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Abstract

In this paper we address the problem of generating per-
son images conditioned on a given pose. Specifically, given
an image of a person and a target pose, we synthesize a
new image of that person in the novel pose. In order to deal
with pixel-to-pixel misalignments caused by the pose dif-
ferences, we introduce deformable skip connections in the
generator of our Generative Adversarial Network. More-
over, a nearest-neighbour loss is proposed instead of the
common L1 and L2 losses in order to match the details of
the generated image with the target image. We test our ap-
proach using photos of persons in different poses and we
compare our method with previous work in this area show-
ing state-of-the-art results in two benchmarks. Our method
can be applied to the wider field of deformable object gen-
eration, provided that the pose of the articulated object can
be extracted using a keypoint detector.

1. Introduction
In this paper we deal with the problem of generating

images where the foreground object changes because of a
viewpoint variation or a deformable motion, such as the ar-
ticulated human body. Specifically, inspired by Ma et al.
[12], our goal is to generate a human image conditioned on
two different variables: (1) the appearance of a specific per-
son in a given image and (2) the pose of the same person
in another image. The task our networks need to solve is
to preserve the appearance details (e.g., the texture) con-
tained in the first variable while performing a deformation
on the structure of the foreground object according to the
second variable. We focus on the human body which is an
articulated “object”, important for many applications (e.g.,
computer-graphics based manipulations or re-identification
dataset synthesis). However, our approach can be used with
other deformable objects such as human faces or animal
bodies, provided that a significant number of keypoints can
be automatically extracted from the object of interest in or-
der to represent its pose.

Pose-based human-being image generation is motivated

(a) Aligned task (b) Unaligned task

Figure 1: (a) A typical “rigid” scene generation task, where
the conditioning and the output image local structure is well
aligned. (b) In a deformable-object generation task, the in-
put and output are not spatially aligned.

by the interest in synthesizing videos [18] with non-trivial
human movements or in generating rare poses for hu-
man pose estimation [1] or re-identification [23] training
datasets. However, most of the recently proposed, deep-
network based generative approaches, such as Generative
Adversarial Networks (GANs) [3] or Variational Autoen-
coders (VAEs) [7] do not explicitly deal with the problem of
articulated-object generation. Common conditional meth-
ods (e.g., conditional GANs or conditional VAEs) can syn-
thesize images whose appearances depend on some con-
ditioning variables (e.g., a label or another image). For
instance, Isola et al. [4] recently proposed an “image-to-
image translation” framework, in which an input image x
is transformed into a second image y represented in another
“channel” (see Fig. 1a). However, most of these methods
have problems when dealing with large spatial deforma-
tions between the conditioning and the target image. For
instance, the U-Net architecture used by Isola et al. [4] is
based on skip connections which help preserving local in-
formation between x and y. Specifically, skip connections
are used to copy and then concatenate the feature maps of
the generator “encoder” (where information is downsam-
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pled using convolutional layers) to the generator “decoder”
(containing the upconvolutional layers). However, the as-
sumption used in [4] is that x and y are roughly aligned with
each other and they represent the same underlying structure.
This assumption is violated when the foreground object in
y undergoes to large spatial deformations with respect to x
(see Fig. 1b). As shown in [12], skip connections cannot
reliably cope with misalignments between the two poses.

Ma et al. [12] propose to alleviate this problem using
a two-stage generation approach. In the first stage a U-
Net generator is trained using a masked L1 loss in order
to produce an intermediate image conditioned on the target
pose. In the second stage, a second U-Net based generator
is trained using also an adversarial loss in order to generate
an appearance difference map which brings the intermediate
image closer to the appearance of the conditioning image.
In contrast, the GAN-based method we propose in this pa-
per is end-to-end trained by explicitly taking into account
pose-related spatial deformations. More specifically, we
propose deformable skip connections which “move” local
information according to the structural deformations repre-
sented in the conditioning variables. These layers are used
in our U-Net based generator. In order to move informa-
tion according to a specific spatial deformation, we decom-
pose the overall deformation by means of a set of local
affine transformations involving subsets of joints, then we
deform the convolutional feature maps of the encoder ac-
cording to these transformations and we use common skip
connections to transfer the transformed tensors to the de-
coder’s fusion layers. Moreover, we also propose to use a
nearest-neighbour loss as a replacement of common pixel-
to-pixel losses (such as, e.g., L1 or L2 losses) commonly
used in conditional generative approaches. This loss proved
to be helpful in generating local information (e.g., texture)
similar to the target image which is not penalized because
of small spatial misalignments.

We test our approach using the benchmarks and the eval-
uation protocols proposed in [12] obtaining higher qualita-
tive and quantitative results in all the datasets. Although
tested on the specific human-body problem, our approach
makes few human-related assumptions and can be easily ex-
tended to other domains involving the generation of highly
deformable objects. Our code and our trained models are
publicly available1.

2. Related work

Most common deep-network-based approaches for vi-
sual content generation can be categorized as either Vari-
ational Autoencoders (VAEs) [7] or Generative Adversar-
ial Networks (GANs) [3]. VAEs are based on probabilistic
graphical models and are trained by maximizing a lower

1https://github.com/AliaksandrSiarohin/pose-gan

bound of the corresponding data likelihood. GANs are
based on two networks, a generator and a discriminator,
which are trained simultaneously such that the generator
tries to “fool” the discriminator and the discriminator learns
how to distinguish between real and fake images.

Isola et al. [4] propose a conditional GAN framework for
image-to-image translation problems, where a given scene
representation is “translated” into another representation.
The main assumption behind this framework is that there
exits a spatial correspondence between the low-level infor-
mation of the conditioning and the output image. VAEs and
GANs are combined in [20] to generate realistic-looking
multi-view clothes images from a single-view input image.
The target view is filled to the model via a viewpoint label
as front or left side and a two-stage approach is adopted:
pose integration and image refinement. Adopting a similar
pipeline, Lassner et al. [8] generate images of people with
different clothes in a given pose. This approach is based
on a costly annotation (fine-grained segmentation with 18
clothing labels) and a complex 3D pose representation.

Ma et al. [12] propose a more general approach which
allows to synthesize person images in any arbitrary pose.
Similarly to our proposal, the input of their model is a con-
ditioning image of the person and a target new pose defined
by 18 joint locations. The target pose is described by means
of binary maps where small circles represent the joint lo-
cations. Similarly to [8, 20], the generation process is split
in two different stages: pose generation and texture refine-
ment. In contrast, in this paper we show that a single-stage
approach, trained end-to-end, can be used for the same task
obtaining higher qualitative results.

Jaderberg et al. [5] propose a spatial transformer layer,
which learns how to transform a feature map in a “canon-
ical” view, conditioned on the feature map itself. How-
ever only a global, parametric transformation can be learned
(e.g., a global affine transformation), while in this paper we
deal with non-parametric deformations of articulated ob-
jects which cannot be described by means of a unique global
affine transformation.

Generally speaking, U-Net based architectures are fre-
quently adopted for pose-based person-image generation
tasks [8, 12, 18, 20]. However, common U-Net skip con-
nections are not well-designed for large spatial deforma-
tions because local information in the input and in the out-
put images is not aligned (Fig. 1). In contrast, we propose
deformable skip connections to deal with this misalignment
problem and “shuttle” local information from the encoder
to the decoder driven by the specific pose difference. In
this way, differently from previous work, we are able to si-
multaneously generate the overall pose and the texture-level
refinement.

Finally, our nearest-neighbour loss is similar to the per-
ceptual loss proposed in [6] and to the style-transfer spatial-

https://github.com/AliaksandrSiarohin/pose-gan


analogy approach recently proposed in [9]. However, the
perceptual loss, based on an element-by-element difference
computed in the feature map of an external classifier [6],
does not take into account spatial misalignments. On the
other hand, the patch-based similarity, adopted in [9] to
compute a dense feature correspondence, is very compu-
tationally expensive and it is not used as a loss.

3. The network architectures

In this section we describe the architectures of our gener-
ator (G) and discriminator (D) and the proposed deformable
skip connections. We first introduce some notation. At test-
ing time our task, similarly to [12], consists in generating an
image x̂ showing a person whose appearance (e.g., clothes,
etc.) is similar to an input, conditioning image xa but with
a body pose similar to P (xb), where xb is a different image
of the same person and P (x) = (p1, ...pk) is a sequence
of k 2D points describing the locations of the human-body
joints in x. In order to allow a fair comparison with [12], we
use the same number of joints (k = 18) and we extract P ()
using the same Human Pose Estimator (HPE) [1] used in
[12]. Note that this HPE is used both at testing and at train-
ing time, meaning that we do not use manually-annotated
poses and the so extracted joint locations may have some
localization errors or missing detections/false positives.

At training time we use a dataset X =

{(x(i)a , x
(i)
b )}i=1,...,N containing pairs of conditioning-

target images of the same person in different poses. For
each pair (xa, xb), a conditioning and a target pose P (xa)
and P (xb) is extracted from the corresponding image
and represented using two tensors Ha = H(P (xa)) and
Hb = H(P (xb)), each composed of k heat maps, where
Hj (1 ≤ j ≤ k) is a 2D matrix of the same dimension as
the original image. If pj is the j-th joint location, then:

Hj(p) = exp

(
−‖p− pj‖

σ2

)
, (1)

with σ = 6 pixels (chosen with cross-validation). Us-
ing blurring instead of a binary map is useful to provide
widespread information about the location pj .

The generator G is fed with: (1) a noise vector z, drawn
from a noise distribution Z and implicitly provided using
dropout [4] and (2) the triplet (xa, Ha, Hb). Note that,
at testing time, the target pose is known, thus H(P (xb))
can be computed. Note also that the joint locations in xa
and Ha are spatially aligned (by construction), while in Hb

they are different. Hence, differently from [12, 4], Hb is
not concatenated with the other input tensors. Indeed the
convolutional-layer units in the encoder part of G have a
small receptive field which cannot capture large spatial dis-
placements. For instance, a large movement of a body limb
in xb with respect to xa, is represented in different locations

in xa and Hb which may be too far apart from each other to
be captured by the receptive field of the convolutional units.
This is emphasized in the first layers of the encoder, which
represent low-level information. Therefore, the convolu-
tional filters cannot simultaneously process texture-level in-
formation (from xa) and the corresponding pose informa-
tion (from Hb).

For this reason we independently process xa and Ha

from Hb in the encoder. Specifically, xa and Ha are con-
catenated and processed using a convolutional stream of the
encoder while Hb is processed by means of a second con-
volutional stream, without sharing the weights (Fig. 2). The
feature maps of the first stream are then fused with the layer-
specific feature maps of the second stream in the decoder
after a pose-driven spatial deformation performed by our
deformable skip connections (see Sec. 3.1).

Our discriminator network is based on the conditional,
fully-convolutional discriminator proposed by Isola et al.
[4]. In our case,D takes as input 4 tensors: (xa, Ha, y,Hb),
where either y = xb or y = x̂ = G(z, xa, Ha, Hb) (see
Fig. 2). These four tensors are concatenated and then given
as input to D. The discriminator’s output is a scalar value
indicating its confidence on the fact that y is a real image.

3.1. Deformable skip connections

As mentioned above and similarly to [4], the goal of the
deformable skip connections is to “shuttle” local informa-
tion from the encoder to the decoder part ofG. The local in-
formation to be transferred is, generally speaking, contained
in a tensor F , which represents the feature map activations
of a given convolutional layer of the encoder. However, dif-
ferently from [4], we need to “pick” the information to shut-
tle taking into account the object-shape deformation which
is described by the difference between P (xa) and P (xb).
To do so, we decompose the global deformation in a set of
local affine transformations, defined using subsets of joints
in P (xa) and P (xb). Using these affine transformations and
local masks constructed using the specific joints, we deform
the content of F and then we use common skip connections
to copy the transformed tensor and concatenate it with the
corresponding tensor in the destination layer (see Fig. 2).
Below we describe in more detail the whole pipeline.

Decomposing an articulated body in a set of rigid sub-
parts. The human body is an articulated “object” which
can be roughly decomposed into a set of rigid sub-parts.
We chose 10 sub-parts: the head, the torso, the left/right
upper/lower arm and the left/right upper/lower leg. Each
of them corresponds to a subset of the 18 joints defined
by the HPE [1] we use for extracting P (). Using these
joint locations we can define rectangular regions which en-
close the specific body part. In case of the head, the region
is simply chosen to be the axis-aligned enclosing rectan-
gle of all the corresponding joints. For the torso, which is



Figure 2: A schematic representation of our network architectures. For the sake of clarity, in this figure we depict P (·) as a
skeleton and each tensor H as the average of its component matrices Hj (1 ≤ j ≤ k). The white rectangles in the decoder
represent the feature maps directly obtained using up-convolutional filters applied to the previous-layer maps. The reddish
rectangles represent the feature maps “shuttled” by the skip connections from the Hb stream. Finally, blueish rectangles
represent the deformed tensors d(F ) “shuttled” by the deformable skip connections from the (xa, Ha) stream.

the largest area, we use a region which includes the whole
image, in such a way to shuttle texture information for the
background pixels. Concerning the body limbs, each limb
corresponds to only 2 joints. In this case we define a re-
gion to be a rotated rectangle whose major axis (r1) corre-
sponds to the line between these two joints, while the mi-
nor axis (r2) is orthogonal to r1 and with a length equal to
one third of the mean of the torso’s diagonals (this value
is used for all the limbs). In Fig. 3 we show an example.
Let Ra

h = {p1, ...,p4} be the set of the 4 rectangle corners
in xa defining the h-th body region (1 ≤ h ≤ 10). Note
that these 4 corner points are not joint locations. Using Ra

h

we can compute a binary mask Mh(p) which is zero every-
where except those points p lying inside Ra

h. Moreover, let
Rb

h = {q1, ...,q4} be the corresponding rectangular region
in xb. Matching the points in Ra

h with the corresponding
points in Rb

h we can compute the parameters of a body-part
specific affine transformation (see below). In either xa or
xb, some of the body regions can be occluded, truncated by
the image borders or simply miss-detected by the HPE. In
this case we leave the corresponding region Rh empty and
the h-th affine transform is not computed (see below).

Note that our body-region definition is the only human-
specific part of the proposed approach. However, similar
regions can be easily defined using the joints of other artic-
ulated objects such as those representing an animal body or
a human face.

Computing a set of affine transformations. During the
forward pass (i.e., both at training and at testing time) we
decompose the global deformation of the conditioning pose
with respect to the target pose by means of a set of local
affine transformations, one per body region. Specifically,
given Ra

h in xa and Rb
h in xb (see above), we compute the

6 parameters kh of an affine transformation fh(·;kh) using
Least Squares Error:

Figure 3: For each specific body part, an affine transforma-
tion fh is computed. This transformation is used to “move”
the feature-map content corresponding to that body part.

min
kh

∑
pj∈Ra

h,qj∈Rb
h

||qj − fh(pj ;kh)||22 (2)

The parameter vector kh is computed using the original
image resolution of xa and xb and then adapted to the spe-
cific resolution of each involved feature map F . Similarly,
we compute scaled versions of each Mh. In case either Ra

h

or Rb
h is empty (i.e., when any of the specific body-region

joints has not been detected using the HPE, see above), then
we simply set Mh to be a matrix with all elements equal to
0 (fh is not computed).

Note that (fh(),Mh) and their lower-resolution variants
need to be computed only once per each pair of real images
(xa, xb) ∈ X and, in case of the training phase, this is can
be done before starting training the networks (but in our
current implementation this is done on the fly).

Combining affine transformations to approximate
the object deformation. Once (fh(),Mh), h = 1, ..., 10



are computed for the specific spatial resolution of a given
tensor F , the latter can be transformed in order to approx-
imate the global pose-dependent deformation. Specifically,
we first compute for each h:

F ′h = fh(F �Mh), (3)

where � is a point-wise multiplication and fh(F (p)) is
used to “move” all the channel values of F corresponding
to point p. Finally, we merge the resulting tensors using:

d(F (p, c)) = maxh=1,...,10F
′
h(p, c), (4)

where c is a specific channel. The rationale behind Eq. 4
is that, when two body regions partially overlap each other,
the final deformed tensor d(F ) is obtained by picking the
maximum-activation values. Preliminary experiments per-
formed using average pooling led to slightly worse results.

4. Training

D and G are trained using a combination of a stan-
dard conditional adversarial loss LcGAN with our proposed
nearest-neighbour loss LNN . Specifically, in our case
LcGAN is given by:

LcGAN (G,D) = E(xa,xb)∈X [logD(xa, Ha, xb, Hb)]+
E(xa,xb)∈X ,z∈Z [log(1−D(xa, Ha, x̂, Hb))],

(5)
where x̂ = G(z, xa, Ha, Hb).

Previous works on conditional GANs combine the adver-
sarial loss with either an L2 [13] or an L1-based loss [4, 12]
which is used only for G. For instance, the L1 distance
computes a pixel-to-pixel difference between the generated
and the real image, which, in our case, is:

L1(x̂, xb) = ||x̂− xb||1. (6)

However, a well-known problem behind the use of L1 and
L2 is the production of blurred images. We hypothesize
that this is also due to the inability of these losses to tol-
erate small spatial misalignments between x̂ and xb. For
instance, suppose that x̂, produced by G, is visually plau-
sible and semantically similar to xb, but the texture details
on the clothes of the person in the two compared images are
not pixel-to-pixel aligned. Both the L1 and the L2 loss will
penalize this inexact pixel-level alignment, although not se-
mantically important from the human point of view. Note
that these misalignments do not depend on the global defor-
mation between xa and xb, because x̂ is supposed to have
the same pose as xb. In order to alleviate this problem, we
propose to use a nearest-neighbour loss LNN based on the
following definition of image difference:

LNN (x̂, xb) =
∑
p∈x̂

minq∈N (p)||g(x̂(p))− g(xb(q))||1,

(7)
where N (p) is a n × n local neighbourhood of point p
(we use 5× 5 and 3× 3 neighbourhoods for the DeepFash-
ion and the Market-1501 dataset, respectively, see Sec. 6).
g(x(p)) is a vectorial representation of a patch around point
p in image x, obtained using convolutional filters (see be-
low for more details). Note that LNN () is not a metrics
because it is not symmetric. In order to efficiently compute
Eq. 7, we compare patches in x̂ and xb using their represen-
tation (g()) in a convolutional map of an externally trained
network. In more detail, we use VGG-19 [15], trained on
ImageNet and, specifically, its second convolutional layer
(called conv1 2). The first two convolutional maps in VGG-
19 (conv1 1 and conv1 2) are both obtained using a convo-
lutional stride equal to 1. For this reason, the feature map
(Cx) of an image x in conv1 2 has the same resolution of
the original image x. Exploiting this fact, we compute the
nearest-neighbour field directly on conv1 2, without losing
spatial precision. Hence, we define: g(x(p)) = Cx(p),
which corresponds to the vector of all the channel values
of Cx with respect to the spatial position p. Cx(p) has a
receptive field of 5× 5 in x, thus effectively representing a
patch of dimension 5 × 5 using a cascade of two convolu-
tional filters. Using Cx, Eq. 7 becomes:

LNN (x̂, xb) =
∑
p∈x̂

minq∈N (p)||Cx̂(p)− Cxb
(q)||1, (8)

In Sec. A, we show how Eq. 8 can be efficiently imple-
mented using GPU-based parallel computing. The final
LNN -based loss is:

LNN (G) = E(xa,xb)∈X ,z∈ZLNN (x̂, xb). (9)

Combining Eq. 5 and Eq. 9 we obtain our objective:

G∗ = argmin
G

max
D
LcGAN (G,D) + λLNN (G), (10)

with λ = 0.01 used in all our experiments. The value of λ is
small because it acts as a normalization factor in Eq. 8 with
respect to the number of channels in Cx and the number of
pixels in x̂ (more details in Sec. A).

5. Implementation details
We trainG andD for 90k iterations, with the Adam opti-

mizer (learning rate: 2 ∗ 10−4, β1 = 0.5, β2 = 0.999). Fol-
lowing [4] we use instance normalization [17]. In the fol-
lowing we denote with: (1) Cs

m a convolution-ReLU layer



with m filters and stride s, (2) CNs
m the same as Cs

m with
instance normalization before ReLU and (3)CDs

m the same
as CNs

m with the addition of dropout at rate 50%. Differ-
ently from [4], we use dropout only at training time. The en-
coder part of the generator is given by two streams (Fig. 2),
each of which is composed of the following sequence of
layers:
CN1

64−CN2
128−CN2

256−CN2
512−CN2

512−CN2
512.

The decoder part of the generator is given by:
CD2

512 − CD2
512 − CD2

512 − CN2
256 − CN2

128 − C1
3 .

In the last layer, ReLU is replaced with tanh.
The discriminator architecture is:
C2

64 − C2
128 − C2

256 − C2
512 − C2

1 ,
where the ReLU of the last layer is replaced with sigmoid.

The generator for the DeepFashion dataset has one addi-
tional convolution block (CN2

512) both in the encoder and
in the decoder, because images in this dataset have a higher
resolution.

6. Experiments
Datasets The person re-identification Market-1501
dataset [21] contains 32,668 images of 1,501 persons
captured from 6 different surveillance cameras. This
dataset is challenging because of the low-resolution images
(128×64) and the high diversity in pose, illumination,
background and viewpoint. To train our model, we need
pairs of images of the same person in two different poses.
As this dataset is relatively noisy, we first automatically
remove those images in which no human body is detected
using the HPE, leading to 263,631 training pairs. For
testing, following [12], we randomly select 12,000 pairs.
No person is in common between the training and the test
split.

The DeepFashion dataset (In-shop Clothes Retrieval
Benchmark) [11] is composed of 52,712 clothes images,
matched each other in order to form 200,000 pairs of iden-
tical clothes with two different poses and/or scales of the
persons wearing these clothes. The images have a resolu-
tion of 256×256 pixels. Following the training/test split
adopted in [12], we create pairs of images, each pair depict-
ing the same person with identical clothes but in different
poses. After removing those images in which the HPE does
not detect any human body, we finally collect 89,262 pairs
for training and 12,000 pairs for testing.

Metrics Evaluation in the context of generation tasks is a
problem in itself. In our experiments we adopt a redundancy
of metrics and a user study based on human judgments. Fol-
lowing [12], we use Structural Similarity (SSIM) [19], In-
ception Score (IS) [14] and their corresponding masked ver-
sions mask-SSIM and mask-IS [12]. The latter are obtained
by masking-out the image background and the rationale be-
hind this is that, since no background information of the

target image is input to G, the network cannot guess what
the target background looks like. Note that the evaluation
masks we use to compute both the mask-IS and the mask-
SSIM values do not correspond to the masks ({Mh}) we use
for training. The evaluation masks have been built follow-
ing the procedure proposed in [12] and adopted in that work
for both training and evaluation. Consequently, the mask-
based metrics may be biased in favor of their method. More-
over, we observe that the IS metrics [14], based on the en-
tropy computed over the classification neurons of an exter-
nal classifier [16], is not very suitable for domains with only
one object class. For this reason we propose to use an addi-
tional metrics that we call Detection Score (DS). Similarly
to the classification-based metrics (FCN-score) used in [4],
DS is based on the detection outcome of the state-of-the-
art object detector SSD [10], trained on Pascal VOC 07 [2]
(and not fine-tuned on our datasets). At testing time, we use
the person-class detection scores of SSD computed on each
generated image x̂. DS(x̂) corresponds to the maximum-
score box of SSD on x̂ and the final DS value is computed
by averaging the scores of all the generated images. In other
words, DS measures the confidence of a person detector in
the presence of a person in the image. Given the high accu-
racy of SSD in the challenging Pascal VOC 07 dataset [10],
we believe that it can be used as a good measure of how
much realistic (person-like) is a generated image.

Finally, in our tables we also include the value of each
metrics computed using the real images of the test set. Since
these values are computed on real data, they can be consid-
ered as a sort of an upper-bound to the results a genera-
tor can obtain. However, these values are not actual upper
bounds in the strict sense: for instance the DS metrics on
the real datasets is not 1 because of SSD failures.

6.1. Comparison with previous work

In Tab. 1 we compare our method with [12]. Note that
there are no other works to compare with on this task yet.
The mask-based metrics are not reported in [12] for the
DeepFashion dataset. Concerning the DS metrics, we used
the publicly available code and network weights released by
the authors of [12] in order to generate new images accord-
ing to the common testing protocol and ran the SSD detector
to get the DS values.

On the Market-1501 dataset our method reports the high-
est performance with all but the IS metrics. Specifically,
our DS values are much higher than those obtained by [12].
Conversely, on the DeepFashion dataset, our approach sig-
nificantly improves the IS value but returns a slightly lower
SSIM value.

6.2. User study

In order to further compare our method with the state-of-
the-art approach [12] we implement a user study following



Table 1: Comparison with the state of the art. (∗) These values have been computed using the code and the network weights
released by Ma et al. [12] in order to generate new images.

Market-1501 DeepFashion
Model SSIM IS mask-SSIM mask-IS DS SSIM IS DS
Ma et al. [12] 0.253 3.460 0.792 3.435 0.39∗ 0.762 3.090 0.95∗

Ours 0.290 3.185 0.805 3.502 0.72 0.756 3.439 0.96
Real-Data 1.00 3.86 1.00 3.36 0.74 1.000 3.898 0.98

the protocol of Ma et al. [12]. For each dataset, we show 55
real and 55 generated images in a random order to 30 users
for one second. Differently from Ma et al. [12], who used
Amazon Mechanical Turk (AMT), we used “expert” (vol-
untary) users: PhD students and Post-docs working in Com-
puter Vision and belonging to two different departments.
We believe that expert users, who are familiar with GAN-
like images, can more easily distinguish real from fake im-
ages, thus confusing our users is potentially a more diffi-
cult task for our GAN. The results2 in Tab. 2 confirm the
significant quality boost of our images with respect to the
images produced in [12]. For instance, on the Market-1501
dataset, the G2R human “confusion” is one order of mag-
nitude higher than in [12].

Finally, in Sec. D we show some example images, di-
rectly comparing with [12]. We also show the results ob-
tained by training different person re-identification systems
after augmenting the training set with images generated by
our method. These experiments indirectly confirm that the
degree of realism and diversity of our images is very signif-
icant.

Table 2: User study (%). (∗) These results are reported in
[12] and refer to a similar study with AMT users.

Market-1501 DeepFashion
Model R2G G2R R2G G2R
Ma et al. [12] (∗) 11.2 5.5 9.2 14.9
Ours 22.67 50.24 12.42 24.61

6.3. Ablation study and qualitative analysis

In this section we present an ablation study to clarify
the impact of each part of our proposal on the final per-
formance. We first describe the compared methods, ob-
tained by “amputating” important parts of the full-pipeline
presented in Sec. 3-4. The discriminator architecture is the
same for all the methods.

• Baseline: We use the standard U-Net architecture [4]
without deformable skip connections. The inputs of
G and D and the way pose information is represented

2R2G means #Real images rated as generated / #Real images; G2R
means #Generated images rated as Real / #Generated images.

xa P (xa) P (xb) xb Baseline DSC PercLoss Full

Figure 4: Qualitative results on the Market-1501 dataset.
Columns 1, 2 and 3 represent the input of our model. We
plot P (·) as a skeleton for the sake of clarity, but actually
no joint-connectivity relation is exploited in our approach.
Column 4 corresponds to the ground truth. The last four
columns show the output of our approach with respect to
different baselines.

(see the definition of tensor H in Sec. 3) is the same as
in the full-pipeline. However, in G, xa, Ha and Hb are
concatenated at the input layer. Hence, the encoder of
G is composed of only one stream, whose architecture
is the same as the two streams described in Sec.5.

• DSC: G is implemented as described in Sec. 3, intro-
ducing our Deformable Skip Connections (DSC). Both



Table 3: Quantitative ablation study on the Market-1501 and the DeepFashion dataset.

Market-1501 DeepFashion
Model SSIM IS mask-SSIM mask-IS DS SSIM IS
Baseline 0.256 3.188 0.784 3.580 0.595 0.754 3.351
DSC 0.272 3.442 0.796 3.666 0.629 0.754 3.352
PercLoss 0.276 3.342 0.788 3.519 0.603 0.744 3.271
Full 0.290 3.185 0.805 3.502 0.720 0.756 3.439
Real-Data 1.00 3.86 1.00 3.36 0.74 1.000 3.898

xa P (xa) P (xb) xb Baseline DSC PercLoss Full

Figure 5: Qualitative results on the DeepFashion dataset
with respect to different baselines. Some images have been
cropped for visualization purposes.

in DSC and in Baseline, training is performed using an
L1 loss together with the adversarial loss.

• PercLoss: This is DSC in which the L1 loss is replaced
with the Perceptual loss proposed in [6]. This loss is
computed using the layer conv2 1 of [15], chosen to
have a receptive field the closest possible to N (p) in
Eq. 8, and computing the element-to-element differ-
ence in this layer without nearest neighbor search.

• Full: This is the full-pipeline whose results are re-
ported in Tab. 1, and in which we use the proposed
LNN loss (see Sec. 4).

In Tab. 3 we report a quantitative evaluation on the

Market-1501 and on the DeepFashion dataset with respect
to the four different versions of our approach. In most of
the cases, there is a progressive improvement from Base-
line to DSC to Full. Moreover, Full usually obtains better
results than PercLoss. These improvements are particularly
evident looking at the DS metrics, which we believe it is a
strong evidence that the generated images are realistic. DS
values on the DeepFashion dataset are omitted because they
are all close to the value ∼ 0.96.

In Fig. 4 and Fig. 5 we show some qualitative results.
These figures show the progressive improvement through
the four baselines which is quantitatively presented above.
In fact, while pose information is usually well generated
by all the methods, the texture generated by Baseline often
does not correspond to the texture in xa or is blurred. In
same cases, the improvement of Full with respect to Base-
line is quite drastic, such as the drawing on the shirt of the
girl in the second row of Fig. 5 or the stripes on the clothes
of the persons in the third and in the fourth row of Fig. 4.
Further examples are shown in the Appendix.

7. Conclusions
In this paper we presented a GAN-based approach for

image generation of persons conditioned on the appearance
and the pose. We introduced two novelties: deformable
skip connections and nearest-neighbour loss. The first is
used to solve common problems in U-Net based generators
when dealing with deformable objects. The second novelty
is used to alleviate a different type of misalignment between
the generated image and the ground-truth image.

Our experiments, based on both automatic evaluation
metrics and human judgments, show that the proposed
method is able to outperform previous work on this task.
Despite the proposed method was tested on the specific task
of human-generation, only few assumptions are used which
refer to the human body and we believe that our proposal
can be easily extended to address other deformable-object
generation tasks.

Acknowledgements

We want to thank the NVIDIA Corporation for the dona-
tion of the GPUs used in this project.



References
[1] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multi-

person 2D pose estimation using part affinity fields. In
CVPR, 2017.

[2] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2007 (VOC2007) Results.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, 2014.

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. CVPR,
2017.

[5] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In NIPS, 2015.

[6] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In ECCV, 2016.

[7] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. In ICLR, 2014.

[8] C. Lassner, G. Pons-Moll, and P. V. Gehler. A generative
model of people in clothing. In ICCV, 2017.

[9] J. Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang. Visual
attribute transfer through deep image analogy. ACM Trans.
Graph., 36(4), 2017.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. SSD: Single shot multibox detector. In
ECCV, 2016.

[11] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion:
Powering robust clothes recognition and retrieval with rich
annotations. In CVPR, 2016.

[12] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and
L. Van Gool. Pose guided person image generation. In NIPS,
2017.
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Appendix
In this Appendix we report some additional implementa-

tion details and we show other quantitative and qualitative
results. Specifically, in Sec. A we explain how Eq. 8 can
be efficiently implemented using GPU-based parallel com-
puting, while in Sec. B we show how the human-body sym-
metry can be exploited in case of missed limb detections.
In Sec. C we train state-of-the-art Person Re-IDentification
(Re-ID) systems using a combination of real and generated
data, which, on the one hand, shows how our images can
be effectively used to boost the performance of discrimina-
tive methods and, on the other hand, indirectly shows that
our generated images are realistic and diverse. In Sec. D
we show a direct (qualitative) comparison of our method
with the approach presented in [12] and in Sec. E we show
other images generated by our method, including some fail-
ure cases. Note that some of the images in the DeepFash-
ion dataset have been manually cropped (after the automatic
generation) to improve the overall visualization quality.

A. Nearest-neighbour loss implementation
Our proposed nearest-neighbour loss is based on the def-

inition of LNN (x̂, xb) given in Eq. 8. In that equation, for
each point p in x̂, the “most similar” (in the Cx-based fea-
ture space) point q in xb needs to be searched for in a n×n
neighborhood of p. This operation may be quite time con-
suming if implemented using sequential computing (i.e., us-
ing a “for-loop”). We show here how this computation
can be sped-up by exploiting GPU-based parallel comput-
ing in which different tensors are processed simultaneously.

Given Cxb
, we compute n2 shifted versions of Cxb

:
{C(i,j)

xb }, where (i, j) is a translation offset ranging in a rel-
ative n × n neighborhood (i, j ∈ {−n−1

2 , ...,+n−1
2 }) and

C
(i,j)
xb is filled with the value +∞ in the borders. Using this

translated versions of Cxb
, we compute n2 corresponding

difference tensors {D(i,j)}, where:

D(i,j) = |Cx̂ − C(i,j)
xb
| (11)

and the difference is computed element-wise. D(i,j)(p)
contains the channel-by-channel absolute difference be-
tween Cx̂(p) and Cxb

(p + (i, j)). Then, for each D(i,j),
we sum all the channel-based differences obtaining:

S(i,j) =
∑
c

D(i,j)(c), (12)

where c ranges over all the channels and the sum is per-
formed pointwise. S(i,j) is a matrix of scalar values, each
value representing the L1 norm of the difference between a
point p in Cx̂ and a corresponding point p+ (i, j) in Cxb

:

S(i,j)(p) = ||Cx̂(p)− Cxb
(p+ (i, j))||1. (13)

For each point p, we can now compute its best match in
a local neighbourhood of Cxb

simply using:

M(p) = min(i,j)S
(i,j)(p). (14)

Finally, Eq. 8 becomes:

LNN (x̂, xb) =
∑
p

M(p). (15)

Since we do not normalize Eq. 12 by the number of chan-
nels nor Eq. 15 by the number of pixels, the final value
LNN (x̂, xb) is usually very high. For this reason we use
a small value λ = 0.01 in Eq. 10 when weighting LNN

with respect to LcGAN .

B. Exploiting the human-body symmetry
As mentioned in Sec. 3.1, we decompose the human

body in 10 rigid sub-parts: the head, the torso and 8 limbs
(left/right upper/lower arm, etc.). When one of the joints
corresponding to one of these body-parts has not been de-
tected by the HPE, the corresponding region and affine
transformation are not computed and the region-mask is
filled with 0. This can happen because of either that re-
gion is not visible in the input image or because of false-
detections of the HPE.

However, when the missing region involves a limb (e.g.,
the right-upper arm) whose symmetric body part has been
detected (e.g., the left-upper arm), we can “copy” informa-
tion from the “twin” part. In more detail, suppose for in-
stance that the region corresponding to the right-upper arm
in the conditioning image is Ra

rua and this region is empty
because of one of the above reasons. Moreover, suppose
that Rb

rua is the corresponding (non-empty) region in xb
and that Ra

lua is the (non-empty) left-upper arm region in
xa. We simply set: Ra

rua := Ra
lua and we compute frua as

usual, using the (now, no more empty) regionRa
rua together

with Rb
rua.

C. Improving person Re-ID via data-
augmentation

The goal of this section is to show that the synthetic im-
ages generated with our proposed approach can be used to
train discriminative methods. Specifically, we use Re-ID
approaches whose task is to recognize a human person in
different poses and viewpoints. The typical application of
a Re-ID system is a video-surveillance scenario in which
images of the same person, grabbed by cameras mounted in
different locations, need to be matched to each other. Due to
the low-resolution of the cameras, person re-identification is
usually based on the colours and the texture of the clothes
[22]. This makes our method particularly suited to auto-
matically populate a Re-ID training dataset by generating



images of a given person with identical clothes but in dif-
ferent viewpoints/poses.

In our experiments we use Re-ID methods taken from
[22, 24] and we refer the reader to those papers for details
about the involved approaches. We employ the Market-
1501 dataset that is designed for Re-ID method benchmark-
ing. For each image of the Market-1501 training dataset
(T ), we randomly select 10 target poses, generating 10 cor-
responding images using our approach. Note that: (1) Each
generated image is labeled with the identity of the condi-
tioning image, (2) The target pose can be extracted from an
individual different from the person depicted in the condi-
tioning image (this is different from the other experiments
shown here and in the main paper). Adding the generated
images to T we obtain an augmented training set A. In
Tab. 4 we report the results obtained using either T (stan-
dard procedure) or A for training different Re-ID systems.
The strong performance boost, orthogonal to different Re-
ID methods, shows that our generative approach can be ef-
fectively used for synthesizing training samples. It also in-
directly shows that the generated images are sufficiently re-
alistic and different from the real images contained in T .

D. Comparison with previous work
In this section we directly compare our method with the

results generated by Ma et al. [12]. The comparison is based
on the pairs conditioning image-target pose used in [12], for
which we show both the results obtained by Ma et al. [12]
and ours.

Figs. 6-7 show the results on the Market-1501 dataset.
Comparing the images generated by our full-pipeline with
the corresponding images generated by the full-pipeline
presented in [12], most of the times our results are more
realistic, sharper and with local details (e.g., the clothes tex-
ture or the face characteristics) more similar to the details of
the conditioning image. For instance, in the first and the last
row of Fig. 6 and in the last row of Fig. 7, our results show
human-like images, while the method proposed in [12] pro-
duced images which can hardly be recognized as humans.

Figs. 8-9 show the results on the DeepFashion dataset.
Also in this case, comparing our results with [12], most of
the times ours look more realistic or closer to the details
of the conditioning image. For instance, the second row
of Fig. 8 shows a male face, while the approach proposed
in [12] produced a female face (note that the DeepFash-
ion dataset is strongly biased toward female subjects [12]).
Most of the times, the clothes texture in our case is closer to
that depicted in the conditioning image (e.g., see rows 1, 3,
4, 5 and 6 in Fig. 8 and rows 1 and 6 in Fig. 9). In row 5 of
Fig. 9 the method proposed in [12] produced an image with
a pose closer to the target; however it wrongly generated
pants while our approach correctly generated the appear-
ance of the legs according to the appearance contained in

the conditioning image.
We believe that this qualitative comparison using the

pairs selected in [12], shows that the combination of
the proposed deformable skip-connections and the nearest-
neighbour loss produced the desired effect to “capture” and
transfer the correct local details from the conditioning im-
age to the generated image. Transferring local information
while simultaneously taking into account the global pose
deformation is a difficult task which can more hardly be
implemented using “standard” U-Net based generators as
those adopted in [12].

E. Other qualitative results
In this section we present other qualitative results.

Fig. 10 and Fig. 11 show some images generated using the
Market-1501 dataset and the DeepFashion dataset, respec-
tively. The terminology is the same adopted in Sec. 6.2.
Note that, for the sake of clarity, we used a skeleton-based
visualization of P (·) but, as explained in the main paper,
only the point-wise joint locations are used in our method
to represent pose information (i.e., no joint-connectivity in-
formation is used).

Similarly to the results shown in Sec. 6.2, also these im-
ages show that, despite the pose-related general structure is
sufficiently well generated by all the different versions of
our method, most of the times there is a gradual quality im-
provement in the detail synthesis from Baseline to DSC to
PercLoss to Full.

Finally, Fig. 12 and Fig. 13 show some failure cases
(badly generated images) of our method on the Market-
1501 dataset and the DeepFashion dataset, respectively.
Some common failure causes are:

• Errors of the HPE [1]. For instance, see rows 2, 3 and
4 of Fig. 12 or the wrong right-arm localization in row
2 of Fig. 13.

• Ambiguity of the pose representation. For instance,
in row 3 of Fig. 13, the left elbow has been detected
in xb although it is actually hidden behind the body.
Since P (xb) contains only 2D information (no depth
or occlusion-related information), there is no way for
the system to understand whether the elbow is behind
or in front of the body. In this case our model chose
to generate an arm considering that the arm is in front
of the body (which corresponds to the most frequent
situation in the training dataset).

• Rare poses. For instance, row 1 of Fig. 13 shows a
girl in an unusual rear view with a sharp 90 degree
profile face (xb). The generator by mistake synthesized
a neck where it should have “drawn” a shoulder. Note
that rare poses are a difficult issue also for the method
proposed in [12].



Table 4: Accuracy of Re-ID methods on the Market-1501 test set (%)

Standard training set (T ) Augmented training set (A)
Model Rank 1 mAP Rank 1 mAP
IDE + Euclidean [22] 73.9 48.8 78.5 55.9
IDE + XQDA [22] 73.2 50.9 77.8 57.9
IDE + KISSME [22] 75.1 51.5 79.5 58.1
Discriminative Embedding [24] 78.3 55.5 80.6 61.3

• Rare object appearance. For instance, the backpack in
row 1 of Fig. 12 is light green, while most of the back-
packs contained in the training images of the Market-
1501 dataset are dark. Comparing this image with the
one generated in the last row of Fig. 10 (where the
backpack is black), we see that in Fig. 10 the colour
of the shirt of the generated image is not blended with
the backpack colour, while in Fig. 12 it is. We presume
that the generator “understands” that a dark backpack
is an object whose texture should not be transferred to
the clothes of the generated image, while it is not able
to generalize this knowledge to other backpacks.

• Warping problems. This is an issue related to our spe-
cific approach (the deformable skip connections). The
texture on the shirt of the conditioning image in row 2
of Fig. 13 is warped in the generated image. We pre-
sume this is due to the fact that in this case the affine
transformations need to largely warp the texture details
of the narrow surface of the profile shirt (conditioning
image) in order to fit the much wider area of the target
frontal pose.



xa xb Full (ours) Ma et al. [12]

Figure 6: A qualitative comparison on the Market-1501 dataset between our approach and the results obtained by Ma et al.
[12]. Columns 1 and 2 show the conditioning and the target image, respectively, which are used as reference by both models.
Columns 3 and 4 respectively show the images generated by our full-pipeline and by the full-pipeline presented in [12].
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Figure 7: More qualitative comparison on the Market-1501 dataset between our approach and the results obtained by Ma et
al. [12].
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Figure 8: A qualitative comparison on the DeepFashion dataset between our approach and the results obtained by Ma et al.
[12].
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Figure 9: More qualitative comparison on the DeepFashion dataset between our approach and the results obtained by Ma et
al. [12].
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Figure 10: Other qualitative results on the Market-1501 dataset.
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Figure 11: Other qualitative results on the DeepFashion dataset.
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Figure 12: Examples of badly generated images on the Market-1501 dataset. See the text for more details.
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Figure 13: Examples of badly generated images on the DeepFashion dataset.


