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Introduction

In reservoir operation, present benefits must be balanced with future, uncertain ones [START_REF] Soncini-Sessa | Integrated and participatory water resources management[END_REF][START_REF] Castelletti | Water reservoir control under economic, social and environmental constraints[END_REF]. After each release decision, new information becomes available and partially reduces uncertainty. Optimal reservoir operation can be framed as a Multistage Stochastic Programming problem [START_REF] Birge | Introduction to stochastic programming[END_REF][START_REF] Shapiro | Stochastic programming[END_REF], which, for long horizon, is conveniently solved by Stochastic Dynamic Programming [START_REF] Bellman | Applied dynamic programming[END_REF]. SDP, notwithstanding its elegance and potential, is affected by the so-called "curse of dimensionality", limiting its application to systems made of few variables [START_REF] Stedinger | Stochastic dynamic programming models for reservoir operation optimization[END_REF][START_REF] Trezos | Use of stochastic dynamic programming for reservoir management[END_REF]. In the literature, some alternatives try to circumvent these limitations, for example by defining an optimal trajectory [START_REF] Turgeon | Optimal operation of multireservoir power systems with stochastic inflows[END_REF] or fixing the release policy family and find the parameters by evolutionary algorithm [START_REF] Nicklow | State of the art for genetic algorithms and beyond in water resources planning and management[END_REF][START_REF] Reed | Evolutionary multiobjective optimization in water resources: The past, present, and future[END_REF].

These solutions, even if advantageous for some aspects, have rarely been tested over large systems, i.e. made of a large number of reservoirs. Stochastic Dual Dynamic Programming [START_REF] Pereira | Multi-stage stochastic optimization applied to energy planning[END_REF] (SDDP) is an approximation of SDP that largely attenuates the curse of dimensionality. SDDP, however, requires the optimization problem to be modeled as linear, since problem linearity ensures cost-to-go function convexity. SDDP requires identifying a linear stochastic inflow model which reproduces the streamflow process and its uncertainty. Streamflow process model identification is a critical step in dynamic programming problem setting, sometimes referred to as "curse of modelling" [START_REF] Tsitsiklis | Feature-based methods for large scale dynamic programming[END_REF][START_REF] Bertsekas | Neuro-dynamic programming: an overview, in Decision and Control[END_REF], to stress that model identification can be problematic, hence a limitation for the methodology. SDDP applications D R A F T December 14, 2015, 12:19pm D R A F T generally use a standardized Periodic Autoregressive (PAR) model of lag 1 [START_REF] Tilmant | Assessing marginal water values in multipurpose multireservoir systems via stochastic programming[END_REF]Tilmant and Kelman, 2007;Tilmant et al., 2007[START_REF] Goor | Optimal multipurpose-multireservoir operation model with variable productivity of hydropower plants[END_REF]Tilmant et al., , 2012;;Tilmant and Kinzelbach, 2012;[START_REF] Tilmant | Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems[END_REF][START_REF] Goor | Optimal multipurpose-multireservoir operation model with variable productivity of hydropower plants[END_REF][START_REF] Arjoon | Hydro-economic risk assessment in the eastern nile river basin[END_REF][START_REF] Marques | The economic value of coordination in large-scale multireservoir systems: The parana river case[END_REF][START_REF] Gjelsvik | Long-and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming[END_REF], also known as Thomas-Fiering model [START_REF] Loucks | Water resource systems models: their role in planning[END_REF].

The drawback of this additive model is the non-neglegible probability of negative discharge values. This is to be avoided, because negative discharges have no physical sense.

Existing solutions dealing with negative discharges [START_REF] Stedinger | Synthetic streamflow generation: 1. model verification and validation[END_REF][START_REF] Pereira | Stochastic streamflow models for hydroelectric systems[END_REF][START_REF] Bezerra | Assessment of parameter uncertainty in autoregressive streamflow models for stochastic long-term hydrothermal scheduling[END_REF] use non-linear transformations that make these models not usable in SDDP.

The monthly time-step preserves the process as markov, but it risks to underestimate the system adaptivity to changing conditions. Such a large time-step, in fact, may not take into account the adaptivity at a smaller time-step, and it can be a limitation to the analysis of system response to fast processes, such as flood, resulting in an underestimation of system capacity to react to this type of events. Short-term system adaptation can be taken into account by a time decomposition approach [START_REF] Karamouz | Water resources systems analysis[END_REF]. In time decomposition, long-term policies are refined by optimizations at shorter-term windows, using results from the long-term optimization as boundary conditions. Even if time decomposition increases the accuracy of performance estimation, short-term optimization can use more information than the long-term optimization supposes, leading to an underestimation of the performance value in the long term planning [START_REF] Weijs | Information theory for risk-based water system operation[END_REF]. Therefore, aggregating discharges at large time steps is an approximation with negative impact on performance, and time-step length must be a trade-off between i) calculation time and capacity to represent the process as markov, and ii) accurate representation of the relevant processes. The former requires a long time-step, the latter a short one.
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Time-step length depends on both the system characteristics and the hydrological process that we intend to model. For some hydrological systems, variability is not uniform along the year, depending on local climate. For example, where a rainy season is separated from a dry one, the latter has generally less variability than the first, for drought is a relatively slow process compared to flood.

In this paper we present an innovative stochastic streamflow model, to be used within SDDP, that avoids some important limitations of existing models. This paper is structured as in the following. In Section 2 we introduce the methodology, from the original optimal control problem, until the SDDP as a way to solve a Multistage Stochastic Programming problem; Section 2.1 presents a procedure to estimate a streamflow model with a multiplicative stochastic component, and its linearized version. This model guarantees a negligible probability of negative discharge values, and its identification is straightforward. Section 2.2 exposes a procedure to identify non-uniform time-step lengths, to take advantage of this hydrological variability to have better distributed decision instants. The proposed features are independent from each other, then each of them can be applied separately. In Section 3 we test the proposed solutions for modeling the streamflow process on the Senegal river, West Africa. In Section 4 we draw the conclusions. Find π t ,∀t ∈ {1, . . . , H}:

Methodology

(1a) max πt H t=1 E qt g t (v t , r t , q t ) (1b)
Subject to:

v t = v t-1 +∆t • (I • [r t , q t ] -O • [r t , q t ]) (1c) c t (v t , r t , q t ) ≤ 0 (1d) q t ∼ f Qt (1e) (1f) In Problem (1), vectors v t ∈ R Nres , r t ∈ R N dec , q t ∈ R Nscen represent reservoir volumes,
discharge decisions, and scenarios, at instant t for stocks and in the period [t -∆t, t) for flows; π t is the optimal release rule, that suggests the optimal release decision r t in function of the occurring scenario, i.e. the realization of q t . In Expression (1b), g t (•) is a R N to R function, representing the system objective at t, where N = N res + N dec + N scen . Equation (1c) is the continuity equation, represented by the reservoirs mass balance. In Equation (1c), ∆t is time-step length, I and O are the input and output matrix, of dimension N res × (N dec + N scen ), associating at each inflow and discharge decision to its reservoir. O(i, j)

and I(i, j) is 1 if the i variable is input or output of reservoir j, 0 elsewhere. Scenarios q t , in Expressions (1e), are either stochastic or deterministic scenarios. Deterministic scenarios are a vector of values, stochastic scenarios are random variables distributed as f Qt (q t ). Future inflows to the reservoirs are described as stochastic scenarios, while other variables, such as evaporation, for which uncertainty can be neglected, are considered as deterministic scenarios.
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c t , in Inequality (1d), defines other constraints that apply to the system, such as physical constraints, or other legal or environmental requirements treated as constraints. For example, discharge decisions can have a physical upper limit and be limited by water availability.

Problem (1) is to be solved for an optimization horizon of H time-steps, from t = 1, where the initial condition, v 0 , is given. Decisions and realizations of stochastic variables come in recursive mode, therefore, at each decision step, release can be adjusted thanks to the new information on the occurring scenario. In this case the optimization problem is set as Multistage Stochastic Programming [START_REF] Shapiro | Stochastic programming[END_REF], as in Expression

(2): max

r 1 g 1 (v 1 , r 1 , q 1 ) + E q 2,i max r 2,i g 2 (v 2,i , r 2,i , q 2,i ) + E q 3,i . . . . . . + E q H,i max r H,i g(v H,i , r H,i , q H,i ) . . . (2) 
under conditions given by Equations (1c,??,1d), and with an initial condition v 0 . In some case, a condition on final time-step c H (v H ) ≤ b H may be present, in the form of hard or soft constraint [START_REF] Van Overloop | Multiple model predictive control on a drainage canal system[END_REF].

By solving Problem (2), the optimization procedure finds an optimal release rule for a future horizon H. In expression (2), the release rule {π t } H t=1 is a decision tree, r t,i ∀t, ∀i, made of multiple bifurcations at each time-steps, t ∈ [1 : H], representing the optimal decision strategy adapted to the i realisation of the stochastic variable, q t,i . The main drawback of Multistage Stochastic Programming is its computational complexity, which increases exponentially with H. Multistage Stochastic Programming can be applied when
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H is small, for example in short term management [START_REF] Raso | Short-term optimal operation of water systems using ensemble forecasts[END_REF]. In same case the problem has been aggregated and reduced to seasonal decisions [START_REF] Seifi | Interior-point method for reservoir operation with stochastic inflows[END_REF].

For long-term optimization, however, MSP can be considered as a theoretical, rather than practical, method [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF].

Stochastic Dynamic Programming (SDP) decomposes the MSP problem in step-bystep optimal decision problems. Then, the optimization problem in Expression (2) can be written as Bellman Chain, as in Equation (3). SDP can solve problems with a much longer horizon, because problem complexity increases only linearly with H.

F t (v t , q t ) = max rt g t (v t , r t , q t ) + E q t+1 F t+1 (v t+1 , q t+1 ) (3) 
In Equation (3), F t is the cost-to-go function, the average cost for leaving the system in the state [v t , q t ], which is the compromise of present and future benefits, g t (•) and F t+1 .

In SDP, Equation (3) is the release rule π t , which maps the system state to the optimal release decisions.

Equation (3) can be solved backwards, from t = H to the initial time-step. Condition (1e) is substituted by Condition (4). The probability transition from q t-1 to q t , together with the continuity Equation (1c), makes up the transition equations, which describes the system dynamic from one state to the next one.

SDP requires the stochastic transition to be expressed as a Markov process [START_REF] Rabiner | An introduction to hidden markov models[END_REF], i.e. the probability of each event, f (q t ), depends only on the state at previous instant, q t-1 , as in Equation (4).

q t ∼ f Qt (q t |q t-1 ) (4) D R A F T December 14, 2015, 12:19pm D R A F T X -9
When an autoregressive lag 1 process is not sufficient, q t-1 can be enlarged to contain all the informative variables [START_REF] Turgeon | Optimal operation of multireservoir power systems with stochastic inflows[END_REF]. Then, the process 'memory" q t-1 includes [q t-1 , . . . , q t-p , e t-1 , . . . , e t-q ], where e t-j is the difference between the observed value and the expected value of the model forecast at q t-j . In SDP, this state variables augmentation allows to represent the stochastic process by an Periodic ARMA(p, q) model. However, hydrological processes representation with more than one variable has rarely been applied, and SDP applications are often limited to strategic reservoir operation. In fact, SDP suffers from the so-called "curse of dimensionality,, i.e. complexity increases exponentially with the number of system variables.

Stochastic Dual Dynamic Programming (SDDP) [START_REF] Shapiro | Analysis of stochastic dual dynamic programming method[END_REF] is an approximation of the original SDP problem. SDDP attenuates the curse of dimensionality, and can be applied to larger systems. SDDP does not require variables discretization, but the timestep optimization problem must be linear: transition equations (1c, 4) and objective (1b) must be linear, and equations defining the constraints space (1d) must be affine. SDDP is solved iteratively forward and backward. In the backward stage, at each t = H, . . . , 2, the optimization finds the minimum average cost to pass from [v t-1 , q t-1 ] to [v t , q t ], adding an extra cut l k (v t , q t ) to the approximation of the cost-to-go function

F t (v t , q t ), such that F t (•) := max{F t (•), l k (•)}.
In the forward stage, the approximate problem is solved from t = 1 to H to find the optimal trajectories to be used in the next backward phase.

By successive iterations, F t converges to the real cost-to-go function F t , as demonstrated, under mild conditions, by [START_REF] Philpott | On the convergence of stochastic dual dynamic programming and related methods[END_REF] and [START_REF] Linowsky | On the convergence of sampling-based decomposition algorithms for multistage stochastic programs[END_REF].

Multiplicative error model identification
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In this section we propose a multiplicative error model to deal with the problem of generating negative discharges.

In SDDP, the stochastic hydrological model must be linear, but no conditions are imposed on distribution f t (q t ). There is not specific reason to prefer separate additive terms for the predictive and the uncertain parts of the model [START_REF] Koutsoyiannis | A random walk on water[END_REF]. In the following, we show a procedure to estimate a linear model in q t , with a multiplicative stochastic component.

We start from a multivariate signal of observed discharge, which we want to reproduce, q t , made of T samples for N y years of data, where T is the number of time-steps per year.

The original signal is transformed into y t according to Equation ( 5).

y t = log(q t ) -log(q τ ) (5) 
In Equation ( 5), τ = 1, . . . , T is the periodic time index. Equation ( 6) defines q τ , i.e.

the periodic geometric average of q t for all t = τ , where t = (t -1) mod T + 1, and mod is the modulus (or remainder) operator.

q τ = Ny t q t 1/Ny = exp 1 N y Ny t log q t , ∀t = τ (6)
Logarithm smooths extremes and long tails, making model identification easier. In fact, logarithm is a particular case of the Box-Cox transformation, suggested in Box et al.

[1970] to deal with non-normal residuals. We use the y t signal to identify an ARMA model on the N stoch dimensional signal. Contemporaneous ARMA (CARMA) [START_REF] Camacho | Multivariate contemporaneous arma model with hydrological applications[END_REF] ARMA models, with correlated residuals. For simplicity of explanation and notation, we describe the model identification procedure for an univariate ARMA model, recalling that possible correlation among sub-catchments can be included in the residuals covariance matrix [START_REF] Salas | Approaches to multivariate modeling of water resources time series1[END_REF].

In hydrological systems, parameters are generally time-variant [START_REF] Salas | Applied modeling of hydrologic time series[END_REF][START_REF] Hipel | Time series modelling of water resources and environmental systems[END_REF], because of climatic effect and because different hydrological processes are dominant at different periods in the years. Time-variant parameters can effectively dealt with Periodic ARMA model (PARMA). Equation ( 7) defines the P ARM A τ (p, q) model.

y t = p i=1 φ τ,i y t-i + q j=1 ψ τ,i ε t-i + ε t (7)
In Equation ( 7), ε t is the stochastic process, extracted from N (0, σ 2 τ ), independent on previous ε t-i , where ε t-i = y t-i -ŷt-i ; y t is observed value, and ŷt is expected value of Model (7), i.e. when ε t = 0. Identifying a P ARM A τ (p, q) model is defining parameters φ τ,i , ψ τ,i , σ τ of Equation ( 7) ∀i, ∀j, ∀τ . Equation ( 7) can be written as transition from q t-i to q t . By inversion of Equation ( 5)

and some rearrangement, one can obtain Equation (8).

q t = α τ • p i=1 q t-i φ τ,i • q j=1 ξ t-i ψ τ,j • ξ t (8)
where

ξ t ∼ ln N (0, σ τ ), α τ = q τ / p i=1 q φ τ,i
τ -i , with q τ defined as in Equation ( 6), and

ξ t-j = q t-j qt-j .
If in model ( 7) residuals are normal and additive, in model ( 8) residuals become lognormal and multiplicative. For positive initial condition, q 0 > 0, multiplicative random D R A F T December 14, 2015, 12:19pm D R A F T process ensures non-negative values of inflow process, offering a better representation of the hydrological process.

In Model (8), dependencies on q t-i are non-linear. Model (8) can be directly employed in the forward phase of SDDP, also using a less parsimonious model than in backwards, which can produce, in some cases, considerably better results [START_REF] Bartolini | Modeling of streamflow processes at different time scales[END_REF].

SDDP forward phase requires in fact a streamflow time series, regardless of the method to generate it. In backward phase, instead, SDDP must solve a linear optimization, therefore transition from q t-1 to q t must be linear. Model (8), to be applied in backward phase of SDDP, must be written as in Equation ( 9), which is Model (8) linearized by taylor expansion on the argument median, i.e. q t-i = q τ -i and ξ τ -j = 1, ∀τ, ∀i, ∀j.

q t = p i=1 ρ τ,i q t-i + q j=1 ω τ,i ξ t-i + κ τ • ξ τ (9) 
where parameters are defined in Equations ( 10) and derived in Appendix A.

ρ τ,i = φ τ,i • q τ q τ -i (10a) ω τ,i = ψ τ,i • q τ (10b) κ τ = q τ • 1 - p i=1 φ τ,i - q j=1 ψ τ,i (10c) 
Linearisation introduces an approximation error that must be quantified. Equation ( 11) defines e t , the error due to linearisation.

e t = q lin t -q nl t ( 11 
)
where q lin t and q nl t are the output of Model (9) and Model (8) for ξ t = 1. P ARτ (1), then e t can be written as function of q t-1 only. Knowing the distribution f τ (q t-1 ) we can estimate that of e t . Specifically, we are interested in the average and extreme quantiles of e t , defined as in Equations ( 12).

E(e τ ) = +∞ 0 e t (q t-1 ) • f τ (q t-1 ) • dq t-1 (12a) q p (e τ ) = e t F -1 q τ -1 (p) (12b)
Where q p (e τ ), is the p quantile of e τ , and F q τ -1 (•) is the Cumulative Density Function of q τ -1 . Distribution of q τ -1 can be obtained from f (y τ -1 ) through Equation ( 5). From [START_REF] Bartolini | Multivariate periodic arma (1, 1) processes[END_REF], we know that f (y τ -1 ) is normal with known average and variance. Therefore f (q τ -1 ) is lognormal, with parameters derived from f (y τ -1 )

Vecchia [1985]
average and standard deviation.

E(e τ ), from Equation (12a), can be used to correct results of linear Model (9) by shifting the output value in order to have zero bias. In this case, -E(e τ ) is to be added in Equation (10c).

Non-uniform time-step length

In this section we propose a non-uniform discharge aggregation, which modulates the time-step length to have a fine discharge representation only when needed.

Hydrological models in SDDP have so far always used a fixed time-step and periodically variable parameters. Predictive uncertainty, changing along the period, is included in the process model by considering heteroscedastic residuals, i.e. residuals with different variability. We consider here, instead, a variable time-step that divides the hydrological D R A F T December 14, 2015, 12:19pm D R A F T period in time-steps of different length in order to maintain an approximately homogeneous variance.

In the following, we describe the proposed procedure to select the non-uniform time-step length, ∆k(τ ), to aggregate data from the finest time-step, τ d = 1, . . . , T d to the desired level of aggregation, τ = 1, . . . , T , such that the aggregated time-step is ∆τ = ∆τ d • ∆k.

Starting from the data at the finest time aggregation of period T d and time index Time-steps of homogeneous variability, ∆k(τ ), must be such that V AR(q τ 0 +∆k(τ ) |q τ 0 ) is approximately homogeneous for all τ , and ∆k(τ ) = T d . Equation ( 13) defines variance of q τ 0 +∆k(τ ) conditional to q τ 0 as function of time-step residual variance, σ 2 τ d .

τ d = 1, . . . ,
V AR(q τ 0 +∆k(τ ) |q τ 0 ) = τ 0 +∆k(τ )

τ d =τ 0 +1 τ 0 +∆k(τ ) i=τ d +1 φ 2 i • σ 2 τ d (13) 
where, by convention,

φ 2 i = 1 if i > τ 0 + ∆k(τ ).
In Equation ( 13), φ τ d is generally close to one, especially for τ d where variability is small, and time-steps ∆k can be larger. Considering φ 2 τ d in Equation ( 13) as equal to one, V AR(q τ 0 +∆k i |q τ 0 ) can be written as proportional to the sum of variances only, which we take as indicator of variability. This allows us to define a cumulated variability that depends on τ d only.

The residual variance is used to define a Cumulative Variability in function of τ , as in Equation ( 14).

D R A F T December 14, 2015, 12:19pm D R A F T X -15 CV (τ d ) = τ d t=1 σ 2 τ d T d t=1 σ 2 τ d (14)
In Equation ( 14), the numerator is the cumulative variance until τ d , the denominator is the cumulated variability for the entire period, T d , to standardize CV between zero and one. The non-uniform time-step ∆k(τ ) is then chosen by splitting the hydrological period in T time-steps having approximately homogenous variability, as in Equation ( 15).

∆k(τ ) = CV -1 τ T -CV -1 τ -1 T ; ∀τ = {1, • • • , T } (15) 
where operator • returns the nearest integer. By convention, CV -1 (0) = 0.

The discharge signal is aggregated using the variable time-step, and a model is identified on the aggregated signal according to procedure in Section 2.1, or others.

Application to the Senegal river

The Senegal River, West Africa, is a 1790 km long river. Its drainage basin extension is 270.000 km 2 , over Guinea, Mali, Senegal and Mauritania. The river inflow is extremely variable, following the tropical raining seasonality with a marked difference between the dry season, in January-June, and the raining one, in July-October, when most of the water falls in the upper part of the basin [START_REF] Albergel | Flood and drought: application to the senegal river management[END_REF]. Figure 2 on the ecological equlilbrium and on some traditional activities in the valley, but with positive effects on water availability for irrigation and navigation, which will become a more important objective in the near future [START_REF] Bader | Gestion du barrage de manantali sur le fleuve sénégal: analyse quantitative d'un conflit d'objectifs[END_REF]. This analysis, however, focuses on methodological aspects, so we consider energy production objective only.

In the following, at section 3.1, we define the non-uniform time-step, then we identify a streamflow process model as defined in Equations ( 8) and ( 9), and a classic Thomas-Fiering Model, for comparison. At section 3.2, we test the added value of non-uniform time-step in terms of reservoir operation.

Streamflow process model identification

The hydrological process on the Senegal river is characterised by a strong periodical component. Following the procedure described in section 2.2, we select ∆k(τ ) using The non-uniform time-step defined by ∆k(τ ) is used to aggregate the daily inflow signal.

The same inflow is also aggregated at the monthly time-step to be compared to the nonuniform aggregation. Figure 4 shows the aggregated observed inflow with non-uniform time-step and monthly time-step.

Non-uniform aggregation allocates only two time-steps for the entire recession curve, going from October to May,using the ten remaining time-steps for the raising part of the hydrography, against the seven and five time-steps used by monthly aggregation. A finer time-step during the raising part of the hydrograph should allow to better adapt to the incoming information on the inflow value.

Figure 5 shows the autocorrelation lag 1 on the de-trended logarithmic of discharge signal, equivalent to φ τ of Model ( 7) for a PAR(1), being φ τ = COV (yt,y t-1 ) V AR(y t-1 ) [START_REF] Box | Time series analysis[END_REF]. In monthly aggregation, φ τ stays close to 1 for different months during the dry period, reaching 0.5 at τ = 8. The non-uniform aggregation autocorrelation is more regular: most of the cases lay between 0.6 and 0.8. This results suggest that the nonuniform aggregation can provide a more effective distribution of decision instants. This is further investigated in section 3.2.

From the non-uniform aggregated inflow signals, following the procedure described in 2.1, we identify a multiplicative model as in Equations ( 9) and ( 8) and an additive Thomas- band, for most of the lags larger than zero. This confirms the validity of the non-uniform aggregation, for it preserves the process as markov.

We test whether the residual sampling distribution adhere to the prescribed one, lognormal for the multiplicative case, normal for the additive. Both residuals must be standardised by the time variant variance, σ τ . For the multiplicative residuals, we test their normality on log(Ξ t ). Figure 6 presents the normality plot for both the logarithm of residuals for the multiplicative model and the residuals for the additive model, showing that the multiplicative model follows the prescribed distribution, whereas the additive model suffers from a fat tail on higher values. A Kolmogorov-Smirnov test [START_REF] Dekking | A modern introduction to probability and statistics: understanding why and how[END_REF] on the standardized logarithms of residuals does not reject the hypothesis of a normal distribution, with a p-value of 0.07. The same test on the additive model standardized residual gives a p-value of 10 -6 , leading to rejecting the assumption of residuals being normally distributed with sufficient confidence. The positive results on the (ξ t ) distribution correctness gives us further confidence in the validity of the multiplicative model.

Figure 7 shows the observed discharge data and their match with the 95% confidence bands for both the multiplicative and the additive model. The confidence bands are

q τ • exp ± 2 • V AR(y t
) for the multiplicative model (bold continuous lines) and E(q t ) ± 2 • V AR(q t ) for the additive model (bold dashed lines). The signal variance V AR(q t ) or V AR(y t ), is derived from {σ τ } T τ =1 as described in [START_REF] Bartolini | Multivariate periodic arma (1, 1) processes[END_REF].From Figure 7 we see how the additive model has a non-negligible probability of producing negative inflow. Moreover, lower confidence band for the additive model is, for some time-steps, much lower than the lowest observed discharge. whereas the multiplicative model follows closely the observed signal variance for the entire period. 
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We quantify the approximation due to linearization using Equations ( 12) for error average, and 5% and 95% quantile of q τ -1 , examining both the average for all τ and the largest value in τ . The average error is 0.6 m 3 /s, or 0.3% of median discharge, which we consider a relatively small value. Even for the largest error average, at τ = 7, is 23 m 3 /s, which is less than 3% of median discharge. Error at 5% quantile is, on average, 4% of median discharge, with a peak of 7% at τ = 4 (15 m 3 /s in absolute value). Error at 95% quantile is 11% of median discharge, with a maximum absolute value of 88 m 3 /s at τ = 7, which is 11% of median discharge. As a summary, we can state that error due to linearization is adequatly small; its average is generally negligible, growing to about 5% and 10% of median discharge at 5% and 95% quantiles of q τ -1 .

Figure 8 shows the detail of the error due to linearization for τ = 7. Plot (a) compares output of nonlinear and linearized multiplicative model, i.e. model ( 8) and model ( 9)

for ξ t = 1, in function of q t-1 . The linear model is tangent to the nonlinear one at the linearisation point, i.e. at qτ-1 . Going further from the median the models diverge, even if the difference stays small. Plot (b) presents the error magnitude in function of q t-1 next to its probability of occurrence, f (q τ -1 ).

On a multiplicative P AR τ (1), φ τ < 1 for most of τ , because stationarity condition requires that T τ =1 φ τ < 1. This implies that model ( 8) is a concave function in q t-1 and e t > 0, ∀q t-1 , i.e. Model (9) systematically overestimate its nonlinear version. A large number of time-steps per period results in a shorter time-steps length. As a consequence, φ τ values will be closer to one, for φ τ is the autocorrelation lag 1 in a AR model [START_REF] Box | Time series analysis[END_REF], resulting in a smaller error due to linearization.

Effects of non-uniform aggregation on reservoir operation
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We compare the system performances and behaviour of reservoir operation between monthly and non-uniform discharge aggregation to assess the advantage of the latter.

The system model is made of a reservoir and a hydrological component, as in Figure 9.

Streamflow at Soukoutali, output of the hydrological model, is the input to the reservoir.

The objective is energy production. Each element of the optimization problem is detailed in the following.

The reservoir is modelled as in Equation (1c). The reservoir input is the discharge from the hydrological component q t . Reservoir outputs are: discharge through turbines r turb,t , and discharge through spillways, r spill,t . Evaporation is not considered in this analysis.

Inequalities ( 16) are constraints on discharge decisions and reservoir volume.

v min ≤ v t ≤ v max (16a) 0 ≤ r turb,t ≤ r turb,max (16b) 
r spill,t ≥ m safety • (v t -v safety ) (16c) 
Inequalities (16a) and (16b) are physical constraints, derived from the system characteristics. Inequality (16c) is a legal condition that forces to draw down the reservoir when its volume exceeds the safety threshold, v safety . Constraint on release through spillages is large enough for never being active during the simulation period, as verified a posteriori, and therefore it is not included. Inequalities (16b) and (16c) are implemented as hard constraint, inequality (16a) is implemented as soft constraint to avoid non-feasibility.

The system objective is the yearly average energy production

J E = 1/N years T ×Nyears t=1 E t ,
composed of the sum of the daily energy production, E t , as defined in Equation ( 17 X -21

E t = η • ∆k(τ ) • ∆h t • r turb,t (17) 
In Equation ( 17), ∆h t is the hydraulic head [m], r turb,t is discharge trough turbines [m 3 /s]. η is a multiplicative factor, such that η = ρ • g • η(r t , ∆h) • 24 • 10 -6 , where ρ is the water density, 1000 [kg/m3], g is the gravity acceleration, 9.8 [m/s 2 ], η is the efficiency coefficient, considered equal to 0.9, 24 and 10 -6 are unit transformation coefficients, [h/d] and

[M W/W ]. E t is expressed in [M W h].
Equation ( 17), to be employed in linear optimization within SDDP, is approximated by expressing it as linear function of r t and v t , linearized at an operational point, under the hypothesis of cylindric reservoir. Equation ( 18) defines the operational time-step objective indicator used in SDDP, being the weighted sum of releases and volume.

E op t = E 0,t + +η • ∆k(τ ) • + r turb,0 A 0 • v t + [h 0 -h v 0 -m v (1 + r turb,0 )] • r turb,t + [-m v ] • r spill,t (18) 
In Equation ( 18),

E 0,t = η • ∆k(τ ) • [h 0 -h v 0 ] • r turb,0 - r turb,0 A 0 • v 0 -[h 0 -h v 0 - m v (1 + r turb,0 )] • r turb,0 + m v • r spill,0
. Parameters of Equation ( 18) and their derivation are described in Appendix B.

Equation ( 17) is linearized at a normal operational point, that is the reservoir state at which the reservoir is mostly operated, either historically observed or deduced from system characteristics. We infer the operational point from the reservoir characteristics, D R A F T December 14, 2015, 12:19pm D R A F T considering v 0 = v safety , i.e. the safety limit, r turb,0 = E(q t ), i.e. the average inflow to the reservoir, and r spill,0 = 0 m 3 /s, which considers no release through the spillages.

The optimization is performed using 25 extractions for the forward phase and 25 for the backward one until convergence, attained at an accuracy level of 2 × 10 7 . This accuracy level lays within the ±2σ of forward simulation results. We can consider with sufficient confidence that the algorithm has converged to the optimum.

Performance results show a moderate improvement for non-uniform aggregation. Optimal solution gives J E equal to 930 GWh/year for the monthly aggregation, and 945

GWh/year in the non-uniform case, equivalent to an improvement of one week of average energy production.

We analyse the reservoir operation behaviour. Figure 10 shows the reservoir volume and the release trough turbines for the monthly and the non-uniform aggregation in response to the 2005 inflow scenario. Inflow peak is larger than maximum discharge trough turbines; therefore, to avoid spillage, the reservoir must be drawn down before the high flow period, in order to create a buffer that stores part of the incoming water. SDDP optimal operating rules are the results of an optimal compromise between the objectives of keeping a high water level and avoiding spillages. 

D R A F T E t = η • ∆k(τ ) • [R 1 (v t ) -R 2 (r turb,t + r spill,t )] • r turb,t (B1) 
In Equation (B1), the hydraulic head ∆h, is written as function of problem variables;

h t = R 1 (v t )
is the stage-storage curve and h v t = R 2 (r turb,t + r spill,t ) the rating-curve, where h t is the water level in the reservoir and h v t the tailwater elevation, downstream of the reservoir.

Equations (B2) are the partial derivatives of Equation (B1).

∂E t ∂v t = η • ∆k(τ ) • R 1 (v t ) • r turb,t ∂E t ∂r turb,t = η • ∆k(τ ) • R 1 (v t )- R 2 (r turb,t + r spill,t ) • r turb,t -R 2 (r turb,t + r spill,t ) ∂E t ∂r spill,t = -η • ∆k(τ ) • R 2 (r turb,t + r spill,t ) (B2)
In Equations (B3), we consider a cylindrical reservoir in proximity of the operational reservoir water level, h 0 , and a linear rating curve in proximity of discharges r turb,0 +r spill,0 .

R 1 (v t ) ≈ h 0 + 1 A 0 • (v t -v 0 ) (B3a) R 2 (r turb,t + r spill,t ) ≈ h v 0 + m v (r turb,t -r turb,0 + r spill,t -r spill,0 ) (B3b)
where A 0 is the reservoir surface corresponding to h 0 , h v 0 = R 2 (r turb,0 + r spill,0 ), and f Qt (q t ); Probability density function of q t [-] 

m v = R 2 (r turb,0 + r spill,0
α τ,i , φ τ,i , ψ τ,i , σ 2 τ Periodic ARMA parameters ρ τ,i , ω τ,i ,

  Consider a water system composed of N res reservoirs that is operated by N dec discharge decisions. Discharge decisions are diversions from rivers and releases from reservoirs. A reservoir may have multiple releases (by different structures or for different users). The D R A F T December 14, 2015, 12:19pm D R A F T system is influenced by N scen scenarios, such as future inflows. Equations (1) define the control problem.

  displays the discharge at Soukoutali, inflow to Manantali for 64 years. Manantali is an annual reservoir for hydropower, located in Mali and controlling about 50% of the total water flow of the Senegal River. Manantali was completed in 1987 and started to produce electricity in 2002. Its benefits are shared among Mali, Mauritania, and Senegal. These three countries participate with Guinea to the Organization for the D R A F T December 14, 2015, 12:19pm D R A F T Valorization of Senegal River (Organisation pour la Mise en Valeur du fleuve Senegal, OMVS). Manantali reservoir volume is 12 × 10 9 m 3 , its installed capacity is 205 M W , the average inflow is 270 m 3 /s, the average residence time is about one year. The OMVS have gradually embraced the Integrated Water Resources Management paradigm, in which water allocation decisions are based on economic, social, technical and political factors, in accordance with stakeholders' interests. This led the OMVS to prepare a reservoir management optimization program [Fraval et al., 2002]. Manantali operation was originally designed to satisfy different rival uses: energy production and lowflow augmentation on one hand; flood support on the other. Operating the reservoir for hydroelectric production reduces the annual streamflow variability, with negative effects

T

  = 12 time-steps, for comparison with monthly time-step. Figure 3 shows the CV (τ d ) function, defined in Equation (14), and the ∆k(τ ) for T = 12, for the entire periodic year, D R A F T December 14, 2015, 12:19pm D R A F T Author-produced version of the article published in Journal of Irrigation and Drainage Engineering-ASCE, 2017, N°143(4) The original publication is available at http://ascelibrary.org Doi: 10.1061/(ASCE)WR.1943-5452.00007466 X -17 on plot (a), and a zoom on the period of high variability, on plot (b), for τ d between 135 (May 15) and 285 (October 12).

Fiering

  model. We refer to these models as multiplicative and additive model. A P AR(1) represents the process sufficiently well. The residuals autocorrelation is approximately zero for both the multiplicative and the additive model, being within the 95% confidence D R A F T December 14, 2015, 12:19pm D R A F T

  ), for the entire simulation horizon T × N years , where N years = 43, from 1970 to 2012. D R A F T December 14, 2015, 12:19pm D R A F TAuthor-produced version of the article published in Journal of Irrigation and Drainage Engineering-ASCE, 2017, N°143(4) The original publication is available at http://ascelibrary.org Doi: 10.1061/(ASCE)WR.1943-5452.00007466

Figure 10

 10 Figure 10 plot (b) shows how the reservoir operation using non-uniform steps adjusts
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 1 Figure 1. Map of the Senegal Basin.
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 2 Figure 2. Inflow at Soukoutali from 1 January 1950 to 31 December 2013, daily

  Figure 3. Cumulative Variance on τ d .
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 4 Figure 4. Inflow at Soukoutali from 1 January 1950 to 31 December 2013, aggregated
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 5610 Figure 5. φ τ for non-uniform and monthly time-step
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  T d , we identify a PAR T d (1) model on q t , having parameters φ τ d , σ 2 τ d , ∀τ d ∈ {1, . . . , T d }, defined as in Equation (7). Even if such simple model may be not accurate enough for prediction purposes, it is generally sufficient to catch the dominant dynamics.
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	g(•) Time-step objective function [-]	
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	E Expected value [-]	
	Considering Equations (B2) and (B3), we get, in Equation (B4), the linear approxima-
	tion of Equation (B1).	
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RASO ET AL.: EFFECTIVE STREAMFLOW PROCESS MODEL FOR SDDP using non-uniform time-steps has a relatively homogeneous variance. This brings in a practical advantage: the non-uniform time-steps follow closer the changing hydrological variability along the year, adapting the decision more frequently during high variability periods, resulting in enhanced system performance evaluation. If time-step aggregation is sufficiently fine, a non-uniform aggregation may even make time decomposition needless.

Model linearization, used in the backward phase, introduces an error. The analysis on error due to linearisation show that the error average is negligible, growing to about 5%-10% of median discharge at 5%-95% quantiles of q τ -1 , which we consider satisfactory; this depends, however, on the specific test-case and, a priori, we cannot exclude it to be a limitation for this model.

Appendix A: Linear model parameters derivation

Parameters ρ τ,i , ω τ,i , κ τ are derived by linerization of Model (8) on the median of its deterministic inputs, at q t-i = qτ-i , with qτ defined in Equation ( 6), and ξ t-j = 1. Equation A1 is model (8) for ξ = 1 written as Taylor expansion on its deterministic inputs.

Equations ( A2) are the derivatives of q t on inputs q t-i and ξ t-j .

Separating members of Equation (A1) by their inputs, and considering that α τ = qτ / p i=1 qφ τ,i τ -i we derive, in Equations (A3), parameters (10) of Model (9). 

Equation ( B4b) gives the weights for v t , r turb,t , and r spill,t that maximise energy, as in Equation ( 18). For constant tailwater elevation, then m v = 0, and Equations ( B4b) and ( 18) can be simplified.

Appendix C: List of main variables

We use here the classic convention of representing vectors in bold.