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X - 2 RASO ET AL.: EFFECTIVE STREAMFLOW PROCESS MODEL FOR SDDP

Abstract. We present an innovative streamflow process model to be used4

for reservoir operational rule design in Stochastic Dual Dynamic Program-5

ming (SDDP). Model features, which can be applied independently, are: i)6

a non-linear multiplicative process model for the forward phase, which pro-7

duces positive streamflow values only, and its linearized version for the back-8

ward phase, and ii) a non-uniform time-step, which divides the hydrologi-9

cal period in time-steps of different length in order to have a process with10

approximately constant variance. Model identification is straightforward as11

for additive periodic autoregressive model generally used in SDDP. We ap-12

plied this model on the Senegal River for the optimal operation of Manan-13

tali reservoir, and evaluated the proposed solutions against streamflow pro-14

cess model currently used in the water management literature.15
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1. Introduction

In reservoir operation, present benefits must be balanced with future, uncertain ones16

[Soncini-Sessa et al., 2007; Castelletti et al., 2008]. After each release decision, new infor-17

mation becomes available and partially reduces uncertainty. Optimal reservoir operation18

can be framed as a Multistage Stochastic Programming problem [Birge and Louveaux ,19

1997; Shapiro and Andrzej , 2003], which, for long horizon, is conveniently solved by20

Stochastic Dynamic Programming [Bellman and Dreyfus , 1966]. SDP, notwithstanding21

its elegance and potential, is affected by the so-called “curse of dimensionality”, limiting22

its application to systems made of few variables [Stedinger et al., 1984; Trezos and Yeh,23

1987]. In the literature, some alternatives try to circumvent these limitations, for example24

by defining an optimal trajectory [Turgeon, 1980] or fixing the release policy family and25

find the parameters by evolutionary algorithm [Nicklow et al., 2009; Reed et al., 2013].26

These solutions, even if advantageous for some aspects, have rarely been tested over large27

systems, i.e. made of a large number of reservoirs. Stochastic Dual Dynamic Programming28

[Pereira and Pinto, 1991] (SDDP) is an approximation of SDP that largely attenuates the29

curse of dimensionality. SDDP, however, requires the optimization problem to be modeled30

as linear, since problem linearity ensures cost-to-go function convexity.31

SDDP requires identifying a linear stochastic inflow model which reproduces the stream-32

flow process and its uncertainty. Streamflow process model identification is a critical step33

in dynamic programming problem setting, sometimes referred to as “curse of modelling”34

[Tsitsiklis and Van Roy , 1996; Bertsekas and Tsitsiklis , 1995], to stress that model iden-35

tification can be problematic, hence a limitation for the methodology. SDDP applications36
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X - 4 RASO ET AL.: EFFECTIVE STREAMFLOW PROCESS MODEL FOR SDDP

generally use a standardized Periodic Autoregressive (PAR) model of lag 1 [Tilmant et al.,37

2008; Tilmant and Kelman, 2007; Tilmant et al., 2007, 2010, 2012; Tilmant and Kinzel-38

bach, 2012; Tilmant et al., 2009; Goor et al., 2010; Arjoon et al., 2014; Marques and39

Tilmant , 2013; Gjelsvik et al., 2010], also known as Thomas-Fiering model [Loucks , 1992].40

The drawback of this additive model is the non-neglegible probability of negative dis-41

charge values. This is to be avoided, because negative discharges have no physical sense.42

Existing solutions dealing with negative discharges [Stedinger and Taylor , 1982; Pereira43

et al., 1984; Bezerra et al., 2012] use non-linear transformations that make these models44

not usable in SDDP.45

The monthly time-step preserves the process as markov, but it risks to underestimate46

the system adaptivity to changing conditions. Such a large time-step, in fact, may not47

take into account the adaptivity at a smaller time-step, and it can be a limitation to the48

analysis of system response to fast processes, such as flood, resulting in an underestimation49

of system capacity to react to this type of events.50

Short-term system adaptation can be taken into account by a time decomposition ap-51

proach [Karamouz et al., 2003]. In time decomposition, long-term policies are refined by52

optimizations at shorter-term windows, using results from the long-term optimization as53

boundary conditions. Even if time decomposition increases the accuracy of performance54

estimation, short-term optimization can use more information than the long-term opti-55

mization supposes, leading to an underestimation of the performance value in the long56

term planning [Weijs , 2011]. Therefore, aggregating discharges at large time steps is57

an approximation with negative impact on performance, and time-step length must be a58

trade-off between i) calculation time and capacity to represent the process as markov, and59

D R A F T December 14, 2015, 12:19pm D R A F T

Author-produced version of the article published in Journal of Irrigation and Drainage Engineering-ASCE, 2017, N°143(4)
The original publication is available at http://ascelibrary.org

Doi: 10.1061/(ASCE)WR.1943-5452.00007466



RASO ET AL.: EFFECTIVE STREAMFLOW PROCESS MODEL FOR SDDP X - 5

ii) accurate representation of the relevant processes. The former requires a long time-step,60

the latter a short one.61

Time-step length depends on both the system characteristics and the hydrological pro-62

cess that we intend to model. For some hydrological systems, variability is not uniform63

along the year, depending on local climate. For example, where a rainy season is sepa-64

rated from a dry one, the latter has generally less variability than the first, for drought is65

a relatively slow process compared to flood.66

In this paper we present an innovative stochastic streamflow model, to be used within67

SDDP, that avoids some important limitations of existing models. This paper is struc-68

tured as in the following. In Section 2 we introduce the methodology, from the original69

optimal control problem, until the SDDP as a way to solve a Multistage Stochastic Pro-70

gramming problem; Section 2.1 presents a procedure to estimate a streamflow model with71

a multiplicative stochastic component, and its linearized version. This model guarantees72

a negligible probability of negative discharge values, and its identification is straightfor-73

ward. Section 2.2 exposes a procedure to identify non-uniform time-step lengths, to take74

advantage of this hydrological variability to have better distributed decision instants. The75

proposed features are independent from each other, then each of them can be applied sep-76

arately. In Section 3 we test the proposed solutions for modeling the streamflow process77

on the Senegal river, West Africa. In Section 4 we draw the conclusions.78

2. Methodology

Consider a water system composed of Nres reservoirs that is operated by Ndec discharge79

decisions. Discharge decisions are diversions from rivers and releases from reservoirs. A80

reservoir may have multiple releases (by different structures or for different users). The81
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system is influenced by Nscen scenarios, such as future inflows. Equations (1) define the82

control problem.83

Find πt,∀t ∈ {1, . . . , H}: (1a)

max
πt

H∑
t=1

E
qt

[
gt(vt, rt,qt)

]
(1b)

Subject to:

vt = vt−1+∆t · (I · [rt,qt]−O · [rt,qt]) (1c)

ct(vt, rt,qt) ≤ 0 (1d)

qt ∼ fQt (1e)

(1f)

In Problem (1), vectors vt ∈ RNres , rt ∈ RNdec ,qt ∈ RNscen represent reservoir volumes,84

discharge decisions, and scenarios, at instant t for stocks and in the period [t−∆t, t) for85

flows; πt is the optimal release rule, that suggests the optimal release decision rt in function86

of the occurring scenario, i.e. the realization of qt. In Expression (1b), gt(·) is a RN to R87

function, representing the system objective at t, where N = Nres +Ndec +Nscen. Equation88

(1c) is the continuity equation, represented by the reservoirs mass balance. In Equation89

(1c), ∆t is time-step length, I and O are the input and output matrix, of dimension Nres×90

(Ndec + Nscen), associating at each inflow and discharge decision to its reservoir. O(i, j)91

and I(i, j) is 1 if the i variable is input or output of reservoir j, 0 elsewhere. Scenarios92

qt, in Expressions (1e), are either stochastic or deterministic scenarios. Deterministic93

scenarios are a vector of values, stochastic scenarios are random variables distributed as94

fQt(qt). Future inflows to the reservoirs are described as stochastic scenarios, while other95
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variables, such as evaporation, for which uncertainty can be neglected, are considered as96

deterministic scenarios.97

ct, in Inequality (1d), defines other constraints that apply to the system, such as physical98

constraints, or other legal or environmental requirements treated as constraints. For99

example, discharge decisions can have a physical upper limit and be limited by water100

availability.101

Problem (1) is to be solved for an optimization horizon of H time-steps, from t = 1,102

where the initial condition, v0, is given. Decisions and realizations of stochastic variables103

come in recursive mode, therefore, at each decision step, release can be adjusted thanks to104

the new information on the occurring scenario. In this case the optimization problem is105

set as Multistage Stochastic Programming [Shapiro and Andrzej , 2003], as in Expression106

(2):107

max
r1

g1(v1, r1,q1) + E
q2,i

[
max
r2,i

g2(v2,i, r2,i,q2,i) + E
q3,i

[
. . .

. . .+ E
qH,i

[
max
rH,i

g(vH,i, rH,i,qH,i)

]
. . .

]] (2)

under conditions given by Equations (1c,??,1d), and with an initial condition v0. In108

some case, a condition on final time-step cH(vH) ≤ bH may be present, in the form of109

hard or soft constraint [van Overloop et al., 2008].110

By solving Problem (2), the optimization procedure finds an optimal release rule for a111

future horizon H. In expression (2), the release rule {πt}Ht=1 is a decision tree, rt,i∀t,∀i,112

made of multiple bifurcations at each time-steps, t ∈ [1 : H], representing the optimal113

decision strategy adapted to the i realisation of the stochastic variable, qt,i. The main114

drawback of Multistage Stochastic Programming is its computational complexity, which115

increases exponentially with H. Multistage Stochastic Programming can be applied when116
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H is small, for example in short term management [Raso et al., 2014]. In same case the117

problem has been aggregated and reduced to seasonal decisions [Seifi and Hipel , 2001].118

For long-term optimization, however, MSP can be considered as a theoretical, rather than119

practical, method [Mayne et al., 2000].120

Stochastic Dynamic Programming (SDP) decomposes the MSP problem in step-by-121

step optimal decision problems. Then, the optimization problem in Expression (2) can122

be written as Bellman Chain, as in Equation (3). SDP can solve problems with a much123

longer horizon, because problem complexity increases only linearly with H.124

Ft(vt,qt) = max
rt

gt(vt, rt,qt) + E
qt+1

[
Ft+1(vt+1,qt+1)

]
(3)

In Equation (3), Ft is the cost-to-go function, the average cost for leaving the system in125

the state [vt,qt], which is the compromise of present and future benefits, gt(·) and Ft+1.126

In SDP, Equation (3) is the release rule πt, which maps the system state to the optimal127

release decisions.128

Equation (3) can be solved backwards, from t = H to the initial time-step. Condition129

(1e) is substituted by Condition (4). The probability transition from qt−1 to qt, together130

with the continuity Equation (1c), makes up the transition equations, which describes the131

system dynamic from one state to the next one.132

SDP requires the stochastic transition to be expressed as a Markov process [Rabiner133

and Juang , 1986], i.e. the probability of each event, f(qt), depends only on the state at134

previous instant, qt−1, as in Equation (4).135

qt ∼ fQt(qt|qt−1) (4)
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When an autoregressive lag 1 process is not sufficient, qt−1 can be enlarged to contain136

all the informative variables [Turgeon, 1980]. Then, the process ‘memory” qt−1 includes137

[qt−1, . . . ,qt−p, et−1, . . . , et−q], where et−j is the difference between the observed value and138

the expected value of the model forecast at qt−j. In SDP, this state variables augmentation139

allows to represent the stochastic process by an Periodic ARMA(p, q) model. However,140

hydrological processes representation with more than one variable has rarely been applied,141

and SDP applications are often limited to strategic reservoir operation. In fact, SDP142

suffers from the so-called “curse of dimensionality,, i.e. complexity increases exponentially143

with the number of system variables.144

Stochastic Dual Dynamic Programming (SDDP) [Shapiro, 2011] is an approximation145

of the original SDP problem. SDDP attenuates the curse of dimensionality, and can be146

applied to larger systems. SDDP does not require variables discretization, but the time-147

step optimization problem must be linear: transition equations (1c, 4) and objective (1b)148

must be linear, and equations defining the constraints space (1d) must be affine. SDDP is149

solved iteratively forward and backward. In the backward stage, at each t = H, . . . , 2, the150

optimization finds the minimum average cost to pass from [vt−1,qt−1] to [vt,qt], adding151

an extra cut lk(vt,qt) to the approximation of the cost-to-go function Ft(vt,qt), such152

that Ft(·) := max{Ft(·), lk(·)}. In the forward stage, the approximate problem is solved153

from t = 1 to H to find the optimal trajectories to be used in the next backward phase.154

By successive iterations, Ft converges to the real cost-to-go function Ft, as demonstrated,155

under mild conditions, by Philpott and Guan [2008] and Linowsky and Philpott [2005].156

2.1. Multiplicative error model identification
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In this section we propose a multiplicative error model to deal with the problem of157

generating negative discharges.158

In SDDP, the stochastic hydrological model must be linear, but no conditions are im-159

posed on distribution ft(qt). There is not specific reason to prefer separate additive terms160

for the predictive and the uncertain parts of the model [Koutsoyiannis , 2009]. In the161

following, we show a procedure to estimate a linear model in qt, with a multiplicative162

stochastic component.163

We start from a multivariate signal of observed discharge, which we want to reproduce,164

qt, made of T samples for Ny years of data, where T is the number of time-steps per year.165

The original signal is transformed into yt according to Equation (5).166

yt = log(qt)− log(qτ ) (5)

In Equation (5), τ = 1, . . . , T is the periodic time index. Equation (6) defines qτ , i.e.167

the periodic geometric average of qt for all t = τ , where t = (t− 1) mod T + 1, and mod168

is the modulus (or remainder) operator.169

qτ =

(
Ny∏
t

qt

)1/Ny

= exp

(
1

Ny

Ny∑
t

log qt

)
, ∀t = τ (6)

Logarithm smooths extremes and long tails, making model identification easier. In170

fact, logarithm is a particular case of the Box-Cox transformation, suggested in Box et al.171

[1970] to deal with non-normal residuals. We use the yt signal to identify an ARMA172

model on the Nstoch dimensional signal. Contemporaneous ARMA (CARMA) [Camacho173

et al., 1987] are an effective sub-class of multivariate ARMA model that proved effective174

in hydrological applications. A CARMA model is identified as a set of Nstoch univariate175
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ARMA models, with correlated residuals. For simplicity of explanation and notation,176

we describe the model identification procedure for an univariate ARMA model, recalling177

that possible correlation among sub-catchments can be included in the residuals covariance178

matrix [Salas et al., 1985].179

In hydrological systems, parameters are generally time-variant [Salas , 1980; Hipel and180

McLeod , 1994], because of climatic effect and because different hydrological processes are181

dominant at different periods in the years. Time-variant parameters can effectively dealt182

with Periodic ARMA model (PARMA). Equation (7) defines the PARMAτ (p, q) model.183

yt =

p∑
i=1

φτ,iyt−i +

q∑
j=1

ψτ,iεt−i + εt (7)

In Equation (7), εt is the stochastic process, extracted from N (0, σ2
τ ), independent on184

previous εt−i, where εt−i = yt−i − ŷt−i; yt is observed value, and ŷt is expected value of185

Model (7), i.e. when εt = 0. Identifying a PARMAτ (p, q) model is defining parameters186

φτ,i, ψτ,i, στ of Equation (7) ∀i, ∀j,∀τ .187

Equation (7) can be written as transition from qt−i to qt. By inversion of Equation (5)188

and some rearrangement, one can obtain Equation (8).189

qt = ατ ·
p∏
i=1

qt−i
φτ,i ·

q∏
j=1

ξt−i
ψτ,j · ξt (8)

where ξt ∼ lnN (0, στ ), ατ = qτ/
∏p

i=1 q
φτ,i
τ−i, with qτ defined as in Equation (6), and190

ξt−j =
qt−j
q̂t−j

.191

If in model (7) residuals are normal and additive, in model (8) residuals become log-192

normal and multiplicative. For positive initial condition, q0 > 0, multiplicative random193
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process ensures non-negative values of inflow process, offering a better representation of194

the hydrological process.195

In Model (8), dependencies on qt−i are non-linear. Model (8) can be directly employed196

in the forward phase of SDDP, also using a less parsimonious model than in backwards,197

which can produce, in some cases, considerably better results [Bartolini and Salas , 1993].198

SDDP forward phase requires in fact a streamflow time series, regardless of the method199

to generate it. In backward phase, instead, SDDP must solve a linear optimization,200

therefore transition from qt−1 to qt must be linear. Model (8), to be applied in backward201

phase of SDDP, must be written as in Equation (9), which is Model (8) linearized by202

taylor expansion on the argument median, i.e. qt−i = qτ−i and ξτ−j = 1, ∀τ, ∀i,∀j.203

qt =

[
p∑
i=1

ρτ,iqt−i +

q∑
j=1

ωτ,iξt−i + κτ

]
· ξτ (9)

where parameters are defined in Equations (10) and derived in Appendix A.

ρτ,i = φτ,i ·
qτ
qτ−i

(10a)

ωτ,i = ψτ,i · qτ (10b)

κτ = qτ ·

(
1−

p∑
i=1

φτ,i −
q∑
j=1

ψτ,i

)
(10c)

Linearisation introduces an approximation error that must be quantified. Equation (11)204

defines et, the error due to linearisation.205

et = qlin
t − qnl

t (11)

where qlin
t and qnl

t are the output of Model (9) and Model (8) for ξt = 1. Considering,206

for simplicity of notation, an univariate Multiplicative Periodic Autoregressive Model,207
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PARτ(1), then et can be written as function of qt−1 only. Knowing the distribution208

fτ (qt−1) we can estimate that of et. Specifically, we are interested in the average and209

extreme quantiles of et, defined as in Equations (12).210

E(eτ ) =

∫ +∞

0

et(qt−1) · fτ (qt−1) · dqt−1 (12a)

qp(eτ ) = et
(
F−1
qτ−1

(p)
)

(12b)

Where qp(eτ ), is the p quantile of eτ , and Fqτ−1(·) is the Cumulative Density Function211

of qτ−1. Distribution of qτ−1 can be obtained from f(yτ−1) through Equation (5). From212

Vecchia [1985] Bartolini et al. [1988], we know that f(yτ−1) is normal with known average213

and variance. Therefore f(qτ−1) is lognormal, with parameters derived from f(yτ−1)214

average and standard deviation.215

E(eτ ), from Equation (12a), can be used to correct results of linear Model (9) by shifting216

the output value in order to have zero bias. In this case, −E(eτ ) is to be added in Equation217

(10c).218

2.2. Non-uniform time-step length

In this section we propose a non-uniform discharge aggregation, which modulates the219

time-step length to have a fine discharge representation only when needed.220

Hydrological models in SDDP have so far always used a fixed time-step and periodi-221

cally variable parameters. Predictive uncertainty, changing along the period, is included222

in the process model by considering heteroscedastic residuals, i.e. residuals with different223

variability. We consider here, instead, a variable time-step that divides the hydrological224
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X - 14 RASO ET AL.: EFFECTIVE STREAMFLOW PROCESS MODEL FOR SDDP

period in time-steps of different length in order to maintain an approximately homoge-225

neous variance.226

In the following, we describe the proposed procedure to select the non-uniform time-step227

length, ∆k(τ), to aggregate data from the finest time-step, τd = 1, . . . , Td to the desired228

level of aggregation, τ = 1, . . . , T , such that the aggregated time-step is ∆τ = ∆τd ·∆k.229

Starting from the data at the finest time aggregation of period Td and time index230

τd = 1, . . . , Td, we identify a PARTd(1) model on qt, having parameters φτd , σ
2
τd
,∀τd ∈231

{1, . . . , Td}, defined as in Equation (7). Even if such simple model may be not accurate232

enough for prediction purposes, it is generally sufficient to catch the dominant dynamics.233

Time-steps of homogeneous variability, ∆k(τ), must be such that V AR(qτ0+∆k(τ)|qτ0) is234

approximately homogeneous for all τ , and
∑

∆k(τ) = Td. Equation (13) defines variance235

of qτ0+∆k(τ) conditional to qτ0 as function of time-step residual variance, σ2
τd

.236

V AR(qτ0+∆k(τ)|qτ0) =

τ0+∆k(τ)∑
τd=τ0+1

τ0+∆k(τ)∏
i=τd+1

φ2
i · σ2

τd
(13)

where, by convention, φ2
i = 1 if i > τ0 + ∆k(τ).237

In Equation (13), φτd is generally close to one, especially for τd where variability is238

small, and time-steps ∆k can be larger. Considering
∏
φ2
τd

in Equation (13) as equal to239

one, V AR(qτ0+∆ki|qτ0) can be written as proportional to the sum of variances only, which240

we take as indicator of variability. This allows us to define a cumulated variability that241

depends on τd only.242

The residual variance is used to define a Cumulative Variability in function of τ , as in243

Equation (14).244
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CV (τd) =

∑τd
t=1 σ

2
τd∑Td

t=1 σ
2
τd

(14)

In Equation (14), the numerator is the cumulative variance until τd, the denominator is245

the cumulated variability for the entire period, Td, to standardize CV between zero and246

one. The non-uniform time-step ∆k(τ) is then chosen by splitting the hydrological period247

in T time-steps having approximately homogenous variability, as in Equation (15).248

∆k(τ) =

⌊
CV −1

( τ
T

)
− CV −1

(
τ − 1

T

)⌉
; ∀τ = {1, · · · , T} (15)

where operator b·e returns the nearest integer. By convention, CV −1(0) = 0.249

The discharge signal is aggregated using the variable time-step, and a model is identified250

on the aggregated signal according to procedure in Section 2.1, or others.251

3. Application to the Senegal river

The Senegal River, West Africa, is a 1790 km long river. Its drainage basin extension252

is 270.000 km2, over Guinea, Mali, Senegal and Mauritania. The river inflow is extremely253

variable, following the tropical raining seasonality with a marked difference between the254

dry season, in January-June, and the raining one, in July-October, when most of the255

water falls in the upper part of the basin [Albergel et al., 1997]. Figure 2 displays the256

discharge at Soukoutali, inflow to Manantali for 64 years.257

Manantali is an annual reservoir for hydropower, located in Mali and controlling about258

50% of the total water flow of the Senegal River. Manantali was completed in 1987 and259

started to produce electricity in 2002. Its benefits are shared among Mali, Mauritania,260

and Senegal. These three countries participate with Guinea to the Organization for the261
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Valorization of Senegal River (Organisation pour la Mise en Valeur du fleuve Senegal,262

OMVS). Manantali reservoir volume is 12× 109m3, its installed capacity is 205 MW , the263

average inflow is 270 m3/s, the average residence time is about one year.264

The OMVS have gradually embraced the Integrated Water Resources Management265

paradigm, in which water allocation decisions are based on economic, social, technical266

and political factors, in accordance with stakeholders’ interests. This led the OMVS267

to prepare a reservoir management optimization program [Fraval et al., 2002]. Manantali268

operation was originally designed to satisfy different rival uses: energy production and low-269

flow augmentation on one hand; flood support on the other. Operating the reservoir for270

hydroelectric production reduces the annual streamflow variability, with negative effects271

on the ecological equlilbrium and on some traditional activities in the valley, but with272

positive effects on water availability for irrigation and navigation, which will become a273

more important objective in the near future [Bader et al., 2003]. This analysis, however,274

focuses on methodological aspects, so we consider energy production objective only.275

In the following, at section 3.1, we define the non-uniform time-step, then we identify276

a streamflow process model as defined in Equations (8) and (9), and a classic Thomas-277

Fiering Model, for comparison. At section 3.2, we test the added value of non-uniform278

time-step in terms of reservoir operation.279

3.1. Streamflow process model identification

The hydrological process on the Senegal river is characterised by a strong periodical280

component. Following the procedure described in section 2.2, we select ∆k(τ) using281

T = 12 time-steps, for comparison with monthly time-step. Figure 3 shows the CV (τd)282

function, defined in Equation (14), and the ∆k(τ) for T = 12, for the entire periodic year,283
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on plot (a), and a zoom on the period of high variability, on plot (b), for τd between 135284

(May 15) and 285 (October 12).285

The non-uniform time-step defined by ∆k(τ) is used to aggregate the daily inflow signal.286

The same inflow is also aggregated at the monthly time-step to be compared to the non-287

uniform aggregation. Figure 4 shows the aggregated observed inflow with non-uniform288

time-step and monthly time-step.289

Non-uniform aggregation allocates only two time-steps for the entire recession curve,290

going from October to May,using the ten remaining time-steps for the raising part of the291

hydrography, against the seven and five time-steps used by monthly aggregation. A finer292

time-step during the raising part of the hydrograph should allow to better adapt to the293

incoming information on the inflow value.294

Figure 5 shows the autocorrelation lag 1 on the de-trended logarithmic of discharge295

signal, equivalent to φτ of Model (7) for a PAR(1), being φτ = COV (yt,yt−1)
V AR(yt−1)

[Box et al.,296

1970]. In monthly aggregation, φτ stays close to 1 for different months during the dry297

period, reaching 0.5 at τ = 8. The non-uniform aggregation autocorrelation is more298

regular: most of the cases lay between 0.6 and 0.8. This results suggest that the non-299

uniform aggregation can provide a more effective distribution of decision instants. This300

is further investigated in section 3.2.301

From the non-uniform aggregated inflow signals, following the procedure described in302

2.1, we identify a multiplicative model as in Equations (9) and (8) and an additive Thomas-303

Fiering model. We refer to these models as multiplicative and additive model. A PAR(1)304

represents the process sufficiently well. The residuals autocorrelation is approximately305

zero for both the multiplicative and the additive model, being within the 95% confidence306
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band, for most of the lags larger than zero. This confirms the validity of the non-uniform307

aggregation, for it preserves the process as markov.308

We test whether the residual sampling distribution adhere to the prescribed one, log-309

normal for the multiplicative case, normal for the additive. Both residuals must be stan-310

dardised by the time variant variance, στ . For the multiplicative residuals, we test their311

normality on log(Ξt). Figure 6 presents the normality plot for both the logarithm of resid-312

uals for the multiplicative model and the residuals for the additive model, showing that313

the multiplicative model follows the prescribed distribution, whereas the additive model314

suffers from a fat tail on higher values. A Kolmogorov-Smirnov test [Dekking , 2005]315

on the standardized logarithms of residuals does not reject the hypothesis of a normal316

distribution, with a p-value of 0.07. The same test on the additive model standardized317

residual gives a p-value of 10−6, leading to rejecting the assumption of residuals being nor-318

mally distributed with sufficient confidence. The positive results on the (ξt) distribution319

correctness gives us further confidence in the validity of the multiplicative model.320

Figure 7 shows the observed discharge data and their match with the 95% confidence321

bands for both the multiplicative and the additive model. The confidence bands are322

qτ · exp
(
± 2 · V AR(yt)

)
for the multiplicative model (bold continuous lines) and E(qt)±323

2 · V AR(qt) for the additive model (bold dashed lines). The signal variance V AR(qt)324

or V AR(yt), is derived from {στ}Tτ=1 as described in Bartolini et al. [1988].From Figure325

7 we see how the additive model has a non-negligible probability of producing negative326

inflow. Moreover, lower confidence band for the additive model is, for some time-steps,327

much lower than the lowest observed discharge. whereas the multiplicative model follows328

closely the observed signal variance for the entire period.329
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We quantify the approximation due to linearization using Equations (12) for error av-330

erage, and 5% and 95% quantile of qτ−1, examining both the average for all τ and the331

largest value in τ . The average error is 0.6 m3/s, or 0.3% of median discharge, which332

we consider a relatively small value. Even for the largest error average, at τ = 7, is 23333

m3/s, which is less than 3% of median discharge. Error at 5% quantile is, on average, 4%334

of median discharge, with a peak of 7% at τ = 4 (15 m3/s in absolute value). Error at335

95% quantile is 11% of median discharge, with a maximum absolute value of 88 m3/s at336

τ = 7, which is 11% of median discharge. As a summary, we can state that error due to337

linearization is adequatly small; its average is generally negligible, growing to about 5%338

and 10% of median discharge at 5% and 95% quantiles of qτ−1.339

Figure 8 shows the detail of the error due to linearization for τ = 7. Plot (a) compares340

output of nonlinear and linearized multiplicative model, i.e. model (8) and model (9)341

for ξt = 1, in function of qt−1. The linear model is tangent to the nonlinear one at the342

linearisation point, i.e. at q̄τ−1. Going further from the median the models diverge, even343

if the difference stays small. Plot (b) presents the error magnitude in function of qt−1 next344

to its probability of occurrence, f(qτ−1).345

On a multiplicative PARτ (1), φτ < 1 for most of τ , because stationarity condition346

requires that
∏T

τ=1 φτ < 1. This implies that model (8) is a concave function in qt−1 and347

et > 0,∀qt−1, i.e. Model (9) systematically overestimate its nonlinear version. A large348

number of time-steps per period results in a shorter time-steps length. As a consequence,349

φτ values will be closer to one, for φτ is the autocorrelation lag 1 in a AR model [Box350

et al., 1970], resulting in a smaller error due to linearization.351

3.2. Effects of non-uniform aggregation on reservoir operation
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We compare the system performances and behaviour of reservoir operation between352

monthly and non-uniform discharge aggregation to assess the advantage of the latter.353

The system model is made of a reservoir and a hydrological component, as in Figure 9.354

Streamflow at Soukoutali, output of the hydrological model, is the input to the reservoir.355

The objective is energy production. Each element of the optimization problem is detailed356

in the following.357

The reservoir is modelled as in Equation (1c). The reservoir input is the discharge from358

the hydrological component qt. Reservoir outputs are: discharge through turbines rturb,t,359

and discharge through spillways, rspill,t. Evaporation is not considered in this analysis.360

Inequalities (16) are constraints on discharge decisions and reservoir volume.361

vmin ≤ vt ≤ vmax (16a)

0 ≤ rturb,t ≤ rturb,max (16b)

rspill,t ≥ msafety · (vt − vsafety) (16c)

Inequalities (16a) and (16b) are physical constraints, derived from the system charac-362

teristics. Inequality (16c) is a legal condition that forces to draw down the reservoir when363

its volume exceeds the safety threshold, vsafety. Constraint on release through spillages is364

large enough for never being active during the simulation period, as verified a posteriori,365

and therefore it is not included. Inequalities (16b) and (16c) are implemented as hard366

constraint, inequality (16a) is implemented as soft constraint to avoid non-feasibility.367

The system objective is the yearly average energy production JE = 1/Nyears

∑T×Nyears
t=1 Et,368

composed of the sum of the daily energy production, Et, as defined in Equation (17), for369

the entire simulation horizon T ×Nyears, where Nyears = 43, from 1970 to 2012.370

D R A F T December 14, 2015, 12:19pm D R A F T

Author-produced version of the article published in Journal of Irrigation and Drainage Engineering-ASCE, 2017, N°143(4)
The original publication is available at http://ascelibrary.org

Doi: 10.1061/(ASCE)WR.1943-5452.00007466



RASO ET AL.: EFFECTIVE STREAMFLOW PROCESS MODEL FOR SDDP X - 21

Et = η ·∆k(τ) ·∆ht · rturb,t (17)

In Equation (17), ∆ht is the hydraulic head [m], rturb,t is discharge trough turbines371

[m3/s]. η is a multiplicative factor, such that η = ρ · g · η̂(rt,∆h) · 24 · 10−6, where ρ is the372

water density, 1000 [kg/m3], g is the gravity acceleration, 9.8 [m/s2], η̂ is the efficiency373

coefficient, considered equal to 0.9, 24 and 10−6 are unit transformation coefficients, [h/d]374

and [MW/W ]. Et is expressed in [MWh].375

Equation (17), to be employed in linear optimization within SDDP, is approximated by376

expressing it as linear function of rt and vt, linearized at an operational point, under the377

hypothesis of cylindric reservoir. Equation (18) defines the operational time-step objective378

indicator used in SDDP, being the weighted sum of releases and volume.379

Eop
t = E0,t+

+η ·∆k(τ) ·
{

+

[
rturb,0

A0

]
· vt

+ [h0 − hv0 −mv(1 + rturb,0)] · rturb,t

+ [−mv] · rspill,t

}
(18)

In Equation (18), E0,t = η · ∆k(τ) ·
{

[h0 − hv0] · rturb,0 −
[
rturb,0
A0

]
· v0 − [h0 − hv0 −380

mv(1 + rturb,0)] · rturb,0 + mv · rspill,0

}
. Parameters of Equation (18) and their derivation381

are described in Appendix B.382

Equation (17) is linearized at a normal operational point, that is the reservoir state383

at which the reservoir is mostly operated, either historically observed or deduced from384

system characteristics. We infer the operational point from the reservoir characteristics,385
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considering v0 = vsafety, i.e. the safety limit, rturb,0 = E(qt), i.e. the average inflow to the386

reservoir, and rspill,0 = 0 m3/s, which considers no release through the spillages.387

The optimization is performed using 25 extractions for the forward phase and 25 for the388

backward one until convergence, attained at an accuracy level of 2× 107. This accuracy389

level lays within the ±2σ of forward simulation results. We can consider with sufficient390

confidence that the algorithm has converged to the optimum.391

Performance results show a moderate improvement for non-uniform aggregation. Op-392

timal solution gives JE equal to 930 GWh/year for the monthly aggregation, and 945393

GWh/year in the non-uniform case, equivalent to an improvement of one week of average394

energy production.395

We analyse the reservoir operation behaviour. Figure 10 shows the reservoir volume and396

the release trough turbines for the monthly and the non-uniform aggregation in response to397

the 2005 inflow scenario. Inflow peak is larger than maximum discharge trough turbines;398

therefore, to avoid spillage, the reservoir must be drawn down before the high flow period,399

in order to create a buffer that stores part of the incoming water. SDDP optimal operating400

rules are the results of an optimal compromise between the objectives of keeping a high401

water level and avoiding spillages.402

Figure 10 plot (b) shows how the reservoir operation using non-uniform steps adjusts403

decisions at higher frequency during high uncertainty periods, adapting more rapidly to404

the new observed discharge. Thanks to this rapid adaptation during the high discharge405

period, reservoir operation using non-uniform aggregation can draw down the reservoir406

less, as shown in Figure 10 plot (a).407
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4. Conclusions and Discussion

SDDP, to be employed for reservoir operational rules design, requires the identification408

of a linear streamflow process model. Presently, models from the literature use almost409

always a periodic autoregressive model with monthly time-steps. In this study we proposed410

an innovative streamflow process model to be used in SDDP. Model features are i) a log-411

normal multiplicative stochastic component, which guarantees positive discharge values,412

and ii) non-uniform time-steps, which makes the process approximately homoscedastic413

i.e. having constant variability. The multiplicative non-linear model can be employed414

in the SDDP forward phase directly, whereas a linearized version must be used in the415

backward phase. We showed how to identify the multiplicative streamflow process model416

and its linearized version, and how to derive the non-uniform time-steps lengths from417

discharge data. Model identification for the proposed model is not more complex than418

for classic periodic autoregressive models with monthly time-step. The proposed features419

are independent from each other, then each of them can be applied separately. This work420

address specific problems encountered in SDDP, but some results may have a broader421

(potential) validity in time series modeling for synthetic streamflow sequences generation.422

We applied the model to the streamflow process at Soukoutali, on the Senegal River,423

for the operational rules design of a single reservoir system. Model identification would424

not be different if the reservoirs were many. The proposed multiplicative model offers425

a better representation of the streamflow process both in the forward phase, where it426

correctly represents the streamflow dynamics and the discharge distribution, and in the427

backward phase, where it correctly represents the residual distribution, avoiding the fat-428

tail phenomenon, otherwise present in the classic Thomas-Fiering model. The model429
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using non-uniform time-steps has a relatively homogeneous variance. This brings in a430

practical advantage: the non-uniform time-steps follow closer the changing hydrological431

variability along the year, adapting the decision more frequently during high variability432

periods, resulting in enhanced system performance evaluation. If time-step aggregation is433

sufficiently fine, a non-uniform aggregation may even make time decomposition needless.434

Model linearization, used in the backward phase, introduces an error. The analysis435

on error due to linearisation show that the error average is negligible, growing to about436

5%-10% of median discharge at 5%-95% quantiles of qτ−1, which we consider satisfactory;437

this depends, however, on the specific test-case and, a priori, we cannot exclude it to be438

a limitation for this model.439

Appendix A: Linear model parameters derivation

Parameters ρτ,i, ωτ,i, κτ are derived by linerization of Model (8) on the median of its440

deterministic inputs, at qt−i = q̄τ−i, with q̄τ defined in Equation (6), and ξt−j = 1.441

Equation A1 is model (8) for ξ = 1 written as Taylor expansion on its deterministic442

inputs.443

qnl
t ≈

p∑
i=1

∂qnl
t

∂qt−i
· (qnl

t−i − q̄t−i)+

q∑
j=1

∂qnl
t

∂ξt−j
(ξt−j − ξ̄t−j)+

qnl
t (qt−i, ξt−j)

(A1)

Equations (A2) are the derivatives of qt on inputs qt−i and ξt−j.444
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∂qnl
t

∂qt−i
=ατ ·

[
φτ,i · qt−i(φτ,i−1)·

∏
k∈{1,...,p}\i

qt−k
φτ,k ·

q∏
j=1

ξt−j
ψτ,i

] (A2a)

∂qnl
t

∂ξt−j
=ατ ·

[
ψ · ξt−j(ψτ,j−1)·

p∏
i

qt−i
φτ,i ·

∏
k∈{1,...,q}\j

ξt−k
ψτ,k

] (A2b)

Separating members of Equation (A1) by their inputs, and considering that ατ =445

q̄τ/
∏p

i=1 q̄
φτ,i
τ−i we derive, in Equations (A3), parameters (10) of Model (9).446

ρτ,i =
∂qnl

t

∂qt−i
(qt−i, ξt−j) =

=
q̄τ∏p

i=1 q̄
φτ,i
τ−i

·
[
φτ,i ·

q̄
φτ,i
t−i

q̄t−i
·

∏
k∈{1,...,p}\i

q̄
φτ,k
t−k

]
=

=φτ,i ·
qτ
qτ−i

(A3a)

ωτ,j =
∂qnl

t

∂ξt−j
(qt−i, ξt−j) =

=
q̄τ∏p

i=1 q̄
φτ,i
τ−i

·
[
ψ ·

p∏
i

qt−i
φτ,i

]
=

=ψτ,i · qτ

(A3b)

κτ =qnl
t (qt−i, ξt−j)−

p∑
i=1

∂qnl
t

∂qt−i
(qt−i, ξt−j) · qt−i −

q∑
j=1

∂qnl
t

∂ξt−j
(qt−i, ξt−j) · ξt−j =

=qτ ·

(
1−

p∑
i=1

φτ,i −
q∑
j=1

ψτ,i

) (A3c)

Appendix B: Energy objective linearization

Energy function, from Equation 17, is written in Equation (B1) as function of problem447

variables.448
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Et = η ·∆k(τ) · [R1(vt)−R2(rturb,t + rspill,t)] · rturb,t (B1)

In Equation (B1), the hydraulic head ∆h, is written as function of problem variables;449

ht = R1(vt) is the stage-storage curve and hvt = R2(rturb,t + rspill,t) the rating-curve, where450

ht is the water level in the reservoir and hvt the tailwater elevation, downstream of the451

reservoir.452

Equations (B2) are the partial derivatives of Equation (B1).453

∂Et
∂vt

= η ·∆k(τ) ·R1
′(vt) · rturb,t

∂Et
∂rturb,t

= η ·∆k(τ) ·
[
R1(vt)−

R2
′(rturb,t + rspill,t) · rturb,t −R2(rturb,t + rspill,t)

]
∂Et
∂rspill,t

= −η ·∆k(τ) ·R2
′(rturb,t + rspill,t)

(B2)

In Equations (B3), we consider a cylindrical reservoir in proximity of the operational454

reservoir water level, h0, and a linear rating curve in proximity of discharges rturb,0+rspill,0.455

R1(vt) ≈ h0 +
1

A0

· (vt − v0) (B3a)

R2(rturb,t + rspill,t) ≈ hv0 +mv(rturb,t − rturb,0 + rspill,t − rspill,0) (B3b)

where A0 is the reservoir surface corresponding to h0, hv0 = R2(rturb,0 + rspill,0), and456

mv = R2
′(rturb,0 + rspill,0).457

Considering Equations (B2) and (B3), we get, in Equation (B4), the linear approxima-458

tion of Equation (B1).459
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Et ≈Et(v0, rturb,0, rspill,0)+

+
∂Et
∂vt
· (vt − v0)+

+
∂Et
∂rturb,t

· (rturb,t − rturb,0)+

+
∂Et
∂rspill,t

(rspill,t − rspill,0) =

(B4a)

= η ·∆k(τ)·
{

[h0 − hv0] · rturb,0+

+

[
rturb,0

A0

]
· (vt − v0)+

+ [h0 − hv0 −mv(1 + rturb,0)] (rturb,t − rturb,0)

+[−mv](rspill,t − rspill,0)

}
(B4b)

Equation (B4b) gives the weights for vt, rturb,t, and rspill,t that maximise energy, as in460

Equation (18). For constant tailwater elevation, then mv = 0, and Equations (B4b) and461

(18) can be simplified.462

Appendix C: List of main variables

We use here the classic convention of representing vectors in bold.463

vt Reservoir volumes [m3]464

rt Discharge decision [m3/s]465

qt (Flow) scenarios [m3/s]466

Nres Number of reservoirs [−]467

Ndec Number of discharge decisions [−]468

Nscen Number of scenarios [−]469

I Input matrix [−]470

O Output matrix [−]471
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ct(·) Inequality constraints [−]472

g(·) Time-step objective function [−]473

F (·) Cost-to-go function [−]474

F(·) cost-to-go function approximation by Bender’s cuts [−]475

E Expected value [−]476

fQt(qt); Probability density function of qt [−]477

ατ,i, φτ,i, ψτ,i, σ
2
τ Periodic ARMA parameters478

ρτ,i, ωτ,i, κτ Linearized multiplicative model parameters479

q̄τ Climatic average of Qτ m
3/s480

t Time-step index [−]481

τ Periodic time-step index [−]482

∆t Daily time-step length [86400s]483

∆k Number of daily time-steps [days]484

T Period length [−]485

H Optimization horizon [−]486

et Error due to model linearization [m3/s]487

CV Cumulative variance [−]488

vmin Minimum reservoir volume [3.9× 109m3]489

vmax Maximum reservoir volume [1.5× 1010m3]490

vsafety Reservoir volume safety limit [1.18× 1010m3]491

rspill,max Maximum discharge through turbines [500m3/s]492

JE Annual average energy production [GWh]493
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E Daily energy production [MWh]494

Eop Linearized energy production objective [MWh]495

v0 Operational volume [1.18× 1010m3]496

rturb,0 Operational release through turbines [270m3/s]497

rspill,0 Operational release through spillages [0m3/s]498
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Figure 1. Map of the Senegal Basin.
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Figure 2. Inflow at Soukoutali from 1 January 1950 to 31 December 2013, daily

time-step.
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Figure 3. Cumulative Variance on τd.
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(a) Non-uniform aggregation
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(b) Monthly aggregation

Figure 4. Inflow at Soukoutali from 1 January 1950 to 31 December 2013, aggregated

observed discharge.
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Figure 6. Normality plot for logarithms of model residuals of Model (9), Multiplicative

Model (a), and residuals of Thomas-Fiering, Additive Model (b).
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Figure 7. Observed discharge data and 95% confidence bands for Model (8), or mul-

tiplicative model (continuous bold lines) and Thomas-Fiering, or additive model (dashed

bold lines).
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(a) Linear vs non-linear model.
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Figure 8. Error due to linearisation at τ = 7.
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Figure 9. Schema of the Senegal River System at Manantali, including: Manantali

reservoir volume, vt, inflows at Soukoutali, qt, and discharge decisions, rt.
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Figure 10. Reservoir volume (a) and discharge trough turbines (b) for monthly (dashed

line) and non-uniform (continuous line) aggregation, year 2005.
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