h,γ +c r C 6 ( 1 2 λ h 2 -1 2 ,h,γ -λ h -π P λ h 2 -1 2 ,h,γ ) ≥ -c r (C 6 + 1 ε r ) λ h -π P λ h 2 -1 2 ,h,γ +c r ( 1 2 C 6 -ε r 4 C 7 ) λ h 2 -1 2 ,h,γ ≥ -c r (C 6 + 1 ε r )C 2 J (λ h , λ h ) + c r ( 1 2 C 6 -ε r 4 C 7 ) λ h 2 -1 2 ,h,γ , (30) 
where we have also used the inequality

a 2 ≤ 2( a -b 2 + b 2 ) which gives b 2 ≥ 1 2 a 2 -a -b 2 .
For the third term of the right hand side of ( 28) we use the first inequality of Lemma 3 and then Lemma 1 to obtain

c η η h , p h | γ -p γ,h γ ≥ c η C 3 π P (p h | γ -p γ,h ) 2 1 2 ,h,γ ≥ c η C 3 C1 p h | γ -p γ,h 2 1 2 ,h,γ -∇p h 2 0,G h,γ -h ∇ τ p γ,h 2 0,γ . (31) 
Thus adding equations ( 26), ( 27), ( 29), ( 30) and (31), we have

A(P h , Q h ) + J (λ h , µ h ) ≥ (C m K -c η C 3 -c r ε r C M K ) ∇p h 2 0,Ω +(C m K -c η C 3 h) ∇ τ p γ,h 2 0,γ + c η ( C1 C 3 - ε η 4 C 5 ) p h | γ -p γ,h 2 1 2 ,h,γ +c r ( C 6 2 -ε r 4 (C 7 + C M K C 8 )) λ h 2 -1 2 ,h,γ + (1- c η ε η -c r C 2 (C 6 + 1 ε r ))J (λ h , λ h ).
To complete the demonstration of the second estimate in (24), we have only to choose ε η , ε r , c r and c η such that all of the constant factors above are positive. This can be done by choosing, for instance, ε r =

C 6 C 7 +C M K C 8 , ε η = 2 C1 C 3 C 5 , c r = min{ 1 4C 2 (C 6 + 1 ε r ) , ε r 4 C m K C M K } and c η = min{ C m K 2hC 3 , C m K 4C 3 , ε η 4 }. We can then set θ 2 = min{ 1 2 , 1 2 C m K , 1 2 c η C1 C 3 , 1 4 c r C 6 }.
From Theorem 1, we deduce the following corollary.

Corollary 1 For any ξ > 0, formulation (8) admits a unique solution

P h = (p h , p γ,h ; λ h ) ∈ V h × Λ h .

Convergence

Here we prove a Céa-type, best-approximation result and consider the question of convergence rates. The convergence depends on approximation results that are derived under assumptions concerning the regularity of problem (3).

Proposition 3 Let P = (p, p γ ; λ) ∈ V × Λ be the solution of (3) and let P h = (p h , p γ,h ; λ h ) ∈ V h × Λ h be the solution of (8). Then there is a constant θ c > 0 independent of h such that for each

Q h = (q h , q γ,h ; µ h ) ∈ V h × Λ h , |||P -P h ||| 0,h + J (λ h , λ h ) 1 2 ≤ θ c |||P -Q h ||| 0,h + J (µ h , µ h ) 1 2 . ( 32 
) Proof Let Q h = (q h , q γ,h ; µ h ) ∈ V h × Λ h .
From the triangle inequality we have

|||P -P h ||| 0,h + J (λ h , λ h ) 1 2 ≤ |||P -Q h ||| 0,h + J (µ h , µ h ) 1 2 + √ 2|||Q h -P h ||| 1,h . (33 
) Because of ( 23) and ( 9), there exists

R h = (r h , r h,γ ; η h ) ∈ V h × Λ h with θ|||Q h -P h ||| 1,h ≤ A(Q h -P h , R h ) + J (µ h -λ h , η h ) |||R h ||| 1,h = A(Q h -P, R h ) + J (µ h , η h ) |||R h ||| 1,h .
Thus using the continuity (12) and inequality (7), we obtain

θ|||Q h -P h ||| 1,h ≤ C c |||Q h -P ||| 0,h |||R h ||| 0,h |||R h ||| 1,h + J (µ h , µ h ) 1 2 J (η h , η h ) 1 2 |||R h ||| 1,h ≤ C c |||Q h -P ||| 0,h + J (µ h , µ h ) 1 2 . (34) 
Then (32) follows from ( 33) and ( 34) with

θ c = max{1 + √ 2C c θ , 1 + √ 2
θ }. We now recall two trace inequalities. The proof of the first may be found in (Costabel, 1988, Lemma 3.6) (cf. also [START_REF] Ding | A Proof of the Trace Theorem of Sobolev Spaces on Lipschitz Domains[END_REF], Theorem 1)). For O a Lipschitz domain, and α ∈ ( 1 2 , 3 2 ), there is a constant C tr such that

φ| ∂O α-1 2 ,∂O ≤ C tr φ α,O ∀φ ∈ H α (O). ( 35 
)
The second is a multiplicative trace inequality which follows from (Girault and Glowinski, 1995, Lemma 2), or from [START_REF] Ainsworth | A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation[END_REF], see also [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], Lemma 1). There is a constant C tr > 0 such that if T a triangle or rectangle

q 2 0,γ∩T ≤ C tr (h -1 q 2 0,T + h ∇q 2 0,T ), ∀q ∈ H 1 (T ). ( 36 
)
For approximation results we will use the Scott-Zhang interpolation operators associated with the approximation spaces V h,Ω and V h,γ :

I Ω h : H 1 0 (Ω) -→ V h,Ω and I γ h : H 1 0 (γ) -→ V h,γ .
We have that if 1 2 < α ≤ 2 and 0 ≤ β ≤ α, then

I Ω h q -q β,Ω ≤ C I Ω h α-β |q| α,Ω , ∀q ∈ H α (Ω), I γ h q γ -q γ β,γ ≤ C I γ h α-β γ |q γ | α,γ , ∀q γ ∈ H α (γ), (37) 
where | • | α is an α-semi-norm; see [START_REF] Ern | Theory and practice of finite elements[END_REF], Section 1.6.2). Define π h to be the L 2 (Ω)-projection onto P 0 (T h ), the space of piecewise constant functions on Ω subordinate to T h . We have

π h q -q 0,Ω ≤ C π h h ∇q 0,Ω , ∀q ∈ H 1 (Ω). ( 38 
)
We will make use of the following auxiliary problem: let Ω 1 and Ω 2 be the two subdomains of Ω obtained by splitting Ω along γ. For ζ ∈ H 1 2 (γ) and for j = 1, 2, let r ζ,j ∈ H 1 (Ω j ) be the solution of

-∆r ζ,j = 0 in Ω j , r ζ,j = ζ on γ, ∇r ζ,j • n = 0 on ∂Ω j \ γ. ( 39 
)
These problems are well posed ∀ζ ∈ H 1 2 (γ) and for j = 1, 2, (cf. [START_REF] Galvis | Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations[END_REF], Lemma 2.1)) and r ζ , defined by r ζ Ω j = r ζ,j , belongs to H 1 (Ω) as r ζ,1 and r ζ,2 coincide on γ. We have

r ζ 1,Ω ≤ C a ζ 1 2 ,γ . (40) 
Lemma 5 There exists a constant

C 9 such that if ζ ∈ H 1 2 (γ), and r ζ ∈ H 1 (Ω) is such that r ζ | Ω 1 and r ζ | Ω 2
are the solutions to (39), for j = 1 and 2, then

ζ -(π h r ζ ) γ -1 2 ,h,γ ≤ C 9 h ζ 1 2 ,γ and J ((π h r ζ )| γ , (π h r ζ )| γ ) 1 2 ≤ C 9 h ζ 1 2 ,γ .
Proof Both of these estimates are based on the trace inequality (36) applied cell by cell. For the first estimate, inequality (36) is applied for each cell T ∈ T h cut by γ, to γ ∩ T in relation to T : because ζ and r ζ agree on γ and because r ζ | T and (π h r ζ )| T belong to H 1 (T ), using (10) and then using (36) for each cell cut by γ and summing over these cells and finally applying (38), we obtain

ζ -(π h r ζ ) γ 2 -1 2 ,h,γ = h (r ζ -π h r ζ ) γ 2 0,γ ≤ C tr r ζ -π h r ζ 2 0,G h,γ + h 2 ∇r ζ 2 0,G h,γ ≤ C tr (1 + C 2 π h )h 2 ∇r ζ 2 0,G h,γ .
The first estimate, with

C 9 = C tr (1 + C 2 π h )
1 2 C a , now follows from (40). For the second estimate, inequality (36) is applied for each edge F ∈ F h cut by γ, to F in relation to each cell T ∈ T h having F as an edge: using the definition of J , the fact that, for each edge F ∈ F h , π h r ζ F is constant and r ζ F = 0 and h ≤ |F | ρ h h ≤ σ Ω |F | and then using ( 36), ( 38) and ( 40) we obtain

J ((π h r ζ )| γ , (π h r ζ )| γ ) = f ∈F h,λ ξh 2 (π h r ζ )| γ 2 f ≤ ξσ Ω h f ∈F h,λ F f π h r ζ 2 F f = ξσ Ω h f ∈F h,λ r ζ -π h r ζ F f 2 0,F f ≤ 2ξσ Ω f ∈F h,λ 2 i=1 C tr r ζ -π h r ζ 2 0,T i F f + h 2 ∇r ζ 2 0,T i F f ≤ 2ξσ Ω f ∈F h,λ 2 i=1 C tr (1 + C 2 π h )h 2 ∇r ζ 2 0,T i F f ≤ 4ξσ Ω C tr (1 + C 2 π h )h 2 ∇r ζ 2 0,Ω
where for f ∈ F h,λ , F f denotes the edge in F h containing f , and

T 1 F f and T 2 F f
are the two cells in T h having F f as an edge. The second estimate now follows as above with

C 9 = 2 ξσ Ω C tr (1 + C 2 π h ) 1 2 C a .
Lemma 6 Assume that p ∈ H 1+α (Ω) and p|

Ω j ∈ H 2 (Ω j ) for j = 1, 2, p γ ∈ H 1+ α(γ), for some α, α ∈ ( 1 2 , 3 2 ), and λ = [ K∇p•n γ ] γ ∈ H 1 2 (γ). If r λ ∈ H 1 (Ω) is defined as in Lemma 5 with ζ = λ, it follows that (p -I Ω h p, p γ -I γ h p γ ; λ -(π h r λ )| γ ) 1,h ≤ C 10 h α p 1+α,Ω + h α γ p γ 1+ α,γ + h j=1,2 p 2,Ω j .
Proof Using the definition of the norm |||•||| 0,h we have

(p -I Ω h p, p γ -I γ h p γ ; λ -π h r λ ) 2 0,h = ∇(p -I Ω h p) 2 0,Ω + ∇ τ (p γ -I γ h p γ ) 2 0,γ + (p -I Ω h p)| γ 2 1 2 ,h,γ + p γ -I γ h p γ 2 1 2 ,h,γ + λ -(π h r λ )| γ 2 -1
2 ,h,γ . The first two terms can be controlled using the interpolation estimates (37). For the third term, using (36), and again (37), we obtain

(p h -I Ω h p h )| γ 2 1 2 ,h,γ = T ∈S h (p h -I Ω h p h )| γ 2 1 2 ,h,T ∩γ ≤ T ∈S h C tr h -2 p h -I Ω h p h 2 0,T + ∇(p h -I Ω h p h ) 2 0,T ≤ T ∈S h 2C tr C 2 I Ω h 2α |p| 2 1+α,T ≤ 2C tr C 2 I Ω h 2α |p| 2 1+α,Ω .
To control the fourth term we need only (37)

p γ -I γ h p γ 1 2 ,h γ ,γ ≤ h -1 2 γ C I γ h 1+ α γ |p γ | 1+ α,γ = C I γ h 1 2 + α γ |p γ | 1+ α,γ .
For the fifth term we use Lemma 5 together with the definition of λ and ( 35):

λ 1 2 ,γ = [ K∇p • n γ ] γ 1 2 ,γ ≤ j=1,2 C M K C tr ∇p 1,Ω j ≤ C M K C tr j=1,2 p 2,Ω j .
The stabilizing term J (λ h , λ h ) 1 2 is controlled similarly by the second estimate of Lemma 5. Thus the proof is completed.

Theorem 2 Again, let P = (p, p γ ; λ) ∈ V × Λ be the solution of (3) and let P h = (p h , p γ,h ; λ h ) ∈ V h × Λ h be the solution of (8), and suppose the same regularity as in Lemma 6. Then there exists a constant C such that

|||P -P h ||| 0,h + J (λ h , λ h ) 1 2 ≤ C h α p 1+α,Ω + h α γ p γ 1+ α,γ + h j=1,2 p 2,Ω j .
Proof In Proposition 3 choose q h = I Ω h p, q γ,h = I γ h p γ and µ h = π h r λ where r λ is defined as in Lemma 5 with ζ = λ. Then the estimate follows directly from Lemma 6.

Remark 1 Generally p is expected to belong to H 3/2-ε (Ω) for ε > 0, and it is reasonable to assume that p γ belongs to H 2 (γ) (when f γ is regular for instance) and that p| Ω j ∈ H 2 (Ω j ). Thus (K∇p| Ω j • n γ )| γ belongs to H 1 2 (γ), and the jump λ is indeed in H 1 2 (γ). Thus Theorem 2 provides generally a suboptimal O(h 1 2 -ε ) convergence. However a better rate of convergence of O(h) is frequently observed in practice.

Numerical results

This section is devoted to numerical experiments studying the proposed discretization (8). In particular we address accuracy, convergence and conditioning for various choices of the penalization parameter. A direct solver is used to solve the linear system. While in the theoretical considerations we have discussed only the case of a single fracture, we have looked at some numerical examples in a few more complex cases. These were treated in the simplest fashion: we assumed continuity of pressure and mass conservation at the intersection of fractures and no flow into or out of a fracture through a tip that is neither a tip of another fracture nor on the boundary of the domain. The simplest way to treat the multipliers is to assume that fractures don't cross but simply meet at their tips: 2 fractures crossing each other can be considered as 4 fractures with one tip in common. (Similarly a sharp angle at a point in a fracture would cause it to be considered as 2 fractures having this point as a tip.) In this way jumps in the multipliers at "crossing points" (or at "irregular points") are not penalized. Of course for a given data set of fractures it may be simpler to simply introduce extra multipliers at crossing points (and at irregular points). Moreover the winding number algorithm is used if the fracture lies along or contains vertices of the matrix mesh.

Case 1: a vertical fracture

The first setup is a two-dimensional, square domain Ω := [0, 1] 2 with homogeneous Neumann conditions on the horizontal boundaries and nonhomogeneous Dirichlet conditions on the vertical boundaries (p = 1 on the left and p = 4 on the right). A vertical fracture γ with K γ = 10, K = I, is located in the middle of the matrix domain Ω with Dirichlet boundary values p γ = 1 on the lower tip and p γ = 4 on the upper tip. The test case and the pressure distribution are shown in Fig. 2. The simulations are performed for various mesh sizes h, h γ 2 Case 1 (a vertical fracture): General setting (left) and distribution of the pressures (right) of a simulation with h = 1/24, h γ = 1/48, ξ = 1. and h λ . However, due to the high permeability in the vertical fracture, we have taken h γ = h/2 in order to obtain high accuracy at the fracture interface. In the simulations the fracture is either located on the edges of the rectangular matrix grid, referred to as conforming, or in the center of the rectangular elements, referred to as nonconforming.
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On this basis we study the performance of the method. As the analytical solution is not known, a fine simulation of the stabilized Lagrange multiplier method with mesh size h = 1/384 is used as a reference solution. The influence of the penalty value ξ on accuracy, convergence and conditioning is analyzed in the conforming as well as the nonconformig case.

Fig. 3 presents the numerical convergence analysis of the primary variables for ξ = 0.5 in both the cases of conforming and nonconforming meshes. As predicted by the theory and independently of the mesh configuration, the errors for p and p γ converge linearly in the H 1 norm and the Lagrange multiplier converges linearly in the norm • -1 2 ,γ,h . Depending on the mesh configuration the L 2 errors of the pressures converge with rates up to quadratic order: in the nonconforming case the matrix pressure converges linearly in the L 2 norm.

Figs. 4 and 5 display the approximation errors for matrix pressure, fracture pressure and the Lagrange multiplier for different penalty parameters ξ and dif-
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Fig. 3 Case 1 (a vertical fracture): Convergence of matrix pressure p, fracture pressure p γ and Lagrange multiplier λ for ξ = 0.5 in the conforming case (left) and the nonconforming case (right) depending on the mesh size.
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Fig. 4 Case 1 (a vertical fracture): Influence of the penalty value ξ on the H 1 error for the matrix pressure p, the fracture pressure p γ and on the • -1 2 ,h,γ error for the multiplier λ in the conforming case (left) and in the nonconforming case (right) depending on the mesh refinement index h.
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Error for p (nonconforming) Fig. 5 Case 1 (a vertical fracture): Influence of the penalty value ξ on the L 2 approximation error for the matrix pressure p and the fracture pressure p γ in the conforming case (left) and in the nonconforming case (right) depending on the mesh refinement index h. ferent mesh sizes in the conforming and nonconforming cases. The plots indicate that the errors get smaller when the mesh is refined. The penalty parameter ξ has little influence on the H 1 errors for p and p γ and seems to give slightly improved results for λ when ξ ∈ [0.1, 1], see Fig. 4. The influence of ξ is more important for p and p γ in the L 2 error, see Fig. 5. In the most interesting case (nonconforming), small to moderate penalty values (ξ ≤ 1) seem optimal for the accuracy, since the penalty term aligns the multipliers at the expense of the coupling accuracy between matrix and fracture. In each plot, looking at the different curves for fixed ξ, one can determine the convergence rate, that is shown in Fig. 3 for ξ = 0.5. Globally, the smaller the mesh size h, the lesser the influence of the penalty parameter ξ. Furthermore an increase of the penalty parameter ξ generally leads to higher errors, which is a logical consequence of the construction of J . We also observe in Fig. 5 that the nonconforming configu- Table 1 Case 1 (a vertical fracture): Condition numbers as a function of ξ and the distance between the matrix mesh edges and the fracture line for h = 1/18, h γ = 1/36.

ration of the mesh yields larger L 2 errors, errors that have a weaker dependence on ξ.

In addition to the nonconforming case in which the fracture cuts through the middle of a vertical strip of matrix mesh elements, we wish to study what happens as the matrix mesh edges approach the fracture line. Table 1 shows the condition numbers of the system matrix depending on the penalty parameter ξ and the distance between the matrix mesh edge and the fracture line for h = 1/18, h γ = 1/36. The table indicates that the location of the fracture within the matrix grid does not influence significantly the conditioning of the system. However the condition number decreases with increasing values of the penalty parameter. This verifies the efficiency of the stabilizing term J .

We conclude that the method (8) behaves as predicted by the theoretical results. The penalty parameter ξ should be chosen depending on accuracy and conditioning of the system matrix. The stabilizing term J penalizes the jumps of the Lagrange multiplier. The higher the penalty parameter ξ the more the discrete multipliers tend to a constant value which affects the accuracy. However the results show clear convergence also for larger ξ. On the other hand high penalty parameters improve the conditioning.

Remark 2 We have not included comparisons with the non-penalized Lagrange multiplier method of [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF] for lack of space. For this comparison see [START_REF] Köppel | Flow in Heterogeneous Porous Media: Fractures and Uncertainty Quantification[END_REF].

Case 2: a fracture network

In this section a more complex test case with a regular fracture network, cf. [START_REF] Geiger | A novel multi-rate dual-porosity model for improved simulation of fractured and multi-porosity reservoirs[END_REF][START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF], is considered. The setup and the pressure distribution for a simulation with the stabilized method with nonconforming configuration and h = 1/33, h γ = 1/32, ξ = 1, is illustrated in Fig. 6. All fractures of the test case are conductive and have a uniform permeability of K γ = 1. The unit square matrix domain is characterized by a permeability of K = I. Throughout this section the mesh size of the fracture will be in the same range as the mesh size of the matrix, i.e. h γ ≈ h.

In Table 2 we compare the method (8) with several other available methods given in the benchmark study [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF] for single-phase flow in fractured porous media. The reference solution is computed with a mimetic finite difference method [START_REF] Brezzi | A family of mimetic finite difference methods on polygonal and polyhedral meshes[END_REF] with a two-dimensional grid in the fracture as well as in the matrix domain. The table shows that the stabilized Lagrange multiplier method performs well. Intermediate values of the penalty ), the number of matrix elements (#-matr), the number of fracture elements (#-frac), the matrix error (err m ), the fracture error (err γ ) and the condition number (cond).

x y Ω γ v • n = v γ • n γ = 0 v • n = v γ • n γ = 0 v • n = 1, v γ • n γ = 10
parameter, i.e. ξ ∈ [0.1, 1], yield a good balance between accuracy and conditioning. Note however that this range may change for more realistic permeabilities, see Section 4.3.

To study the numerical convergence of the stabilized method the configuration is refined three times by a factor of two (h ∈ {1/33, 1/65, 1/129, 1/257}) similar to [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF]. The resulting convergence study of matrix and fracture pressure using the stabilized discretization with ξ = 1 is illustrated in Fig. 7. The figure shows that the stabilized method converges linearly in the matrix and in the fracture as the other methods of the benchmark study. x 

y v • n = v γ • n γ = 0 v • n = v γ • n γ = 0 p = p γ =

Case 3: a realistic case

The last numerical experiment represents a real set of fractures from an interpreted outcrop in the Sotra island near Bergen in Norway of the benchmark study [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF]. The domain is rectangular with uniform permeability K = 10 -14 m 2 . It contains 64 fractures grouped in several networks with K γ = 10 -10 m 3 , see Fig. of the piecewise linear basis functions and the high permeability contrast, the weak constraint of the equality of the pressures on the fracture interface leads to unphysical matrix pressures near the fracture. However the undershoot is smaller for the larger choice of ξ. Fig. 10 shows the distributions of the pressures at y = 500 m and x = 625 m of the stabilized Lagrange multiplier method compared to other methods of the benchmark study. The stabilized Lagrange multiplier method is in very good agreement with the pressure distributions of the other methods. A convergence analysis was not performed in this test case, as was noted in [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF], since it is a really difficult task to establish a full-dimensional reference solution with the mimetic finite difference method. The comparison in terms of the conditioning and degrees of freedom is given in Table 3 and shows good performances with moderate to large values of ξ.

Remark 3 In order to improve the conditioning in this realistic test case where the permeabilities are very small, a scaling was performed prior to the computations: the duality pairings •, • γ of A defined in (2) and the stabilization term J defined in (6) were multiplied by the scalar k = K. Thus the actual Lagrange multiplier unknown was λ = kλ, and the stabilization term J scales correctly with K. It was then possible to divide the discrete system (8) by K γ , and obtain a system that is easier to solve. In the case when K is a tensor or varying in space, the same idea should be considered with an average value of its norm.

Conclusion

In this paper we presented a stabilized finite element discretization of a Lagrange multiplier model for single-phase Darcy flow in fractured porous media, cf. [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], where the multiplier represents a local exchange of the fluid between fracture and matrix domain allowing for the use of a mesh in the Table 3 Benchmark 3 (a realistic case): Performance of the stabilized Lagrange multiplier method (SLM-FEM) compared to other DFM methods based on the number of degrees of freedom (d.o.f.), the number of matrix elements (#-matr), the number of fracture elements (#-frac) and the condition number (cond), cf. [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF].

matrix that is not aligned with the fracture. The piecewise constant Lagrange multipliers of the stabilized discretization are defined on the intersections of the matrix elements with the fracture and, hence, are embedded on the fracture interface. In contrast to the method proposed in [START_REF] Köppel | A Lagrange multiplier method for a discrete fracture model for flow in porous media[END_REF], a weakly consistent stability term penalizes the jumps of the consecutive multipliers to stabilize the discrete saddle point system. We proved stability and convergence of the discrete formulation following the ideas of Burman and Hansbo (2010a).

The numerical experiments are consistent with the theoretical results. They confirmed that with increasing values of the penalty parameter ξ the conditioning of the discrete system can be improved. On the other hand high penalty values deteriorate the accuracy of the approximation. Hence we recommend the use of intermediate penalty values to obtain optimal results. The particular choice of ξ depends on the test case considered. Despite the affected accuracy the results still show clear convergence even for large penalty parameters. In the numerical examples, when the coupling term λ is regular enough the errors of the matrix and fracture pressure converge linearly in the H 1 norm confirming the theoretical results. The Lagrange multiplier is characterized by linear rates of convergence in the discrete norm • -1 2 ,h λ ,γ . These convergence rates are obtained independently of the possibly very irregular induced mesh for the Lagrange multiplier. The comparison with the benchmark results in [START_REF] Flemisch | Benchmarks for single-phase flow in fractured porous media[END_REF], leads to the conclusion that the penalized discretization is a good alternative to other models for the simulation of flow in fractured porous media.
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  σ h be the upper bound guaranteed by uniform regularity.

Fig. 6

 6 Fig.6Case 2 (a fracture network): General setup (left) and pressure distribution (right) of a nonconforming simulation with h = 1/33, h γ = 1/32, ξ = 1.
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Fig. 7

 7 Fig. 7 Case 2 (a fracture network): Convergence of matrix pressure p (left) and fracture pressure p γ (right) of the stabilized Lagr. multiplier method (SLM-FEM) for ξ = 1 depending on the number of elements (#cells) compared to other methods, cf. Flemisch et al (2018).

Fig. 8

 8 Fig. 8 Case 3 (a realistic case): Setup. The fractures are depicted as red lines.

Fig. 9

 9 Fig. 9 Case 3 (a realistic case): Pressure distribution. Simulation with h = 10 m and for ξ = 1 (left) and ξ = 100 (right). The lowest value is slightly different for the two figures.

Fig. 10

 10 Fig. 10 Case 3 (a realistic case): Pressure distribution along the line y = 500 m (left) and along the line x = 625 m (right) of the stabilized Lagrange multiplier method (with h = 10 m) in comparison with other methods, cf. Flemisch et al (2018). SLM-FEM 1 : ξ = 1. SLM-FEM 2 : ξ = 100.

Table 2

 2 Case 2 (a fracture network): Performance of the stabilized Lagrange multiplier method (SLM-FEM) compared to other DFM methods, cf. Flemisch et al (2018), based on the number of degrees of freedom (d.o.f.

  ). SLM-FEM 1 : ξ = 1. SLM-FEM 2 : ξ = 100.

	method	d.o.f.	#-matr	#-frac	cond
	SLM-FEM: ξ = 0	8081	5250 quads	1372	4.8e+9
	SLM-FEM: ξ = 1e-4	8081	5250 quads	1372	3.5e+8
	SLM-FEM: ξ = 1	8081	5250 quads	1372	6.1e+6
	SLM-FEM: ξ = 100	8081	5250 quads	1372	6.2e+6
	Box	5563	10807 trias	1386	9.3e+5
	MPFA	8588	7614 trias	867	4.9e+6
	EDFM	3599	2491 quads	1108	4.7e+6
	Flux-Mortar	25258	8319 trias	1317	2.2e+17
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