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Abstract In this work we introduce a stabilized, numerical method for a multi-
dimensional, discrete-fracture model (DFM) for single-phase Darcy flow in frac-
tured porous media. In the model, introduced in an earlier work, flow in the
(n − 1)-dimensional fracture domain is coupled with that in the n-dimensional
bulk or matrix domain by the use of Lagrange multipliers. Thus the model
permits a finite element discretization in which the meshes in the fracture and
matrix domains are independent so that irregular meshing and in particular the
generation of small elements can be avoided. In this paper we introduce in the
numerical formulation, which is a saddle-point problem based on a primal, vari-
ational formulation for flow in the matrix domain and in the fracture system,
a consistent stabilizing term which penalizes discontinuities in the Lagrange
multipliers. For this penalized scheme we show stability and prove convergence.
With numerical experiments we analyze the performance of the method for var-
ious choices of the penalization parameter and compare with other numerical
DFM’s.

Keywords discrete fracture model · finite element method · stabilized Lagrange
multiplier method · penalization · nonconforming grids
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1 Introduction

Fractures represent one of the most challenging heterogeneities for the approx-
imation of fluid flow in porous media. Typically their lateral dimension is con-
siderably smaller compared to their extensions in other directions. Moreover
fractures may act as barriers to and/or conduits for fluid flow. Depending on
the hydrogeological properties and the scale of consideration, the presence of
fractures thus may lead to a significant change in the flow behavior in the sub-
surface. Because fault zones occur in many applications, such as CO2 sequestra-
tion, underground storage of radioactive waste and enhanced oil recovery, the
consideration of fractures in modeling of flow in porous media has received more
and more attention in the last decades. A variety of different models have been
proposed.

A common way to incorporate fractures in models is the discrete-fracture
(DFM) approach, in which information concerning the fracture location in the
domain of interest is required, and the fluid flow in the fracture as well as in
the surrounding domain is calculated. In this context the fractures are often
considered as (n− 1)-dimensional objects within the surrounding n-dimensional
matrix domain in order to avoid the generation of small elements of the spatial
discretization grid. Such models have been studied, in e.g. (Alboin et al, 2002;
Angot et al, 2009), assuming Darcy flow in both, fracture and matrix, parts of
the domain. Other studies addressed Forchheimer flow in the fractures (Knabner
and Roberts, 2014) or Darcy-Brinkman flow (Lesinigo et al, 2011). Multiphase
flow has also been considered, e.g. (Ahmed et al, 2017; Brenner et al, 2015;
Hoteit and Firoozabadi, 2008). Some articles deal with discrete fracture network
(DFN) models, e.g. (Berrone et al, 2014; Pichot et al, 2012). Whereas some of
these models are based on finite element methods, (Baca et al, 1984), others
use mixed or mixed-hybrid finite elements, (Martin et al, 2005), finite volume
methods, (Karimi-Fard et al, 2004; Reichenberger et al, 2006), multi-point flux
methods, (Sandve et al, 2012), or mimetic finite difference methods, (Antonietti
et al, 2016), to discretize the problem.

For discretization schemes, in what may be referred to as a matching fracture
and matrix grid approach, the fracture mesh elements coincide with faces of the
matrix mesh elements. However one may wish to discretize the fracture more
finely in the case of a highly conductive fracture or more coarsely in the case of a
barrier. Therefore it may be necessary to use methods allowing for non-matching
grids; see e.g. (Faille et al, 2016; Frih et al, 2012). Still with these methods the
matrix grid must be aligned with the fracture. By contrast, with nonconforming
methods a fracture can cut through the interior of matrix elements because of
an independent meshing of the corresonding domains. This can be achieved, for
example, with locally enriched basis functions in the vicinity of the fracture to
account for the resulting discontinuities, in what is commonly referred to as an
extended finite element method (XFEM), e.g. in (Fumagalli and Scotti, 2013;
Schwenck et al, 2015).

This work presents an alternative nonconforming discretization of a model
introduced in Köppel et al (2018). Following ideas of Burman and Hansbo (2010),
we present a new stabilized discretization scheme for single-phase, Darcy flow in
fractured porous media. As presented in Köppel et al (2018), the method uses
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Lagrange multiplier variables, which represent a local fluid exchange between
fracture and matrix, in a primal variational formulation. The permeability in the
fracture is assumed to be larger than that in the matrix. Hence the fluid pressure
is continuous excluding the case of a geological barrier. Because of the use of the
multiplier this model allows for mutually independent grids of the matrix and the
fracture, both discretized with continuous, piecewise-(bi)linear basis functions.
As in Köppel et al (2018), the Lagrange multiplier is discretized by means of
discontinuous, piecewise-constant, basis functions, though here the multipliers
are no longer associated with an independent but size-constrained grid but with
a grid generated by intersections of the matrix grid with the fracture. Following
Burman and Hansbo (2010), we add a consistent stabilizing term which penalizes
the jumps of the discrete multipliers. This leads to a stabilization of the discrete
saddle point system and thus reduces the condition numbers involved.

In Section 2, we recall briefly the continuous formulation of the Lagrange mul-
tiplier method. Section 3 concerns the discrete formulation of the problem. We
introduce a weakly consistent penalty term to stabilize the discrete system, prove
the stability of the discrete formulation and discuss the convergence of the ap-
proach. In Section 4, the theoretical findings are analyzed numerically by means
of several numerical experiments, including two benchmarks from Flemisch et al
(2018), validating the method. Finally we conclude and discuss the proposed
method in Section 5.

2 The continuous formulation for the Lagrange multiplier model

In this section we recall briefly the continuous model for the Lagrange-multiplier
DFM, introduced in Köppel et al (2018). Let Ω be a domain in Rn, n = 2 or 3,
representing a porous medium and let γ ⊂ Ω be an (n− 1)-dimensional surface
representing a fracture. Let nγ denote one of the two possible continuous unit
vector fields on γ, and let K and Kγ be symmetric, uniformly positive-definite,
bounded, permeability tensor fields on Ω and γ respectively, with constants
CMK and CmK > 0 such that

‖K(x)‖ ≤ CMK , ∀x ∈ Ω, CmK ‖v‖0,Ω ≤ (Kv, v)Ω, ∀v ∈ L2(Ω),
‖Kγ(xγ)‖ ≤ CMK , ∀xγ ∈ γ, CmK ‖vγ‖0,γ ≤ 〈Kγvγ , vγ〉γ , ∀vγL2(γ),

where we use the notation (·, ·)Ω and 〈·, ·〉γ for the L2 inner products on L2(Ω)
and L2(γ), respectively, and ‖ · ‖0,O for the L2(O) norm on an open set O ⊂ Rd,
d = 1, 2 or 3. Here ‖K(x)‖ denotes the operator norm as does ‖Kγ(xγ)‖. For
simplicity assume that γ is a planar surface if n = 2 or if n = 1 a line segment
and that ∂γ ⊂ ∂Ω. Flow in both Ω and γ is assumed to be governed by Darcy’s
law and the law of mass conservation, and for simplicity homogeneous Dirichlet
boundary conditions are imposed on both ∂γ and ∂Ω. Fluid exchange between
Ω and γ is through a source/sink term λ representing the discontinuity in the
flux in Ω from one side of γ to the other. Letting p and pγ represent the fluid
pressure and f and fγ external source terms in Ω and γ respectively we may
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write the equations for the model as follows:

div(−K∇p)− λ = f, in Ω,
divτ (−Kγ∇τpγ) + λ = fγ , in γ,
p = 0, on Γ = ∂Ω,
pγ = 0, on ∂γ,

(1)

where divτ and ∇τ denote the divergence and gradient operators in the plane
of γ if n = 3, whereas if n = 2 they are both just derivatives in the direction
obtained by rotating nγ through 90 degrees.

For the variational formulation, the spaces VΩ, Vγ ,V and Λ are used:

VΩ = H1
0 (Ω), Vγ = H1

0 (γ), V = VΩ × Vγ , and Λ = H
− 1

2
00 (γ). (2)

We use the same notation 〈·, ·〉γ for the duality pairing between H
− 1

2
00 (γ) and

H
1
2
00(γ) as that which is used for the L2(γ)−inner product when the functions

are sufficiently regular. Now with the bilinear form A on (V × Λ)2 defined by

A(P,Q) =

∫
Ω

K∇p ·∇q +

∫
γ

Kγ∇τpγ ·∇τqγ − 〈λ, q|γ − qγ〉γ + 〈µ, p|γ − pγ〉γ ,

for P = (p, pγ ;λ) and Q = (q, qγ ;µ) in V ×Λ, and the linear form ` on V defined
by

`(q, qγ) =

∫
Ω

fq +

∫
γ

fγqγ ,

for (q, qγ) ∈ V , the variational formulation of (1) may be written as follows:

Find P = (p, pγ ;λ) ∈ V × Λ such that

A(P,Q) = `(q, qγ), ∀Q = (q, qγ ;µ) ∈ V × Λ. (3)

In Köppel et al (2018), it was proved that (3) has a unique solution. Note that
λ can be interpreted as the jump in the flux across γ: λ = JK∇p · nγKγ .

3 Discretization

Inspired by the work in Burman and Hansbo (2010), we introduce a stabilized
numerical discretization of problem (3) and show existence and uniqueness of
the discrete solution as well as convergence. For the discretization we restrict our
attention to the case that Ω is of dimension 2 and thus γ is of dimension 1. Recall
that in Köppel et al (2018), a different primal finite element method was used
to discretize (3), one that uses different discretization spaces for the Lagrange
multiplier and does not have a stabilization term. With the stabilized method
we do not have the minimum size constraint on the support of the Lagrange
multipliers.
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3.1 A stabilized discrete formulation

We introduce independent finite element meshes, Th and Th,γ , to define the ap-
proximation spaces Vh,Ω ⊂ VΩ and Vh,γ ⊂ Vγ . The mesh Th on Ω is made up of
triangles and/or rectanges, and Th,γ is a mesh on γ. We assume that each of Th
and Th,γ belongs to a uniformly regular family of discretizations. Let h and hγ
be the parameters associated with these families:

h = max
T∈Th

hT , where hT = diam(T ),

hγ = max
t∈Th,γ

ht, where ht = diam(t),

For each T ∈ Th let ρT = the radius of the incircle of T , and let σT = hT
ρT

. Let

ρ
h

= min
T∈Th

ρT and let σh = h
ρ
h

. Let σ
Ω

= max
h

σh be the upper bound guaranteed

by uniform regularity.
There is naturally induced on γ a second mesh, which we will denote Th,λ

(as it will be associated with the space of discrete Lagrange multipliers), that
consists of the segments T ∩ γ such that T ∈ Th, see Fig. 1:

Th,λ = {s ⊂ γ : s = T ∩ γ for some T ∈ Th}.
Let Fh denote the set of faces F (i.e. edges) of elements T ∈ Th, and Fh,λ the set
of faces f (i.e. vertices) of elements s ∈ Th,λ which do not lie on the boundary:
f 6∈ ∂γ. The conforming approximation spaces Vh,Ω and Vh,γ will consist of

Ph,1

Ph,2

Ph,3

Gh,γ

φ1 = 1 φ2 = 1

φ3 = 1

γ

Ph,1

Ph,2

Ph,3

s ∈ Th,λ

t ∈ Th,γ

Fig. 1 Meshes Th, Th,γ (elements t delimited by red dots) and Th,λ (elements s delimited
by blue segments). The domain Gh,γ around γ is in grey. The supports of the patch
elements Ph,i (in blue) and Ph,i (grey) are also depicted, with the chosen edge for φi.

continuous functions that vanish on the boundary of Ω and γ, respectively. The
functions in Vh,γ will be piecewise linear subordinate to the mesh Th,γ while
those of Vh,Ω, subordinate to the mesh Th will be piecewise linear or bilinear
depending on whether the element is a triangle or a rectangle:

Vh,Ω =

{
q ∈ H1

0 (Ω) : ∀T ∈ Th, q
∣∣
T
∈
{
P1(T ) if T is a triangle
Q1,1(T ) if T is a rectangle

}
,

Vh,γ =
{
qγ ∈ H1

0 (γ) : ∀t ∈ Th,γ , qγ
∣∣
t
∈ P1(t)

}
, and Vh = Vh,Ω × Vh,γ .

(4)
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The approximation space Λh for the Lagrange multiplier is defined as follows:

Λh = {λh ∈ L2(γ) | λh|s ∈ P0(s), ∀s ∈ Th,λ}. (5)

Following Burman and Hansbo (2010) we will introduce a stabilizing term
J in the form of a bilinear operator on Λh × Λh:

J (λh, µh) =
∑

f∈Fh,λ

ξh2JλhKf JµhKf , (6)

where for µh ∈ Λh, and f ∈ Fh,λ, JµhKf denotes the jump in µh across f .
Here, for simplicity, we assume that no face F ∈ Fh lies along γ and that γ
does not contain any vertex of the mesh Th. This ensures that JλhKf is uniquely
defined when f ∈ Fh,λ and λh ∈ Λh. Otherwise defining the jump term is more
cumbersome, though it poses no real problem, and in fact, some of our numerical
experiments treat such cases. We remark that we will at times use the notation
JφKf for functions φ not necessarily belonging to Λh but for which the jumps over

the faces f ∈ Fh,λ are well defined. Indeed, J (·, ·) 1
2 defines a semi-norm on Λh,

and for the J operator we have the following Cauchy–Schwarz type estimate:

|J (λh, µh)| ≤ J (λh, λh)
1
2 J (µh, µh)

1
2 ∀λh, µh ∈ Λh. (7)

The formulation of the discrete stabilized problem may be written as follows:

Find Ph = (ph, pγ,h;λh) ∈ Vh × Λh such that

A(Ph, Qh) + J (λh, µh) = `(qh, qγ,h), ∀Qh = (qh, qγ,h;µh) ∈ Vh × Λh.
(8)

The following proposition states a Galerkin orthogonality for (8).

Proposition 1 If P is the solution of (3) and Ph the solution of (8), then

A(P − Ph, Qh) = J (λh, µh) ∀Qh = (qh, qγ,h;µh) ∈ Vh × Λh. (9)

Proof As Vh ⊂ V and Λh ⊂ Λ, it suffices to take Q = Qh ∈ Vh × Λh in (3),
substract (8) from (3) and use the bilinarity of A to obtain (9). �

3.2 Some discrete norms

We give the definition of some norms that will be useful for obtaining the ap-
proximation properties of the space Vh×Λh. For ζ ∈ L2(γ) we define the discrete
norms

‖ζ‖21
2 ,h,γ

=

∫
γ

h−1ζ2 = h−1‖ζ‖20,γ and ‖ζ‖2− 1
2 ,h,γ

=

∫
γ

hζ2 = h‖ζ‖20,γ , (10)

and we recall the associated Cauchy–Schwarz type inequality

〈ζ, η〉γ ≤ ‖ζ‖− 1
2 ,h,γ
‖η‖ 1

2 ,h,γ
, ∀ ζ and η ∈ L2(γ). (11)
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We will also use two more norms defined respectively for Q = (q, qγ ;µ) ∈ V ×
L2(γ) and for Qh = (q, qγ ;µh) ∈ V × Λh, by

|||Q|||20,h := ‖∇q‖20,Ω + ‖∇τqγ‖20,γ + ‖µ‖2− 1
2 ,h,γ

+ ‖q|γ − qγ‖21
2 ,h,γ

|||Qh|||21,h := |||Qh|||20,h + J (µh, µh).

That |||·|||0,h indeed defines a norm on V × L2(γ) follows immediately from the

Poincaré inequality. Thus |||·|||1,h also defines a norm on V × Λh. That A is

continuous in the |||·|||0,h norm follows from the Cauchy–Schwarz inequality:

Proposition 2 There exists a constant Cc, independent of h, such that if P
and Q belong to V × L2(γ), then

A(P,Q) ≤ Cc|||P |||0,h |||Q|||0,h. (12)

Proof The Cauchy–Schwarz inequality, (7) and (11) yield (12) with Cc = CMK .
�

3.3 A subspace of Λh and some approximation lemmas

The family of inherited meshes Th,λ on γ suffers from the fact that it is not
uniformly regular: while for s ∈ Th,λ, its length hs ≤ h, there is not necessarily

a σλ > 0, independent of h, such that hs ≥ h
σλ
. For this reason we amalgamate

elements of Th,λ to obtain a supermesh Th,P of Th,λ made up of patch-elements
obtained by fusing two or more contiguous elements of Th,λ to form nh pairwise-
disjoint patches, Ph,i, i = 1, · · ·nh, see Fig. 1. The patches should be constructed
in such a way that the length of each patch segment is bounded above and below
by a multiple of h; i.e. there are positive constants c1 and c2, independent of h,
such that

c1h ≤ hPh,i
≤ c2h, i = 1, · · ·nh, (13)

where hPh,i
denotes the length of the patch-segment Ph,i. Let hP be the max-

imum value of hPh,i
, Ph,i ∈ Th,P . An additional constraint on the patch con-

struction will be given in Section 3.4 following the proof of Lemma 3. From the
uniform regularity of Th, the patch-segments can clearly be constructed so that
the maximum number of elements s ∈ Th,λ in a patch-element Ph,i is bounded
above by some number n̄ independent of h. The patches can be numbered in
such a way that each of Ph,1 and Ph,nh has a vertex on the boundary of γ,
and such that for i = 1, · · · , nh − 1, Ph,i and Ph,i+1 have a vertex in common.
Similarly, for each i; i = 1, · · · , nh, the patch Ph,i contains as subsets a certain
number, ni, of cells si,` ∈ Th,λ , ` = 1, · · ·ni which we may assume are numbered
such that the first and last cells have a vertex on ∂Ph,i and contiguous cells are
numbered consecutively. Now define the space of patch-wise constant functions
on γ:

Xh =
{
xh ∈ L2(γ) : xh|Ph,i ∈ P0(Ph,i), i = 1, · · · , nh

}
,
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and let πP : L2(γ) → Xh be defined by η 7→ πPη where πPη|Ph,i =
1

hPh,i

∫
Ph,i

η.

As πP is the L2(γ)–projection operator from L2(γ) onto Xh, for µ ∈ L2(γ)

〈µ, ζh〉γ = 〈πPµ, ζh〉γ , ∀ζh ∈ Xh, (14)

‖πPµ‖0,γ ≤ ‖µ‖0,γ , (15)

and if further µ ∈ H1(γ), there is a constant CπP , independent of h, such that

‖µ− πPµ‖0,γ ≤ CπP hP‖∇τµ‖0,γ . (16)

Before stating approximation lemmas we define a mesh-dependent, thickened γ
made up of the cells of Th crossed by γ plus an extra layer of cells on each side
of γ. Let

Sh = {T ∈ Th : ∃T ′ ∈ Th with T ∩ T ′ 6= ∅ and T
′ ∩ γ 6= ∅},

and let Gh,γ be the interior of the union of the closures of the cells T ∈ Sh:

Gh,γ = Int(
⋃

T∈Sh

T ). (17)

The following two lemmas concern approximation in Xh:

Lemma 1 There exist constants C1≥1 and C̃1>0 such that for (qh, qγ,h)∈Vh

‖(qh|γ − qγ,h)− πP (qh|γ − qγ,h)‖21
2 ,h,γ

≤ C1(‖∇qh‖20,Gh,γ + h‖∇τqγ,h‖20,γ),

C̃1‖qh|γ − qγ,h‖21
2 ,h,γ
− ‖∇qh‖20,Gh,γ− h‖∇τqγ,h‖

2
0,γ ≤ ‖πP (qh|γ − qγ,h)‖21

2 ,h,γ
.

Proof The second inequality follows directly from the first with C̃1 = 1
2C1

, so we

only need to prove the first. For qγ,h in Vh,γ and qh in Vh,Ω, we have qγ,h ∈ H1(γ)
and qh|γ ∈ H1(γ). Thus (16) and then (13) implies that

‖qγ,h − πP qγ,h‖0,γ ≤ CπP c2h‖∇τ (qγ,h)‖0,γ ,
‖qh|γ − πP (qh|γ)‖0,γ ≤ CπP c2h‖∇τ (qh|γ)‖0,γ .

It is obvious for a grid of triangles (when ∇qh is piecewise constant) but also
true for a grid of rectangles that there exists Cσ > 0 such that

‖∇τ (qh|γ)‖0,γ ≤ Cσh−
1
2 ‖∇τqh‖0,Gh,γ ≤ Cσh−

1
2 ‖∇qh‖0,Gh,γ ,

where Cσ depends on the uniform regularity constant σ
Ω

. Combining the last
three inequalities we obtain

‖(qh|γ − qγ,h)− πP (qh|γ − qγ,h)‖21
2 ,h,γ

≤ 2h−1(‖qh|γ − πP (qh|γ)‖20,γ + ‖qγ,h − πP qγ,h‖20,γ)
≤ 2C2

πP
c22(C2

σ‖∇qh‖20,Gh,γ + h‖∇τqγ,h‖20,γ).

The lemma follows with C1 = 2C2
πP
c22 max{C2

σ, 1}. �
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Lemma 2 There is a positive constant C2 such that if µh ∈ Λh, then

‖µh − πPµh‖2− 1
2 ,h,γ

≤ C2J (µh, µh).

Proof As πP is an L2−projection, it suffices to show that there is a constant C2

such that if µh ∈ Λh there is a function χh ∈ Xh such that

‖µh − χh‖20,γ ≤ C2h
−1J (µh, µh).

Let µh ∈ Λh. We construct χh ∈ Xh such that the value χi of χh on the patch
Ph,i ∈ Th,P is the value µi,1 of µh on the cell si,1 ∈ Th,λ, i.e. χi = µi,1. Then

‖µh − χh‖20,γ =

nh∑
i=1

‖µh − χi‖20,Ph,i =

nh∑
i=1

ni∑
`=2

‖µh − χi‖20,si,`

≤ hλ
nh∑
i=1

ni∑
`=2

(µi,` − µi,1)2 ≤ h
nh∑
i=1

ni∑
`=2

(
`−1∑
ν=1

ji,ν

)2

≤ h
nh∑
i=1

ni∑
`=2

(`− 1)

`−1∑
ν=1

j2
i,ν ≤ h

n̄2

2

nh∑
i=1

ni−1∑
ν=1

j2
i,ν ,

where for ` = 1, · · · , ni; µi,` = µh|si,` ; for ν = 1, · · · , ni − 1; ji,ν = µi,ν+1 − µi,ν
and n̄ is an upper bound, independent of h, on the number of cells s ∈ Th,λ
contained in a patch Ph ∈ Th,P . The lemma follows with C2 = n̄2

2ξ since

J (µh, µh) =
∑

f∈Fh,λ

ξh2[µh]2f ≥ ξh2
nh∑
i=1

ni−1∑
ν=1

j2
i,ν . �

3.4 A stability estimate

This section is devoted to the demonstration of the stability estimate for the
formulation (8) given in Theorem 1. The proof relies on Lemmas 3 and 4.

Lemma 3 There exist positive constants C3, C4 and C5 independent of h, such
that for (ph, pγ,h) in Vh there exists ηh ∈ Λh satisfying:

〈ηh, ph|γ − pγ,h〉γ ≥ C3‖πP (ph|γ − pγ,h)‖21
2 ,h,γ

,

‖ηh‖2− 1
2 ,h,γ

≤ C4‖πP (ph|γ − pγ,h)‖21
2 ,h,γ

,

J (ηh, ηh) ≤ C5‖πP (ph|γ − pγ,h)‖21
2 ,h,γ

.

Proof Given (ph, pγ,h) in Vh, define ηh ∈ Xh by ηh = 1
hP
πP (ph|γ − pγ,h). Use

equations (14) and (13) to obtain the first inequality of the lemma:

〈ηh, ph|γ − pγ,h〉γ = ‖h−
1
2

P πP (ph|γ − pγ,h)‖20,γ ≥ c−1
2 ‖πP (ph|γ − pγ,h)‖21

2 ,h,γ
.

For the second inequality, observe that

‖ηh‖2− 1
2 ,h,γ

≤ hh−2
P
‖πP (ph|γ − pγ,h)‖20,γ ≤ c−2

1 ‖πP (ph|γ − pγ,h)‖21
2 ,h,γ

.
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For the third inequality, using the definition (6) of J , the fact that ηh is constant
on patches, using (13) and the definition of ηh, one obtains

J (ηh, ηh) =

nh−1∑
i=1

ξh2
(
ηh|Ph,i − ηh|Ph,i+1

)2 ≤ nh∑
i=1

4ξh2
(
ηh|Ph,i

)2
≤ 4c−2

1 ξ

nh∑
i=1

(
πP (ph|γ − pγ,h)

∣∣
Ph,i

)2

≤ 4c−3
1 ξ‖h− 1

2πP (ph|γ − pγ,h)‖20,γ .

Now with C3 = c−1
2 , C4 = c−2

1 and C5 = 4c−3
1 ξ, the proof is completed. �

Before stating Lemma 4, still following Burman and Hansbo (2010), we define
a subspace Yh of Vh,Ω consisting of certain functions having support “near” γ,
(i.e. in Gh,γ , see (17)). Toward this end we partition Gh,γ into a set of thickened
patches Ph,i, i = 1, · · · , nh, where Ph,i is made up of a choice of cells T ∈ Sh
such that Ph,i ⊂ Ph,i, see Fig. 1. The 1D patches Ph,i should be constructed
in such a way that to each thick patch Ph,i, we can associate a patch function
φi ∈ Vh,Ω such that for i = 1, · · · , nh the patch function φi satisfies the following
conditions:

– 0 ≤ φi(x) ≤ 1, ∀x ∈ Ω,
– φi vanishes outside Ph,i,
– φi is identically equal to 1 on some face F ∈ Fh cut by γ,
– there are constants c3 and c4 independent of h and of i such that

c3 ≤
1

h

∫
Ph,i

φi and h|∇φi(x)| ≤ c4, for a. e. x ∈ Ω. (18)

Because of the uniform regularity of Th, it is always possible to construct the
patches in such a way: it suffices to amalgamate enough elements s ∈ Th,λ. The
subspace Yh is the space generated by the functions φi; i = 1, · · · , nh. We note
also that there is a constant c5 independent of h such that

|Ph,i| ≤ c5h2
Ph,i

. (19)

Lemma 4 There exist positive constants C6, C7 and C8, independent of h, such
that for λh in Λh there is an element rh ∈ Yh ⊂ Vh,Ω such that:

〈πPλh, rh〉γ ≥ C6‖πPλh‖2− 1
2 ,h,γ

,

‖rh|γ‖21
2 ,h,γ

≤ C7‖λh‖2− 1
2 ,h,γ

,

‖∇rh‖20,Ω ≤ C8‖λh‖2− 1
2 ,h,γ

.

Proof Let λh ∈ Λh. We define rh ∈ Yh ⊂ Vh,Ω by taking a linear combination of
the patch functions as follows:

rh =

nh∑
i=1

CPi
φi, where CPi

=

∫
Ph,i

hPλh∫
Ph,i

φi
. (20)
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We then have rh|Ω\Gh,γ = 0, and recalling that φi vanishes outside of Ph,i, we
also have ∫

Ph,i
rh =

∫
Ph,i

hPλh, ∀i = 1, · · · , nh. (21)

One has
(∫
Ph,i φi

)−2

≤ c−2
3 h−2 from (18), and

(∫
Ph,i λh

)2

≤ hPh,i

∫
Ph,i λ

2
h by

the Cauchy–Schwarz inequality. Thus, using (13), we have the estimate

C2
Pi
≤ c32c−2

3

∫
Ph,i

hλ2
h ∀i = 1, · · · , nh. (22)

Now to check that rh satisfies the first inequality of the lemma, since πPλh is
constant on Ph,i, i = 1, · · · , nh, we can use (21), (14) and then (13) to obtain

〈πPλh, rh〉γ =

nh∑
i=1

(πPλh)|Ph,i
∫
Ph,i

rh =

nh∑
i=1

(πPλh)|Ph,i
∫
Ph,i

hPλh

= hP 〈πPλh, λh〉γ = hP

∫
γ

(πPλh)2 ≥ c1‖πPλh‖2− 1
2 ,h,γ

.

For the second inequality we note that by the definition of rh in (20), we have

‖rh|γ‖21
2 ,h,γ

= h−1

nh∑
i=1

C2
Pi

∫
Ph,i

φ2
i ≤ c2

nh∑
i=1

C2
Pi

because (13), together with the fact that |φi(x)| ≤ 1, ∀x ∈ γ, implies that∫
Ph,i φ

2
i ≤ hPh,i

≤ c2h. Thus using (22), one obtains

‖rh|γ‖21
2 ,h,γ

≤
nh∑
i=1

c42c
−2
3

∫
Ph,i

hλ2
h = c42c

−2
3 ‖λh‖− 1

2 ,h,γ
.

For the third inequality, since the supports of the φi’s are disjoint, we have

‖∇rh‖20,Ω =

nh∑
i=1

C2
Pi

∫
Ph,i

(∇φi)2 ≤ c22c
2
4c5

nh∑
i=1

C2
Pi
≤ c52 c−2

3 c24 c5

nh∑
i=1

∫
Ph,i

hλ2
h,

where we have used (18), then (19) and (22). The lemma now follows with
C6 = c1, C7 = c42c

−2
3 and C8 = c52 c

−2
3 c24 c5. �

We can now state a stability theorem for the problem given by (8).

Theorem 1 Let ξ > 0. There is a positive constant θ, independent of h, such
that if Ph = (ph, pγ,h;λh) ∈ Vh × Λh, then

θ|||Ph|||1,h ≤ sup
Qh = (qh, qγ,h;µh)
Qh ∈ Vh × Λh

A(Ph, Qh) + J (λh, µh)

|||Qh|||1,h
. (23)
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Proof Clearly, it suffices to show that there exist positive constants θ1 and θ2

such that if Ph = (ph, pγ,h, λh) ∈ Vh × Λh there exists Qh = (qh, qγ,h, µh) ∈
Vh × Λh such that

θ1|||Qh|||1,h ≤ |||Ph|||1,h and θ2|||Ph|||21,h ≤ A(Ph, Qh) + J (λh, µh). (24)

Let Ph = (ph, pγ,h;λh) ∈ Vh × Λh. The idea is to put

Qh = Ph +Rh, with Rh = (−crrh, 0; cηηh) ∈ Vh × Λh
with ηh and rh as constructed in Lemmas (3) and (4), respectively, and with
cr and cη positive constants to be determined in such a way that both equations
of (24) are satisfied with θ1 and θ2 independent of the choice of Ph.

To obtain the first estimate of (24), we use Lemmas 3 and 4 with (15):

|||Qh|||21,h = ‖∇ph−cr∇rh‖20,Ω + ‖∇τpγ,h‖20,γ + ‖λh + cηηh‖2− 1
2 ,h,γ

+‖ph|γ−crrh|γ − pγ,h‖21
2 ,h,γ

+ J (λh + cηηh, λh + cηηh)

≤ 2
(
|||Ph|||21,h + c2η(‖ηh‖2− 1

2 ,h,γ
+ J (ηh, ηh)) + c2r(‖∇rh‖20,Ω + ‖rh‖21

2 ,h,γ
)
)

≤ 2
(
|||Ph|||21,h + c2η(C4 + C5)‖(ph|γ − pγ,h)‖21

2 ,h,γ
+ c2r(C7 + C8)‖λh‖2− 1

2 ,h,γ

)
.

Thus putting θ1 =
(
2(1 + max{c2η(C4 + C5), c2r(C7 + C8)})

)− 1
2 we obtain the

first inequality of (24).
For the second estimate of (24), letting µh = λh + cηηh, we have

A(Ph, Qh)+J (λh, µh)=A(Ph, Ph)+J (λh, λh)+A(Ph, Rh)+cηJ (λh, ηh). (25)

Now we bound from below each term in (25). For the first two terms,

A(Ph, Ph)+J (λh, λh) = ‖K 1
2∇ph‖20,Ω + ‖K

1
2
γ∇τpγ,h‖20,γ + J (λh, λh)

≥ CmK
(
‖∇ph‖20,Ω + ‖∇τpγ,h‖20,γ

)
+ J (λh, λh). (26)

For the fourth term, using (7), Young’s inequality, then the third inequality of
Lemma 3 and (15), we obtain, for each εη > 0,

cηJ (λh, ηh) ≥ −cηJ (λh, λh)
1
2J (ηh, ηh)

1
2 ≥ − cηεηJ (λh, λh)− cηεη

4 J (ηh, ηh)

≥ − cηεηJ (λh, λh)− cηεη
4 C5‖ph|γ − pγ,h‖21

2 ,h,γ
.

(27)
There remains to bound the third term in (25):

A(Ph, Rh) = −cr
∫
Ω

K∇ph ·∇rh + cr〈λh, rh|γ〉γ + cη〈ηh, ph|γ − pγ,h〉γ . (28)

For the first term of the right hand side of (28) we have, for each εr > 0,

−cr
∫
Ω

K∇ph ·∇rh ≥ − crεr ‖K
1
2∇ph‖2Ω − crεr

4 ‖K
1
2∇rh‖2Ω

≥ − crεrC
M
K ‖∇ph‖2Ω − crεr

4 CMK C8‖λh‖2− 1
2 ,h,γ

.
(29)
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For the second term, using the Cauchy-Schwarz type inequality (11), the first
inequality of Lemma 4, Young’s inequality, the second inequality of Lemma 4
and Lemma 2, we obtain

cr〈λh, rh|γ〉γ = cr〈λh − πPλh, rh|γ〉γ + cr〈πPλh, rh|γ〉γ
≥ − crεr ‖λh − πPλh‖

2
− 1

2 ,h,γ
− crεr

4 ‖rh|γ‖21
2 ,h,γ

+crC6‖πPλh‖2− 1
2 ,h,γ

≥ − crεr ‖λh − πPλh‖
2
− 1

2 ,h,γ
− crεr

4 C7‖λh‖2− 1
2 ,h,γ

+crC6(1
2‖λh‖2− 1

2 ,h,γ
− ‖λh − πPλh‖2− 1

2 ,h,γ
)

≥ −cr(C6 + 1
εr

)‖λh − πPλh‖2− 1
2 ,h,γ

+cr(
1
2C6 − εr

4 C7)‖λh‖2− 1
2 ,h,γ

≥ −cr(C6 + 1
εr

)C2J (λh, λh) + cr(
1
2C6 − εr

4 C7)‖λh‖2− 1
2 ,h,γ

,

(30)
where we have also used the inequality ‖a‖2 ≤ 2(‖a − b‖2 + ‖b‖2) which gives
‖b‖2 ≥ 1

2‖a‖2 − ‖a − b‖2. For the third term of the right hand side of (28) we
use the first inequality of Lemma 3 and then Lemma 1 to obtain

cη〈ηh, ph|γ − pγ,h〉γ ≥ cηC3‖πP (ph|γ − pγ,h)‖21
2 ,h,γ

≥ cηC3

(
C̃1‖ph|γ − pγ,h‖21

2 ,h,γ
− ‖∇ph‖20,Gh,γ − h‖∇τpγ,h‖20,γ

)
.

(31)

Thus adding equations (26), (27), (29), (30) and (31), we have

A(Ph, Qh) + J (λh, µh) ≥ (CmK − cηC3 − cr
εr
CMK )‖∇ph‖20,Ω

+(CmK − cηC3h)‖∇τpγ,h‖20,γ + cη(C̃1C3 − εη
4 C5)‖ph|γ − pγ,h‖21

2 ,h,γ

+cr(
C6

2 − εr
4 (C7 + CMK C8))‖λh‖2− 1

2 ,h,γ
+ (1− cη

εη
−crC2(C6 + 1

εr
))J (λh, λh).

To complete the demonstration of the second estimate in (24), we have only to
choose εη, εr, cr and cη such that all of the constant factors above are positive.

This can be done by choosing, for instance, εr = C6

C7+CMK C8
, εη = 2C̃1C3

C5
, cr =

min{ 1
4C2(C6+ 1

εr
)
, εr

4
CmK
CMK
} and cη = min{ C

m
K

2hC3
,
CmK
4C3

,
εη
4 }. We can then set θ2 =

min{1
2 ,

1
2C

m
K , 1

2cηC̃1C3,
1
4crC6}. �

From Theorem 1, we deduce the following corollary.

Corollary 1 For any ξ > 0, formulation (8) admits a unique solution Ph =
(ph, pγ,h;λh) ∈ Vh × Λh.

3.5 Convergence

Here we prove a Céa-type, best-approximation result and consider the question
of convergence rates. The convergence depends on approximation results that
are derived under assumptions concerning the regularity of problem (3).
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Proposition 3 Let P = (p, pγ ;λ) ∈ V × Λ be the solution of (3) and let Ph =
(ph, pγ,h;λh) ∈ Vh × Λh be the solution of (8). Then there is a constant θc > 0
independent of h such that for each Qh = (qh, qγ,h;µh) ∈ Vh × Λh,

|||P − Ph|||0,h + J (λh, λh)
1
2 ≤ θc

(
|||P −Qh|||0,h + J (µh, µh)

1
2

)
. (32)

Proof Let Qh = (qh, qγ,h;µh) ∈ Vh × Λh. From the triangle inequality we have

|||P − Ph|||0,h + J (λh, λh)
1
2 ≤ |||P −Qh|||0,h + J (µh, µh)

1
2 +
√

2|||Qh − Ph|||1,h.
(33)

Because of (23) and (9), there exists Rh = (rh, rh,γ ; ηh) ∈ Vh × Λh with

θ|||Qh − Ph|||1,h ≤
A(Qh − Ph, Rh) + J (µh − λh, ηh)

|||Rh|||1,h

=
A(Qh − P,Rh) + J (µh, ηh)

|||Rh|||1,h
.

Thus using the continuity (12) and inequality (7), we obtain

θ|||Qh − Ph|||1,h ≤ Cc|||Qh − P |||0,h
|||Rh|||0,h
|||Rh|||1,h

+ J (µh, µh)
1
2
J (ηh, ηh)

1
2

|||Rh|||1,h
≤ Cc|||Qh − P |||0,h + J (µh, µh)

1
2 . (34)

Then (32) follows from (33) and (34) with θc = max{1 +
√

2Cc
θ , 1 +

√
2
θ }. �

We now recall two trace inequalities. The proof of the first may be found
in (Costabel, 1988, Lemma 3.6) (cf. also (Ding, 1996, Theorem 1)). For O a

Lipschitz domain, and α ∈ (1
2 ,

3
2 ), there is a constant C̃tr such that

‖φ|∂O‖α− 1
2 ,∂O

≤ C̃tr‖φ‖α,O ∀φ ∈ Hα(O). (35)

The second is a multiplicative trace inequality which follows from (Girault and
Glowinski, 1995, Lemma 2), or from Ainsworth (2007), see also (Köppel et al,
2018, Lemma 1). There is a constant Ctr > 0 such that if T a triangle or rectangle

‖q‖20,γ∩T ≤ Ctr(h−1‖q‖20,T + h‖∇q‖20,T ), ∀q ∈ H1(T ). (36)

For approximation results we will use the Scott-Zhang interpolation opera-
tors associated with the approximation spaces Vh,Ω and Vh,γ :

IΩh : H1
0 (Ω) −→ Vh,Ω and Iγh : H1

0 (γ) −→ Vh,γ .

We have that if 1
2 < α ≤ 2 and 0 ≤ β ≤ α, then

‖IΩh q − q‖β,Ω ≤ CIΩhα−β |q|α,Ω, ∀q ∈ Hα(Ω),

‖Iγhqγ − qγ‖β,γ ≤ CIγhα−βγ |qγ |α,γ , ∀qγ ∈ Hα(γ),
(37)

where | · |α is an α-semi-norm; see (Ern and Guermond, 2004, Section 1.6.2).
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Define πh to be the L2(Ω)–projection onto P0(Th), the space of piecewise
constant functions on Ω subordinate to Th. We have

‖πhq − q‖0,Ω ≤ Cπhh‖∇q‖0,Ω, ∀q ∈ H1(Ω). (38)

We will make use of the following auxiliary problem: let Ω1 and Ω2 be the
two subdomains of Ω obtained by splitting Ω along γ. For ζ ∈ H 1

2 (γ) and for
j = 1, 2, let rζ,j ∈ H1(Ωj) be the solution of

−∆rζ,j = 0 in Ωj ,
rζ,j = ζ on γ,
∇rζ,j · n = 0 on ∂Ωj \ γ.

(39)

These problems are well posed ∀ζ ∈ H 1
2 (γ) and for j = 1, 2, (cf. (Galvis and

Sarkis, 2007, Lemma 2.1)) and rζ , defined by rζ
∣∣
Ωj

= rζ,j , belongs to H1(Ω) as

rζ,1 and rζ,2 coincide on γ. We have

‖rζ‖1,Ω ≤ Ca‖ζ‖ 1
2 ,γ
. (40)

Lemma 5 There exists a constant C9 such that if ζ ∈ H 1
2 (γ), and rζ ∈ H1(Ω)

is such that rζ |Ω1 and rζ |Ω2 are the solutions to (39), for j = 1 and 2, then

‖ζ − (πhrζ)
∣∣
γ
‖− 1

2 ,h,γ
≤ C9h‖ζ‖ 1

2 ,γ
and J ((πhrζ)|γ , (πhrζ)|γ)

1
2 ≤ C9h‖ζ‖ 1

2 ,γ
.

Proof Both of these estimates are based on the trace inequality (36) applied cell
by cell. For the first estimate, inequality (36) is applied for each cell T ∈ Th cut
by γ, to γ ∩ T in relation to T : because ζ and rζ agree on γ and because rζ |T
and (πhrζ)|T belong to H1(T ), using (10) and then using (36) for each cell cut
by γ and summing over these cells and finally applying (38), we obtain

‖ζ − (πhrζ)
∣∣
γ
‖2− 1

2 ,h,γ
= h‖(rζ − πhrζ)

∣∣
γ
‖20,γ

≤ Ctr
(
‖rζ − πhrζ‖20,Gh,γ + h2‖∇rζ‖20,Gh,γ

)
≤ Ctr(1 + C2

πh
)h2‖∇rζ‖20,Gh,γ .

The first estimate, with C9 =
(
Ctr(1 + C2

πh
)
) 1

2 Ca, now follows from (40).

For the second estimate, inequality (36) is applied for each face F ∈ Fh cut
by γ, to F in relation to each cell T ∈ Th having F as a face: using the definition
of J , the fact that, for each face F ∈ Fh, JπhrζKF is constant and JrζKF = 0
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and h ≤ |F |ρh h ≤ σΩ |F | and then using (36), (38) and (40) we obtain

J ((πhrζ)|γ , (πhrζ)|γ) =
∑

f∈Fh,λ

ξh2J(πhrζ)|γK2
f ≤ ξσΩh

∑
f∈Fh,λ

∫
Ff

JπhrζK2
Ff

= ξσ
Ω
h
∑

f∈Fh,λ

‖Jrζ − πhrζKFf ‖20,Ff

≤ 2ξσ
Ω

∑
f∈Fh,λ

2∑
i=1

Ctr

(
‖rζ − πhrζ‖20,T iFf + h2‖∇rζ‖20,T iFf

)

≤ 2ξσ
Ω

∑
f∈Fh,λ

2∑
i=1

Ctr(1 + C2
πh

)h2‖∇rζ‖20,T iFf
≤ 4ξσ

Ω
Ctr(1 + C2

πh
)h2‖∇rζ‖20,Ω

where for f ∈ Fh,λ, Ff denotes the face in Fh containing f , and T 1
Ff

and T 2
Ff

are the two cells in Th having Ff as a face. The second estimate now follows as

above with C9 = 2
(
ξσ
Ω
Ctr(1 + C2

πh
)
) 1

2 Ca. �

Lemma 6 Assume that p ∈ H1+α(Ω) and p|Ωj ∈ H2(Ωj) for j = 1, 2, pγ ∈
H1+α̃(γ), for some α, α̃ ∈ (1

2 ,
3
2 ), and λ = JK∇p · nγK ∈ H

1
2 (γ). If rλ ∈ H1(Ω)

is defined as in Lemma 5 with ζ = λ, it follows that∣∣∣∣∣∣(p− IΩh p, pγ − Iγhpγ ;λ− (πhrλ)|γ)
∣∣∣∣∣∣

1,h

≤ C10

(
hα‖p‖1+α,Ω + hα̃γ‖pγ‖1+α̃,γ + h

∑
j=1,2

‖p‖2,Ωj
)
.

Proof Using the definition of the norm |||·|||0,h we have∣∣∣∣∣∣(p− IΩh p, pγ − Iγhpγ ;λ− πhrλ)
∣∣∣∣∣∣2

0,h
= ‖∇(p− IΩh p)‖20,Ω

+‖∇τ (pγ − Iγhpγ)‖20,γ + ‖(p− IΩh p)|γ‖21
2 ,h,γ

+‖pγ − Iγhpγ‖21
2 ,h,γ

+ ‖λ− (πhrλ)|γ‖2− 1
2 ,h,γ

.

The first two terms can be controlled using the interpolation estimates (37). For
the third term, using (36), and again (37), we obtain

‖(ph − IΩh ph)|γ‖21
2 ,h,γ

=
∑
T∈Sh

‖(ph − IΩh ph)|γ‖21
2 ,h,T∩γ

≤
∑
T∈Sh

Ctr
(
h−2‖ph − IΩh ph‖20,T + ‖∇(ph − IΩh ph)‖20,T

)
≤
∑
T∈Sh

2CtrC
2
IΩh

2α|p|21+α,T ≤ 2CtrC
2
IΩh

2α|p|21+α,Ω.

To control the fourth term we need only (37)

‖pγ − Iγhpγ‖ 1
2 ,hγ ,γ

≤ h−
1
2

γ CIγh
1+α̃
γ |pγ |1+α̃,γ = CIγh

1
2+α̃
γ |pγ |1+α̃,γ .
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For the fifth term we use Lemma 5 together with the definition of λ and (35):

‖λ‖ 1
2 ,γ

= ‖JK∇p · nγK‖ 1
2 ,γ
≤
∑
j=1,2

CMK C̃tr‖∇p‖1,Ωj ≤ CMK C̃tr
∑
j=1,2

‖p‖2,Ωj .

The stabilizing term J (λh, λh)
1
2 is controlled similarly by the second estimate

of Lemma 5. Thus the proof is completed. �

Theorem 2 Again, let P = (p, pγ ;λ) ∈ V × Λ be the solution of (3) and let
Ph = (ph, pγ,h;λh) ∈ Vh × Λh be the solution of (8), and suppose the same
regularity as in Lemma 6. Then there exists a constant C such that

|||P − Ph|||0,h + J (λh, λh)
1
2 ≤ C

(
hα‖p‖1+α,Ω + hα̃γ‖pγ‖1+α̃,γ + h

∑
j=1,2

‖p‖2,Ωj
)
.

Proof In Proposition 3 choose qh = IΩh p, qγ,h = Iγhpγ and µh = πhrλ where rλ
is defined as in Lemma 5 with ζ = λ. Then the estimate follows directly from
Lemma 6. �

Remark 1 Generally p is expected to belong to H3/2−ε(Ω) for ε > 0, and it is
reasonable to assume that pγ belongs to H2(γ) and that p|Ωj ∈ H2(Ωj). Thus

(K∇p|Ωj · nγ)|γ belongs to H
1
2 (γ), and the jump λ is indeed in H

1
2 (γ). Thus

Theorem 2 provides generally a suboptimal O(h
1
2−ε) convergence. However a

better rate of convergence of O(h) is frequently observed in practice.

4 Numerical results

This section is devoted to numerical experiments studying the proposed dis-
cretization (8). In particular we address accuracy, convergence and conditioning
for various choices of the penalization parameter. A direct solver is used to solve
the linear system.

4.1 Case 1: a vertical fracture

The first setup is a two-dimensional, square domain Ω := [0, 1]2 with homoge-
neous Neumann conditions on the horizontal boundaries and nonhomogeneous
Dirichlet conditions on the vertical boundaries (p = 1 on the left and p = 4 on
the right). A vertical fracture γ with Kγ = 10, K = I, is located in the middle
of the matrix domain Ω with Dirichlet boundary values pγ = 1 on the lower
tip and pγ = 4 on the upper tip. The test case and the pressure distribution
are shown in Fig. 2. The simulations are performed for various mesh sizes h, hγ
and hλ. However, due to the high permeability in the vertical fracture, we have
taken hγ = h/2 in order to obtain high accuracy at the fracture interface. In the
simulations the fracture is either located on the edges of the rectangular matrix
grid, referred to as conforming, or in the center of the rectangular elements,
referred to as nonconforming.



18 M. Köppel et al.

x

y

Ω

γ

v · n = 0, pγ = 1

v · n = 0, pγ = 4

p
=

1

p
=

4
(0.5, 0)

(1, 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
y

1

2

3

4

p
re
ss
u
re

Fig. 2 Case 1 (a vertical fracture): General setting (left) and distribution of the pres-
sures (right) of a simulation with h = 1/24, hγ = 1/48, ξ = 1.

On this basis we study the performance of the method. As the analytical
solution is not known, a fine simulation of the stabilized Lagrange multiplier
method with mesh size h = 1/384 is used as a reference solution. The influence
of the penalty value ξ on accuracy, convergence and conditioning is analyzed in
the conforming as well as the nonconformig case.

Fig. 3 presents the numerical convergence analysis of the primary variables
for ξ = 0.5 in both the cases of conforming and nonconforming meshes. As
predicted by the theory and independently of the mesh configuration, the errors
for p and pγ converge linearly in the H1 norm and the Lagrange multiplier
converges linearly in the norm ‖ · ‖− 1

2 ,γ,h
. Depending on the mesh configuration

the L2 errors of the pressures converge with rates up to quadratic order: in the
nonconforming case the matrix pressure converges linearly in the L2 norm.

Figs. 4 and 5 display the approximation errors for matrix pressure, fracture
pressure and the Lagrange mutliplier for different penalty parameters ξ and dif-
ferent mesh sizes in the conforming and nonconforming cases. The plots indicate
that the errors get smaller when the mesh is refined. The penalty parameter ξ
has little influence on the H1 errors for p and pγ and seems to give slightly
improved results for λ when ξ ∈ [0.1, 1], see Fig. 4. The influence of ξ is more
important for p and pγ in the L2 error, see Fig. 5. In the most interesting case
(nonconforming), small to moderate values for ξ seem optimal for the accuracy.
In each plot, looking at the different curves for fixed ξ, one can determine the
convergence rate, that is shown in Fig. 3 for ξ = 0.5. Globally, the smaller the
mesh size h, the lesser the influence of the penalty parameter ξ. This confirms
the consistency of the penalty term J . Furthermore an increase of the penalty
parameter ξ generally leads to higher errors, which is a logical consequence of
the construction of J . We also observe in Fig. 5 that the nonconforming configu-
ration of the mesh yields larger L2 errors, errors that have a weaker dependence
on ξ.

In addition to the nonconforming case in which the fracture cuts through
the middle of a vertical strip of matrix mesh elements, we wish to study what
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Fig. 3 Case 1 (a vertical fracture): Convergence of matrix pressure p, fracture pres-
sure pγ and Lagrange multiplier λ for ξ = 0.5 in the conforming case (left) and the
nonconforming case (right) depending on the mesh size.
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Fig. 4 Case 1 (a vertical fracture): Influence of the penalty value ξ on the H1 error
for the matrix pressure p, the fracture pressure pγ and on the ‖ · ‖− 1

2
,h,γ error for the

Lagrange multiplier λ in the conforming case (left) and in the nonconforming case (right)
depending on the mesh refinement index h.
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Fig. 5 Case 1 (a vertical fracture): Influence of the penalty value ξ on the L2 approx-
imation error for the matrix pressure p and the fracture pressure pγ in the conforming
case (left) and in the nonconforming case (right) depending on the mesh refinement
index h.

Distance ξ = 0 ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1 ξ = 10

h/2 4.06e+8 9.93e+7 1.19e+7 2.35e+6 9.19e+5 5.18e+5
h/4 3.31e+8 9.50e+7 1.18e+7 2.25e+6 8.88e+5 5.08e+5
h/8 2.69e+8 8.97e+7 1.18e+7 2.14e+6 8.53e+5 4.96e+5
0 2.14e+8 8.31e+7 1.18e+7 2.01e+6 8.08e+5 4.81e+5

Table 1 Case 1 (a vertical fracture): Condition numbers as a function of ξ and the
distance between the matrix mesh edges and the fracture line for h = 1/18, hγ = 1/36.

happens as the matrix mesh edges approach the fracture line. Table 1 shows the
condition numbers of the system matrix depending on the penalty parameter
ξ and the distance between the matrix mesh edge and the fracture line for
h = 1/18, hγ = 1/36. The table indicates that the location of the fracture
within the matrix grid does not influence significantly the conditioning of the
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Fig. 6 Case 2 (a fracture network): General setup (left) and pressure distribution (right)
of a nonconforming simulation with h = 1/33, hγ = 1/32, ξ = 1.

system. However the condition number decreases with increasing values of the
penalty parameter. This verifies the efficiency of the stabilizing term J .

We conclude that the method (8) behaves as predicted by the theoretical
results. The penalty parameter ξ should be chosen depending on accuracy and
conditioning of the system matrix. The stabilizing term J penalizes the jumps
of the Lagrange multiplier. The higher the penalty parameter ξ the more the
discrete multipliers tend to a constant value which affects the accuracy. However
the results show clear convergence also for larger ξ. On the other hand high
penalty parameters improve the conditioning.

Remark 2 We have not included comparisons with the non-penalized Lagrange
multiplier method of Köppel et al (2018) for lack of space. For this comparison
see Köppel (to appear, 2018).

4.2 Case 2: a fracture network

In this section a more complex test case with a regular fracture network, cf. (Geiger
et al, 2013; Flemisch et al, 2018), is considered. The setup and the pressure dis-
tribution for a simulation with the stabilized method with nonconforming con-
figuration and h = 1/33, hγ = 1/32, ξ = 1, is illustrated in Fig. 6. All fractures
of the test case are conductive and have a uniform permeability of Kγ = 1.
The unit square matrix domain is characterized by a permeability of K = I.
Throughout this section the mesh size of the fracture will be in the same range
as the mesh size of the matrix, i.e. hγ ≈ h.

In Table 2 we compare the method (8) with several other available meth-
ods given in the benchmark study Flemisch et al (2018) for single-phase flow
in fractured porous media. The reference solution is computed with a mimetic
finite difference method (Brezzi et al, 2005) with a two-dimensional grid in the
fracture as well as in the matrix domain. The table shows that the stabilized
Lagrange mutliplier method performs well. Intermediate values of the penalty
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method d.o.f. #-matr #-frac errm errγ cond

SLM-FEM: ξ = 0 1374 1089 quads 112 1.0e-2 6.5e-3 6.9e+8
SLM-FEM: ξ = 0.1 1374 1089 quads 112 1.0e-2 6.5e-3 2.0e+6
SLM-FEM: ξ = 1 1374 1089 quads 112 9.9e-3 6.4e-3 7.7e+5
SLM-FEM: ξ = 1000 1374 1089 quads 112 6.4e-2 2.9e-2 1.3e+5

Box 577 1078 trias 74 1.1e-2 1.9e-4 2.2e+3
CC-MPFA 1439 1348 trias 91 1.1e-2 4.5e-3 5.8e+4
EDFM 1501 1369 quads 132 6.5e-3 4.0e-3 5.6e+4
Mortar 3366 1280 trias 75 1.0e-2 6.9e-3 2.4e+6
P-XFEM 1650 961 quads 164 9.3e-3 7.3e-3 9.3e+9
D-XFEM 4474 1250 trias 126 9.6e-3 8.9e-3 1.2e+6

Table 2 Case 2 (a fracture network): Performance of the stabilized Lagrange multiplier
method (SLM-FEM) compared to other DFM methods, cf. Flemisch et al (2018), based
on the number of degrees of freedom (d.o.f.), the number of matrix elements (#-matr),
the number of fracture elements (#-frac), the matrix error (errm), the fracture error
(errγ) and the condition number (cond).
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Fig. 7 Case 2 (a fracture network): Convergence of matrix pressure p (left) and fracture
pressure pγ (right) of the stabilized Lagr. multiplier method (SLM-FEM) for ξ = 1
depending on the number of elements (#cells) compared to other methods, cf. Flemisch
et al (2018).

parameter, i.e. ξ ∈ [0.1, 1], yield a good balance between accuracy and condition-
ing. Note however that this range may change for more realistic permeabilities,
see Section 4.3.

To study the numerical convergence of the stabilized method the configura-
tion is refined three times by a factor of two (h ∈ {1/33, 1/65, 1/129, 1/257})
similar to Flemisch et al (2018). The resulting convergence study of matrix and
fracture pressure using the stabilized discretization with ξ = 1 is illustrated in
Fig. 7. The figure shows that the stabilized method converges linearly in the
matrix and in the fracture as the other methods of the benchmark study.
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Fig. 8 Case 3 (a realistic case): Setup. The fractures are depicted as red lines.

4.3 Case 3: a realistic case

The last numerical experiment represents a real set of fractures from an inter-
preted outcrop in the Sotra island near Bergen in Norway of the benchmark
study Flemisch et al (2018). The domain is rectangular with uniform perme-
ability K = 10−14m2. It contains 63 fractures grouped in several networks with
Kγ = 10−10m3, see Fig. 8. The size of the domain is 700m × 600m with ho-
mogeneous Neumann boundary conditions on top and bottom, a pressure of
10.1325 bar on the left and a pressure of 0 bar on the right.

The pressure distributions for simulations with h = 10m and ξ = 1 and 100
are displayed in Fig. 9. A small undershoot can be observed close to the upper
right fracture at the endpoint on the upper boundary. The undershoot is smaller
for the larger choice of ξ. This occurs due to the weak imposition of equality of
the pressure along the fracture, for more details see Köppel (to appear, 2018).
Fig. 10 shows the distributions of the pressures at y = 500m and x = 625m
of the stabilized Lagrange multiplier method compared to other methods of the
benchmark study. The stabilized Lagrange multiplier method is in very good
agreement with the pressure distributions of the other methods. A convergence
analysis was not performed in this test case, as was noted in Flemisch et al
(2018), since it is a really difficult task to establish a full-dimensional reference
solution with the mimetic finite difference method. The comparison in terms
of the conditioning and degrees of freedom is given in Table 3 and shows good
performances with moderate to large values of ξ.

Remark 3 In order to improve the conditioning in this realistic test case where
the permeabilities are very small, a scaling was performed prior to the compu-
tations: the duality pairings 〈·, ·〉γ of A defined in (2) and the stabilization term
J defined in (6) were multiplied by the scalar k = K. Thus the actual Lagrange

multiplier unknown was λ̃ = kλ, and the stabilization term J scales correctly
with K. It was then possible to divide the discrete system (8) by Kγ , and obtain
a system that is easier to solve. In the case when K is a tensor or varying in
space, the same idea should be considered with an average value of its norm.
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Fig. 9 Case 3 (a realistic case): Pressure distribution. Simulation with h = 10m and
for ξ = 1 (left) and ξ = 100 (right). The lowest value is slightly different for the two
figures.
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Fig. 10 Case 3 (a realistic case): Pressure distribution along the line y = 500m (left)
and along the line x = 625m (right) of the stabilized Lagrange multiplier method (with
h = 10m) in comparison with other methods, cf. Flemisch et al (2018). SLM-FEM1:
ξ = 1. SLM-FEM2: ξ = 100.

5 Conclusion

In this paper we presented a stabilized finite element discretization of a La-
grange multiplier model for single-phase Darcy flow in fractured porous media,
cf. Köppel et al (2018), where the multiplier represents a local exchange of the
fluid between fracture and matrix domain allowing for the use of a mesh in the
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method d.o.f. #-matr #-frac cond

SLM-FEM: ξ = 0 8081 5250 quads 1372 4.8e+9
SLM-FEM: ξ = 1e-4 8081 5250 quads 1372 3.5e+8
SLM-FEM: ξ = 1 8081 5250 quads 1372 6.1e+6
SLM-FEM: ξ = 100 8081 5250 quads 1372 6.2e+6

Box 5563 10807 trias 1386 9.3e+5
CC-MPFA 8588 7614 trias 867 4.9e+6
EDFM 3599 2491 quads 1108 4.7e+6
Mortar 25258 8319 trias 1317 2.2e+17

Table 3 Benchmark 3 (a realistic case): Performance of the stabilized Lagrange mul-
tiplier method (SLM-FEM) compared to other DFM methods based on the number of
degrees of freedom (d.o.f.), the number of matrix elements (#-matr), the number of
fracture elements (#-frac) and the condition number (cond), cf. Flemisch et al (2018).

matrix that is not aligned with the fracture. The piecewise constant Lagrange
multipliers of the stabilized discretization are defined on the intersections of the
matrix elements with the fracture and, hence, are embedded on the fracture
interface. A consistent stability term penalizes the jumps of the consecutive
multipliers to stabilize the discrete saddle point system. We proved consistency,
stability and convergence of the discrete formulation following the ideas of Bur-
man and Hansbo (2010). The numerical experiments are consistent with the
theoretical results. They confirmed that with increasing values of the penalty
parameter ξ the conditioning of the discrete system can be improved. On the
other hand high penalty values deteriorate the accuracy of the approximation.
Hence we recommend the use of intermediate penalty values to obtain optimal
results. The particular choice of ξ depends on the considered test case though.
Despite the affected accuracy though the results show clear convergence also for
large penalty parameters. In the numerical examples the errors of the matrix and
fracture pressure converge linearly in the H1 norm confirming the theoretical
results. The Lagrange multiplier is characterized by linear rates of convergence
in the discrete norm ‖ · ‖− 1

2 ,hλ,γ
. The comparison with the benchmark results

in Flemisch et al (2018), leads to the conclusion that the penalized discretiza-
tion is a good alternative to other models for the simulation of flow in fractured
porous media.
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