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SATURATION OF JACOBIAN IDEALS: SOME APPLICATIONS
TO NEARLY FREE CURVES, LINE ARRANGEMENTS AND

RATIONAL CUSPIDAL PLANE CURVES

ALEXANDRU DIMCA1 AND GABRIEL STICLARU

Abstract. In this note we describe the minimal resolution of the ideal If , the
saturation of the Jacobian ideal of a nearly free plane curve C : f = 0. In particular,
it follows that this ideal If can be generated by at most 4 polynomials. Related
general results by Hassanzadeh and Simis on the saturation of codimension 2 ideals
are discussed in detail. Some applications to rational cuspidal plane curves and to
line arrangements are also given.

1. Introduction

Let S = C[x, y, z] be the polynomial ring in three variables x, y, z with complex
coefficients, and let C : f = 0 be a reduced curve of degree d in the complex
projective plane P2. The minimal degree of a Jacobian relation for the polynomial f
is the integer mdr(f) defined to be the smallest integer m ≥ 0 such that there is a
nontrivial relation

(1.1) afx + bfy + cfz = 0

among the partial derivatives fx, fy and fz of f with coefficients a, b, c in Sm, the
vector space of homogeneous polynomials in S of degree m. When mdr(f) = 0, then
C is a union of d lines passing through one point, a situation easy to analyse. We
assume from now on in this note that

(1.2) mdr(f) ≥ 1.

We denote by Jf the Jacobian ideal of f , i.e. the homogeneous ideal in S spanned
by fx, fy, fz, and by M(f) = S/Jf the corresponding graded quotient ring, called the
Jacobian (or Milnor) algebra of f . Let If denote the saturation of the ideal Jf with
respect to the maximal ideal m = (x, y, z) in S and consider the local cohomology
group, usually called the Jacobian module of f ,

N(f) = If/Jf = H0
m(M(f)).
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The Lefschetz type properties for Artinian algebras have attracted a vast literature,
see for instance [20, 21, 23]. It was shown in [9, Corollary 4.3] that the graded S-
module N(f) satisfies a Lefschetz type property with respect to multiplication by
generic linear forms. This implies in particular the inequalities

(1.3) 0 ≤ n(f)0 ≤ n(f)1 ≤ ... ≤ n(f)[T/2] ≥ n(f)[T/2]+1 ≥ ... ≥ n(f)T ≥ 0,

where T = 3d− 6 and n(f)k = dimN(f)k for any integer k. Note that for a smooth
curve C : f = 0, one has N(f) = M(f) and also

(1.4) 0 = indeg(M(f)) = indeg(N(f)) and T = end(M(f)) = end(N(f)),

in the notation from [22]. We set as in [1, 7]

ν(C) = max
j
{n(f)j},

and introduce a new invariant for C, namely

σ(C) = min{j : n(f)j 6= 0}.
The self duality of the graded S-module N(f), see [22, 30, 34], and the Lefschetz type
property mentioned above imply that n(f)s 6= 0 exactly for s = σ(C), ..., T − σ(C).
In other words, for a reduced curve C : f = 0, one has

(1.5) indeg(N(f)) = σ(C) and end(N(f)) = T − σ(C).

Denote by τ(C) the global Tjurina number of the curve C, which is the sum of the
Tjurina numbers of the singular points of C.

The study of free curves in the projective plane has a rather long tradition, being
inaugurated by A. Simis in [31, 32], and actively continued by several mathemati-
cians, see for instance [1, 2, 6, 7, 10, 12, 18, 33], and we refer to these papers for the
properties of free curves listed below. If C is a free curve with exponents (d1, d2),
with d1 ≤ d2, then Jf = If , or equivalently ν(C) = 0. Hence, by the definition of the
exponents, the minimal resolution of the Milnor algebra M(f) as a graded S-module
has the following form

(1.6) 0→ S(−d1 − d+ 1)⊕ S(−d2 − d+ 1)→ S3(−d+ 1)
(fx,fy ,fz)−−−−−→ S.

Moreover, a reduced curve C : f = 0 is free if and only if

(1.7) τ(C) = (d− 1)2 − r(d− r − 1),

where r = mdr(f), see [6, 15]. For a free curve one has d1 + d2 = d− 1.
The nearly free curves have been introduced in [6, 13], they have properties similar

to the free curves, and together with the free curves may lead to a new understanding
of the rational cuspidal curves, due to Conjecture 1.1 below. This class of curves
forms already the subject of attention in a number of papers, see for instance [1, 2, 26].
We refer to these papers for the properties of nearly free curves listed below.

By definition, C is a nearly free curve if ν(C) = 1. Such a curve has also a pair
of exponents (d1, d2), with d1 ≤ d2, such that the minimal resolution of the Milnor
algebra M(f) as a graded S-module has the following form

(1.8) 0→ S(−d−d2)→ S(−d−d1+1)⊕S2(−d−d2+1)→ S3(−d+1)
(fx,fy ,fz)−−−−−→ S.
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In addition, a reduced curve C : f = 0 is nearly free if and only if

(1.9) τ(C) = (d− 1)2 − r(d− r − 1)− 1,

where r = mdr(f), see [6], and for such curves one has d1 + d2 = d. Both ν(C)
and σ(C) are determined by the Hilbert function k 7→ n(f)k of the Jacobian module
N(f), and for a nearly free curve C : f = 0, the invariant σ(C) determines the
Hilbert function of N(f). Note that one has

(1.10) σ(C) = d+ d1 − 3,

for a nearly free curve by [13, Corollary 2.17]. Our interest in the free and nearly
free curves comes from the following.

Conjecture 1.1. A reduced plane curve C : f = 0 which is rational cuspidal is
either free, or nearly free.

This conjecture is known to hold when the degree of C is even, as well as in many
other cases, in particular for all odd degrees d ≤ 33, see [7, 13, 14]. In this note we
investigate first the minimal resolution of the graded S-module S/If for a nearly free
curve C : f = 0. The result can be stated as follows, see for a proof Theorems 3.1
and 3.2 below.

Theorem 1.2. Suppose C : f = 0 is a nearly free curve of degree d ≥ 3 with
exponents (d1, d2), and set s = σ(C) − (d − 2). Then the following two cases are
possible.

(1) s = 0 and the minimal resolution of the graded S-module S/If has the form

0→ S(−T − 1 + σ(C))→ S(1− d)⊕ S(−σ(C))→ S,

or
(2) 1 ≤ s ≤ bd/2c − 1 and the minimal resolution of the graded S-module S/If

has the form

0→ S(−σ(C)− 1)2 ⊕ S(−T − 1 + σ(C))→ S(1− d)3 ⊕ S(−σ(C))→ S.

Note that the formula (1.10) implies s = d1 − 1. When s ≥ 2, the claims of this
Theorem can be obtained as a special case of a general result by Hassanzadeh and
Simis, namely [22, Proposition 1.3]. This is clearly explained in the fourth section
below. In particular, we note in Remark 4.2 that the assumption in two key results
by Hassanzadeh and Simis, namely [22, Proposition 1.3] and [22, Theorem 1.5] can
be slightly weakened. With this improvement, we get also the case s = 1 in Theorem
1.2 as a consequense of [22, Proposition 1.3]. More significatively, this new weaker
assumption is verified by all the arrangements of d ≥ 4 lines in P2, see Remark 5.3. In
this way, the modified version of [22, Theorem 1.5] yields the following key property
of line arrangements.

Corollary 1.3. Let C : f = 0 be an arrangement of d ≥ 3 lines in P2. Then the
graded S-module of Jacobian syzygies

AR(f) = {(a, b, c) ∈ S3 : afx + bfy + cfz = 0}
is generated by at most d− 1 elements.
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This property was stated by Schenck in a discussion at the end of section 3 of his
paper [28], where it is attributed to Jiang and Feng, by referring to [24], subsection
(4.2). We describe briefly the results of the paper [24] below in Remark 5.4, and
explain that Jiang and Feng never stated or proved a result similar to our Corollary
1.3 above.

On the other hand, Theorem 1.2 implies the following.

Corollary 1.4. For a nearly free curve C : f = 0 of degree d, the exponents d1 and
d2, as well as the numerical data of the minimal resolution of the graded S-module
S/If are determined by the total Tjurina number τ(C).

Indeed, the formula (1.9) shows that d1 = mdr(f) is determined by τ(C), d2 is
just d − d1, and the rest of the claim follows from Theorem 1.2. Note that in the
case of a line arrangement A, the total Tjurina number τ(A) is determined by the
combinatorics. Examples 2.7 shows that the numerical data of the minimal resolution
of the graded S-module S/If are not determined by the combinatorics for general
line arrangements, though this seems to be the case for the related invariant ν(A),
see [7, Conjecture 1.3] as well as the equivalent formulation in [4, Question 7.12].

Some applications to rational cuspidal curves are given in the final section.

We would like to thank the referee for the careful reading of our manuscript, and
for suggesting a simpler proof for Theorem 3.1 as well as the upper-bound discussed
in Remark 4.4.

2. First properties

The first general property we need is the following.

Lemma 2.1. Let I be a homogeneous ideal in S of codimension 2. Then the projec-
tive dimension pdS/I of the graded S-module S/I is either 2 or 3. More precisely,
pdS/I = 2 if and only if the ideal I is saturated.

Proof. This result is a direct consequence of Hilbert Syzygy Theorem, see [16, Corol-
lary 19.7], and of the Auslander-Buchsbaum formula, see [16, Theorem 19.9]. The
reader needing more detail can see Lemma 4.2 and Lemma 4.3 in [25].

�

It follows that the quotient S/If , for any reduced plane curve C : f = 0, admits a
minimal resolution of the following type

(2.1) 0→ ⊕t
j=1S(−bj)→ ⊕t+1

i=1S(−ai)→ S.

We call the positive integers t, ai, bj the numerical data of the resolution (2.1).
Moreover, recall that τ(C) = degProj(S/Jf ), see for instance [3]. One also has
Proj(S/Jf ) = Proj(S/If ), since the two graded algebras have the same Hilbert
polynomial, which is the constant τ(C). In addition, the Castelnuovo-Mumford reg-
ularity regS/If of the module S/If is given by

(2.2) regS/If = max{ai − 1, bj − 2}.
We also need the following.
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Lemma 2.2. For any reduced curve C : f = 0, the numerical data of the minimal
resolution (2.1) can be chosen to satisfy the following relations.

(1) bi ≥ ai + 1 for i = 1, ..., t;
(2) a1 ≥ a2 ≥ ... ≥ at+1 and b1 ≥ b2 ≥ ... ≥ bt;
(3)

∑t+1
i=1 ai =

∑t
j=1 bj;

(4)
∑t

j=1 b
2
j −

∑t+1
i=1 a

2
i = 2τ(C).

When If is replaced by the homogeneous ideal of a finite set of points in P2, this
result is stated in [17, Proposition 3.8 and Exercise 3D15]. The general case is
discussed in [25, Lemma 4.4].

Proposition 2.3. If C : f = 0 is a nearly free curve of degree d, then the following
hold.

(1) σ(C) ≥ at+1 and at+1 ∈ {d− 2, d− 1};
(2) For a generic linear form ` ∈ S1, the multiplication by ` induces isomorphism

N(f)s → N(f)s+1 for s = σ(C), ..., T − σ(C)− 1.

Proof. Note that a = at+1 < d − 2, would imply n(f)a+1 ≥ 3, a contradiction.
Similarly, the presence of the partial derivatives fx, fy, fz in If forces a = at+1 < d.
For the second claim, note that ` : N(f)s → N(f)s+1 is injective for s < T/2 and
surjective for s ≥ [T/2] by [9, Cor. 4.3]. Since n(f)s = 1 for s ∈ [σ(C), T − σ(C)],
the second claim follows. �

Example 2.4. When d = 1, the curve C is a line, and hence it is free, with Jf =
If = S. Hence S/If = 0 in this case.

When d = 2, there are two cases. If the curve C is a smooth conic, then C is
nearly free with exponents d1 = d2 = 1, If = S and hence S/If = 0. If the curve C
consists of two distinct lines, say f = xy, then again C is free, with exponents (0, 1),
Jf = If = (x, y), and S/If has the following minimal resolution

0→ S(−2)→ S2(−1)→ S.

The same minimal resolution occurs for any curve C having only one node, e.g. for
the curve

C : xyzd−2 + xd + yd = 0,

with arbitrary d ≥ 2, but these curves are neither free, nor nearly free for d ≥ 3.
Indeed, for any nodal curve C : f = 0, the saturated ideal If coincides with the

radical ideal
√
Jf . If C has a unique node, say at p, we can choose the coordinates

on P2 such that p = (0 : 0 : 1), and then If = (x, y).

Example 2.5. Consider the nearly free curve

C : f = yd + xkzd−k = 0,

where the integer k satisfies 1 ≤ k < d and d ≥ 3. The exponents are d1 = 1 and
d2 = d − 1, and τ(C) = (d − 1)(d − 2), see [13, Prop. 2.12]. The generators of Jf
are the partial derivatives fx = kxk−1zd−k, fy = dyd−1 and fz = (d− k)xkzd−k−1. It
is clear that g1 = xk−1zd−k−1 is in If . Indeed, one clearly has xg1 ∈ Jf , yd−1g1 ∈ Jf
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and zg1 ∈ Jf , which imply that g1 ∈ If . It is also clear that If is spanned by g1 and
g2 = yd−1. In fact, we know from [13, Prop. 2.12] that n(f)j = 1 in this case exactly
for d−2 ≤ j ≤ 2d−4. Note that the class of the monomial ymxk−1zd−k−1 is non-zero
in the 1-dimensional vector space N(f)m+d−2 for m = 0, 1, ..., d− 2. In other words,
y is a generic linear form in this case for which the Lefschetz type property discussed
above holds. It follows that the minimal resolution (2.1) has the form

0→ S(3− 2d)→ S(1− d)⊕ S(2− d)→ S.

Hence t = 1, b1 = 2d−3, a1 = d−1 and a2 = d−2, and they satisfy all the relations
in Lemma 2.2.

Example 2.6. The cardinalily t + 1 of a minimal set of generators for If can be
quite large when C : f = 0 is neither free nor nearly free. An example of a cuspidal
curve of degree d = 12, with 38 cusps A2 and minimal resolution for S/If given by

0→ S(−14)3 ⊕ S(−13)⊕ S(−12)2 → S(−12)2 ⊕ S(−11)5 → S

is given in [25, Section (6.21)]. Similarly, for the Chebyshev curves considered in [11],
we get via a direct computation using Singular or CoCoA softwares, the following
minimal resolution for S/If , in the case d = 15:

0→ S(−15)7 → S(−13)7 ⊕ S(−14)→ S.

Example 2.7. Consider the following two line arrangements in P2

A : f = xy(x− y − z)(x− y + z)(2x+ y − 2z)(x+ 3y − 3z)(3x+ 2y + 3z)

(x+ 5y + 5z)(7x− 4y − z) = 0

and

A′ : f ′ = xy(x+ y − z)(5x+ 2y − 10z)(3x+ 2y − 6z)(x− 3y + 15z)

(2x− y + 10z)(6x+ 5y + 30z)(3x− 4y − 24z) = 0.

They have isomorphic intersection lattices and have been constructed by Ziegler in
[35]. A picture of these arrangements can be found in [5, Chapter 8]. See also [29,
Example 13] for a discussion of this pair of line arrangements, as well as [19], where
an affine version of these line arrangements is considered from a new point of view.
Then d = deg f = deg f ′ = 9, and both arrangements have n2 = 18 double points
and n3 = 6 triple points. In the case of A, the six triple points are on a conic, and
a direct computation shows that

0→ S(−15)⊕ S(−16)→ S(−13)⊕ S(−14)3 → S(−8)3 → S

is a minimal resolution for S/Jf , while

0→ S(−10)3 ⊕ S(−11)→ S(−8)4 ⊕ S(−9)→ S

is a minimal resolution for S/If .
For A′, the six triple points are not on a conic, i.e. the arrangement A′ is a small

deformation of the arrangement A, and a direct computation shows that

0→ S(−15)4 → S(−14)6 → S(−8)3 → S
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is a minimal resolution for S/Jf ′ , while

0→ S(−10)6 → S(−8)3 ⊕ S(−9)4 → S

is a minimal resolution for S/If ′ . It follows that the numerical data describing the
minimal resolutions of both S/Jf and S/If in the case of line arrangements are not
determined by the intersection lattice.

3. Main results

Theorem 3.1. If C : f = 0 is a nearly free curve of degree d ≥ 3, and at+1 = d− 2,
then the following hold.

(1) σ(C) = d− 2.
(2) The minimal resolution of the graded S-module S/If has the form

0→ S(3− 2d)→ S(1− d)⊕ S(2− d)→ S.

(3) The first exponent d1 of C satisfies d1 = 1.

Proof. The claim (1) is obvious, since If,d−2 6= Jf,d−2 = 0. Indeed, at+1 is the minimal
degree of a generator for the ideal If . It follows that n(f)d−2 6= 0, and since C is
nearly free, the only possibility is n(f)d−2 = 1.

To prove the claim (2), let g1 be a generator of If of degree d − 2. We have
n(f)d−1 = 1, since end(N(f)) = 2(d−2) ≥ d−1, then dim Jf,d−1 = 3 by the formula
(1.2), and therefore dim If,d−1 = 4. Note that g1 generate the graded S-module
N(f), either using Proposition 2.3 (2), or using Hassanzadeh and Simis results in
[22, Proposition 1.3], which are recalled in Theorem 4.1 below.

Inside the 4-dimensional vector space If,d−1, we have two 3-dimensional vector
spaces, namely E1, spanned by xg1, yg1 and zg1, and E2 = Jf,d−1. Since g1 is a
generator for N(f), we get E1 + E2 = If,d−1, and hence dim(E1 ∩ E2) = 2. In
particular, at least one of the partial derivatives of f , say fz, is not in E1∩E2. Then
the vector space E2 has a basis of the form `g1, `

′g1, fz, with `, `′ linear forms in S1.
It follows that the elements `g1, `

′g1, fz generate the Jacobian ideal Jf , and hence
g1, fz generate the ideal If . Since If has codimension 2, it follows that g1, fz is a
regular sequence, and the resolution given in (2) is just the Koszul complex of this
regular sequence.

To prove the last claim (3), it is enough to use the formula (1.10).
�

Theorem 3.2. Suppose C : f = 0 is a nearly free curve of degree d ≥ 3 with
at+1 = d− 1, and set s = σ(C)− (d− 2). Then the following hold.

(1)

1 ≤ s ≤ d

2
− 1.

(2) The minimal resolution of the graded S-module S/If has the form

0→ S(−s− d+ 1)2 ⊕ S(−2d+ 3 + s)→ S(1− d)3 ⊕ S(−s− d+ 2)→ S.

(3) The first exponent d1 of C satisfies d1 = s+ 1 ≥ 2.
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Proof. The first claim follows from σ(C) ≤ T/2.
Since now at+1 = d − 1, we need at least 3 generators for the ideal If having

degree d − 1. Since the partial derivatives fx, fy, fz are linear independent by our
assumption mdr(f) > 0, these 3 generators can be taken to be g1 = fx, g2 = fy
and g3 = fz. The next generator to be added, say g4, occurs exactly in degree
σ(C) = s + d − 2 ≥ d − 1. Proposition 2.3 (2) implies that we need no other
generators, hence we get the morphism

S(1− d)3 ⊕ S(−s− d+ 2)
(g1,g2,g3,g4)−−−−−−−→ S

which occurs in the minimal resolution. Hence, in the notation from the formula
(2.1), we have t = 3 syzygies generating all the relations among g1, g2, g3 and g4.
These syzygies are the following. First, if we set m = σ(C) + 1, then n(f)m = 1
implies that there are two linearly independent linear forms `1, `2 ∈ S1 such that

`1g4 ∈ Jf,m = (g1, g2, g3)m and `2g4 ∈ Jf,m = (g1, g2, g3)m.

Finally, for a generic linear form ` ∈ S1, we have

`d−2s−1g4 ∈ Jf,k = (g1, g2, g3)k,

where k = T − σ(C) + 1 = 2d− 3− s. It is clear that the 3 relations among g1, g2, g3
and g4 generated in this way are independent, and this proves the claim (2). As a
check, note that

2(s+ d− 1) + (2d− 3− s) = 3(d− 1) + (s+ d− 2),

i.e. Lemma 2.2 (3) holds. To prove the last claim (3), it is enough to use again the
formula (1.10).

�

4. The relation with general results by Hassanzadeh and Simis

Hassanzadeh and Simis have considered in [22] the general situation where the
Jacobian ideal Jf is replaced by an arbitrary ideal I ⊂ S of codimension 2, generated
by 3 linearly independent forms of the same degree. In their paper [22], this common
degree is denoted by d, but in order to compare easier their results to our special
case I = Jf , we will restate some of their main results taking the common degree to
be d− 1. With this change of notation, the result [22, Proposition 1.3] for the base
field k = C takes the following form.

Theorem 4.1. Let I ⊂ S be an ideal of codimension 2 generated by 3 linearly
independent forms of degree d− 1 ≥ 1, with a minimal graded free resolution

0→ ⊕r−2
i=1S(−βi)→ ⊕r

i=1S(−αi)→ S3(1− d)→ S,

for the S-module S/I, where r ≥ 3. Let Isat denote the saturation of the ideal I with
respect to the maximal ideal m = (x, y, z) in S. Then the following hold.

(i) The minimal free resolution of N(I) = Isat/I as a graded S-module has the form

0→ ⊕r−2
i=1S(−βi)→ ⊕r

i=1S(−αi)→ ⊕r
i=1S(αi + 3− 3d)→ ⊕r−2

i=1S(βi + 3− 3d),

where the leftmost map is the same as in the above resolution.



SATURATION OF JACOBIAN IDEALS 9

(ii) If in addition N(I)k = 0 for k ≤ d− 1, then the resolution of S/Isat is given by

0→ ⊕r
i=1S(αi + 3− 3d)→ S3(1− d)⊕

(
⊕r−2

i=1S(βi + 3− 3d)
)
→ S.

Remark 4.2. In fact the proof of the claim (ii) above given in [22] works with the
weaker assumption N(I)k = 0 for k ≤ d − 2. Indeed, this proof needs a lift of the
inclusion I → Isat to a map of the corresponding free resolutions. In order to do
this, the key point is that the generators I, call them f1, f2, f3, are in Id−1 ⊂ Isatd−1.
We can find a vector space basis of Isatd−1 starting with f1, f2, f3, and the elements of
this basis are part of a minimal system of generators for Isat since Isat<d−1 = 0 by our
assumption. Using such a minimal system of generators for Isat, which contains the
generators f1, f2, f3, gives us the required lifting of the inclusion I → Isat. Using
this extension of [22, Proposition 1.3], we see that the assumption N(I)k = 0 for
k ≤ d−1 in [22, Theorem 1.5], reformulated with our convention that the generators
of I have degree d − 1, can be replaced by the weaker assumption N(I)k = 0 for
k ≤ d− 2. Then the second claim in [22, Theorem 1.5] becomes

(4.1) reg(S/I) = 3(d− 1)− 3− indeg(N(I)) ≤ 3d− 6− (d− 1) = 2d− 5.

Similarly, the third claim in [22, Theorem 1.5] becomes

(4.2) r ≤ d− 1,

where r is the minimal number of generators of the kernel of the obvious mapping

S3(1− d)→ S, (a, b, c) 7→ af1 + bf2 + cf3.

In the case I = Jf , the condition N(I)k = 0 for k ≤ d− 2 becomes σ(C) ≥ d− 1,
in other words, for a nearly free curve C : f = 0 as in the previous sections, d1 ≥ 2 or
equivalently s ≥ 1. This leads to the following immediate consequence of Theorem
4.1 and of our Remark 4.2 in the case s = 1, just by taking r = 3, β1 = d + d2,
α1 = d+ d1 − 1 and α2 = α3 = d+ d2 − 1 as in the formula (1.8).

Corollary 4.3. Suppose C : f = 0 is a nearly free curve of degree d ≥ 3 with
exponents (d1, d2), and set s = σ(C) − (d − 2) = d1 − 1. For s ≥ 1, the minimal
resolution of the graded S-module S/If has the form

0→ S(−σ(C)− 1)2 ⊕ S(−T − 1 + σ(C))→ S(1− d)3 ⊕ S(−σ(C))→ S.

In other words, the claim of our Theorem 1.2 for s ≥ 1 is an easy consequence of
the result by Hassanzadeh and Simis in [22, Proposition 1.3].

Remark 4.4. The case s = 0 can also be derived from [22, Proposition 1.3], following
the suggestion of the referee, which we describe below. In fact, this approach gives
an upper-bound for the number of generators of the ideal If , for any reduced plane
curve C : f = 0. For any graded S-module M of finite type, let’s denote by µ(M) the
minimal number of generators of M . Consider the C-vector space Vf = If/(mIf ) and
let E ′2 ⊂ Vf be the image in Vf of the vector subspace E2 = Jf,d−1 ⊂ If , considered
in the proof of Theorem 3.1. With this notation, one can see, essentially as in the
proof of Theorem 3.1, that the following holds

2 = codim(If ) ≤ µ(If ) ≤ dimE ′2 + µ(N(f)) = dimE ′2 + µ(AR(f))− 2,
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where the last equality follows from [22, Proposition 1.3]. If we are in the situation
C : f = 0 a nearly free curve, this implies µ(AR(f)) = 3, while the case s = 0
discussed in Theorem 3.1, implies dimE ′2 = 1, as shown in the proof of Theorem 3.1.
Therefore, in this special case, we get µ(If ) = 2 from the above inequalities.

5. Applications

The formula (2.2) and Theorem 1.2 imply the following.

Corollary 5.1. For a nearly free curve C : f = 0 of degree d ≥ 3 with exponents d1
and d2, the Castelnuovo-Mumford regularity of the module S/If is given by

regS/If = 2d− 4− d1.

Remark 5.2. It follows from [8, Theorem 3.4], that Castelnuovo-Mumford regularity
of the module M(f) = S/Jf is given by

regM(f) = 2d− 3− d1.
In the proof of [8, Theorem 3.4] it is also shown that regS/If = T − ct(f) for any
reduced plane curve, where

ct(f) = max{q : dimM(f)k = dimM(fs)k for all k ≤ q},
with fs a homogeneous polynomial in S of the same degree d as f and such that
Cs : fs = 0 is a smooth curve in P2. This gives another proof of Corollary 5.1, since
it is known that for a nearly free curve one has ct(f) = d+ d1 − 2, see [13].

Remark 5.3. The assumption N(I)k = 0 for k ≤ d − 2 which occurs in Remark
4.2 above, in the special case I = Jf , seems to be satisfied for a very large class of
reduced curves C : f = 0. In view of the inequalities (1.3), it is enough to check
n(f)d−2 = 0. We use next the formula

n(f)k = dimM(f)k + dimM(f)T−k − dimM(fs)k − τ(C),

see [13, (2.8)] and conclude that n(f)d−2 = 0 if and only if

dimM(f)2d−4 = τ(C).

Note that for any arrangement C : f = 0 of d ≥ 4 lines in P2, it is known that this
condition holds, see [8, Corollary 3.6]. Moreover, for such line arrangements it is
known that regM(f) ≤ 2d − 5, see [28, Corrolary 3.5] as well as [8, Corollary 3.6].
This confirms the inequality in (4.1), in the case of line arrangements. On the other
hand, there are singular curves for which dimM(f)2d−4 > τ(C), e.g. any curve of
degree d ≥ 3 having only one singularity, which is a simple node A1.

The above discussion and [22, Theorem 1.5] (iii) as restated in the inequality (4.2)
imply the claim in Corollary 1.3 from the Introduction.

Remark 5.4. If we associate to a triple ρ = (a, b, c) ∈ S3
k of homogeneous polyno-

mials in S the C-derivation

δ(ρ) = a∂x + b∂y + c∂z
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of the C-algebra S, then the graded S-module AR(f) from Corollary 1.3 corresponds
to the graded S-module D0(C) of derivations θ ∈ Der(S) such that θ(f) = 0. Let
θ0 = x∂x + y∂y + z∂z ∈ Der(S) be the Euler derivation, which has degree 1. Then
Jiang and Feng in [24], section 1, define inductively a non-decreasing sequence of
positive numbers deg θi for i ≥ 1, by setting

deg θi = min{deg θ : {θ0, ..., θi−1, θ} are S − linearly independent },
where θj ∈ D0(C) for j ≥ 1 and θ ∈ D0(C). They remark that the maximal sequence
obtained in this way has length 3, in fact they work in a polynomial ring of n + 1
indeterminates x0, x1, ..., xn and hence the length in general is n + 1. Note that
if {θ0, θ1, θ2} is such a maximal chain in our case n = 2, it does not imply that
θ1, θ2 generate D0(C), unless C is a free curve. In the sections 2 and 3 of [24], the
authors explain a linear algebra algorithm for computing a vector spaces basis of
AR(f)k = D0(C)k, for k ≥ 0. In section 4 they apply their algorithm to a central
hyperplane arrangement in Cn+1 given by the equation

f = x0x1 · · ·xnα1 · · ·αp = 0,

where αj ∈ S1 are linear forms. Note that the degree of f is d = p + n + 1, but the
number of variables involved is n + 1. According to section 1 in [24], the maximal
sequence for f should be of the form

(θ0, θ1, ..., θn)

i.e. it has length n + 1. However, by a misprint, the authors claim at the end of
subsection (4.2) that this length should be d = p+n+1. It is perhaps this error that
explains Schenck quotation at the end of section 3 of [28]. What is crystal clear, is
that there is no claim on the minimal number of generators of the graded S-module
AR(f) = D0(f) in [24].

Finally we discuss some relations of the results in this note to rational cuspidal
plane curves.

Corollary 5.5. Let C : f = 0 be an irreducible curve of degree d such that mdr(f) =
1. Then C is a rational cuspidal curve, having only weighted homogeneous singu-
larities. Moreover C is nearly free and the minimal resolution for S/If is of the
form

0→ S(3− 2d)→ S(1− d)⊕ S(2− d)→ S.

Proof. The first claim follows from the proof of [7, Proposition 4.1]. Indeed, the fact
that (2) implies (3) in that proof does not use the assumption d ≥ 6. The same proof
shows that τ(C) = (d− 1)2 − (d− 2)− 1, which implies that C is nearly free using
(1.9). The claim about the minimal resolution then follows from Theorem 1.2, see
also Theorem 3.1.

�

Remark 5.6. Let C : f = 0 is a rational cuspidal curve, having only weighted
homogeneous singularities, and assume that C has degree d ≥ 6. Then it is shown
in [7] that, up-to a linear change of coordinates, such a curve is a special case of the
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curves C considered in Example 2.5. In particular, mdr(f) = 1 and Conjecture 1.1
holds in such cases.

Corollary 5.7. Let C : f = 0 be a rational cuspidal curve for which Conjecture 1.1
holds. Then the ideal If is generated by at most 4 polynomials. More precisely, If
is generated by 2 polynomials if mdr(f) = 1, by 3 polynomials if C is free, and by 4
polynomials in the other cases.

The following remark is tantalizing: the rational cuspidal curves with mdr(f) = 1
have at most 2 cusps, and it is conjectured that the maximal number of cusps of any
rational cuspidal curve is at most 4, see [27] for a discussion. Note however that the
only known rational cuspidal curve with 4 cusps is a quintic free curve C : f = 0,
hence the corresponding ideal If = Jf is spanned by 3 elements, see [7, Example
4.4 (ii)] for details. The relation between the number of cusps of a rational cuspidal
curve C : f = 0 and the number of generators of the corresponding ideal If , if it
exists, it seems to be rather subtle.
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